
Man-in-the-Middle in Tunnelled Authentication

N. Asokan, Valtteri Niemi, Kaisa Nyberg
Nokia Research Center, Finland

October 24, 2002

Abstract

Recently new protocols have been proposed in IETF for protecting remote client authentication
protoocols by running them within a secure tunnel. Examples of such protocols are PIC, PEAP and
EAP-TTLS. One goal of these new protocols is to enable the migration from legacy client authentication
protocols to more secure protocols, e.g., from plain EAP type to, say, PEAP. In these protocols, the
security of the subsequent session credentials is based only on keys derived during the unilateral authen-
tication where the network server is authenticated to the client. Client authentication is mentioned as
an option in PEAP and EAP-TTLS, but is not mandated. The PIC protocol does not even offer this
option.

In this paper we show that these recent approaches to protect legacy client authentication protocols
open up in practical situations the possibility to run a man-in-the-middle attack for impersonating the
legitimate client. For those well-designed client authentication protocols that already have a sufficient
level of security, the use of tunnelling in the proposed form is a step backwards because they introduce
a new vulnerability.

The problem is due to the fact that the legacy client authentication protocol is not aware if it is run
in protected or unprotected mode. We propose to solve the discovered problem by using a cryptographic
binding between the client authentication protocol and the protection protocol.

1 Introduction

Legacy protocols often constitute a preferred means for client authentication due to their existing key
management infrastructure and widespread deployment. However, when run in the open environment
they may be vulnerable to identity spoofing and other attacks against protocol exchange messages.

Recently new protocols have been proposed in IETF working groups for remote client authentication
in a protected manner. Examples of such protocols are PIC [11], PEAP [1], EAP-TTLS [5] and more
recently, PANA over TLS [9]. One goal of the new protocols, is to enable the migration from existing
remote authentication protocols to more secure protocols, e.g. from plain EAP to, say, PEAP.

The proposed protocols are constructed as combinations of two protocols: an outer protocol, and an
inner protocol. The inner protocol is the legacy client authentication protocol. The outer protocol is
used to protect the exchange of the inner protocol messages. The outer protocol provides authentication
of network to client, and the inner protocol provides authentication of client to network. The new drafts
allow and even consider it as a significant advantage that now a client authentication protocol (e.g. an
EAP type) can be used in multiple different ways.

In the current drafts, the outer protocol is solely responsible for the generation of session key material.
Therefore the session key material is based only on unilateral authentication where the network server is
authenticated to the client. Client authentication is mentioned as an option in PEAP and EAP-TTLS,
but is not mandated. The PIC protocol does not even offer this option.

The combination of the facts that firstly, the client authentication protocol can now be used in
multiple ways, secondly, the session keys are derived solely on the basis of the network authentication
protocol, and thirdly, the client authentication protocol is not aware of the protection protocol, opens
up a man-in-the-middle the opportunity to impersonate the legitimate client.

In this paper we propose to solve this vulnerability by cryptographically binding the inner protocol
and the outer protocol. This binding does not require any changes to the legacy protocols. This is a very
important requirement because the whole point of using legacy protocols is that they are already widely

1



deployed. The basic idea is to use session keys produced by the client authentication protocol in such
a manner that each party can verify that its peer has knowledge of the session keys. This check can
be explicit or implicit, for example by deriving the session keys from both pieces so that they become
available only to peers that know both pieces of the secret material.

In section 2 some background information is provided. Brief overviews of PEAP, EAP-TTLS, PIC
and the latest proposal of this type, POTLS, are given highlighting their common tunnelling approach.
Then the man-in-the-middle attack is described in section 3. It is also shown that all similar combined
protocols, where an inner protocol is tunneled through a protected tunnel provided by the outer protocol
are potentially vulnerable to this attack. The solution is presented in section 4.

2 IETF Drafts for Tunnelled Authentication Protocols

The Extensible Authentication Protocol (EAP), described in RFC2284 [8], is a standard framework
for support of multiple authentication methods. By using EAP in a system, it is possible enable the
system to use of a number of legacy authentication schemes, including smart cards, Kerberos, public key
mechanisms, One Time Passwords, cellular authentication mechanisms like GSM [6] or UMTS AKA [2],
and many others.

EAP is a general authentication protocol run between a client and a server, possibly via a front-end
authenticator. It does not require the front-end authenticator to authenticate the client itself. Instead,
it allows the front-end authenticator to proxy authentication messages to an authentication agent, and
inspect the packets to determine if the authentication was successful. The authentication agent may
use yet another server to help authenticate the client. We call this third server the home authentication
server. Use of EAP allows new authentication methods to be developed without requiring deployment of
new code on the front-end authenticator. As a result, the front-end authenticator acts as a “passthrough”,
and need not understand specific EAP methods.

Since its deployment, a number of weaknesses in EAP have become apparent. These include lack
of protection of the user identity or the EAP negotiation and no standardized mechanism for key ex-
change [1].

One of the main purposes of the new protocols in IETF working groups is to fix these perceived
weaknesses of EAP, while still retaining the primary benefit of EAP encapsulation: a standard interface
between the inner client authentication protocol and the outer authentication protocol allowing support
for multiple existing remote authentication protocols.

In this section brief descriptions of PEAP [1], EAP-TTLS [5], PIC [11], and PANA over TLS [9] are
given.

2.1 Protected EAP

Protected EAP (PEAP) [1] provides wrapping of the EAP protocol within TLS [4]. It claims to provide
with user anonymity and built-in support for key exchange.

The relationship between the EAP peer (client), front-end authenticator, known as the “network
access server” (NAS) in PEAP, and an authentication agent, known as the “back-end authentication
server” in PEAP, is depicted in Figure 1. As described in the figure, the EAP conversation “passes
through” the NAS on its way between the client and the back-end authentication server. While the
authentication conversation is between the EAP client and back-end authentication server, the NAS and
back-end authentication server need to have established trust for the conversation to proceed.

The client and the back-end server first set up a TLS channel over EAP. The client authentication
protocol between the client and the back-end server is encrypted and integrity protected within this TLS
channel. As a result, the NAS does not have knowledge of the TLS master secret derived between the
client and the back-end authentication server, and cannot decrypt the PEAP conversation. The back-
end server derives master session keys from the TLS master secret via a one-way function and conveys
them to the NAS which can then use these session keys to protect subsequent link-layer communication
between it and the client.

The PEAP draft [1] does not discuss the format of the attributes used to communicate the master
session keys from the back-end authentication server to the NAS. AAA (Authentication, Authorization,
and Accounting) carrier protocols such as RADIUS [10] can be used for this purpose.

The steps of PEAP operation are as follows.

1. Establish TLS connection over EAP.

2



Figure 1: Relationship between EAP client, back-end authentication server and NAS in PEAP [1]

The TLS record protocol provides a secure connection between the client and the back-end authen-
tication server

2. Authenticate TLS server.

The TLS handshake protocol is used for server authentication.

3. Authenticate user.

The user of the client authenticates by tunneling another EAP mechanism (e.g. Generic Token
Card) inside the EAP-TLS connection. The back-end authentication server may have to contact
another server, a home authentication server, to get the user authentication information validated.

4. Generate session keys.

Using the TLS Pseudo-Random Function (PRF), the client and the back-end server generate key
material for use between the NAS and the client.

(5. Transport session keys.

The session key is transported from the server to the NAS using e.g. Radius attributes and secure
connection.)

Let us consider how PEAP is typically intended to be used with a legacy protocol. In a new Internet
draft [3], an application of PEAP to GSM authentication is presented. The architectural overview of this
new EAP method using SIM is depicted in Figure 2. As discussed, the session keys to protect the link
between the client and the NAS are derived from the TLS master secret. The draft states “We rely on
PEAP for session key derivation so that any other EAP client authentication method could be utilized
without duplicating the complexity of generating a secure key hierarchy.” In other words, the session
key material agreed between the client and the back-end server as part of the GSM authentication are
not used.

Remark on terminology. The PEAP back-end server is called EAP Server in the EAP SIM GMM
draft (see Figure 2). The “Home PLMN GPRS Network” plays the role of the home authentication
server referred to above in Step 3.

3



Figure 2: EAP SIM GMM Authentication: Architecture Overview [3]

As another example of PEAP usage, the message flow in PEAP with EAP AKA client authentication
is depicted in Figure 3. The Wireless local area network (WLAN) authentication server is in the role
of NAS. Again, only the TLS master secret is used to derive the session keys to be used to protect the
WLAN link. The secret key material carried within the AKA authentication quintuples is not used.

2.2 Tunnelled TLS

The architectural view of EAP-TTLS [5] is very similar to that of PEAP, see Figure 4. EAP-TTLS
claims to allow legacy password-based authentication protocols to be used with existing authentication
databases, while protecting the security of these legacy protocols against eavesdropping, man-in-the-
middle and other cryptographic attacks.

EAP-TTLS also allows client and the back-end server to establish keying material for use in the
data connection between the client and the front-end authenticator. The keying material is established
implicitly between client and the back-end server based on the TLS handshake. As with PEAP, EAP-
TTLS derives sessions keys by applying a pseudo-random function to the TLS master secrets and other
input. The back-end server distributes derived sessions keys to the front-end authenticator using the
AAA protocol. The client derives the same keys on its own.

Remark on terminology. The TTLS terminology is mapped to our terminology as follows. The
front-end authenticator is called the “access point”. The authentication agent is the “TTLS AAA server”.
The home authentication server is the “AAA/H server”.

2.3 Pre-IKE Credentials

The PIC protocol [11] is a method to bootstrap IPsec authentication via an “Authentication Server”
(AS) and user authentication mechanisms (e.g., based on EAP and RADIUS, [10]). The client machine
communicates with the AS using a key exchange protocol where only the server is authenticated. The
session keys derived by this process are used to protect the user authentication between the client and
the “back-end authentication server” (see remark on terminology below). Once the user is authenticated,
the client machine obtains credentials from the AS that can be later used to authenticate the client in a
standard IKE exchange with an IPsec-enabled security gateway. The latter stage does not require user
intervention.

Remark on terminology. The network entity called “back-end server” in PIC plays a different role
compared to the “back-end server” in the description of PEAP, see Figure 1. The common terminology

4



Figure 3: PEAP with EAP AKA: Example Message Flow

Figure 4: The network architectural model for EAP-TTLS [5]

5



we have been using above maps to the terminology of the PIC draft as follows. The PIC draft does not
have a front-end authenticator. The “AS” in the PIC draft is what we call an authentication agent. The
“back-end auth server” in the PIC draft is what we call a home authentication server.

Figure 5: Relations between the PIC entities [11]

PIC embeds EAP messages [8] in ISAKMP payloads to support multiple forms of user authentication.
If this user authentication succeeds, the client machine can request and obtain credentials from the AS.
The term “credentials” is used to mean both digital certificates and shared secret keys. It is possible to
define other types of credentials in the future. The credentials are intended to be used by the client to
perform regular IKE authentication with an IPsec-enabled gateway.

As with the other protocols, the PIC draft does not specify the protocol used between the AS and
the Back-end authentication server. The PIC protocol is defined between the Client and the AS.

The PIC draft [11] describes the four main stages of the proposed PIC protocol as follows:
1. An optional round of messages provides partial protection of the AS from denial-of-service attacks

by verifying that the initiator of the exchange is reachable at the purported source IP address. This is
done before any significant CPU or memory resources are consumed by the AS.

2. The protocol establishes a one-way authenticated channel from the client to the AS in which only
the server is authenticated.

3. User authentication is performed over this secured channel. User authentication information is
transported using EAP tunneled within ISAKMP.

4. The AS sends the client a (typically short-term) credential, which can be used in subsequent IKE
exchanges. This credential can be thought of as a certificate, or a private key generated or stored by
the AS and accompanied by a corresponding certificate. It may also be a symmetric secret key, or other
information for deriving such a key.

In stage 4 the created ISAKMP tunnel is used for the secure provisioning of credentials for successfully
authenticated users.

An example message flow for PIC with EAP AKA is given in Figure 6.

2.4 PANA over TLS

PANA over TLS (POTLS) [9] specifies a method to carry authentication information over TLS between
PANA Client (PaC) and PANA Authentication Agent (PAA).

According to the POTLS draft [9], POTLS is designed for carrying any client authentication protocol
information including EAP messages. It is also possible to use a TLS certificate for authenticating a PaC
without using any other authentication protocol. PANA over TLS supports combining multiple types
of authentication to authenticate a PaC. For example, it is possible to use a TLS client certificate for
authenticating an IP address of the PaC and then use EAP for authenticating the user of the PaC.

In our terminology, the PaC is the client, and the PAA is the authentication agent. As with the other
methods, the TLS master secret agreed between the PaC and the PAA are used for deriving subsequent
security associations. Although POTLS can be used with TLS client certificates, the draft states that

6



Figure 6: PIC with EAP AKA: Example Message Flow

7



“First, unlike IKE, TLS does not require mutual authentication for establishing a secure communication
channel between peer entities. It would not be a realistic requirement for assuming mutual authentication
especially in roaming environments.” Thus, the common use of POTLS is likely to consist of carrying
out a legacy client authentication protocol through a server authenticated TLS connection.

3 Man-in-the-Middle

The security properties of TLS are analysed in Appendix F of [4]. It is noted that “whenever the server
is authenticated, the channel is secure against man-in-the-middle attacks”. Further, it is noted that “if
the server is authenticated, its certificate message must provide a valid certificate chain leading to an
acceptable certificate authority.” Moreover, it is stated as a necessary requirement that “each party is
responsible for verifying that the other’s certificate is valid and has not expired or been revoked”.

Also in a highlighted warning it is reminded that “server authentication is required in environments
where active man-in-the-middle attacks are a concern.”

The same security consideration as in Appendix F of the TLS specification has been the motivation
and the security basis of the new proposed protocols for tunnelled client authentication. As we saw,
all protocols using TLS mandate the use of a server certificate for Full Authentication (see [4]). Thus
man-in-the-middle attacks against contents carried over TLS connections are protected by TLS.

So why can the tunnelling approach go wrong? There are two reasons:

1. The legacy client authentication protocol is used in other environments, e.g., plain EAP without any
tunnelling, or without any encapsulation at all, e.g., direct use of one-time passwords, or cellular
authentication protocols.

The current IETF drafts do not provide any means for the inner protocol to verify if it is used with
tunnelling or not. In the drafts it is considered as a major benefit of the protection protocols that
no changes are required in the legacy protocols to be tunnelled.

2. The client fails to verify the server certificate properly.

Even if in this situation the client is to be blamed for the failure, it is not acceptable for the network
services that the security depends to such extent on a single action of the client.

The active attack by a Man-in-the-Middle (MitM) proceeds as follows:

1. MitM waits a legitimate device to enter an untunnelled legacy remote authentication protocol and
captures the initial message sent by the legitimate client.

2. MitM initiates a tunnelled authentication protocol with a authentication agent

3. After the tunnel is set up between MitM and the authentication agent, the MitM starts forwarding
legitimate client’s authentication protocol messages through the tunnel.

4. MitM unwraps the legacy authentication protocol messages received through the tunnel from the
authentication agent and forwards them to the legitimate client.

5. After the remote authentication ended successfully, MitM derives the session keys from the same
keys it is using for the tunnel.

In Figure 7 it is shown how the MitM attack works in PEAP with EAP AKA as the example client
authentication protocol in a WLAN access authentication setting. The victim terminal assumes that the
MitM is a UMTS radio access network. It is important to note that UMTS AKA, and hence EAP AKA,
are both well-designed protocols in theselves. They provide mutual authentication of the user terminal
and the radio access network and result in strong symmetric session keys. But the attempt to “secure”
EAP AKA by tunnelling it through PEAP opens up the new vulnerability.

In Figure 8 it is shown how the Man-in-the-Middle attack works in PIC environment. The protection
tunnel of PIC is created not by TLS but using a simplified ISAKMP which provides unilateral authen-
tication of the server to the client. In PEAP and POTLS client authentication in the TLS handshake is
mentioned as an option. In PIC, client authentication is not possible for the tunnel establishment.

We conclude that all tunnelled authentication protocols exhibit the same vulnerability. The MitM
attack becomes possible when the protection tunnel is based on unilateral server authentication only and
the security of the session credentials depends only on the tunnel. For such protocols, the attack can be
launched, either when the client is authenticated based on the same identity and the same authentication
token in different environments, or when the client fails to verify the server certificates, and the tunnel
is broken by the MitM.

8



Figure 7: Man-in-the-Middle in PEAP, e.g., with EAP AKA

Figure 8: Man-in-the-Middle in PIC, e.g., with EAP AKA

9



In passing, we also remark on another motivation for tunnelling client authentication protocols:
identity privacy. When a client authentication protocol is tunneled, the identity of the client is protected
from all passive wiretappers. However, there is no way to prevent an acticve attacker from launching an
attack by setting up the legacy network environment, e.g. using a false GSM base station, to discover
the victim’s identity. Therefore, this kind of attack against client’s identity privacy cannot be prevented
if the legacy environment allows it.

Next, we show that it is possible to design the protected tunnelling protocols so that they are not
vulnerable to the MitM attack. We do this by designing the tunnelling in such a manner that the session
keys and credentials become known only to the properly authenticated parties.

4 Cryptographic Binding

The vulnerability discussed above is due to the fact that the entity that holds the client’s copy of the
session keys or credentials is not properly authenticated. Two approaches to provide the necessary
authentication are possible: either by implicit authentication or explicit authentication. The goal of
implicit authentication is to ensure that the correct session keys or credentials are accessible only to the
legitimate parties. In explicit authentication a separate authentication step is performed to verify that
the master secrets from which the session keys are derived, are in possession of legitimate parties only.
In both cases, the authentication is provided by a cryptographic binding between the inner and the outer
protocols.

The presented solution is applicable to mutual authentication protocols that are constructed as a com-
bination of two authentication protocols including PEAP, EAP-TTLS and PIC. The inner authentication
protocol must satisfy one of the following requirements:

1. The protocol results in a session key; i.e., it is an authentication and key agreement protocol; or

2. The client’s long-term authentication key can be used directly to derive session keys.

A typical example of a protocol of the first type is EAP AKA. Figure 6 illustrates how EAP AKA is
used within the PIC protocol. The AKA quintuples contain 256 bits of secret session keys which would
be readily available for session key derivation by the authentication agent. These AKA session keys are
also available in the client’s device. Similarly, most existing EAP types provide a method for session key
derivation. For such protocols, no changes are required to provide the necessary cryptographic binding.
In particular, the inner protocol need not be aware if it is used with a protection tunnel or without.

In the second case, some additional key derivation application that has direct access to client’s au-
thentication key needs to be specified. This would be in addition to the existing authentication protocol
and is to be judged separately for each case. If client authentication is based on short passkey, even if it
is only one time, its usage for creating the cryptographic binding is not recommended.

We denote by K the ultimate session key. In PEAP and EAP-TTLS the session key K is the master
key that is finally becomes avalable to the local authentication agent (access server), which uses K to
derive further session keys. In PIC the key K is the key that is used to protect transportation of IKE
credentials to the client.

Further, let us denote by S the secret key material known to the client and the client’s home au-
thentication server (AAAH, or HLR/AuC, or similar). We assume S to be a session key derived in the
authentication and key agreement protocol, or it can be the client’s authentication key. Let T denote
the master key that is used to derive the secret keys for the protection tunnel. For example, the TLS
master key derived in the TLS handshake of PEAP is a typical example of T .

There are two ways of using S to achieve the necessary binding between S and K. In the first method
the binding is established directly by taking S in addition to T as input to the session key computation.
The first method provides implicit authentication of the client. The second method is to make use of a
cryptographic check value to verify that the client who is in possession of T is also in possession of S.
This second type of binding provides explicit authentication of the client.

Both methods rely on secure communication between the network entities. On the network side some
entity, let us call it “binding agent”, is responsible for collecting the secret key information S and T and
creating the binding value. Typically the binding agent is either the local authentication agent or the
home authentication server. If S is a long term authentication key of the client, then the binding agent is
preferably colocated with client’s home authentication server, to avoid transfer of S across the network.

In implicit binding the binding agent and the client compute each its copy of the session key K from
S and T using a pseudo random function suitable for key derivation. The binding agent distributes the
session key to the network entities that need to use it for further communication with the client.

10



In explicit binding the binding agent and the client compute each its copy of a verification value V from
S and T using a hash function or a message authentication function. The client and the binding agent
transfer their verification values to some network entity responsible for comparing the two verification
values. If they equal then the client is granted access to the network service. The comparing entity can
be the authentication agent or the home authentication server.

It is also possible to implement both implicit and explicit binding. In such a case the explicit binding
verification acts as a key confirmation for the agreed session key.

Let us consider PIC with EAP AKA as an example of how to implement the binding. A natural choice
is to select the local authentication agent (Au) to be the binding agent and also the network entity to
do the binding verification. In EAP AKA the AKA quintuples are sent from home authentication server
(HSS) to Au, which can use them for the binding.

In PIC explicit binding is sufficient to guarantee the integrity of the tunnel. Let us remark that this
is not necessarily the case for all tunnelling protocols. Assume MitM is running two sessions of the outer
protocol with the client and the local authentication server. Assume MITM is using T1 with the client
and T2 with AS. If the outer protocol allows MitM to influence the values T1 and T2 to become equal,
then the explicit binding is not sufficient to detect existence of the MitM. Therefore it is useful to add in
the computation of the explicit binding value some data which is specific to the client and for the further
security association between the client and the network entity.

In the case of PIC and EAP AKA the explicit verification value V can be specified for example as
follows:

K = h(IK, T )

V = MAC(K,CREDENTIAL−REQUEST ),

where IK is the UMTS AKA integrity key, h is a pseudo random function, and the MAC computation
is performed using HMAC SHA1 [7] with key K on data input CREDENTIAL−REQUEST .

Figure 9 illustrates the position of the binding verification value in the message flow. Usually it is
the case that the binding values can be transferred as an additional field in one of the existing messages
of the tunnel protocol.

5 Conclusion

In this paper we have shown that when a client authentication protocol is tunneled within another
protocol, it is necessary for each endpoint to demonstrate that it has participated in both protocols within
the authentication exchange. If this is not demonstrated then the tunnelled authentication protocol is
vulnerable to a Man-in-the-Middle attack.

We have also shown that the required demonstration can be provided in an implicit or explicit way in
a form of a cryptographic binding between the tunnel protocol and the EAP authentication protocol. In
our proposals the binding facility is implemented in the outer tunnel protocol. It also requires the EAP
protocol to provide some secret key values for the use of the binding. This approach is preferred since
it requires minimal or no changes to the EAP protocols. It also allows for flexibile and secure usage of
an EAP protocol in multiple authentication environments without the EAP protocol being aware of the
specific environment.

Finally, let us remark that the cryptographic binding proposed above is not applicable to password
based EAP authentication protocols, since the binding values provide means for running an online dic-
tionary attack against the password.

6 Acknowledgements

We thank Henry Haverinen for many interesting and useful discussions on this and other related topics.

References

[1] H. Andersson, S. Josefsson, Glen Zorn, Dan Simon, and Ashwin Palekar. Protected EAP Protocol
(PEAP), September 2002. IETF personal draft draft-josefsson-pppext-eap-tls-eap-05.txt.

11



Figure 9: Binding for PIC and EAP AKA

12



[2] J. Arkko and H. Haverinen. EAP AKA Authentication, October 2002. IETF personal draft
draft-arkko-pppext-eap-aka-05.txt.

[3] Adrian Buckley, Prasanna Satarasinghe, Vladmir Alperovich, Jose Puthenkulam, Jesse Walker,
and Victor Lortz. EAP SIM GMM Authentication, August 2002. IETF personal draft
draft-buckley-pppext-eap-sim-gmm-00.txt.

[4] T. Dierks and C. Allen. The TLS Protocol Version 1.0, January 1999. IETF RFC 2246.

[5] Paul Funk and Simon Blake-Wilson. EAP Tunneled TLS Authentication Protocol (EAP-TTLS),
February 2002. IETF pppext working group draft draft-ietf-pppext-eap-ttls-01.txt (expired).

[6] H. Haverinen and J. Salowey. EAP SIM Authentication, October 2002. IETF personal draft
draft-haverinen-pppext-eap-sim-06.txt.

[7] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication,
February 1997. IETF RFC 2104.

[8] J. Vollbrecht L. Blunk. PPP Extensible Authentication Protocol (EAP), March 1998. IETF RFC
2284.

[9] Yoshihiro Ohba, Shinichi Baba, and Subir Das. PANA over TLS (POTLS), September 2002. IETF
personal draft draft-ohba-pana-potls-00.txt.

[10] C. Rigney, A. Rubens, W. Simpson, and S. Willens. Remote Access Dial In User Service, April
1997. IETF RFC 2138.

[11] Y. Sheffer, H. Krawczyk, and Bernard Aboba. PIC, A Pre-IKE Credential Provisioning Protocol,
October 2002. IETF ipsra working group draft draft-ietf-ipsra-pic-06.txt.

13


	Introduction
	IETF Drafts for Tunnelled Authentication Protocols
	Protected EAP
	Tunnelled TLS
	Pre-IKE Credentials
	PANA over TLS

	Man-in-the-Middle
	Cryptographic Binding
	Conclusion
	Acknowledgements

