
Coercion-Resistant Electronic Elections

Ari Juels and Markus Jakobsson

RSA Laboratories
Bedford, MA 01730, USA

E-mail: {ajuels,mjakobsson}@rsasecurity.com

Abstract. We introduce a model for electronic election schemes that involves a more
powerful adversary than in previous work. In particular, we allow the adversary to de-
mand of coerced voters that they vote in a particular manner, abstain from voting, or even
disclose their secret keys. We define a scheme to be coercion resistant if it is impossible
for the adversary to determine whether a coerced voter complies with the demands. Fur-
thermore, we relax the requirements made in some previous proposals from an untappable
channel to only requiring the existence of an anonymous channel.
A first contribution of this paper is to carefully describe this new and strengtened adver-
sary and the associated model; a second is to demonstrate a protocol that is secure in our
model. While it is clear that a strengthening of attack models is of theoretical relevance,
it is important to note that our results are also highly practical. This is true both in
that we model real-life threats (such as vote-buying and vote-cancelling), and in that our
proposed protocol combines high efficiency with an unusual lack of structural complexity.
A surprising and counter-intuitive achievement of our protocol is that it combines univer-
sal verifiability – the requirement that everybody can verify that all ballots were counted
– with coercion resistance.

Key words: coercion-resistance, electronic voting, mix networks, receipt-freeness

1 Introduction

Most voters participating in shareholder elections in the United States have the option of casting
their ballots via a Web browser [1]. The same was true of voters participating in the Democratic
Presidental primary in Arizona in 2000 [8]. These are just two instances of a broadening trend to-
ward Internet-based voting. While voting of this kind appears to encourage higher voter turnout
[29], it also brings with it the risks of any computer-based process, namely errors, failures, and
vulnerability to attack. A number of papers in the cryptographic literature have described ways
of achieving robust and verifiable electronic elections, i.e., elections in which ballots and process-
ing data are posted to a publicly accessible bulletin board. For some recent examples, see [6, 13,
15, 19, 21, 24, 27, 33]. There are two other threats, however, that it is equally crucial to address
in a fair and democratic election process: We speak of voter coercion and vote buying. Internet-
based voting does not introduce these problems, but it does have the potential to exacerbate
them by extending the reach and data collection abilities of an attacker. This is highlighted
in one way by the presence of a notorious Web site that provides a forum for the auctioning
of votes [2]. Seller compliance was in that case merely voluntary. Conventional Internet voting
schemes, however, including those described in the literature, actually provide an attacker with
ready-made tools for verifying voter behavior and thereby exerting influence or control over
voters. Without careful system design, the threats of coercion and vote buying are potentially
far more problematic in Internet voting schemes than in ordinary, physical voting schemes.

One commonly proposed way of achieving secure electronic voting systems is to use a cryp-
tographic system known as a mix network [10]. This is a tool that enables a collection of servers

to take as input a collection of ciphertexts and to output the corresponding plaintexts according
to a secret permutation. A straightforward way to achieve an election system that preserves
the privacy of voters, then, is to assign a private digital signing key to each voter. To cast a
ballot, the voter encrypts her choice and signs it, and then posts it to a bulletin board (i.e., a
publicly accessible memory space). When all ballots have been collected and the corresponding
signatures have been checked, the ciphertexts are passed through a mix network. The resulting
plaintext voter choices may then be tallied. Thanks to the privacy preserving property of the
mix network, an adversary cannot tell which vote was cast by which voter. This type of scheme
is frequently advocated in the mix-network literature, as in, e.g., [6, 10, 15, 19].

In an ordinary mix-based scheme of this kind, an adversary can coerce a voter straightfor-
wardly. The adversary can simply furnish the voter with a ciphertext on a target candidate
chosen by the adversary, and then verify that the voter posted a ballot containing that cipher-
text. Alternatively, the adversary can demand the private signing key of the voter and verify its
correctness against the corresponding public key. An adversary attempting to buy votes can use
the same means. Other types of cryptographic voting schemes, namely homomorphic schemes
[4, 13] and schemes based on blind signatures [14, 27], suffer from similar vulnerabilities.

1.1 Previous work

Previous investigations of coercion-resistant voting have been confined to a property known as
receipt-freeness. Roughly stated, receipt-freeness is the inability of a voter to prove to an attacker
that she voted in a particular manner, even if the voter wishes to do so. For a more formal
definition, see [27]. The property of receipt-freeness ensures that an attacker cannot determine
exact voter behavior and therefore cannot coerce a voter by dictating her choice of candidate.
It also protects against vote-buying by preventing a potential vote buyer from obtaining proof
of the behavior of voters; voters can thereby pretend to sell their votes, but defraud the vote
buyer. The notion of receipt-freeness first appeared in work by Benaloh and Tuinstra [4]; their
scheme, based on homomorphic encryption, was shown in [18] not to possess receipt-freeness
as postulated. An independent introduction of the idea appeared in Niemi and Renvall [25].
Okamoto [26] proposed a voting scheme which he himself later showed to lack the postulated
receipt-freeness; a repaired version by the same author, making use of blind signatures, appears
in [27]. Sako and Kilian [30] propose a multi-authority scheme employing a mix network to
conceal candidate choices, and a homomorphic encryption scheme for production of the final
tally. The modelling of their scheme was clarified and refined by Michels and Horster [23]. The
Sako and Kilian scheme serves as a conceptual basis for the later work of Hirt and Sako [18],
the most efficient (and correct) receipt-free scheme voting to date. A scheme by Magkos et al.
[22] distinguishes itself by an approach relying on tamper-resistant hardware, but is flawed.1

All of these receipt-free voting schemes include somewhat impractical assumptions. For ex-
ample, these schemes assume the availability of an untappable channel between the voter and the
authorities, that is, a channel that provides perfect secrecy in an information-theoretic sense.
The scheme in [27] makes the even stronger assumption of an anonymous untappable channel.
(It is also not very practical in that it requires voter interaction with the system three times
in the course of an election.) Moreover, all of these schemes (excepting [27]) lose the property
of coercion-resistance if the attacker is able to corrupt even one of the tallying autorities in a

1 We are unaware of any mention of a break of this scheme in the literature, and therefore briefly
describe one here. The Magkos et al. system employs an interactive honest-verifier ZK proof made by
a smartcard to the voter. Presumably because of the simulability of this proof, the authors describe
the proof as being “non-transferable”. This is not true. In particular, an adversary can stipulate that
the voter engage in the proof using a challenge pre-selected by the attack. The proof then becomes
transferable, yielding a means of receipt construction by the adversary.

distributed setting. The scheme of Hirt and Sako still retains coercion-resistance when such cor-
ruption takes place, but only under the strong assumption that the voter knows which tallying
authorities have been corrupted.

A still more serious problem with of all of the receipt-free voting schemes described in the
literature, however, is the fact that the property of receipt-freeness alone fails to protect an
election system against several forms of serious, real-world attack, which we enumerate here:

Randomization attack: This attack was noted by Schoenmakers [34], who described its real-
world applicability to the scheme of Hirt and Sako. The idea is for an attacker to coerce a
voter by requiring that she submit randomly composed balloting material. In this attack, the
attacker (and perhaps even the voter) is unable to learn what candidate the voter cast a ballot
for. The effect of the attack, however, is to nullify the choice of the voter. For example, an
attacker favoring the Republican party in a United States election would benefit from mounting
a randomization attack against voters in a heavily Democratic district.

Forced-abstention attack: This is an attack related to the previous one based on random-
ization. In this case, the attacker coerces a voter by demanding that she refrain from voting.
All of the schemes cited above are vulnerable to this simple attack. This is because the schemes
authenticate voters directly in order to demonstrate that they are authorized to participate in
the election. Thus, an attacker can see who has voted, and use this information to threaten and
effectively bar voters from participation.2

Simulation attack: The receipt-free schemes described above assume that the attacker cannot
coerce a voter by causing her to divulge her private keying material after the registration process
but prior to the election process. Such an attack, however, is a real and viable one in previously
proposed schemes, because an attacker can verify the correctness of private keying material. For
example, in [27], the voter provides a digital signature which, if correct, results in the authority
furnishing a blind digital signature. In [18], the voter proves knowledge of a private key relative
to a publicly committed or published value on casting a ballot. Thus, receipt-freeness does not
prevent an attacker from coercing voters into divulging private keys or buying private keys from
voters and then simulating these voters at will, i.e., voting on their behalf.

1.2 Our contribution

Our contribution in this paper is twofold. First, we investigate a stronger and broader notion
of coercive attacks than receipt-freeness. This notion, which we refer to as coercion-resistance,
captures what we believe to be the fullest possible range of adversarial behavior in a real-world,
Internet-based voting scheme. A coercion-resistant scheme offers not only receipt-freeness, but
also defense against randomization, forced-abstention, and simulation attacks – all potentially
in the face of corruption of a minority of tallying authorities. We propose a formal definition
of coercion-freeness in the body of this paper. Two other properties are essential for any voting
scheme, whether or not it is coercion-resistant. These are correctness and verifiability. As formal
definitions for these properties are to the best of our knowledge lacking in the literature, we
provide them as well in the paper appendix.

To demonstrate the practical realizability of our definitions, we describe voting scheme that
possesses the strong property of coercion-resistance proposed in this paper – and also naturally

2 An exception is the scheme in [27], which does not appear to be vulnerable to a forced-abstention
attack. This is because the scheme seems to assume that the authority checks voter enrollment
privately. In other words, the scheme does not permit public verification that participating voters are
present on a published voter roll. This is potentially a problem in its own right.

possesses the properties of correctness and verifiability. Our scheme does not require untappable
channels, but instead assumes voter access to an anonymous channel at some point during
the voting process. (We note that anonymous channels are in fact a minimal requirement for
any coercion-resistant schemes: An attacker that can identify which voters have participated
can obviously mount a forced-abstention attack.) Despite its strong security, our proposal is
eminently practical, requiring just three invocations of a verifiable mix network such as [15,
24], and some smaller additional overhead. Thus, our proposed system is more efficient than
previously proposed receipt-free ones, in both a practical and asymptotic sense. As an example
of the latter, our scheme involves constant work per voter for each tallying authority, while the
Hirt-Sako scheme requires work linear in the number of candidates.3

1.3 Intuition behind our scheme

In a conventional voting scheme, and also in receipt-free schemes like [18], the voter Vi identifies
herself at the time she casts her ballot. This may be accomplished by means of a digital signature
on the ballot, or by an interactive authentication protocol. The key idea behind our scheme is
for the identity of a voter to remain hidden during the election process, and for the validity
of ballots instead to be checked blindly against a voter roll. When casting a ballot, a voter
incorporates a concealed credential. This takes the form of a ciphertext on a secret value σ that
is unique to the voter. The secret σ is a kind of anonymous credential, quite similar in flavor to,
e.g., [7, 9]. To ensure that ballots are cast by legitimate voters, the tallying authority T performs
a blind comparison between hidden credentials and a list L of encrypted credentials published
by an election registrar R alongside of the plaintext names of registered voters.

By means of mixing and blinding, it is possible to check whether a concealed credential is in
the list L or not, without revealing which voter the credential has been assigned to. Moreover, the
verification of credentials can take place en bloc, i.e., multiple credentials can be checked against
L at the same time. In consequence, an attacker who is given a fake credential σ̃ by a coerced
voter cannot tell whether or not the credential is valid. (The attacker will learn how many ballots
were posted with bad credentials. Provided, however, that some spurious ones are injected by
honest players, authorities, or even outsiders, individual voters will be shielded from discovery
when they provide fake credentials.) Moreover, the attacker cannot mount randomization or
forced-abstention attacks, since there is no feasible way to determine whether an individual
voter has posted a ballot or not. In particular, after divulging fake credential σ̃, a voter can go
and vote again using her real credential σ.

1.4 Organization

In section 2, we describe our setup and attack models and sketch a few of the major forms
of adversarial strategies. We provide formal definitions for the security property of coercion-
resistance in section 3. We describe the particulars of our proposed scheme in section 4, prefaced
by a summary of the underlying cryptographic building blocks. In the appendices to the paper,
we offer formal definitions for the correctness and verifiability of election schemes, heuristic
security proof sketches, and details on our choice of primitives for realizing our proposed scheme.

2 Modelling

An election system consists of several sets of entities:

3 An extra log factor in the efficiency analysis originally presented in Hirt-Sako [18] may be eliminated
by recent introduction of more efficient, universally verifiable mix networks [15, 24].

1. Registrars: Denoted by R = {R1, R2, . . . , RnR
}, this is a set of nR entities responsible for

jointly issuing keying material, i.e., credentials to voters.
2. Authorities (Talliers): Denoted by T = {T1, T2, . . . , TnT

}, authorities are responsible for
processing ballots and jointly counting votes and publishing a final tally.

3. Voters: The set of nV voters, denoted by V = {V1, V2, . . . , VnV
}, are the entities participating

in a given election administered by R. We let i be an identifier for Vi that is available to all
players.

We make use of a bulletin board, denoted by BB. This is a piece of universally accessible
memory to which all players have appendive-write access. In other words, any player can read
or write new data to BB, but cannot overwrite or erase existing data. For notational convenience,
we assume that data are written to BB in µ-bit blocks. Shorter data segments may be padded
appropriately. For simplicity of exposition, we assume no ordering on the contents of BB.

2.1 Functions

We define a candidate slate C to be an ordered set of nC distinct identifiers {c1, c2, . . . , cnC
}, each

of which corresponds to a voter choice, typically a candidate or party name. In an election, choice
ci may be identified according to its index i. Thus, for cryptographic purposes the candidate
slate consists of the integers {1, 2, . . . , nC} and may be specified by nC alone. We define a tally
on an election under slate C to be a vector X of nC positive integers x1, x2, . . . , xnC

such that
xi indicates the number of votes cast for choice ci.

– Registering: The function register(SKR, i, k1) → (ski, pki) takes as input the private reg-
istrar key SKR, a (voter) identifier i and a security parameter k1, and outputs a key pair
(ski, pki). This is computed jointly by players in R, possibly in interaction with voter Vi.

– Voting: The function vote(sk, PKT , nC , β, k2)→ ballot takes as input a private voting key,
the public key of the authorities T , the candidate-slate size nC , a candidate selection β, and
a security parameter k2, and yields a ballot of bit length at most µ. The form of the ballot
will vary depending on the design of the election system, but is in essence a digitally signed
vote choice encrypted under PKT .

– Tallying: The function tally(SKT ,BB, nC , {pki}
nV

i=1, k3)→ (X , P) takes as input the private
key of the authority T , the full contents of the bulletin board, the candidate-slate size, all
public voting keys, and a security parameter k3 and outputs a vote tally X, along with a
non-interactive proof P that the tally was correctly computed.

– Verifying: The function verify(PKT ,BB, nC , X, P)→ {0, 1} takes as input the public key
of the authorities, the contents of the bulletin board, the candidate-slate size, the voting
tally, and a non-interactive proof of correct tallying. It outputs a ‘0’ if the tally is correct
and a ‘1’ otherwise. (We characterize the behavior of verify more formally in our security
definitions.)

We define an election scheme ES as the collection of these functions. Thus ES = {register, vote, tally, verify}.

Remark: There are many election models in use throughout the world. The model we propose
here excludes important variants. In some systems, for example, voters are asked to rank candi-
date choices, rather than just listing those they favor. Many systems permit the use of write-in
votes, i.e., the casting of a ballot in favor of a candidate not listed on the slate for the election.
We exclude write-in voting from our model because it undermines the possibility of coercion
resistance in any scheme where an observer can see a complete election tally including write-in
votes. An attacker may, for example, require coerced voters to cast write-in ballots for candidate
names consisting of random strings pre-specified by the attacker. This way, the attacker can: (1)

Verify that coerced voters complied with instructions, by looking for the random strings the at-
tacker furnished, and (2) Ensure that the votes of coerced voters are not counted, since random
strings will most likely not correspond to real election choices. This problem might be avoided
using techniques to conceal write-in votes that do not impact the final tally – an interesting
problem for further research.

2.2 Summary of the attack model

We consider the process for a single election as proceeding in these phases, corresponding largely
with the functions enumerated in section 2.1:

1. Setup: If not already available, key pairs are generated for or by R and T . The candidate
slate C for the election is published by R with appropriate integrity protection.

2. Registration: The identities and elegibility of would-be participants in the election are ver-
ified by R. Given successful verification, an individual becomes a registered voter, receiving
from R a set of credentials permitting participation in the election. Previously registered
voters may be able to re-use their credentials.

3. Voting: Using their credentials with reference to the candidate slate C, registered voters
cast ballots.

4. Tallying: The authority T processes the contents of the bulletin board BB so as to produce
a tally vector X specifying the outcome of the election, along with a proof of correctness P
of the tally.

5. Verification: Any player, whether or not a participant in the election, can refer to BB and
P to verify the correctness of the tally produced by T in the previous phase.

Assumptions in setup phase: Our security definitions permit the possibility of static, active
corruption by the adversary of a minority of players in R and T in the setup phase. The security
of our construction then relies on generation of the key pairs (SKT , PKT) and (SKR, PKR)
by a trusted third party, or, alternatively, an interactive key-generation protocol such as [17]
between the players in R resp. T . In this latter case, the privacy and correctness of the key
generation procedure depends on computational security assumptions.

Assumptions prior to registration: The adversary may coerce a voter prior to the reg-
istration phase in the sense of requesting in advance that the voter retain transcripts of the
registration process, or by providing data in an attempt to dictate voter interaction with the
registrar.

Assumptions in registration phase: We make the assumption that the registration phase
proceeds without any corruption of voters. This assumption is at some level a requirement for a
coercion-free election, as an attacker capable of corrupting and seizing the credentials of a voter
in this initial phase can mount a simulation attack. More precisely, we must make at least one
of three assumptions about the registration phase:

1. Erasure of data from voter interaction with R is forced (e.g., by difficult-to-modify vot-
ing software or smartcards provided to voters). This prevents an attacker from requesting
registration transcript data after the fact; or

2. The adversary cannot corrupt any players in R; or
3. Voters become aware of the identity of any corrupted player in R.

The reason we require at least one of these assumptions is as follows. If none of these as-
sumptions holds, then the adversary can, on demanding information from a voter, verify the

correctness of some portion thereof, where the voter would not know what portion is being
checked. In other words, the adversary can perform spot checks, with a high probability of
successfully detecting false transcripts. In consequence, the adversary can coerce voters into
divulging full transcripts of their interactions with R, thereby enabling a simulation attack. In
contrast, if at least one of the assumptions holds, we show that it is possible to formulate a
protocol that permits the voters to produce information that the adversary cannot distinguish
from the requested information, but which will not allow the adversary to cast a vote that will
influence the final tally.

Assumptions on voting, tallying and verification phases: Subsequent to the registra-
tion phase, we assume that the adversary may seize control of a minority of players in T and
any number of voters in a static, active manner. (Since R does not participate in the process
subsequent to registration, we need not consider adversarial corruption of R at this point.)
The adversary may also coerce voters as desired by requesting that they divulge private keying
material4 or behave in a prescribed manner. Voters are assumed to be able to cast their ballots
via fully anonymous channels, i.e., channels such that an attacker cannot determine whether or
not a given voter cast a ballot. This assumption is a requirement for any election scheme to be
fully coercion-resistant: If an attacker can tell whether or not a given voter cast a ballot, then
the attacker can easily mount a forced-abstention attack. In practice, an anonymous channel
may be achieved by enabling voters to cast ballots in public places, thereby mixing their votes
with others, by use of anonymizing, asynchronous mix-networks, etc.

3 Formal definitions

We now turn our attention to formal security definitions of the essential properties of correctness,
verifiability, and coercion-resistance, respectively abbreviated corr, ver, and c − resist. Our
definitions hinge on a set of experiments involving an adversaryA in interaction with components
of the election system ES. This adversary is assumed to retain state throughout the duration of
an experiment. We formulate our experiments such that in all cases, the aim of the adversary is
to cause an output value of ’1’. Thus, for experiment ExpE

ES,A(·) on property E ∈ (ver, corr, c−
resist), we define:

SuccE
ES,A(·) = Pr[ExpE

ES,A(·) = ’1’].

According to the standard definition, we say that a quantity f(k) is negligible in k if for every
positive integer c there is some lc such that f(k) < kc for k > lc. In most cases, we use the term
negligible alone to mean negligible with respect to the full set of relevant security parameters.
Similarly, in saying that an algorithm has polynomial running time, we mean that its running
time is asymptotically bounded by some polynomial in the relevant security parameters. As
the properties of correctness and verifiability are of less relevance to our work than coercion-
resistance, we relegate the first two definitions to appendices A and B.

Coercion resistance: Coercion resistance may be regarded as an extension of the basic prop-
erty of privacy. Privacy in an election system is defined in terms of an adversary that cannot
interact with voters during the election process. In particular, we say that an election is private
if such an adversary cannot guess the vote of any voter better than an adversarial algorithm
whose only input is the election tally. (Note, for example, in an election where all voters vote

4 We assume that the coercion takes place remotely, i.e., the adversary cannot extract all user transcripts
from, e.g., a hard drive.

Republican, the system may have the property of privacy, even though the adversary knows how
all voters cast their ballots in that election.)

Coercion resistance is a strong form of privacy in which it is assumed that the adversary
may interact with voters. In particular, the adversary may instruct targeted voters to divulge
their private keys subsequent to registration, or may specify that these voters cast ballots of a
particular form. If the adversary can determine whether or not voters behaved as instructed,
then the adversary is capable of blackmail or otherwise exercising undue influence over the
election process. Hence a coercion-resistant voting system is one in which the user can deceive
the adversary into thinking that she has behaved as instructed, when the voter has in fact cast
a ballot according to her own intentions. Observe that when deployed straightforwardly, the
mix-network-based election system mentioned above in section 1 does not possess the property
of coercion resistance. This is because an adversary that instructs a voter to divulge her private
signing key can check the correctness of the key against the certificate of the voter. Also, note that
the adversary may check how many votes were cast for each voter, which enables a successuful
forced-abstention attack.

Our definition of coercion resistance requires addition of a new function to voting system ES:

– The function fakekey(PKT , sk, pk) → s̃k takes as input the public key of the authorities,
and the private/public key pair of the voter. It outputs a spurious key s̃k. (The term “key”
may apply more broadly to other types of secret data.)

Of course, for the function fakekey to enable coercion resistance, the key s̃k must be indis-
tinguishable by the adversary A from a valid key, and only distinguishable by a majority of
talliers T . This property is captured in our experiment characterizing coercion resistance. To
simplify the formulation of the experiment, we assume implicitly that tally is computed by an
oracle (with knowledge of SKT). It suffices, however, for T to be computed via a protocol that
achieves correct output and is computationally simulable by the adversary A (who, it will be
recalled, may corrupt a minority of T).

Our definition of coercion resistance also requires a probability distribution Dn,nC
over the

possible vote selections of n honest voters – including possible null ballots, i.e., abstention on
the part of some voters. In other words, Dn,nC

is a distribution over vectors (β1, β2, . . . , βn) ∈
(nC

⋃
φ)n. The need for such a distribution Dn,nC

in our definition is as follows. If an adversary
knows exactly how all voters apart from the targeted one will cast their ballots, then coercion-
resistance is impossible, since the adversary can simply subtract known votes from the total tally
to determine whether and how the targeted voter cast a vote. Indeed, even if the adversary merely
knows exactly how many distinct, valid ballots will be cast, then he can determine whether or
not the targeted voter cast a valid vote. Thus, coercion resistance relies upon uncertainty in the
way that voters that are not controlled cast their ballots. Abstention by some enrolled voters and
use of invalid credentials by other voters or by the authorities themselves5 serves the purpose of
statistically hiding whether or not the targeted voter cast a ballot. The distribution Dn,nC

serves
the purpose in our experiment of defining the distribution of the “noise” concealing targeted voter
behavior. For a set of n voting credentials {ski}, we let vote({ski}, PKT , nC , Dn,nC

, k2) denote
the casting of ballots according to distribution Dn,nC

. In other words, a vector (β1, β2, . . . , βn)
is drawn from Dn,nC

and vote βi is cast using credential ski.

Experiment Expc−resist
ES,A,H (k1, k2, k3, nV , nA)

{(ski, pki)← register(SKR, i, k2)}
nV

i=1;
(V : |V | = nA)← A({pki}

nV

i=1, “control voters”);

5 This may be done to contribute globally to the coercion-resistance of the system, and amounts
essentially to the injection of “chaff” into the system.

(j, β) ← A({ski}i∈V , “set target voter and vote”);
nC ← A(“choose slate size”);
b ∈R {0, 1};
n← nV − nA − 1;
if b = 0 then

s̃k ← fakekey(PKT , skj , pkj);
BB ⇐ vote(skj , PKT , nC , β, k2);

else
s̃k ← skj ;

BB ⇐ vote({ski}i6=j,i6∈V , PKT , nC , Dn,nC
, k2);

BB ⇐ A(s̃k,BB, “cast ballots”);
(X , P)← tally(SKT ,BB, nC , {pki}

nV

i=1, k3);
b′ ← A(X , P, “guess b”);
if b′ = b then

output ‘1’;
else

output ‘0’;

A successful adversary A is one that can distinguish voter behavior better than an adversary
A′ that only has knowledge of the tally X and (perhaps implicitly of the distribution Dn,nC

).
Thus, to characterize the advantage of A, we require a second experiment:

Experiment Exp
c−resist−simple
ES,A,H (k1, k2, k3, nV , nA)

{(ski, pki)← register(SKR, i, k2)}
nV −nA

i=1 ;
β ← A′(“set target vote”);
b ∈R {0, 1};
n← nV − nA − 1;
if b = 0 then

BB ⇐ vote(sk1, PKT , nC , β, k2);
BB ⇐ vote({ski}

nV −nC+1
i=2 , PKT , nC , Dn,nC

, k2);
(X , P)← tally(SKT ,BB, nC , {pki}

nV

i=1, k3);
b′ ← A′(X, P, “guess b”);
if b′ = b then

output ‘1’;
else

output ‘0’;

For adversarial algorithm A, we define:

Advc−resist
ES,A (·) = Succc−resist

ES,A (·)−maxA′ [Succ
c−resist−simple
ES,A′ (·)].

We say that ES is coercion-resistant if for all distributions Dn,nC
and polynomial-time algorithms

A, the quantity Advc−resist
ES,A (·) is negligible.

Remarks: Our definition of coercion resistance here considers the ability of A to target a
single voter for coercion. It is a straightforward matter to adapt the definition for cases where
A targets multiple voters for coercion simultaneously. Other extensions in which, e.g., voters
may cast multiple valid ballots, are possible. It should also be noted that our definition is in one
sense weaker than those for receipt-freeness. In particular, our definition only assumes statistical

concealment of voter behavior according to the behavior of other election participants, while
receipt-free schemes retain their protective measures even if all voters are coerced. Of course,
this aspect of receipt-free schemes is due to their exclusion of many types of attacks. Put another
way, the weakened guarantee in our definition is an artifact of our covering a comprehensive range
of attacks. In practice, we maintain that it is immaterial.

4 A Coercion-Resistant Election Protocol

We are now ready to introduce our protocol proposal. We begin by describing the cryptographic
building blocks we employ.

Threshold cryptosystem with re-encryption: Our first building block is a threshold public-
key cryptosystem CS that permits re-encryption of ciphertexts with knowledge only of public
information. The private key for CS is held by T in our construction.

To describe our aim in the ideal, we would like any ciphertext C to be perfectly hiding. We
would like decryption of a ciphertext to be possible only by having a majority of players in T
agree on a query to a special decryption oracle D̃CS(). Any decryption performed by D̃CS()
should, in addition, be publicly verifiable.

Selected primitive: El Gamal: El Gamal [16] represents a natural choice of cryptosystem
for our purposes, and is our focus in this paper. We let G denote the algebraic group over which
we employ El Gamal, and q denote the group order. For semantic security, we require that the
Decision Diffie-Hellman assumption hold over G [5, 36]. A public/private key pair in El Gamal
takes the form (y(= gx), x), where x ∈U Zq. We let ∈U here and elsewhere denote uniform,
random selection from a set. A ciphertext in El Gamal on message m ∈ G takes the form
(α, β) = (myr, yr) for r ∈U Zq. For succinctness of notation, we sometimes let Ey [m] denote a
ciphertext on message m under public key y. Further details on our use of El Gamal may be
found in appendix D.

Blinding function: We also make use of what we call a threshold blinding function. This is a
deterministic, one-way function f : SK × G → G that is keyed using a private key b ∈U SK.
The private key b is distributed in a (t, nT)-threshold manner among the players in T , where
t > nT /2. A corresponding public key PK permits proof of the correct computation of fb(·).

In the ideal, we would like fb(·) to be computable only by having a majority of players in T
query a random oracle F̃b(). Any query/response pair from F̃b() should, in addition, be publicly
verifiable. Another property we require of fb(·) is that of commutativity with CS. In particular,
for any ciphertext C on m, it should be the case that D̃CS(F̃b(C)) = F̃b(m). In other words,
it should be possible to apply the blinding function to a ciphertext and then decrypt so as to
yield a plaintext blinded under fb(·).

Selected primitive: Threshold undeniable signatures: A convenient choice of f for im-
plementation is a distributed variant of the undeniable signature scheme of Chaum and van
Antwerpen [11] over a group G of order q. Here, fb(x) = xb. The private key b ∈U Zq, and
thus the computation of fb, may be distributed using standard (t, nT) Shamir secret sharing
[35] over GF [q] with t > nT /2. Each player then holds a private/public key pair (bi, ui(= gbi))
for a published generator g. The one-wayness of fb depends on the DDH assumption on G. We
require distributed one-way functions for two independent private/public key pairs (b, ub) and
(b′, ub′) in our construction. Commutativity of this primitive with El Gamal is easily seen. For
further details, see appendix D.

Mix network: A (re-encryption) mix network (MN) is a distributed protocol that takes as
input an ordered set C = {C1, C2, . . . , Cd} of ciphertexts generated in a cryptosystem like El
Gamal that permits re-encryption. The output of MN is an ordered set C ′ = {C ′

π(1), C
′
π(2), , . . . , C

′
π(d)}.

Here, C ′
π(i) is a re-encryption of Ci, while π is a uniformly random, secret permutation. This

is to say that MN randomly and secretly permutes and re-encrypts inputs. Thus, the special
privacy property of a mix network is this: An adversary cannot determine which output ci-
phertext corresponds to which input ciphertext, i.e., which inputs and outputs have common
plaintexts. Stated another way, an adversary cannot determine π(j) for any j with probability
non-negligibly better than a random guess. A number of mix network constructions have been
proposed that offer privacy and robustness against a static, active adversary capable of corrupt-
ing any minority of the n players (servers) performing the mix network operation. Some of these
constructions offer the additional property of verifiability. In other words, a proof is output that
is checkable by any party and demonstrates, relative to C and the public key of the ciphertexts
that C is correctly constructed. It is convenient to conceptualize MN in terms of an oracle
M̃N () for MN with the property of public verifiability.

There are many good choices of mix networks for our scheme; some examples of such schemes
are those of Furukawa and Sako [15] and Neff [24]. For further details, see appendix D.

Proofs of knowledge and digital signatures: As sketched in the above descriptions, we
make use of NIZK proofs in a number of places. We also require a digital signature scheme with
security against adaptive chosen message attacks. We do not describe these tools in detail, as
they are standard in the literature.

4.1 Our proposed protocol

Setup: The key pairs (SKR, PKR) and (SKT , PKT) are generated (in an appropriately trust-
worthy manner, as described above), and PKT and PKR are published along with all system
parameters.

Registration: Upon sufficient proof of elegibility from Vi, the registrar R generates and trans-
mits to Vi a random string σi ∈U G that serves as the credential of the voter. Such credentials
can be generated in a distributed threshold manner (as in [17]), with each active server of R
sending the voter Vi its credential. R then adds Si = EPKT

[σi] to the voter roll L. The voter
roll L is maintained on the bulletin board BB and digitally signed as appropriate by R using
private key R.

We assume that the majority of players in R are honest, and can thus ensure that the R
provides Vi with a correct credential. Nonetheless, it is possible for R to furnish Vi with a proof
that Si is a ciphertext on σi. To enforce coercion-resistance in the case where erasure of secrets
by voters is not automatic, a designated verifier proof [20] must be employed for this proof. We
note that credentials may be used for multiple elections.

Candidate-slate publication: R or some other appropriate authority publishes a candidate
slate C containing the names and unique identifiers in G for nC candidates, with appropriate
integrity protection. This authority also publishes a unique, random election identifier ε.

Voting: Voter Vi casts a ballot for candidate cj comprising El Gamal ciphertexts (C
(i)
1 , C

(i)
2)

respectively on choice cj and credential σi. In particular, for a1, a2 ∈U Zq:

C
(i)
1 = (α1, β1) = (cjy

a1 , ga1), C
(i)
2 = (α2, β2) = (σiy

a2 , ga2).

Additionally, Vi includes NIZK proofs of knowledge of cj and σi. These proofs may be accom-
plished by providing what amount to Schnorr identification proofs under public keys β1, β2,
since knowledge of encryption factor a1 or a2 implies knowledge of the corresponding plaintext.
The challenge values for these proofs, Pf1 and Pf2, are dependent on ε, C1, and C2. Vi posts
Bi = (C1, C2, P f1, P f2) to BB via an anonymous channel.

Tallying: To tally the ballots posted to BB, the authority T performs the following steps:

1. Checking proofs: T verifies the correctness of all proofs on BB. In particular, T checks
Pfd for a given ballot by verifying that gs

d = wdgγd . Any ballots with invalid proofs are
discarded. For the valid, remaining ballots, let A1 denote the list of ciphertexts on vote
choices, and let B1 denote the list of ciphertexts on (purported) credentials.

2. Eliminating duplicates: T applies the blinding function fb to and decrypts each of the
ciphertexts in B1. Let B′

1
denote the resulting list. According to some pre-determined policy,

e.g., timestamps on postings to BB, the tallying authority T eliminates duplicate ballots.
In other words, T removes all but one ballot sharing the same representative in B′

1
. This is

equivalent to retaining at most one ballot per given credential.
3. Mixing: T applies MN to each of A1 and B′

1
(using the same, secret permutation for

both). Let A2 and B2 be the resulting lists of ciphertexts.
4. Checking credentials: T applies mix network MN to the encrypted list L of credentials

from the voter roll. T then applies the blinding function fb′ to and decrypts each of the
ciphertexts in B2 and L. Let B′

2
and L′ denote the resulting lists. If a given value in B′

2

does not correspond to any value in L′, then the corresponding ballot is removed. Let A3

denote the resulting list of ciphertext voter choices.
5. Tallying: T decrypts all ciphertexts in A3 and tallies the final result.

How to cheat a coercer: One possible implementation of the function fakekey is for the coerced
voter Vi to select and reveal a random group element σ̃i, claiming that this is the credential σi.
(If coerced multiple times – whether for one or more elections – the voter Vi would, of course,
release the same value σ̃i.) In addition, partial or full transcripts from the registration phase
may be given to the adversary, as will be discussed below.

Upon receiving a claimed credential σ̃i, the adversary would like to verify if it is correct.
Let us consider the possibility of doing so under each of our three possible assumptions on the
registration phase; in doing so, recall that we always assume that the adversary can corrupt only
a minority of servers in T , and so, will not be able to decrypt any of the semantically secure
encryptions of credentials.

1. Assume that voters can erase information no longer needed at the end of the registration
phase, and that only a minority of servers in R may be corrupted. At the end of the registra-
tion process, each voter will erase information specifying what part of the transcript leading
to the credential σi he got from what registration server. Without proofs or transcripts from
individual servers of R, it is not possible for the adversary to verify the correctness of σ̃i.

2. Assume that the adversary cannot corrupt any server in R. As mentioned, the registration
servers will use designated verifier proofs to prove to each voter that the share they send is
authentic (i.e., will be part of the recorded transcript Si). While the voter will be convinced
of these proofs, the adversary will not; in fact, he cannot distinguish between real such
proofs and proofs simulated by Vi. Therefore, Vi can release full simulated transcripts from
the registration phase, corresponding to a credential σ̃i. The adversary cannot compare this
to actual transcripts produced by R, since he does not corrupt any player in R.

3. Assuming that the user knows what (minority of) servers in R are corrupted, but is not
necessarily able to erase data, he can present the adversary with registration transcripts that

are consistent with the view of the servers he knows to be corrupted, but inconsistent (in
terms of the real share of σi) with the view of the servers that are not. The latter transcripts
will be accompanied by simulated designated verifier proofs. Since the adversary may only
corrupt a minority of servers in R, and a majority is required to compute the credential σi,
there will be at least one share of σi that Vi can change to obtain a fake credential σ̃i 6= σi,
without the detection of the adversary.

We offer further discussion of security in appendix C in the form of security proof sketches
based on oracles defined for our building blocks.

References

1. Proxyvote.com: Shareholder election website, 2002. URL: www.proxyvote.com.
2. Vote-auction, 2002. URL: www.vote-auction.net.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In 1st ACM Conference on Computer and Communications Security, pages 62–73. ACM,
1993.

4. J.C. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended abstract). In 26th
ACM STOC, pages 544–553, 1994.

5. D. Boneh. The Decision Diffie-Hellman problem. In ANTS ’98, pages 48–63. Springer-Verlag, 1998.
LNCS no. 1423.

6. D. Boneh and P. Golle. Almost entirely correct mixing with applications to voting. In ACM CCS
’02, 2002. To appear.

7. S. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT
Press, 2000.

8. L. Burke. The tangled web of e-voting. Wired News, 26 June 2000.

9. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In B. Pfitzmann, editor, EUROCRYPT ’01, pages 93–118.
Springer-Verlag, 2001. LNCS no. 2045.

10. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, 1981.

11. D. Chaum and H. van Antwerpen. Undeniable signatures. In G. Brassard, editor, CRYPTO ’89,
pages 212–216. Springer-Verlag, 1989. LNCS no. 435.

12. R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Y. Desmedt, editor, CRYPTO ’94, pages 174–187. Springer-Verlag,
1994. LNCS no. 839.

13. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority
election scheme. In W. Fumy, editor, EUROCRYPT ’97, pages 103–118. Springer-Verlag, 1997.
LNCS no. 1233.

14. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale elections. In
J. Seberry and Y. Zheng, editors, ASIACRYPT ’92, pages 244–251. Springer-Verlag, 1992. LNCS
no. 718.

15. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In J. Kilian, editor, CRYPTO
’01, volume 2139 of Lecture Notes in Computer Science, pages 368–387. Springer-Verlag, 2001.

16. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31:469–472, 1985.

17. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. The (in)security of distributed key generation
in dlog-based cryptosystems. In J. Stern, editor, EUROCRYPT ’99, pages 295–310. Springer-Verlag,
1999. LNCS no. 1592.

18. M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryption. In B. Preneel,
editor, EUROCRYPT ’00, pages 539–556, 2000. LNCS no. 1807.

19. M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting by randomized
partial checking. In D. Boneh, editor, USENIX ’02, pages 339–353, 2002.

20. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In
U. Maurer, editor, EUROCRYPT ’96, pages 143–154. Springer-Verlag, 1996. LNCS no. 1070.

21. A. Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy. In D. Naccache and
P. Paillier, editors, PKC ’02, pages 141–158. Springer-Verlag, 2000. LNCS no. 2274.

22. E. Magkos, M. Burmester, and V. Chrissikopoulos. Receipt-freeness in large-scale elections with-
out untappable channels. In B. Schmid et al., editor, First IFIP Conference on E-Commerce,
E-Business, E-Government (I3E), pages 683–694, 2001.

23. M. Michels and P. Horster. Some remarks on a receipt-free and universally verifiable mix-type
voting scheme. In K. Kim and T. Matsumoto, editors, ASIACRYPT ’96. Springer-Verlag, 1996.
LNCS no. 1163.

24. A. Neff. A verifiable secret shuffle and its application to e-voting. In P. Samarati, editor, ACM CCS
’01, pages 116–125. ACM Press, 2001.

25. V. Niemi and A. Renvall. How to prevent buying of votes in computer elections. In J. Pieprzyk and
R. Safavi-Naini, editors, ASIACRYPT ’94, pages 164–170. Springer-Verlag, 1994. LNCS no. 917.

26. T. Okamoto. An electronic voting scheme. In N. Terashima et al., editor, IFIP World Congress,
pages 21–30, 1996.

27. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In B. Christianson et
al., editor, Security Protocols Workshop, pages 25–35. Springer-Verlag, 1997. LNCS no. 1361.

28. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, EUROCRYPT ’99, pages 223–238. Springer-Verlag, 1999. LNCS no. 1592.

29. S. Parker. Shaking voter apathy up with IT. The Guardian, 11 Dec. 2001.
30. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the imple-

mentation of a voting booth. In L. Guillou and J.-J. Quisquater, editors, EUROCRYPT ’95, pages
393–403. Springer-Verlag, 1995. LNCS no. 921.

31. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
1991.

32. C.-P. Schnorr and M. Jakobsson. Security of signed ElGamal encryption. In ASIACRYPT, pages
73–89. Springer, 2000.

33. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to electronic
voting. In M. Weiner, editor, CRYPTO ’99, pages 148–164. Springer-Verlag, 1999. LNCS no. 1666.

34. B. Schoenmakers, 2000. Personal communication.
35. A. Shamir. How to share a secret. Communications of the Association for Computing Machinery,

22(11):612–613, November 1979.
36. Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption. In Workshop on Practice

and Theory in Public Key Cryptography (PKC ’98). Springer, 1998.

A Definitions of Correctness and Verifiability

Correctness: We first consider the property of correctness. This property is in fact twofold:
First, it stipulates that an adversary A cannot pre-empt, alter, or cancel the votes of honest, i.e.,
voters that are not controlled; Second, it stipulates that A cannot cause voters to cast ballots in
such a way as to achieve double voting, i.e., use of one credential to vote multiple times, where
more than one vote per credential is counted in the tally.

In our experiment characterizing correctness, we give the adversary powers she does not
normally have. Namely, apart from getting to select a set V of voters she will control, we also
allow her to choose the candidate-slate size nC , and to choose what votes will be cast by voters
she does not control. The latter voters will indeed vote according to the adversary’s wish – but
only for the purposes of our thought experiment defining correctness, of course. If the adversary
still cannot cause an incorrect tally to be computed (i.e., one not corresponding to the votes
cast), then the scheme has the correctness property even in the real-world scenario in which
the adversary has less power. The aim of the adversary is to cause more than |V | ballots to
be counted in the final tally on behalf of the controlled voters, or to alter or delete the vote of
at least one honest voter. (This corresponds to the the condition that: (1) The verification of

the tally succeeds, and (2) That either a vote is“dropped” or “added”.) Our definition assumes
implicitly that tally is computed correctly by the authority T . (The next property we consider,
namely verifiability, addresses the possibility that this is not so.) In what follows, we let← denote
assignment and ⇐ denote the append operation. We let 〈Y 〉 denote the multiset corresponding
to entries in the vector Y , and |Y | denote the cardinality of set Y .

Experiment Expcorr
ES,A(k1, k2, k3, nV)

{(ski, pki)← register(SKR, i, k2)}
nV

i=1;
nC ← A({ski}i∈V , “choose slate size”);
V ← A({pki}

nV

i=1, “choose controlled voter set”);
{βi}i6∈V ← A(“choose votes for uncontrolled voters”);
BB ⇐ {vote(ski, PKT , nC , βi, k2)}i6∈V ;
(X , P)← tally(SKT ,BB, nC , {pki}

nV

i=1, k3);
BB ⇐ A(“cast ballots”,BB);
(X ′, P ′)← tally(SKT ,BB, nC , {pki}

nV

i=1, k3);
if verify(PKT ,BB, nC , X ′, P ′) = ‘1’ and

({βi} 6⊂ 〈X′〉 or |〈X′〉| − |〈X〉| > |V |) then
output ‘1’;

else
output ‘0’;

We say that ES possesses the property of correctness if for all polynomial-time adversaries A, it
is the case that Succcorr

ES,A(k1, k2, k3, nV) is negligible.

Verifiability: As explained above, an election system has the property of correctness if com-
putation of tally always yields a valid tabulation of ballots. Given the ability of an adversary
A, however, to corrupt some number of authorities among T , we cannot be assured that tally

is always computed correctly. The property of verifiability is the ability for any player to check
whether the tally X has been correctly computed, that is, to detect any misbehavior by T in
applying the function tally.

A strong security definition for verifiability is appropriate given the high level of auditability
required for trustworthy elections. Such a definition considers an attacker A capable of con-
trolling all of the voters and tallying authorities in T . This attacker seeks to construct a set of
ballots on BB and a corresponding tally X and proof P of correct tabulation such that the proof
is accepted by verify, but the tally is in fact incorrect. By an incorrect tally, we mean one in
which all of the valid ballots of a particular voter (i.e., corresponding to a particular credential)
are discounted, or else where multiple votes are tallied that could have been generated by the
same voting credential. Our experiment characterizing verifiability is as follows.

Experiment Expver
ES,A(k1, k2, k3, nV)

{(ski, pki)← register(SKR, i, k2)}
nV

i=1;
nC ← A({ski}

nV

i=1, “choose slate size”);
(BB, X, P)← A(SKT , “forge election”);
(X′, P ′)← tally(SKT ,BB, nC , {pki}

nV

i=1, k3);
if X 6= X′ and verify(PKT ,BB, nC , X, P) = ‘1’ then

output ‘1’;
else

output ‘0’;

We say that ES possesses the property of verifiability if for all positive integers nV and all
adversaries A with polynomial running time, the quantity Succver

ES,A(k1, k2, k3, nV) is negligible.
A technical strengthening of this definition and that for correctness is possible, and discussed in
the next section, appendix B, of this paper.

Another aspect of verifiability that we do not formally define, but do mention here and
incorporate into our proposed protocol is that of verification against voter rolls. In particular,
it may be desirable for any election observer to check that credentials were assigned only to
voters whose names are on a published roll. This is not technically a requirement if we rule out
corruption of players R, but may still be desirable for high assurance of election integrity. Our
definitions can be modified accordingly.

B Remark on strong verifiability

We set forth our definitions of correctness and verifiability to meet the minimal requirements
for a fair election and to achieve some measure of conceptual simplicity. The definitions given
above are adequate for most election scenarios, but have a technical deficiency that may be of
concern in some cases. In particular, our definitions allow for the possibility that a controlled
voter casts a ballot corresponding to vote β, but that the ballot gets counted as a vote for β ′.
Since A can choose the vote cast by a controlled voter in any case, this technical deficiency only
means that A can potentially cause the votes of controlled voters only to change in the midst of
the election process. It does not provide A with control of a larger number of votes.

Nonetheless, one can envisage some (somewhat artificial) scenarios in which stronger guar-
antees may be desirable. For example, A might have the aim of causing the victor in an election
to win by the slimmest possible margin. In this case, if A controls a majority of T , then A might
seek to decrypt all of the ballots cast in an election and alter the votes of controlled voters so
as to favor the losing candidate.

We discuss now how our definition of verifiability may be modified to discount the possi-
bility of this type of attack. (Analogous modifications may be made to the definition of cor-
rectness.) In particular, we can require that P be a proof that every tallied vote corresponds
uniquely to a credential for which a valid ballot has been cast. For this, we require a natural
technical restriction on vote. Let 〈vote(·)〉 denote the set of possible outputs for the random-
ized function vote on a particular input. We require that an output ballot be wholly unam-
biguous with respect to both the vote β and the credential sk. In other words, we require
〈vote(sk0, PKT , nC , β0, k2)〉

⋂
〈vote(sk1, PKT , nC , β1, k2)〉 = φ if β0 6= β2 or sk0 6= sk1.

To achieve our strengthened definition of verifiability, we alter experiment Expver
ES,A(k1, k2, k3, nV)

such that if the following conditions 1 and 2 are met, then the output of the experiment is ’1’.
Otherwise it is ’0’.

1. verify(PKT ,BB, nC , X, P) = ’1’

2. For every injective mapping f : 〈X〉 → ZnV
one of two conditions holds:

(a) ∃B : B ∈ BB, B ∈ 〈vote(ski, PKT , nC , β, k2)〉, ∀jf(j) 6= i

(b) ∃β ∈X : f(β) = i, ∀B ∈ BB, B 6∈ 〈vote(ski, PKT , nC , β, k2)〉

Conditions 2(a) and 2(b) here respectively specify that the adversary has successfully defeated
the verifiability of the system either by causing all of the valid ballots associated with a particular
credential not to be counted or else enabling multiple votes to be tallied for a single credential.

Given use of a verifiable mix network, our proposed protocol meets this stronger security
definition for verifiability.

C Security Discussion

Both for conciseness and generality in the following, we consider our building blocks to be oracles,
as described in appendix D, and offer heuristic proof sketches relative to the known properties
of these, and relative to the assumptions on which our suggested building blocks rest. We show
that our proposed protocol satisfies correctness and verifiability, and that it is coercion-resistant
given the corruption model outlined.

Coercion-resistance: Under our assumptions, and given the above suggested functionality of
fakekey, we know that it is not possible for the adversary to distinguish a valid credential σi

from an invalid credential σ̃i. It is important to note here that what makes a credential σi valid
is only the inclusion of a ciphertext Si on σi in the voter roll L.

We can see that the first step of the tallying process does not distinguish between valid
and invalid ballots, but only removes malformed ballots; similarly, the second step only removes
duplicates. Neither of these processes allows the adversary to infer whether some credential he
was given was valid or not – only whether the corresponding ballot was correctly cast, resp. how
many times a particular credential was used.

The third step is performed by a mix oracle: the elements of its output vector are re-
encryptions of the elements of the input list – randomly permuted. It is clear that this step
it itself does not allow the adversary to determine whether a given credential was valid or not.
The same argument holds for the mixing of the voter roll of the fourth step, and the blinding
of elements of the two resulting mixed vectors.

In the fourth step, ballots corresponding to invalid credentials are removed. Assume that
the adversary can determine whether the ballot corresponding to a particular entry in the voter
roll was removed or not. This would contradict the assumed properties of the mix network, as
it would allow the construction of a distinguisher with non-negligible advantage in detremining
relationships between input and output elements of the mix. Similarly, if the adversary can
determine whether the ballot corresponding to a given entry on BB was removed or not, then
this would lead to a contradiction. Finally, if the adversary could determine whether the ballot
corresponding to a particular (and to him known) credential was removed, then this would
contradict the assumptions on the blinding function, as it would allow a non-negligible advantage
for a corresponding distinguisher. Either of these contradictions would imply that the DDH
assumption does not hold, given our suggested choice of building blocks.

Remark: As is natural for a model addressing electronic (particularly Internet-based) voting,
our main emphasis is on an attacker that is not physically present, but coerces victims remotely.
We note, however, that there are ways in which our propsed scheme can help resist shoulder-
surfing attacks, e.g., physical oversight by a family member. For example, suppose that the
secret key σ for a voter arrives on a smartcard encrypted under her password. Then if the voter
provides the wrong password while subjected to oversight, an incorrect secret key is undetectably
released. The voter can vote again later using the correct password.

Correctness: In accordance with the experiment associated with our correctness definition, we
let the adversary choose the slate size, choose the set of voters he controls, and choose votes
for the uncontrolled voters (who will vote accordingly). The adversary further gets to corrupt
a minority of servers in T . Her goal is to remove at least one correct ballot vast by a voter
she does not control, or to have at least one vote cast by a corrupted voter counted at least
twice in the tally. The former corresponds to causing the encrypted credential of a coerced voted
to be altered, whether in the processed ballots or in the voter roll, or to otherwise cause the
two not to result in the same value after being mixed and blinded. Given that servers in T
only accept transcripts accompanied with valid proofs of correct computation, neither of these

approaches will work, or we obtain an attack against the soundness of at least one building
block used in the tallying process. Namely, if a server provides incorrect transcripts, this will be
detected with overwhelming probability, and the cheater replaced, after which the computation
will restart. Similarly, it is only possible to count a given vote more than once by making
the second step (elimination of duplicates) not succeed; this can only be achieved with a non-
negligible probability, or some building block must not be sound. The failure of the soundness
of any building block translates directly into the failure of either the DDH assumption or the
rndom oracle assumption.

Verifiability: Following the experiment associated with the definition of verifiability, we allow
the adversary to select the slate size, corrupt any number of servers in T , and corrupt all voters.
It is the adversary’s goal to cause an incorrect tally from being produced from the ballots on
BB, while making it appear that the tally is correctly computed. Turning to our protocol, we
can see that each step of the tallying process results in a universally verifiable proof of correct
computation – therefore, given the soundness of the building blocks, any modification of a
ballot will be detected, as will any incorrect elimination or lack thereof. Therefore, any strategy
allowing an adversary to defeat the correctness requirements implies an attack on the soundness
of at least one of the building blocks, contradicting either the DDH on G or the random-oracle
assumption on underlying hash functions.

D Details on primitives

Selected primitive: El Gamal: As explained in the body of the paper, El Gamal [16] repre-
sents a natural choice of cryptosystem for our purposes, and is our focus in this paper. Recall
that we let G denote the algebraic group over which we employ El Gamal, and q denote the group
order. For semantic security, we require that the Decision Diffie-Hellman assumption hold over
G [5, 36]. A public/private key pair in El Gamal takes the form (y(= gx), x), where x ∈U Zq. We
let ∈U here and elsewhere denote uniform, random selection from a set. The private key x may
be distributed among the nT players in T using (t, nT)-Shamir secret sharing [35] over GF [q],
for t > nT /2. This private key may be generated by a trusted third party or via a computa-
tionally secure simulation of this process [17]. Each player then holds a public/private key pair
(yi(= gxi), xi), where xi is a point on the polynomial used for the secret sharing. A ciphertext
in El Gamal on message m ∈ G takes the form (α, β) = (myr, yr) for r ∈U Zq. For succinctness
of notation, we sometimes let Ey[m] denote a ciphertext on message m under public key y.

To decrypt a ciphertext (α, β), the plaintext m = α/βx is computed. We let Dx[C] denote the
decryption of a ciphertext C under private key x. To achieve a threshold decryption of ciphertext
(α, β), each active player i publishes a decryption share βi = βxi . The value βx, and thus m,
may be computed using standard LaGrange interpolation. Player i may prove the correctness of
its share using an NIZK proof of the form PK{s : βi = βs

∧
ui = gs} – essentially two Schnorr

identification proofs [31] with conjunction achieved using techniques described in [12]. (The
security of such proofs depends on the dicrete-log assumption and the random-oracle assumption
[3] on an underlying hash function.). To re-encrypt a ciphertext (α, β), it suffices to multiply it
pairwise by a ciphertext on m = 1, i.e., to compute a new ciphertext (α′, β′) = (yr′

α, gr′

β) for
r′ ∈U Zq. We note that another good possible choice of cryptosystem for our scheme is that of
Paillier [28].

Selected primitive: Threshold undeniable signatures: A convenient choice of f for im-
plementation is a distributed variant of the undeniable signature scheme of Chaum and van
Antwerpen [11] over a group G of order q. Here, fb(x) = xb. The private key b ∈U Zq may be
distributed using standard (t, nT) Shamir secret sharing [35] over GF [q] with t > nT /2. Each

player then holds a private/public key pair (bi, ui(= gbi)) for a published generator g. To compute
x′ = fb(x) on public input x, each player outputs x′ = xbi , along with a non-interactive zero-
knowledge (NIZK) proof of correctness. This proof assumes the form PK{s : x′

i = xs
∧

ui = gs}.
The one-wayness of fb depends on the DDH assumption on G. We require distributed one-way
functions for two independent private/public key pairs (b, ub) and (b′, ub′) in our construction.
Where appropriate for generality and simplicity of exposition, we assume the availability of a
oracles ˜Fb() for fb(·) and ˜Fb′() for fb′(·).

Note that our choice of fb has the desired property of commutativity with El Gamal. This
is because ((myr)b, (gr)b) = (mbyr′

, yr′

) for encryption factor r′ = rb. Assuming correct com-
putation, the value of m is concealed in a semantically secure sense under the DDH assumption
on G. Blinding yields a natural way to test whether two El Gamal ciphertexts C0 and C1 have
equal plaintexts without revealing any additional information (provided that neither plaintext
is unity, and under the DDH assumption). In particular, for ciphertext C = (α, β), let fb(C)
denote the ciphertext resulting from blinding of each element in the pair (α, β). Then it suffices
to test whether Dx[fb(C0)] = Dx[fb(C1)].

Mix networks: As explained above, there are many good choices of mix networks for our
scheme. The examples with the strongest security properties are the constructions of Furukawa
and Sako [15] and Neff [24]. Both of these employ El Gamal as the underlying cryptosystem,
i.e., an input ciphertext Ci = (α, β) = (myk, gk) for some public key y and published generator
g. Security in these constructions is reducible to the Decision Diffie-Hellman assumption and
a random-oracle assumption on a hash function. We also note that the security of these and
most other mix network constructions relies on a second input P = {P1, P2, . . . , Pd}, where Pi

is an NIZK proof of knowledge of the plaintext for Ci that serves the purpose of rendering the
cryptosystem chosen-ciphertext-attack secure while permitting re-encryption. A common choice
for achieving non-malleability on El Gamal ciphertexts is Pi = PK{k : βi = gk} – essentially a
Schnorr signature [32].

