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Abstract

Group signature schemes are fundamental cryptographic tools that enable unlinkably anonymous
authentication, in the same fashion that digital signatures provide the basis for strong authentication
protocols. In this paper we present the first group signature scheme with constant-size parameters that
does not require any group member, including group managers, to know trapdoor secrets. This novel type
of group signature scheme allows public parameters to be shared among organizations. Such sharing
represents a highly desirable simplification over existing schemes, which require each organization to
maintain a separate cryptographic domain.
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1 Introduction

Group signatures allow group members to anonymously sign arbitrary messages on behalf of the group. In
addition, signatures generated from the same signer are unlinkable, i.e., it is difficult to determine whether
two or more signatures were generated by the same group member. In case of dispute, a group manager
will be able toopena signature and incontestably show the identity of the signer. At the same time, no one
(including the group manager) will be able to falsely accuse any other member of the group.

Group signatures were introduced by D. Chaum and E. van Heyst [16] in 1991. That was followed by
several other works, but only relatively recent ones [3, 10, 11] have group public keys and group signatures
with sizes that do not depend on the number of group members.1 The scheme in [3] is the most efficient one
and the only proven secure against an adaptive adversary. However, all the existing group signature schemes
providing constant-size parameters require the group manager to know the factors of an RSA modulus.
Sharing these factors among group managers of different organizations would compromise the security
and/or the trust assumptions of the entire scheme. This paper provides the first, affirmative answer to the
question of whether it is possible to design trapdoor-free2 group signature schemes with public parameters
that do not increase linearly in size with the number of group members.

Our schemes are useful when several distinct groups or organizations must interact and exchange infor-
mation about individuals while protecting their privacy. Credential transfer systems (CTS) [14, 15, 19, 17,

1While in theory one always needs at leastlog n bits to uniquely identifyn different users in any system, in practicelog n is
orders of magnitude smaller than the bit length of keys used in public key cryptography.

2By trapdoor-free it is meant that the correct operation of the scheme requires no parties to know trapdoor secrets. Thus a
scheme can be functionally trapdoor-free even when the underlying cryptographic domain is an RSA ring.
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23, 9] are examples of such environments that can be built via group signature schemes [9]. Real-world
scenarios for the use of CTS include the health-care industry, electronic voting, and transportation systems.
In such cases, the added manageability and improved optimization opportunities permitted by the use of
a single cryptographic domain for all participating organizations may outweigh other efficiency considera-
tions. A CTS allows users to interact anonymously with several organizations so that it is possible to prove
possession of a credential from one organization to another. Different transactions cannot be linked to real
identities or even pseudonyms. It is then impossible to create profiles of users even if the organizations
collude and, at the same time, users cannot falsely claim to possess credentials. Optionally, a privacy officer
is able to retrieve user identities in case of disputes or emergencies. Users can thus authenticate themselves
with anonymous credentials, protecting their privacy while exercising their right to vote, obtaining health
services or renting a GPS-tracked automobile. The efficiency of a single signature generation or verifica-
tion is measured in the human time scale. Consequently, theoretical computational advantages become less
important, and instead the administrative complexity and related costs are likely to be the overwhelming
concern of implementers. In these situations a scheme with shareable parameters has a definite advantage
since it eliminates the need for specialized techniques such as the ones employed in [9].

Recently in [4], it has been shown that group signatures can be built based on the assumption that
trapdoor functions exist. It would be interesting to show the same but based on the existence of one-way
functions. Our scheme is the first to be functionally trapdoor-free as no group member needs to know the
trapdoor information. Even though we use an RSA ring and we rely on the strong RSA assumption for
security, the operation of the scheme exploits only the one-wayness of the RSA function, not its trapdoor
properties.

Organization of this paper: The next section contains the definition of group signatures and the attending
security requirements. In section §3 we give a high-level, intuitive description of our proposed scheme, and
place it in the context of previous work. Section §4 is devoted to cryptographic primitives and building
blocks which we use in a specific construction of our scheme which takes all of section §5. We follow with
some concluding observations. A security analysis is included in the appendices.

2 Definition

In this section we present our characterization of group signature schemes. In general, a group signature
scheme is defined by a family of procedures:

SETUP: A probabilistic algorithm that each group manager (entity responsible for establishing and man-
aging a group signature scheme) must run once to generate the group-specific public and secret parameters.
The input toSETUPis the set of public parameters, which includes a security parameter, and its output are
the group public keyP and associated secret keyS.

JOIN: A prospective member executes this protocol (interacting with the group manager) to join the group.
The new member’s output is a membership certificate and the corresponding secret.

SIGN: A probabilistic algorithm that outputs a group signature when given as input a message, the group
public key, a membership certificate, and the associated membership secret.

VERIFY: A boolean-valued algorithm used to test the authenticity of signatures generated bySIGN.

OPEN: An algorithm that given as input a message, a group signature on it, and the group secret key,
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extracts the membership certificate used to issue the signature, and a non-interactive proof of the signature’s
authorship.

A group signature scheme must satisfy the following properties:

Correctness: A properly formed group signature must be accepted by the verification algorithm.

Unforgeability: Without possession of a membership certificate and knowledge of associated secret it is
computationally infeasible to produce a signature that is accepted by the verification algorithm.

Anonymity/ Unlinkability: Given a group signature on a message, it is computationally infeasible to de-
termine which member generated the signature. Moreover, given several group signatures on the same or
different messages it is computationally infeasible to decide whether the signatures were issued by the same
or by different group members.

Exculpability: A signature produced by a group member cannot be successfully attributed to another, and
the group manager cannot generate signatures on behalf of other group members (non-framing).

Traceability: The group manager is “always” (with overwhelming probability) able to open a valid signature
and determine which member signed it. Even if a coalition of group members collaborates to produce a
signature on a message, possibly by combining their certificate secrets in some fashion, the group manager
will succeed in attributing the signature to one of the colluding members (coalition-resistance).

The requirements of unforgeability and coalition-resistance are equivalent to the requirements that group
membership certificates be unforgeable under passive and active attacks, respectively, and only issuable by
the group manager. In other words, a membership certificate should contain the equivalent of a digital
signature by the group manager. Similarly, the requirements of traceability and exculpability imply that the
group signature should hide a regular digital signature issued by the member.

3 Description

In the group authentication problem a holderU of a group certificate interacts with a verifierV to prove
his status as a group member without revealing his certificate. If the interactive protocol can be made
non-interactive through the Fiat-Shamir heuristic ([20]), then the resulting algorithm will be similar to the
issuing of a group signature, except thatU ’s identity may be unrecoverable from the signature alone. The
issuing of a group signature requires, in addition to a proof of membership, thatU verifiably encryptssome
information about his certificate under the group manager’s public key.U must provide the verifier with an
encrypted token and prove toV that the group manager is able to decrypt the token to revealU ’s authorship
of the signature.

A group signature can be seen as a proof of knowledge of a group certificate which provides evidence
of membership. The group certificate can be generated only by the group managerGM and should be
difficult to forge. In other words, the group membership certificate has the effect of a signature issued by
the group manager. In addition, it has to contain some secret information generated by the group member
and unknown toGM to avoid framing attacks in whichGM signs on behalf of other members.
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3.1 The ElGamal signature variants

Our strategy to describe the system will be to start with a regular type of ElGamal signature for the group
manager, and make minor modifications to achieve a membership certificate. (ElGamal signatures are the
most standard signatures based on one-way functions, as opposed to trapdoor functions as in RSA-type
signatures.) Letp andq be primes, withp = 2q + 1 andg be an element of orderq in Z∗p, i.e., a quadratic
residue generator modulop. Assume moreover that the group manager has published the ElGamal public
key y = gx mod p, for signing messages. Letm be a message, in a so far unspecified message spaceM,
andh : M → Z∗q a pre-image resistant, collision-resistant hash function. The following table describes
some basic types of ElGamal signing equations. ElGamal signatures are probabilistic functions so they use
an auxiliary random inputk, which must be different for each execution of the protocol. The signature
consists of a pair(r, s), wherer = gk mod p (except in the DSA case, wherer = (gk mod p) mod q)
ands is computed according to the signature generation equations below:

Variant Signing equation Verification equation

I s = k−1(h(m)− xr) mod q gh(m) = yrrs mod p

II s = x−1(h(m)− kr) mod q gh(m) = ysrr mod p

III s = xr + kh(m) mod q gs = yrrh(m) mod p

IV s = xh(m) + kr mod q gs = yh(m)rr mod p

V s = x−1(r − kh(m)) mod q gr = ysrh(m) mod p

VI s = k−1(r − xh(m)) mod q gr = yh(m)rs mod p

DSA s = k−1(h(m) + xr) mod q r = (gs−1h(m)ys−1r mod p) mod q

Table 1:ElGamal signature variants.

DSA is essentially a variant-I ElGamal signature where the verification equation has been rewritten so
as to permit the signer to further reducer moduloq. In the terminology of Generalized ElGamal signatures,
DSA is a variant inshort mode. The scheme we have developed can be applied to any of the six variants
above in normal (long) mode, but not inshort mode. However, for reasons of efficiency of the result-
ing scheme, we will describe the protocols for versions of the ElGamal signatures called Nyberg-Rueppel
signatures [25]. Nyberg-Rueppel schemes are variants of ElGamal designed to provide message recovery.
Instead of a one-way hash function, message-recovery schemes use a redundancy function. The redundancy
functionR is an one-to-one mapping of messages into a so-called message-signing spaceMS . The image
of R, denotedMR, must be sparse withinMS i.e., given a random element ofMS , there is a negligible
probability of it being inMR. Otherwise, the message-recovery scheme is vulnerable to existential forgery
attacks, as redundancy functions are easy to invert: For an elementz in MR, one can efficiently compute
(recover) the unique pre-image messagem = R−1(z). The following table assumes thatMS = Z∗p. Again,
the signature calls for a random inputk, and the output is a pair(r, s), wherer = R(m)g−k mod p, ands
is computed as indicated in table 2.

If the redundancy functionR(·) if replaced by an one-way, collision-resistant hash functionh(·) in the
equations above, the message-recovery property is lost, but the signing algorithm and its security properties
remain unchanged. From our perspective, this Nyberg-Rueppel “without message recovery” is interesting
because the hash function is “in the base”, as opposed to “in the exponent”, where they appear in basic
ElGamal signatures. This improves the efficiency of our schemes, which mustrandomizethe hash function
values. For reasons of conciseness and clarity, we describe our methods in detail only for the Nyberg-
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Variant Signing equation Message recovery (verification)

I s = k−1(1 + xr) mod q R(m) = ryrs−1
gs−1

mod p

II s = x−1(−1 + kr) mod q R(m) = rysr−1
gr−1

mod p

III s = −xr + k mod q R(m) = ryrgs mod p

IV s = −x + kr mod q R(m) = ryr−1
gsr−1

mod p

V s = x−1(−r + k) mod q R(m) = rysgr mod p

VI s = k−1(x + r) mod q R(m) = rys−1
gs−1r mod p

Table 2:Nyberg-Rueppel signature variants.

Rueppel setting.

3.2 The setting of our scheme

We now describe the setting of our scheme. LetG be some arithmetic group. Not all groupsG where
Nyberg-Rueppel (or ElGamal) signatures make sense have the characteristics needed by our scheme. In
section §5, we outline the specifics of the protocols in a suitable group, namely the subgroup of quadratic
residues modulo a primep, wherep is simultaneously asafeprime, i.e,p = 2q + 1, with q also prime, and
a Sophie Germainprime, that is the number̂p = 2p + 1 is prime. There are other choices for the groupG,
and we describe a variant in appendix §C. In appendix §B we describe the security assumptions attending
the choice ofG.

If G be a suitable group. The order ofG may be a known prime or unknown composite number. In the
first case, we letq = |G| be that prime. If the order is known, defineρ : G → Zq, thereduction function, to
be simply the reductionmod q. If the order ofG is unknown, letρ(·) be an integer-valued function defined
onG. In all constructions in this paper,G is the set of quadratic residues modulo a prime or composite, and
in that case, one can take the reduction function simply to be the identity.

Let g andg1 be fixed, public generators forG; it is assumed that the discrete logarithm ofg with respect
to g1 (and of g1 w.r.t. g) is unknown to group members. Lety = gx be the public key of the group
managerGM , with associated secretx. Finally, this signature scheme defines the message spaceM as
the set of integers moduloq in the case of known order, and the set of integers smaller than some upper
bound otherwise. The signing space isMS = G, and the secure one-way functionh(·) : M → MS is
h(m) = gm

1 . Clearly,h(·) satisfies the requirements of a secure one-way (hash) function:h(·) is pre-image
resistant by the hardness of computing discrete logarithms inG. In the case of known order, it is further
one-to-one, hence trivially collision-resistant. In the case of unknown order, finding a collision would reveal
the order ofG, i.e., it is equivalent to factorization. On the other hand,h(·) is clearlynot a redundancy
function, as it is not efficiently invertible and the image is not sparse. We shall demonstrate the scheme for
such variant-III Nyberg-Rueppel signatures.

Signing: r = gm
1 g−k (in G); (1)

s = −ρ(x)r + k (mod q) = −xr + k (mod q); (2)
Verification: gm

1 = ryrgs (in G). (3)

We have placed “modq” within parenthesis as that reduction is only computed when the order ofG is a
known prime. These certificates are issuable only by the group managerGM , who is privy to the secret key
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x associated toy. So a membership certificate is simply a signature as such, where the messagem identifies
the group member.

3.3 The scheme

A prospective new memberU who wishes to join the group must have first secured a digital signature certifi-
cate with some certification authority.U starts the join protocol by choosing a random, secret secret valueu
and computingIU = gu

1 . More precisely,U andGM interact so that both contribute to the randomization of
u, while its value remains secret from theGM . ThenU constructs a zero-knowledge proof (of knowledge)
of the discrete logarithm of the pseudonymIU with respect tog1. U signs the pseudonym and the proof of
knowledge of the pseudonym secret, and sends it to theGM to request a group membership certificate.

GM verifies the signature againstU ’s public certificate and the correctness of the zero-knowledge proof.
If both are well-formed,GM responds with the signature pair(r, s) on IU , which is technicallyGM ’
signature on an messageu known only toU . This is safe from theGM ’s viewpoint because bothGM and
U contribute to the choice of the valueu. It is imperative, however, that onlyU knows the valueu, as it is
in effect the secret key allowingU to use the membership certificate to issue signatures. The equations used
by GM to generate(r, s) are:

r = IUg−k (in G); s = −ρ(x)r + k (mod q) = −xr + k (mod q), (4)

wherek is a random parameter ofGM ’s choice, and the reduction moduloq is applied only in the case of
known order.U verifies the signature, checking that:

IU = ryrgs (in G). (5)

In the equation above, and throughout the rest of this paper, we shall omit the reduction functionρ(·) from
the notation.

The scheme must permitU to prove knowledge of this certificate pair(r, s) without revealing any
linkable function ofr, s, or u. It must also allowGM to open the proof and show the identity of the
group member. Both problems can be solved by employing averifiable encryptionof digital signature
schemes. However, unlinkability between different protocol executions is not a requirement of verifiable
encryption schemes, and indeed existing protocols for ElGamal-type signature schemes do not provide it.
Hence, it would be possible to link two or more verifiable encryptions, which is equivalent to linking two
or more group signatures from the same signer. This is because, in existing schemes, the first valuer of the
signature pair(r, s) is revealed and the actual protocol is applied only to the second values, reducing then
the problem of verifiable encryption of a digital signature to the simpler problem of verifiably encrypting a
discrete logarithm (see [8, 1, 22, 2] for details).

To solve this issue, theSIGN protocol employs a secret exponent to protect in zero-knowledge the
signature pair(r, s), along with other parameters required by our scheme. More concretely, every time the
group member must use the certificate, she raises all terms of the congruence (5) to a freshly randomly
generated secret valuev, thus obtaining:Iv

U = rvyvrgvs (in G). This can be rewritten as:

R := Iv
Ug−vs = rvyvr. (6)

For simplicity we denoteR to be the value represented by either side of the equation above. In order to
prove knowledge of a membership certificate, the memberU will release the randomized valueR and prove
that it can be written in two different ways, so that the equation(6) holds for some valuev which is not
disclosed to the prover.
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To proceed, we must overcome a difficulty with equation (6), namely verifying the well-formedness of
the termrv, without revealing the basisr. The solution involves revealing an ElGamal encryption ofr, and
comparing that with an encryption ofrv. The encrypted value ofr can then be re-used for comparison with
the exponent ofyv appearing inR. However, this presents a new difficulty: The value in the exponent –
actuallyρ(r), which we shorten tor – is an integer reduced modulo the order of the groupG, while the
encrypted valuer is an element ofG itself. The reduction function does not preserve group operations,
it is not multiplicative; and the method for proving equality between an ElGamal-encrypted value and a
logarithm, due to Stadler [26], cannot be directly applied. The solution is to employ a technique due to
Boudot [6] that permits efficient comparison between logarithms in different groups. So we use an auxiliary
groupF of order compatible with the operations inG. We release a commitment to the valuer as an
exponent of an element ofF , and we show that it equals (up to modular reduction), the exponent ofyv in
R. Next, we use Stadler’s technique to prove the equality of the encrypted valuer (in G), with the value
committed as an exponent inF .

To complete the sign protocol, we also compute a verifiable encryption of the valueIU associated to the
certificate. This permitsGM to open the signature with just an ElGamal decryption operation.

4 Proofs of knowledge

In this paper we make use of several types of proofs of knowledge about various relations between secrets.
All these proofs of knowledge have been presented elsewhere; we make no claims of originality in this
section, which we have added to make the paper self-contained and to harmonize the notation. More de-
tails about these proofs of knowledge have also been included in appendix §A, where we also discuss the
underlying security assumptions.

Notation 1 (Groups and generators)

• J stands for an arithmetic group, such as an RSA ring with composite modulusn or the groupZ∗p of
non-zero (multiplicative) residues modulop.

• g stands for an element ofJ of unknown composite order or known prime order. Letq be the order
of g.

• Letκ be the smallest integer such that2κ is larger thanq. We assume thatκ is known, even ifq is not.

• g generates the subgroupG ofJ .

Let H stand for a secure hash function which maps arbitrarily long bit-strings into bit-strings of fixed
lengthτ . Let ε denote a second security parameter

Definition 1 (Proof of knowledge of a discrete logarithm) WithG andg as above,U can prove to a ver-
ifier V his knowledge of an integerx in {0, . . . , 2κ − 1}, such thath = gx, by releasing integerss andc,
with s in {−2ε(τ+κ)+1, . . . , 2ε(τ+κ)+1 − 1} andc in {0, . . . , 2τ − 1}, such that

c = H(g || h || gshc),

where the symbol|| denotes string concatenation.
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In order to compute the pair(s, c) above,U generates a random integerk in {−2ε(τ+κ), . . . , 2ε(τ+κ) − 1}
and setsc = H(g||h||gk), ands = k − cx (as integer). We denote it by (notation introduced in [11]) :

PK[x : h = gx],

This proof of knowledge can be transformed into a digital signature, withx being the secret key asso-
ciated with public keyh. To sign an arbitrary bitstringm, we just have to change the computation ofc as
follows:

c = H(g || h || gshc|| m).

We denote thissignature of knowledge([11]) by:

SPK[x : h = gx](m).

Returning to the notation in definition (1), if the orderq of the groupG is known, then operations on
the exponents should be computed moduloq, and some statements about the size of parameters can be
simplified. In the above we would substitute:

x ∈ {0, . . . , 2κ − 1} by x ∈ {0, . . . , q − 1},
s ∈ {−2ε(τ+κ)+1, . . . , 2ε(τ+κ)+1 − 1} by s ∈ {0, . . . , q − 1}, and

s = k − cx (in Z) by s = k − cx mod q.
In the following definitions we assume the group orderq is unknown; as above, it is straightforward to

adapt them to the case of known order.

Definition 2 (Proof of knowledge of a common discrete logarithm)U can prove to a verifierV his knowl-
edge of anx (with 0 ≤ x < 2κ) such that two listsg1, g2, . . . , g` andh1, h2, . . . , h` (of elements ofG) satisfy
hi = gx

i , i = 1 . . . `.

We denote it by:PK[x : h1 = gx
1 ∧ · · · ∧ h` = gx

` ].

Definition 3 (Proof of knowledge of a representation)U can prove to a verifierV his knowledge of ele-
mentsx1, . . . , x` (with 0 ≤ xi < 2κ) such that a given elementA satisfiesA = gx1

1 · · · gx`
` .

We denote it by:PK[x1, . . . , x` : A = gx1
1 · · · gx`

` ].
Let g, h be two elements ofG. Assume thatg andh are constructed in a provably random way, for

instance as consecutive images of a secure pseudo-random generator. Generatingg andh in such a way
ensures that no one knows the discrete logarithm ofg to basish, or that ofh to basisg.

Definition 4 (Commitment to a secret value)Letx be a secret value held byU . Letg andh be two prov-
ably random generators ofG. We say thatE = E(x, r) = gxhr is a commitment to the valuex in G, where
r is a randomly generated value,0 < r < q.

If q is unknown, then one must chooser in a larger interval, say−2κ+τ+1 < r < 2κ+τ+1, to ensure that all
elements in the interval[0, q − 1] are sampled nearly uniformly. The commitment reveals nothing aboutr
in a statistical sense.

Let E be a distinct arithmetic group of unknown composite ordern. For instance,E can be chosen as
the subgroup of quadratic residues in an RSA ring. Letg = g1, g2, h = h1, andh2 be provably random
generators ofE . We assume that the smallest integerλ such that2λ > n is known. AssumeU has published
two commitments,E = E1(x, r) = gx

1hr1
1 in G, and a second commitmentE2(x, r2) = gx

2hr2
2 .

Let δ, σ1 andσ2 be other security parameters. Assume further thatx < b.
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Definition 5 (Proof of knowledge of a committed value)With notation as in the paragraph above,U can
prove to a verifierV knowledge of a numberx committed in the valueE = E(x, r) = gxhr.

We denote it by:PK[x, r : E = E(x, r)]

Definition 6 (Proof of equality of two committed values) U can prove in zero-knowledge to a verifierV
that two commitmentsE1 = E1(x, r1) andE2 = E2(x, r2) hide the same exponentx.

We denote the above proof byPK[x, r1, r2 : E1 = E1(x, r1) ∧ E2 = E2(x, r2)].
The next definition uses a simplified notation; callg = g1, h = h1 andσ = σ1.

Definition 7 (Proof that a committed number lies in a slightly larger interval) A proverU can convince
a verifierV that a numberx ∈ [a, b], committed inE = E(x, r) = gxhr mod n (r ∈ [−2σn+1, 2σn−1])
lies in the slightly larger interval[a− α, b + α], whereα = 2δ+τ/2+1

√
b− a.

We denote the above proof of knowledge byPK[x, r : E = E(x, r) ∧ x ∈ [a− α, b + α].
The last cryptographic building block we need is the verifiable ElGamal encryption of an exponent.

Definition 8 (Verifiable ElGamal encryption of an exponent) AssumeU holds a secretr, and has pub-
lished the valueω = χr. Hereχ is a generator of a groupF of ordern, wheren may be prime or composite,
and0 < r < n. It is possible forU to prove in zero-knowledge that a pair(A = r−1ya, B = ga) mod n,
is an ElGamal encryption under public keyy of the exponent ofω to basisχ.

We denote it by:PK[r : ω = χr ∧A = r−1ya ∧B = ga]

5 Realizing the scheme

We now describe the scheme more concretely, starting withT , the set of shared public parameters.T
specifies security parametersδ, ε, σ = σ1, σ2, andτ , and a secure hash functionH that maps bit-strings
of arbitrary length into bit-strings of fixed lengthτ . A typical set of choices would beδ = 40, σ = 40,
σ2 = 552, τ = 160, andH(·) = SHA-1(·). The parameterε should be larger than 1 by a non-negligible
amount. These security parameters impact the security and efficiency of the various proofs of knowledge
used in the scheme, and appear with the same names in appendix §A.T also specifies an arithmetic group
G and three generatorsg, g1 andg2 of G.

In this section we assume thatG is the quadratic residues subgroup of the multiplicative residues module
p, wherep is simultaneously a safe prime, i.e., andp = 2q + 1, with q also prime, and a Sophie Germain
prime, i.e., the number̂p = 2p + 1 is prime. Primeŝp such that̂p = 2p + 1, andp = 2q + 1, with p and
q also prime are calledstrongprimes. (More generally, if̂p = mp + 1 andp = nq + 1 with smallm, and
n, are also called strong primes, butm = n = 2 gives the most efficient scheme.) See [18, 21] for efficient
methods to generate such primes. In order to chooseg it is enough to pick a random elementg′ in Z∗p and
setg ≡ g′2 mod p, provided thatg 6≡ 1 mod p. The same procedure should be used to obtaing1 andg2.

The scheme also requires an auxiliary groupF of orderp, which in this section will be chosen as the
quadratic subgroup of the multiplicative residues modulop̂. Furthermore, the scheme requires a second
auxiliary groupE of unknown composite order̂n. A trusted party generates a composite modulusn, plus
a proofP thatn is the product of two safe primes. The groupE is then by definition the quadratic residue
subgroup of the multiplicative residues modulon. The order ofE is the universally unknown number
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Shared parameters

Security parameters: δ, ε, σ1, σ2, τ ;

Secure hash function: H(·) : {0, 1}∗ −→ {0, 1}τ ;

p̂, p, q, primes s.t. p̂ = 2p + 1 and p = 2q + 1;

G = {x ∈ Z∗
p : ∃ a ∈ Z∗

p s.t. x ≡ a2 mod p};
F = {x ∈ Z∗

p̂ : ∃ a ∈ Z∗
p̂ s.t. x ≡ a2 mod p̂};

E = {x ∈ Z∗
n : ∃ a ∈ Z∗

n s.t. x ≡ a2 mod n};
g, g1, and g2, generators of G.

Group-specific parameters

S, a string including

y and y2;

CA’s signature: CERT CA(S).

Join protocol

U −→ GM : JU = Im mod p

GM −→ U : a, b mod q

U −→ GM : Sig
U
(IU = Ja

Ugb
1, PK[u : IU = gu

1 ])
GM −→ U : r = IUg−k mod p, s = −xr + k mod q

Table 3: Shared parameters, group specific parameters, and theJOIN protocol

φ(n)/4. Group managers of competing organizations may all share the same modulusn, as the operation of
the scheme does not requireanybodyto know the RSA trapdoor associated ton, and the trusted party may
safely forget the factorization at its discretion.

The above public parameters can be further certified if so desired. A proof of primality can be provided
for each of the primes; as forg, g1 andg2, anybody can verify their correct generation by testing that each
is not congruent to0 or 1 modulop, and then verifying that each is a square, by computing the Legendre

symbol and checking that:
(

g
p

)
=

(
g1

p

)
=

(
g2

p

)
= 1.

In order to setup a group using the shared parameters above, the group managerGM choosesx and
z at random among the numbers[1, q − 1] and set the public keysy = gx, andy2 = gz

2 . The group
manager should proceed to register these group-specific parameters with some certification authority. The
GM would prepare a statementS containing (minimally) a description of the group signature algorithms,
a reference to the shared parameters,GM ’s name, the group-specific parametersy, y1, andy2, and some
timed information, such as start and expiration dates. TheGM should obtain a certificate CERTCA(S) from
theCA establishing the group-specific parameters.

Let SigU (·) denoteU ’s signature algorithm. To join the group, a prospective memberU chooses a
random secretm in the interval[1, q − 1], computesJU = gm

1 , and sends this value toGM , who responds
with two valuesa, andb in [1, q − 1]. U computes his pseudonym asIU = Ja

Ugb
1, and its associated secret

u = am + b mod q. Next,U constructs a non-interactive proof of knowledge of the logarithm to basisg1

of this pseudonym (see section 4), and also his signatureS = SigU (IU , PK) on both the pseudonym and
the proof-of-knowledge just constructed.U forwards to theGM this signatureS.

TheGM now verifies that the pseudonym incorporated his contribution, i.e.,IU = Ja
Ugb

1. This step is
important becauseu is unknown toGM , who must sign it. Since theGM contributed tou’s randomness,
that does not constitute a threat to theGM ’s signature algorithm. TheGM also verifies the correctness of the
proof-of-knowledge andU ’s signature. If satisfied, theGM generates a randomk mod q, and computes
r = IUg−k mod p, checking thatr < c, wherec equals:

c = p− 2σ+τ/2+2√p, (7)
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and repeating the process of computing other randomk andr until such anr is found. We remark thatr < c
with overwhelming probability in a single attempt.3 This very minor restriction on the possible values ofr
reflects requirements of the proof of equality of discrete logarithms in distinct groups, as we shall see later.
After a suitabler is found,U computess = k − xr mod q, and sends the certificate(r, s) to U . The
GM also records the signatureS, which tiesU ’s identity to the certificate’s pseudonym.U verifies that the
certificate(r, s) satisfies the verification equation, and if so, accepts it as valid.

We now describe the protocolSIGN. One goal of this protocol is thatU convince a verifierV of its
knowledge of a membership certificate(r, s) as above. First,U chooses at randomv, with 0 ≤ v < q,
which will be used to blind the membership certificate. In a few words,U will convinceV that it knows
(r, s) that satisfy thev-th power of the membership signature equation. As in section §3, letR denote
Iv
Ug−vs = rvyvr mod p. U computes a computationally zero-knowledge commitment to the valuev as

Y = yv mod p. U then releasesR, Y , and the following ElGamal encryption pairs:

(X1, X2) = (IUy`
2, g

`
2); (Y1, Y2) = (Iv

Uyv`
2 , gv`

2 ) = (Xv
1 , Xv

2 ),

(W1,W2) = (r−1yt
2, g

t
2); (Z1, Z2) = (r−vyvt

2 , gvt
2 ) = (W v

1 ,W v
2 ).

At this point,U shows that the pairs(Y1, Y2) and(Z1, Z2) encrypt thev-power of the pairs(X1, X2) and
(W1,W2), respectively, by executingPK[v : Y = yv ∧ Y1 = Xv

1 ∧ Y2 = Xv
2 ∧ Z1 = W v

1 ∧ Z2 = W v
2 ].

Next,U demonstrates that the pseudonymIU is encrypted by the pair(X1, X2), and proves knowledge
of the pseudonym secretu, by executingPK[u′, `′, s′ : R = gu′

1 gs′ ∧ Y1 = gu′
1 y`′

2 ∧ Y2 = g`′
2 ]. This

step is crucial to prevent framing attacks againstU , as not even the group manager can execute it without
knowledge ofu.

Continuing with theSIGN protocol, U generates a fresh, random generatorχ of the groupF , and
computes a (computationally zero-knowledge) commitment to the valuer asE1 = E1(r, 0) = χr). In the
language of section §4, this is a (degenerate) commitment to the valuer in the groupF , with respect to the
generatorχ.

U also generates a commitment tor in the auxiliary groupE of unknown order. For that,U uses two
generatorsβ andγ of E , whereβ andγ are provably randomly generated, so thatU cannot know their
relative discrete logarithm. For instance,γ andβ can be generated as the squares of two consecutive values
of a secure pseudo-random number generatorSPRNG. The commitment is computed asE2 = E2(r, s2) =
γrβs2 , wheres2 is a random parameter ofU ’s choice:s2 ∈ [−2κ+τ+1, 2κ+τ+1], where2κ−1 ≤ |E| < 2κ.
Notice that the valueRZ1 = yvryvt

2 = Y ryvt
2 is also a commitment to the valuer in the groupG, with

generatorsY , andy2. We denote it byE3 = RZ1.
In the next step,U reveals the commitmentsE1, E2, and the respective generatorsγ, β, andχ. (In the

case ofγ andβ, U must also reveal the seed of theSPRNGthat leads to the computation ofγ andβ.) U
then shows thatE1, E2 andE3 all are commitments to the same valuer. Notice that we are following the
efficient construction found in [6], repeated in detail here for reasons of convenience.

U executes two proofs of equality of two committed values (def. 6). In the first proofU sendsV a triple
(c′, D′, D′

1) satisfying:c′ = H(χ || γ || β || E1 || E2 || χD′
E−c′

1 mod p̂ || γD′
βD′

1E−c′

2 mod n). Again,
refer to def. (6) for how to build these proofs. In agreement with the notation in section §4,we denote the
above byPK[r, s2 : E1 = E1(r, 0) ∧ E2 = E2(r, s2)]. ThenU sendsV a quadruple(c,D,D1, D2)
satisfying:c = H(γ || β || Y || y2 || E2 || E3 || γDβD1E−c

2 mod n || Y DyD2
2 E−c

3 mod p). We denote
that byPK[r, s2, t2 : E2 = E2(r, s2) ∧ E3 = E3(r, t2)], wheret2 = vt.

3Since the quadratic residues are nearly uniformly distributed in the interval[1, p − 1], we have thatr < c with probability

equal to1 − 2σ+τ/2+2
√

p
> 1 − 2−645 if the security parameters have the typical valuesδ = 40, τ = 160 andp has at least768

significant bits.
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SIGN protocol

Proof arguments:

Y , R, X1, X2, Y1, Y2, W1, W2, Z1, Z2, χ, γ, β, E1, and E2.

Signature of knowledge:

SPK[v, u′, `′, s′, r, s2, t, t2 : Y = yv ∧ Y1 = Xv
1 ∧ Y2 = Xv

2 ∧ Z1 = W v
1 ∧ Z2 = W v

2

∧ R = gu′

1 gs′ ∧ Y1 = gu′

1 y`′

2 ∧ Y2 = g`′

2

∧ E1 = E1(r, 0) = χr ∧ W1 = r−1yt
2 ∧W2 = gt

2

∧ E2 = E2(r, s2) = γrβs2 ∧ r ∈ [−2δ+τ/2+1
√

c, c + 2δ+τ/2+1
√

c]
∧ E3 = E3(r, t2) = RZ1 = Y ryt2

2 ](M)

Table 4: TheSIGN protocol

If all of the commitmentsE1, E2, andE3 took place within the same group the above would be a proof
of equality of the committed exponent in each of the commitments. However, as the order of the groups
differ, we have only proved knowledge of an integer valuer which satisfies

r ≡ r1 mod p, and r ≡ r3 mod q, (8)

wherer1 andr3 are, respectively, the exponents committed inE1 andE3, whiler is the exponent committed
in E2. 4 U could cheat and pass the “proof” above for any two different valuesr1 andr3, by settingr in E2

to equal the solution, computed via the Chinese Remainder Theorem, to the pair of modular equations in (8).
Thus, a non-memberU ′ would be able to forge the proof of knowledge of a certificate, by choosingr3 ands
arbitrarily, computing the valuer1 that would make the certificate equation work, and then solving the pair of
equations (8) for anr that reduces tor1 mod p andr3 mod q, respectively. In the cheating case, however,
becauser1 6≡ r3 mod q, U ′ computes a valuer > p as the solution of 8. Thus, ifU ′ is required to prove
that the valuer2 committed inE2 is within an interval of width at mostp, this forgery attack is prevented;
and the commitments must all hide the same value. So to complete the “proof of equality of commitments
in different groups,”U must construct a proof that the valuer is restricted to an interval of width at mostp.
For that,U uses the fact thatr < c, and constructs the proof of knowledge that a committed value lies in a
slightly larger interval, def. (7):PK[r, s2 : E2 = E2(r, s2) ∧ r ∈ [−2δ+τ/2+1√c, c + 2δ+τ/2+1√c]]. To
observe that the interval in question has width smaller thanp, notice that its width equalsc+2δ+τ/2+2√c <
c + 2δ+τ/2+2√p = p, by choice ofc (see 7).

Finally,U must show that the exponent committed inE1 equals the value encrypted in the pair(W1,W2),
by executing (definition 8):PK[r : E1 = χr ∧ W1 = r−1yt

2 ∧ W2 = gt
2]. The actual protocolSIGN

combines all the proofs of knowledge into a single signature of knowledge. This is done by simultaneously
committing to all the inputs of the proofs and using the resulting challenge in all the verification equations
(à la Fiat-Shamir). In addition, the messageM, that has to be signed, is used as an extra input of the hash
function.

The protocol is summarized in table 5. Moreover, algorithmVERIFY can be derived immediately from
the above formal description ofSIGN as a proof of knowledge of a group certificate.

As for OPEN, it is enough that the group manager decrypts the pair(X1, X2) to obtain the valueIU

and the corresponding group membership certificate.GM constructs a proof thatIU is indeed the value

4As U does not know the order ofE , it cannot set up a modular equation that the exponent ofE2 should satisfy, and must use
the full integer valuer.
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encrypted in(X1, X2) without revealing the group secretx: PK[x : X1I
−1
U = Xx

2 ∧ y = gx], a publicly
verifiableproof of authorshipof the signature.

6 Conclusions

In this paper we introduced the first group signature scheme with constant-size parameters that does not
require any group members, including group managers, to know trapdoor secrets. This allows public pa-
rameters to be shared among distinct groups providing a big advantage over existing schemes, which require
each group to maintain a separate cryptographic domain. Our scheme is not bound to a specific setting but
it can work in various groups where the Decision Diffie-Hellman assumption holds.

Our scheme is as efficient as the scheme in [11] but less efficient than the state-of-the-art scheme in
[3]. However, the scheme in [3] requires the group manager to know trapdoor information which cannot be
shared with other group managers. So, in this respect, our scheme provides an additional feature that can be
exploited whenever there is the need to coordinate several groups. Indeed, we stress that no group member
(including the group manager) needs to know trapdoor information and this holds even if the scheme works
on a RSA ring or if its security relies on the strong RSA assumption.
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A More proofs of knowledge

All the proofs of knowledge listed in this section have been proved zero-knowledge in a statistical or computational
sense within the random oracle model, under the Decisional Diffie-Hellman assumption, and the Strong RSA assump-
tion, explained below. The notation is as in section §4.
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Definition 9 (Decisional Diffie-Hellman assumption (DDH)) LetJ be a group andg an element of known prime,
or unknown composite, orderq in J . LetG = 〈g〉 be the subgroup generated byg in J . The DDH assumption for
G is then there is no efficient (randomized, probabilistic) algorithm that can distinguish between the two following
distributions inG:

Dist1 = {(h, i, j), where h, i, j are independently randomly distributed (i.r.d.) inG}

and
Dist2 = {(h′, i′, j′), where h′ = gx, i′ = gy, j′ = gxy for i.r.d. x, y with 0 ≤ x, y < q}

A triple of group elements such as(h′, i′, j′) above is called aDiffie-Hellman triple.The DDH assumption is thus
the statement that there is no efficient algorithm to distinguish between Diffie-Hellman triples and randomly generated
triples.

Definition 10 (Strong RSA assumption (SRSA))Let n = pq be a composite modulus, wherep andq are two large
primes. The strong RSA assumption states that there is no efficient (randomized, probabilistic) algorithm that, given
as inputn and an integery, but not the factorization ofn, can produce two other integersu ande, wheree > 1 and
ue ≡ y mod n.

SRSA underlies the security of the proof of equality of logarithms in distinct groups (6).

Definition 11 (Proof of knowledge of a common discrete logarithm)U can prove to a verifierV his knowledge of
an x (with 0 ≤ x < 2κ) such that two listsg1, g2, . . . , g` andh1, h2, . . . , h` (of elements ofG) satisfyhi = gx

i , i =
1 . . . `, by releasings andc (−2ε(τ+κ)+1 ≤ s < 2ε(τ+κ)+1 and0 ≤ c < 2τ ) such that

c = H(g1 || . . . || g` || h1 || . . . || h` || (g1 . . . g`)s(h1 . . . h`)c).

Again,U computesc = H(g1 || . . . || g` || h1 || . . . || h` || (g1 . . . g`)k) for a randomly chosenk ( −2ε(τ+κ) ≤ k <
2ε(τ+κ)), and setss = k − cx.

Definition 12 (Proof of knowledge of a representation)U can prove to a verifierV his knowledge of elements
x1, . . . , x` (with 0 ≤ xi < 2κ) such that a given elementA satisfiesA = gx1

1 · · · gx`

` , by releasingsi and c
(−2ε(τ+κ)+1 ≤ si < 2ε(τ+κ)+1 and0 ≤ c < 2τ ) such that

c = H(g1 || . . . || g` || A || gs1
1 . . . gs`

` Ac).

Again,U computesc = H(g1 || . . . || g` ||A || gk1
1 . . . gk`

` ) for randomly chosenki ( −2ε(τ+κ) ≤ ki < 2ε(τ+κ)), and
setssi = ki − cxi.

Definition 13 (Proof of knowledge of a committed value)With notation as in §4,U can prove in zero-knowledge to
a verifierV knowledge of a numberx committed in the valueE = E(x, r) = gxhr, by sendingV a triple (c,D,D1)
satisfying:

c = H(g || h || E ||gDhD1E−c mod n).

To prepare the proof,U generates randomt ∈ [1, 2δ+τ/2b + 1] ands ∈ [1, 2δ+τ/2+σ1n − 1]; computesW = gths

mod n; computesc = H(g || h || E || W ); and finally computesD = t + cx, D1 = s + cr (in Z).

Definition 14 (Proof of equality of two committed values) U can prove in zero-knowledge to a verifierV that two
commitmentsE1 = E1(x, r1) andE2 = E2(x, r2) hide the same exponentx, by sendingV a quadruple(c,D,D1, D2)
satisfying:

c = H(g1 || h1 || g2 || h2 || E1 || E2 ||gD
1 hD1

1 E−c
1 mod n || gD

2 hD2
2 E−c

2 mod n).
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To prepare the proof,U generates randomt ∈ [1, 2δ+τ/2b+1], s1 ∈ [1, 2δ+τ/2+σ1n−1], ands2 ∈ [1, 2δ+τ/2+σ2n−
1]; computesW1 = gt

1h
s1
1 mod n, andW2 = gt

2h
s2
2 mod n; computesc = H(g1 || h1 || g2 || h2 || E1 || W1 || W2);

and finally computesD = t + cx, D1 = s1 + cr1, D2 = s2 + cr2 (in Z).

Definition 15 (Proof that a committed number is a square) A proverU can convince a verifierV that the commit-
mentE = E(x2, r1) = gx2

hr1 mod n (r1 ∈ [−2σn + 1, 2σn− 1]) contains the square of a number known toU , by
sendingV the quintuple(F, c,D,D1, D2), where

c = H(g || h || E ||F || FDhD1E−c mod n || gDhD2F−c mod n).

Indeed,U generates a randomr2 in [−2σn + 1, 2σn − 1], and setsF = gxhr2 . Notice now thatU can rewriteE
in the basis{F, h} asE(x, r3) = F xhr3 mod n, wherer3 = r1 − r2x, andr3 ∈ [−2σbn + 1, 2σbn − 1]. It is
enough then forU to use the previous proof of equality of the exponentx committed thoughE1 = F = E(x, r2) and
E2 = E = E(x, r3), i.e., executePK[x, r2, r3 : F = gxhr2 ∧ E = F xhr3 ]. We denote the above proof by

PK[x, r1 : E = E(x2, r1)].

The next two proofs of knowledge assert that a committed value lies in an interval. The first one was introduced
in [12], and corrected in [13]. The second one, which uses the first as building block, was introduced in [6], and is
used in our scheme.

Definition 16 (Proof that a committed number lies in a larger interval) A proverU can convince a verifierV that
a numberx ∈ [0, b] which is committed inE = E(x, r) = gxhr mod n (r ∈ [−2σn + 1, 2σn− 1]), lies in the much
larger interval[−2σ+τ/2b, 2σ+τ/2b], by sendingV the triple(C,D1, D2), where

D1 ∈ [cb, 2δ+τ/2b− 1], and

C = H(g || h || E || gD1hD2E−c); c = C mod 2τ/2.

To construct the proof,U generates randomss ∈ [0, 2δ+τ/2b− 1], t ∈ [−2δ+τ/2+σn + 1, 2δ+τ/2+σn− 1]; computes
W = gsht mod n; computesC = H(g || h || E || W ), andc = C mod 2τ/2; and setsD1 = s + cx, D2 = t + cr,
repeating the procedure from the beginning ifD1 6∈ [cb, 2δ+τ/2b− 1].

We denote the above by

PKCFT [x, r : E = E(x, r) ∧ x ∈ [−2δ+τ/2b, 2δ+τ/2b]].

Definition 17 (Proof that a committed number lies in a slightly larger interval) A proverU can convince a veri-
fier V that a numberx ∈ [a, b], committed inE = E(x, r) = gxhr mod n (r ∈ [−2σn + 1, 2σn − 1]) lies in the
slightly larger interval[a− α, b + α], whereα = 2δ+τ/2+1

√
b− a, by releasingẼ1, Ē1, and proving:

PK[x, r : E = E(x, r)],

PK[x̃1, r̃1 : Ẽ1 = E(x̃2
1, r̃1)],

PK[x̄1, r̄1 : Ē1 = E(x̄2
1, r̄1)],

PKCFT [x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧ x̃2 ∈ [−α, α]], whereẼ2 =
E

gaẼ1

mod n,

PKCFT [x̄2, r̄2 : Ē2 = E(x̄2, r̄2) ∧ x̄2 ∈ [−α, α]], whereĒ2 =
gb

EĒ1
mod n.
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To construct the above proof,U computesẼ = E/ga mod n, Ē = gb/E mod n; setsx̃ = x − a and x̄ =
b − x; computesx̃1 = b

√
x− ac, x̃2 = x̃ − x̃2

1, x̄1 = b
√

b− xc, x̄2 = x̄ − x̄2
1; generates random̃r1 and r̃2

in [−2σn + 1, 2σn − 1] s.t. r̃1 + r̃2 = r, and similarlyr̄1, r̄2 s.t. r̄1 + r̄2 = −r; computes the commitments
Ẽ1 = E(x̃2

1, r̃1), Ẽ2 = E(x̃2, r̃2), Ē1 = E(x̄2
1, r̄1), andĒ2 = E(x̄2, r̄2); and executes the proofs of knowledge listed

in the above definition.
We denote the above proof of knowledge by

PK[x, r : E = E(x, r) ∧ x ∈ [a− α, b + α].

The last cryptographic building block we need is the verifiable ElGamal encryption of an exponent.

Definition 18 (Verifiable ElGamal encryption of an exponent) AssumeU holds a secretr, and has published the
valueω = χr. Hereχ is a generator of a groupF of ordern, wheren may be prime or composite, and0 < r < n.
We assume that the DDH assumption holds inF . It is possible forU to prove in zero-knowledge that a pair(A =
r−1ya, B = ga) mod n, is an ElGamal encryption under public keyy of the exponent ofω to basisχ.

The proof can be found in [26], and we repeat it here for convenience. Fori in {1, . . . , ν}, U generates random
ti, and computesgi = gti , yi = yti , andωi = χyi . Next,U computes

c = H(χ || ω ||A ||B || g1 || ω1 || · · · || gν || ων). (9)

Next, U computessi = ti − cia, whereci stand for theith-bit of c. The proof consists ofc andsi, i = 1, . . . , ν. In
order to verify,V recomputesgi = gsiBci , y′i = ysiAci , andωi = ωy′i , and checks that (9) holds. The rationale for
the proof is that, whenci = 0, the verifier checks thatgi andωi are correctly constructed; whenci = 1, the verifier
checks that(A,B) is the ElGamal Encryption of the discrete logarithm ofω to basisχ, provided thatgi andωi are
constructed correctly. If the statement were false,U could pass only one of the verification equations, for eachi. In
the random oracle model, the probability ofU successfully proving a false statement is2−ν .

B Security analysis

In section §4 we have introduced two assumptions that underlie the security and zero-knowledge properties of various
types of proofs of knowledge that we use to build our scheme. These assumptions were:

1 The DDH assumption in the quadratic residues subgroup of either a prime order field or an RSA ring where the
composite modulus is the product of two safe primes.

2 The Strong RSA assumption in the quadratic residue subgroup of an RSA ring where the composite modulus is
the product of two safe primes.

The proofs of security of those proofs of knowledge can be obtained from the above assumptions within the
random oracle computational model, introduced formally in [5].

The unforgeability of membership certificates is equivalent to the unforgeability of Nyberg-Rueppel signatures,
where the redundancy function has been substituted by a one-way (hash) function. Such modification does not affect
either the signing algorithm or its security properties. This is because the security of Nyberg-Rueppel signatures
depend on the redundancy function having the following two properties [24]:

• Given a randomly chosen value in the set of quadratic residues, there is only a negligible probability that it
belongs to its image of the redundancy function.

• If R = R(m) is the redundancy function of a message, then by choosing random valuesz1, and z2 and
computingR′ = Rgz1yz2 , there is only a negligible probability that the resulting valueR′ belongs to the image
of the redundancy function.

17



When we substitute the redundancy function by the one-way function those properties do not hold. (As the one-
way function has full image in the quadratic residues.) Yet, computing the pre-image is infeasible in the first case
because of the discrete logarithm problem, and in the second case because the representation ofg1 with respect tog,
andy, is unknown. Therefore, the substitution of the redundancy function by this hash function is legitimate: The
correct computation of the hash function is verified when the signer proves knowledge of the pseudonym secret.

Finally, we point out that the scheme can be applied to the basic ElGamal signatures, though not without sacrifice
in performance. This is because the hash function would be in the exponent, and we would have to prove knowledge
of a double discrete logarithm to verify its correctness.

We now claim that the our group signature scheme is non-framing and supportsexculpability . As part of
the signature protocol, the memberU proves knowledge of the pseudonym secretu. No other member, even the group
manager, can complete the protocol with more than a non-negligible probability of success without knowledge of the
pseudonym secret. Moreover, theOPENprotocol is a proof ofIU being the secret encrypted as part of the signature
transcript; therefore the group manager cannot substitute another value forIU . In order to link thisIU with a real user
identity, the group manager will have to provide the transcript of the third message of the join protocol,U ’s public and
unforgeable signature on the pseudonym.

To prove thetraceability property we must show that the user is not able to sign a message without properly
encrypting the tracing valueIU . During execution of the protocolSIGN, the user provides the encryption ofIU such
thatIv

U satisfies thevth-power of the verification equation (dropping the reduction function from the notation):

IU
v = rvyrvg∗,

where∗ is a don’t-care value. Since the signature scheme itself is resistant to forgery, the only valuesIU ′ that can be
substituted forIU differ from IU by avth-root of unity, i.e.,(IU/IU ′)v = 1 in G. In the case whereG is the quadratic
residue subgroup inZ∗

p, wherep is a safe prime, there are no roots of unity apart from1 itself. In the case thatG is
the quadratic residue subgroup inZ∗

n, wheren is a product of safe primes, the roots of unity (different from 1) are
powers ofg(p−1)/2 andg(q−1)/2, thus hard to compute without knowledge of the factorization ofn. We conclude that
substituting the tracing value is infeasible.

As for anonymity andunlinkability , they can be recovered from the fact that the signing protocol only
reveals values which have been randomized with an exponent, or reveals semantically-secure encryptions of those
values. Being able to link the same term in two different protocol executions is thus equivalent to being able to solve
the Diffie-Hellman Decision problem.

C An alternative construction in the RSA ring

In this section we briefly describe another possible realization of the scheme. Much of the notation and procedures
are the same as in section 5. The shared parameters are chosen differently. We defineG to be the group of quadratic
residues in the RSA ring generated by a composite modulus which is a product of safe primes. Namely, a trusted party
generates two safe primesp, q, and publishesn = pq. After constructing a proof thatn is formed correctly, the third
party may forget its factorization, as it is not needed for the scheme. The groupF is chosen as a group of ordern. For
that, one searches for a primep̂ so thatp̂ = mn + 1, wherem is a small number. One then setsF to be the subgroup
of m-powers in the groupZ∗

p̂. The group-specific parameters are the same.
The JOIN protocol is little changed. There are no restrictions on the value ofr = IUg−k mod n, wherek is

chosen in the interval[−2τ+2κ, 2τ+2κ − 1]; as before,κ stands for the bitlength of|G|. The termsa, b, ands cannot
be reduced modulo the unknown order ofG, which is unknown.

The SIGN protocol can be considerably simplified. There is no need for an extra commitment in a group of
unknown order, as the order of the groupG is itself unknown. Moreover, there is no need to prove that ther in the
commitmentE1 is bounded in a certain interval, as a cheatingU could not find a value that reduces to different values
r1 modn andr2 mod φ(n) while satisfying the signature equation, becauseφ(n) is unknown toU .

ProtocolOPENis unchanged from the previous case.
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Shared parameters

Security parameters δ, ε, σ1, σ2, τ (integers);

Secure hash function H(·) : {0, 1}∗ −→ {0, 1}τ ;

n, a composite integer, the product of safe primes;

p̂, a prime satisfying p̂ = mn + 1, where m is small;

G = {x ∈ Z∗n : ∃ a ∈ Z∗n s.t. x ≡ a2 mod n};

F = {x ∈ Z∗p̂ : ∃ a ∈ Z∗p̂ s.t. x ≡ am mod p̂};

P , an (optional) proof that n is a product of safe primes;

g, g1, and g2, generators of G;

P ′, an (optional) proof that g, g1, and g2 are quadratic residues.

Group-specific parameters

S, a string including y and y2;

CA’s signature CERT CA(S).

Join protocol

U −→ GM : JU = Im mod n

GM −→ U : a, b ∈ [−2τ/2+κ, 2τ/2+κ − 1]

U −→ GM : SigU (IU = Ja
Ugb

1 mod n, PK[u : IU = gu
1 ])

GM −→ U : r = IUg−k mod n,

s = −xr + k ∈ [−22κ+τ+1, 22κ+τ+1 − 1]

SIGN protocol

Proof arguments:

Y , R, X1, X2, Y1, Y2, W1, W2, Z1, Z2, χ, E1.

Signature of knowledge:

SPK[v, u′, `′, s′, r, t, t2 : Y = yv ∧ Y1 = Xv
1 ∧ Y2 = Xv

2 ∧ Z1 = W v
1 ∧ Z2 = W v

2

∧ R = gu′
1 gs′ ∧ Y1 = gu′

1 y`′
2 ∧ Y2 = g`′

2

∧ E1 = E1(r, 0) = χr ∧ W1 = r−1yt
2 ∧ W2 = gt

2

∧ E2 = RZ1 = E2(r, t2) = Y ryt2
2 ](M)
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