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Abstract. A generic or KEM-DEM hybrid construction is a formal
method for combining asymmetric and symmetric encryption techniques
to give an efficient, provably secure public-key encryption scheme. This
method combines an asymmetric KEM with a symmetric DEM, and each
of these components must satisfy its own security conditions. In this pa-
per we describe generic constructions for provably secure KEMs based
on lower level primitives such as one-way trapdoor functions and simple
key-agreement protocols.

1 Introduction

Whilst most dedicated public-key encryption algorithms are fine for sending
short messages, many schemes have problems sending long or arbitrary length
messages. Most of the normal “modes of operation” which might allow a sender
to send a long message using a public-key encryption algorithm directly are
cripplingly inefficient.

One particular way to solve these problems is to use symmetric encryption
with a randomly generated key to encrypt a message, and then use asymmetric
cryptography to encrypt that (short) random key. This method has been cryp-
tographic folklore for years and, as such, was not formally studied. This led to
papers such as [2] which can be used to attack schemes in which the set of sym-
metric keys is significantly smaller than the message space of the asymmetric
scheme used to encrypt them. This folklore has recently been formalised in terms
of a generic or KEM-DEM construction [3]. In this construction the encryption
scheme is divided into two parts: an asymmetric KEM and a symmetric DEM.
A KEM (or key encapsulation mechanism) is a probabilistic algorithm that pro-
duces a random symmetric key and an encryption of that key. A DEM (or data
encapsulation mechanism) is a deterministic algorithm that encrypts a message
of arbitrary length under the key given by the KEM.

In this paper we provide generic methods for constructing KEMs from low
level components such as encryption functions and key-agreement protocols. Fur-
thermore we provide security proofs that show that the KEM will be highly
secure provided these lower level components have certain weak security prop-
erties. Essentially this paper gives a toolbox to allow an algorithm designer to
construct a KEM from almost any cryptographic problem.



2 Preliminaries

A KEM is a triple of algorithms:

– a key generation algorithm, KEM .Gen, which takes as input a security pa-
rameter 1λ and outputs a public/secret key-pair (pk, sk),

– a encapsulation algorithm, KEM .Encap, that takes as input a public-key pk
and outputs an encapsulated key-pair (K,C) (C is sometimes said to be an
encapsulation of the key K),

– a decapsulation algorithm, KEM .Decap, that takes as input an encapsula-
tion of a key C and a secret-key sk, and outputs a key K.

Obviously if the scheme is to be useful we require that, with overwhelming
probability, the scheme is sound, i.e. for almost all (pk, sk) = KEM .Gen(1λ) and
almost all (K,C) = KEM .Encap(pk) we have that K = KEM .Decap(C, sk).
We also assume that the range of possible keys K is some set of fixed length
binary strings, {0, 1}KEM .Keylen(λ).

There are two ways to approach provable security. We choose to approach
the subject from the complexity theoretic/asymptotic point of view and suggest
that a scheme is secure if the probability of breaking that scheme is negligible
as a function of the security parameter.

Definition 1. A function f is said to be negligible if, for all polynomials p, there
exists a constant Np such that

f(x) ≤ 1
p(x)

for all x ≥ Np .

A KEM is considered secure if there exists no attacker with a significant
advantage in winning the following game played against a mythical system.

1. The system generates a public/secret key-pair (pk, sk) = KEM .Gen(1λ) and
passes pk to the attacker.

2. The attacker runs until it is ready to receive a challenge encapsulation pair.
During this time the attacker may repeatedly query a decapsulation oracle
to find the key associated with any encapsulation.

3. The system prepares a challenge encapsulated key-pair as follows:
(a) The system generates a valid encapsulated key-pair (K0, C) = KEM .Encap(pk).
(b) The system selects an alternate key K1 chosen uniformly at random from

the set {0, 1}KEM .Keylen(λ).
(c) The system selects a bit σ uniformly at random from {0, 1}.
The system then passes (Kσ, C) to the attacker.

4. The attacker is allowed to run until it outputs a guess σ′ for σ. During this
time the attacker may repeatedly query a decapsulation oracle to find the
key associated with any encapsulation except the challenge encapsulation C.



The attacker is said to win this game if σ′ = σ. We define an attacker’s advantage
Adv to be

Pr[σ′ = σ]− 1/2

and the total advantage of the KEM to be the maximum advantage of any
polynomial time attacker. If the total advantage of a KEM is negligible (as a
function of λ) then the KEM is said to be IND-CCA2 secure.

A KEM is only useful when coupled with a DEM (a data encapsulation mech-
anism) to form a hybrid public-key encryption scheme. A DEM is a symmetric
algorithm that takes a message and a key, and encrypts the message under that
key. However the security of the KEM is unaffected by the security properties
of the DEM (and vice-versa) so we will only consider the security properties of
the KEM. For further details of hybrid constructions using KEMs and DEMs,
and their security properties, the reader is referred to [3].

3 Constructing KEMs from trapdoor one-way functions

We start by showing that the construction ideas used in RSA KEM [7] generalise
to almost all one-way public-key encryption schemes. Consider an encryption
scheme (G, E ,D) where

– G is the key-generation algorithm which takes as input a security parameter
1λ and outputs a public/secret key-pair (pk, sk),

– E is the encryption algorithm which takes as input a message m ∈ M and
the public-key pk and outputs a ciphertext C ∈ C,

– D is the decryption algorithm which takes as input a ciphertext C ∈ C and
the secret-key sk and outputs either a message m ∈ M or the error symbol
⊥.

Definition 2. A public-key encryption scheme (G, E ,D) is said to be one-way if
the probability that a polynomial time attacker A can invert a randomly generated
ciphertext C is negligible as a function of λ. Such a cryptosystem is often said
to be secure in the OW-CPA model1.

The construction of a KEM derived from an encryption scheme (G, E ,D) is
given in Table 1. This construction uses a key derivation function KDF . This
function is intended to do more than simply format the random number correctly
as a key: it is meant to remove algebraic relations between inputs. It is usually
constructed from a hash function and will be modelled as a random oracle.

We begin our analysis of this construction by restricting ourselves to the
case where the encryption function acts as a permutation on the message space
M (hence M = C and the encryption function is necessarily deterministic in
nature).

1 OW for “one-way” and CPA for “chosen plaintext attack”. The term “chosen plain-
text attack” is used because the attacker is not allowed to make decryption queries.



Table 1. A KEM derived from a deterministic encryption scheme

– Key generation is given by the key generation algorithm of the public-key encryp-
tion scheme (i.e. KEM .Gen = G).

– Encapsulation is given by:
1. Generate an element r ∈M uniformly at random.
2. Set C := E(r, pk).
3. Set K := KDF (r).
4. Output (K, C).

– Decapsulation of an encapsulation C is given by:
1. Set r := D(C, sk).
2. Set K := KDF (r).
3. Output K.

Theorem 1. Suppose (G, E ,D) is a deterministic public-key encryption scheme
secure in the OW-CPA model such that, for all public-keys pk, the encryption
function E(·, pk) acts as a permutation on the message space. Then the KEM
derived from (G, E ,D) is, in the random oracle model, IND-CCA2 secure.

Proof. We intend to show that if there exists an attacker A that successfully
breaks the scheme, i.e. breaks the scheme with non-negligible advantage, then
there exists an algorithm that inverts the one-way encryption function with
some non-negligible probability. In order to do this we need to slightly tweak the
environment in which we run the attacker A.

Let Game 1 be the normal IND-CCA2 game, as described in Section 2. Let
Game 2 be similar to Game 1 but with the challenge key-pair (Kσ, C) chosen
at the start (although not given to the attacker). If the attacker A queries the
decryption oracle at any point with the ciphertext C then the decryption oracle
responds with the error symbol ⊥. Notice that the only difference between the
two games occurs if A queries the decryption oracle with the ciphertext C before
it has been given the challenge key-pair (Kσ, C). In order to analyse the effects of
this change of environment on the advantage of A we need the following simple
lemma.

Lemma 1. If A, B and E are events in some probability space and Pr[A | ¬E] =
Pr[B | ¬E] then |Pr[A]− Pr[B]| ≤ Pr[E].

Now, let A be the event that A wins in Game 1, i.e. that it correctly identifies
σ from (Kσ, C), and let B be the event that A wins in Game 2. Let E be the
event that A asks for the decryption of C before the challenge is issued. Note
that if E does not occur then A receives exactly the same information from the
oracles in both games and so Pr[A|¬E] = Pr[B|¬E]. Hence

|Pr[A]− Pr[B]| ≤ Pr[E].



Suppose that A makes at most qD decryption queries. Since C is chosen uni-
formly at random from the set of possible ciphertexts and A has no knowledge
of C before being issued with the challenge ciphertext, we have that

Pr[E] ≤ qD

|M| .

Since the underlying encryption scheme is one-way, 1/|M| must be negligible as
a function of λ. Hence Pr[B] is only negligibly less than Pr[A]. This leads to:

Lemma 2. If there exists an attacker for a KEM with non-negligible advantage
in Game 1 then there exists an attacker for the same KEM with non-negligible
advantage in Game 2.

We may now proceed along more standard lines and prove that if there exists
an attacker A that breaks the KEM in Game 2 with advantage Adv then we can
construct an algorithm that inverts the one-way public-key encryption function
with probability comparable to Adv. Consider the following algorithm:

1. Prepare two lists KDFList and DecList, initially setting them both to be
empty.

2. We receive a public-key pk from the system and pass this straight to A. We
also receive a challenge ciphertext C∗ to invert which we do not yet pass to
A.

3. Allow A to run until it requests a challenge encapsulated key-pair. During
this time A can repeatedly ask us to decapsulate any encapsulated key C
or to evaluate the key-derivation function KDF (·) (modelled as a random
oracle) on a given input. If A asks for the decapsulation of the ciphertext C
then we perform the following steps:
(a) Check to see if C = C∗. If so, output ⊥ and halt.
(b) Check to see if there exists an entry (C,K) ∈ DecList. If so, output K

and halt.
(c) Generate a key K uniformly at random from the set {0, 1}KEM .Keylen

and add (C, K) to DecList.
(d) Output K.
If A asks us to evaluate the key derivation function KDF (·) on the input X
then we perform the following steps:
(a) Check to see if there exists an entry of the form (X, K) ∈ KDFList. If

so, output K and halt.
(b) Generate a key K uniformly at random from the set {0, 1}KEM .Keylen.
(c) Check to see if X ∈M. If not, add (X, K) to KDFList, output K and

halt.
(d) Let C = E(X, pk). If C = C∗ then output X as the inverse of C∗ and

terminate the entire program.
(e) Check to see if there exists an entry of the form (C, K ′) ∈ DecList. If

so, add (X, K ′) to KDFList, output K ′ and halt.
(f) Add (C,K) to DecList, (X, K) to KDFList, and output K.



4. In order to construct a challenge key-pair we generate a key K∗ uniformly
at random from the set {0, 1}KEM .Keylen. We pass the pair (K∗, C∗) to A
as the challenge.

5. Allow A to run until it outputs a bit σ′. During this time we answer all
queries A makes in exactly the same way as before.

6. Lastly, if the program has not yet terminated then we generate a guess X
uniformly at random from M and output X as the inverse of C∗.

We can bound the probability of success of this algorithm in inverting the
challenge ciphertext C∗ in terms of the probability of success of the attacker A
in winning Game 2. Let F be the event that A, at some point, queries the key
derivation function oracle with the value X∗ = D(C∗, sk). The probability of
inverting C∗ is given by:

Pr[Output X∗] = Pr[Output X∗|F ] · Pr[F ] + Pr[Output X∗|¬F ] · Pr[¬F ].

Trivially we can see that

Pr[Output X∗|F ] = 1.

It therefore suffices to bound Pr[F ]. If F does not occur then the attacker can
have no knowledge of KDF (X∗) = KEM .Decap(C∗, sk), because KDF (·) is
a random oracle; hence its advantage in that situation is 0. It is easy to show
that, since A has advantage Adv, the probability that F occurs is at least Adv.
Therefore,

Pr[OutputX∗] ≥ Pr[F ] ≥ Adv

In particular, if A has a non-negligible advantage (in Game 2) then there exists
an algorithm that inverts the one-way function with non-negligible probability.
Putting this all together we get:

Lemma 3. If there exists an attacker for the KEM with non-negligible advan-
tage Adv then there exists an algorithm that inverts the underlying encryption
scheme with probability at least

Adv − qD/|M| .

On the other hand, if the underlying encryption scheme is one-way then the
KEM is IND-CCA2 secure.

Hence Theorem 1 holds. ut

Now suppose that E(·, pk) is not a permutation (i.e. M 6= C) but instead a
deterministic function, i.e. E(M, pk) ⊆ C. In this situation a decryption query
always reveals whether a ciphertext lies in E(M, pk) or not. If such queries reveal
information about the secret key then the above construction will be weak even
if the underlying encryption scheme is one-way.



Definition 3. A public-key encryption scheme (G, E ,D) is said to be secure in
the OW-CPA+ model if it is one-way even when the attacker has access to an
oracle that decides whether a ciphertext C lies in E(M, pk) or not.

This follows an idea first proposed in a paper by Joye, Quisquater and Yung
[4]. Their paper attacks an early version of EPOC-2, a hybrid cipher based
on the Okamoto-Uchiyama cryptosystem [6]. The paper proves that, whilst the
Okamoto-Uchiyama cryptosystem is provably secure in the OW-CPA model, it
is insecure in the OW-CPA+ model. They were able to use this fact to construct
an attack on EPOC-2.

Given a deterministic public-key encryption scheme that is secure in the OW-
CPA+ model, the construction given in Table 1 can be used to construct a secure
KEM.

Theorem 2. Suppose (G, E ,D) is a deterministic public-key encryption scheme
that is secure in the OW-CPA+ model. Then the KEM derived from (G, E ,D) is,
in the random oracle model, IND-CCA2 secure.

Sketch Proof The proof is very similar to the proof of Theorem 1. The only dif-
ference is that, when we are running the algorithm that breaks the one-way en-
cryption scheme, we answer decryption queries from A by first checking whether
that ciphertext has a valid decryption. If the ciphertext has no valid decryption
then we return ⊥; otherwise we simulate decryptions as before. ut

4 Constructing KEMs from probabilistic encryption
schemes

We now also open ourselves up to the possibility that the encryption algorithm
is not deterministic but probabilistic. The first thing to note is that our current
construction is not sufficient in the case of probabilistic encryption. Even if an
encryption scheme is secure in the OW-CPA+ model, it might still be possible to
find, for some ciphertext C, a ciphertext C ′ 6= C such that D(C ′, sk) = D(C, sk).
This would be sufficient to break the KEM in the adaptive chosen ciphertext
model. Hence we propose a new construction, given in Table 2, based on a
probabilistic encryption scheme (G, E ,D).

In order to prove the security of this scheme we will require access to an oracle
that decides whether a given ciphertext C is an encryption of a given message
m or not. Such oracles are rarely found in practice and it would be unusual
for one to be included in a standard attack model/scenario. However there are
several ways in which such an oracle could be made available to an attacker.
In particular, it might be possible to construct such an oracle because of the
nature of the underlying intractability assumption (see, for example, the gap
problems [5]). Alternatively it might be possible, in the random oracle model, to
simulate such an oracle using on the previous queries the attacker has made. A
third option would be to construct the KEM from an encryption scheme that is
secure even when the attacker has access to a decryption oracle (the OW-CCA2



Table 2. A KEM derived from a probabilistic encryption scheme

– Key generation for the KEM is provided by the key generation algorithm for the
underlying scheme, G.

– Encapsulation is provided by the following algorithm.
1. Generate an element r uniformly at random from the set M (i.e. KEM .Gen =
G).

2. Set C := E(r, pk).
3. Set K := KDF (r̄||C), where r̄ is a fixed length representation of the element

r ∈M.
4. Output (K, C).

– Decapsulation of an encapsulation C is given by the following algorithm.
1. Set r := D(C, sk).
2. Set K := KDF (r̄||C) where r̄ is a fixed length representation of the element

r.
3. Output K.

model [1]). An encryption scheme that is secure in the OW-CCA2 model will
certainly be secure in the OW-CPA+ model even when the attacker has access
to an oracle that decides if C is an encryption of m.

Theorem 3. Suppose (G, E ,D) is a public-key encryption scheme that is secure
in the OW-CPA+ model, even when the attacker has access to an oracle that
checks whether a given ciphertext C (different from the challenge ciphertext)
is an encryption of a given message m or not. Then the KEM derived from
(G, E ,D) is, in the random oracle model, IND-CCA2 secure.

Sketch Proof See Appendix A.

5 Constructing KEMs from key-agreement protocols

One can not only build KEMs from encryption algorithms but also from simple
key-agreement protocols. This should not be surprising considering the simi-
larities between the two types of protocol! For our purposes we define a key-
agreement scheme to be a triple of algorithms (G, E ,D) where

– G is a parameter generation algorithm which takes as input a security pa-
rameter 1λ and outputs a public/secret key-pair (pk, sk) that will be used
to generate a shared key.

– E is a deterministic “encryption” algorithm which takes as input a public-key
pk and a fixed length random seed r ∈ R, and outputs a key-pair (K,C),
where K is a key and C is an encryption of that key.

– D is a “decryption” algorithm which takes a ciphertext C and a secret key
sk, and outputs a key K (or the error symbol ⊥).



Notice that these definitions are very similar to the definition of a KEM itself.
This is not accidental! However, whilst a KEM and a simple key-agreement
protocol are functionally very similar, they have different security requirements.
In particular a key-agreement protocol is designed to protect a key for a long
period of time, whereas a KEM is designed only to protect a key that is used
once. This means we can use a very weak notion of security for the underlying
key-agreement protocol and still get full security in the KEM.

We will define the security of a key-agreement protocol as follows.

Definition 4. A key-agreement protocol (G, E ,D) is said to be secure in the
OW-CPA model if, given a randomly generated encapsulation C, the probability
that a polynomial time attacker A can find the corresponding key K = D(C, sk)
is negligible as a function of λ.

If the scheme is secure even when an attacker has access to an oracle that
checks whether a given encapsulation C is valid (or whether D(C, sk) =⊥), then
the scheme is said to be secure in the OW-CPA+ model.

It will also be necessary to allow the attacker access to an oracle that deter-
mines whether, for a given key K and ciphertext C, K = D(C, sk) or not. Once
again we choose to leave this out of the formal attack model, partly to respect
the model defined by Joye et al. and partly because this oracle can usually either
be simulated in the random oracle model or be made available to the attacker
owing to the nature of intractability assumption the scheme is based on (as is
the case for schemes based on the gap Diffie-Hellman assumption [4]).

A method of deriving a KEM from a key-agreement protocol (G, E ,D) is
given in Table 3.

Table 3. A KEM derived from a key-agreement protocol

– Key generation is given by the key generation algorithm G of the key-agreement
protocol.

– The encapsulation algorithm is given by:
1. Generate an element r uniformly at random from the set R.
2. Set (Kraw, C) := E(r, pk).
3. Set K := KDF (K̄raw||C) where K̄raw is a fixed length binary representation

of Kraw.
4. Output (K, C).

– The decapsulation algorithm, for a ciphertext C, is given by:
1. Set Kraw := D(C, sk).
2. Set K := KDF (K̄raw||C) where K̄raw is a fixed length binary representation

of Kraw.
3. Output K.



Theorem 4. Suppose that (G, E ,D) is a key-agreement protocol that is secure in
the OW-CPA+ model, even when the attacker has access to an oracle that decides
whether a given encryption C (different from the challenge encapsulation) is an
encryption of a given key Kraw or not. Then the KEM derived from (G, E ,D)
is, in the random oracle model, IND-CCA2 secure.

The proof of this theorem is similar to that of Theorem 3.

6 Relaxing the security requirement

So far we have required our KEMs to be derived from lower level schemes that
are secure in the OW-CPA+ model. We may relax this requirement to the need
for the lower level scheme to be secure in the OW-CPA model if we are prepared
to reduce the efficiency of the KEM. The technique we use is based on the
masking approach used by PSEC-KEM [7]. We will consider constructing a KEM
using each of the types of lower level primitive we have already considered (a
deterministic encryption scheme, a probabilistic encryption scheme and a simple
key-agreement protocol), starting with a deterministic encryption scheme.

Table 4 gives a construction for a KEM from a deterministic encryption
scheme (G, E ,D). In the construction Hash is a hash function and MGF is
a mask generating function. A mask generating function is similar to a key
derivation function, in fact the same constructions are used for both, but a mask
generating function is used to create a bit string that is used to mask a data
value. We will model these function as random oracles. We also use a “smoothing
function” φ : {0, 1}n2 → M, where M is the message space of the encryption
scheme (G, E ,D). This function must have the property that for any r ∈ {0, 1}n2

and m ∈M we have
Pr[φ(r) = m] =

1
|M| .

For security, it is necessary that n is suitably large. Certainly n ≥ λ would
be sufficient. Of the other lengths, n1 should equal KEM.Keylen and n2 merely
has to be large enough so that there exists a function φ which is suitably smooth.

Theorem 5. Suppose (G, E ,D) is a deterministic public-key encryption scheme
secure in OW-CPA model. Then the KEM derived from (G, E ,D) is, in the ran-
dom oracle model, IND-CCA2 secure.

Sketch Proof of Theorem 5 See Appendix B. ut
This construction is not sufficient for use with a simple key-agreement proto-

col, because it might be possible to find two ciphertexts (for the key-agreement
protocol) that decrypt to give the same raw key. However we can avoid this
problem by changing step 6 of the encapsulation algorithm to:

6. Set C2 := r⊕MGF (X̄||C1), where X̄ is some fixed length representation of
X.

and step 3 of the decapsulation algorithm to:



Table 4. A KEM derived from a OW-CPA secure encryption scheme

– Key-generation is given by G, i.e. KEM .Gen = G.

– Encapsulation is given by:
1. Generate a suitably large bit-string r ∈ {0, 1}n.
2. Set R := Hash(r).
3. Split R into two strings K ∈ {0, 1}n1 and R′ ∈ {0, 1}n2 where R = K||R′.
4. Set X := φ(R′).
5. Set C1 := E(X, pk).
6. Set C2 := r ⊕MGF (X).
7. Set C = (C1, C2).
8. Output (K, C).

– Decapsulation is given by:
1. Parse C as (C1, C2).
2. Set X := D(C1, sk).
3. Set r = C2 ⊕MGF (X).
4. Set R = Hash(r).
5. Split R into two strings K ∈ {0, 1}n1 and R′ ∈ {0, 1}n2 where R = K||R′.
6. Check that C1 = E(φ(R′), pk). If not, output ⊥ and halt.
7. Output K.

3. Set r = C2 ⊕MGF (X̄||C1), where X̄ is some fixed length representation of
X.

Theorem 6. Suppose (G, E ,D) is a simple key-agreement scheme (as defined in
Section 5) secure in the OW-CPA model. Then the KEM derived from (G, E ,D)
is, in the random oracle model, IND-CCA2 secure.

This construction will still not work with probabilistic constructions as the
same message is unlikely to encrypt to the same ciphertext, so the decapsulation
process will reject almost all ciphertexts. However we can alter the decryption
process in order to avoid this problem by changing step 6 of the decapsulation
process to:

6. Check that φ(R′) = D(C1, sk). If not, output ⊥ and halt.

Theorem 7. Suppose (G, E ,D) is a probabilistic public-key encryption scheme
secure in the OW-CPA model, even when the attacker has access to an oracle that
checks whether a given ciphertext C (that is not equal to the challenge ciphertext)
is an encryption of a given message m or not. Then the KEM derived from
(G, E ,D) is, in the random oracle model, IND-CCA2 secure.

The proofs of these theorems are similar to that of Theorem 5.



7 Conclusion

This paper has provided generic constructions for key-encapsulation mechanisms
based on some very simple cryptographic protocols. Indeed, these results mean
that a KEM can be constructed from almost any cryptographic problem. The
abundance of KEMs and their variety serve to reinforce the idea that the KEM-
DEM method of constructing a public-key encryption scheme is a very sound
model. Indeed the ease with which one can construct secure KEMs, and hence
secure hybrid encryption schemes, suggests that this is an area with enormous
practical potential.
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A Sketch Proof of Theorem 3

This proof runs along very similar lines to the proof of Theorem 1. Suppose
there exists an attacker A which can distinguish a valid encapsulated key-pair
from an invalid encapsulated key-pair in the IND-CCA2 environment described
in Section 2.



Let Game 1 be the normal IND-CCA2 environment for A (as described in
Section 2). Let Game 2 be similar to Game 1 but with the challenge key-pair
(K∗

σ, C∗) chosen at the start. If A queries the decryption oracle at any time with
the ciphertext C∗ then the decryption oracle responds with ⊥.

Let A be the event that A wins (i.e. correctly identifies whether (K∗
σ, C∗) is

a valid key-pair or not) in Game 1. Let B be the event that A wins in Game 2.
Then, exactly as in the proof of Theorem 1, we can show that

|Pr[A]− Pr[B]| ≤ qD

|C| ,

where qD is the number of decryption queries that A makes.
Hence, if there exists an attacker with non-negligible advantage in Game 1

then there exists an attacker with non-negligible advantage in Game 2.
Now we show that if there exists an attacker with advantage Adv in Game 2

then there exists an algorithm that inverts the encryption function with probabil-
ity comparable to Adv. This is done is exactly the same manner as in Theorem 1,
the only difference is how we simulate the oracles to which the attacker has ac-
cess. Again we model the key derivation function KDF (·) as a random oracle, so
we need to model both the decryption oracle and the random oracle representing
the key derivation function. The simulators are described below:

If A asks for the decapsulation of an encapsulation C then we perform the
following steps:

1. Check to see if C = C∗. If so, output ⊥ and halt.
2. Check to see if there exists an entry (C, K) ∈ DecList, for some K. If so,

output K and halt.
3. Check to see if C ∈ E(M, pk) using the appropriate oracle. If not, output ⊥

and halt.
4. Generate a new key K uniformly at random from the set {0, 1}KEM .Keylen

and add (C, K) to DecList.
5. Output K.

If A asks for the evaluation of KDF (X) then we perform the following steps:

1. Check to see if there exists an entry (X, K) ∈ KDFList, for some K. If so,
output K and halt.

2. Check to see if we can parse X as r̄||C for some representation r ∈ M
and C ∈ C. If not, generate a key K uniformly at random from the set
{0, 1}KEM .Keylen, add (X, K) to KDFList, output K and halt.

3. Check to see if C = C∗. If so, generate a key K uniformly at random from
the set {0, 1}KEM .Keylen, add (X, K) to KDFList, output K and halt.

4. Check to see if C is an encryption of the message r (using the appropri-
ate oracle). If not, generate a key K uniformly at random from the set
{0, 1}KEM .Keylen, add (X, K) to KDFList, output K and halt.

5. Check to see if there exists an entry (C, K) in DecList. If so, add (X, K) to
KDFList, output K and halt.



6. Generate a key K uniformly at random from the set {0, 1}KEM .Keylen. Add
(X,K) to KDFList, add (C, K) to DecList, output K and halt.

In the proof of Theorem 1, the simulators were designed to output the inverse
of C∗ directly, however this is not possible in this construction. Instead we must
allow A to complete his program and then, if KDFList contains an entry (X, K)
such that X = r̄||C∗ (for some r), we select such an entry uniformly at random
and output r as the inverse of C∗. If no such entry exists then we select r ∈M
uniformly at random and output r as the inverse of C∗.

As before we can show that the probability that this algorithm outputs r∗ =
D(C∗, sk) is greater than or equal to the probability that the key derivation
function is queried on the input r̄∗||C∗. The probability that the key derivation
function is queried on the input r̄∗||C∗ is, in turn, greater than or equal to the
advantage that A has in winning Game 2. So if the advantage of A is Adv then
the probability that we correctly output the inverse of C∗ is at least

1
qK

{
Adv − qD

|C|
}

.

Of course, this assumes that our oracle cannot check if a given r is the decryption
of C∗ or not. If the oracle can decide this then the probability that the algorithm
correctly inverts C∗ is only negligibly less than the advantage of A.

B Sketch Proof of Theorem 5

The proof of Theorem 5 is, again, very similar to the proof of Theorem 1 but
several orders of magnitude more difficult. We will give a sketch of the proof
here.

Assume that there exists an attacker A which breaks the KEM in the IND-
CCA2 sense. We will use this to construct an algorithm that breaks the underly-
ing cryptosystem. Assume that A makes at most qD queries to the decapsulation
oracle, qM queries to the mask generating function oracle and qH queries to the
hash function oracle. In constructing the an algorithm that inverts the under-
lying cryptosystem we will be challenged to invert a random ciphertext C∗1 (we
will use the superscript ∗ to denote variables associated with the challenge ci-
phertext). For convenience we set

r∗ = C∗2 ⊕D(C∗1 , sk)

and note that this constrains the behaviour of Hash on r∗.
We construct the challenge encapsulation pair (K∗, C∗) by selecting a random

KEM .Keylen-bit integer K∗ and a random n-bit integer C∗2 and setting C∗ =
(C∗1 , C∗2 ).

Again we need to tweak the environment that the attacker runs in, so that
we may successfully simulate all the oracles that it has access to. Let Game 1
be the normal IND-CCA2 game. Let Game 2 be the game where the challenge
encapsulation pair (K∗, C∗) is generated at the start of the algorithm, and if the



attacker queries the decapsulation oracle on the input C∗ then the decapsulation
oracle responds with ⊥. If A1 is the event that the attacker wins in Game 1 and
A2 is the event that the attacker wins in Game 2 then, as before,

|Pr[A1]− Pr[A2]| ≤ qD

2n · |C| .

Now, since we do not know D(C∗1 , sk), we will find it hard to simulate the
decapsulation of encapsulations of the form (C∗1 , C2). We can avoid this problem
by refusing to decapsulate any encapsulation of this form. Let Game 3 be similar
to Game 2, but with the decapsulation oracle will outputting ⊥ whenever it is
queried with an encapsulation of the form (C∗1 , C2). Let A3 be the event that
the attacker wins in Game 3 and let E be the event that an encapsulation is
submitted to the decapsulation oracle which would have different decapsulations
in Game 2 and Game 3. Since Game 2 and Game 3 are identical if E does not
occur we must have

|Pr[A2]− Pr[A3]| ≤ Pr[E] .

Now E will only occur if the attacker A submits a ciphertext (C∗1 , C2), with
C2 6= C∗2 , for which the last n2-bits of

Hash(C2 ⊕D(C∗1 , sk))

maps, under φ, to D(C∗1 , sk). Since C2 ⊕D(C∗1 , sk) 6= r∗ and Hash is a random
oracle, Hash(C2⊕D(C∗1 , sk)) will be a random bit-string and so φ will map the
last n2 bits of this onto a completely random element of M. So

|Pr[A3]− Pr[A4]| ≤ Pr[E] ≤ qD

|M| .

We are now in a position to describe the simulators. We start by initialising
four empty lists: DecList, MaskList, MGFList and HashList. If the attacker
requests the evaluation of the mask generating function MGF on the input X
then the following steps are performed:

1. Check to see if there exists a pair (X,Mask) ∈ MGFList, for some value
Mask. If so, output Mask and halt.

2. Check to see if X ∈ M. If not, generate Mask uniformly at random from
the set {0, 1}n, add (X, Mask) to MGFList and output Mask.

3. Check to see if E(X, pk) = C∗1 . If so, output X as the inverse of C∗1 and
terminate the entire algorithm.

4. Check to see if (E(X, pk), Mask) ∈ MaskList for some value of Mask. If
so, output Mask and halt.

5. Generate Mask uniformly at random from the set {0, 1}n, add (X, Mask)
to MGFList, add (E(X, pk),Mask) to MaskList and output Mask.

If the attacker requests the decapsulation of the encapsulation (C1, C2) then the
following steps are performed:

1. Check to see if (C1, C2,K) ∈ DecList. If so, output K and halt.



2. Check to see if C1 = C∗1 . If so, output ⊥ and halt.
3. Check to see if (C1, Mask) ∈ MaskList for some value of Mask. If not, gen-

erate Mask uniformly at random from the set {0, 1}n and add (C1,Mask)
to MaskList.

4. Set r = C2 ⊕Mask.
5. Set R = Hash(r).
6. Split R into two strings K ∈ {0, 1}n1 and R′ ∈ {0, 1}n2 where R = K||R′.
7. Check to see if C1 = E(φ(R′), pk). If not, add (C1, C2,⊥) to DecList, output
⊥ and halt.

8. Add (C1, C2,K) to DecList, output K and halt.

If the attacker (or the decryption function) requests the evaluation of the hash
function Hash on the input r then the following steps are performed:

1. Check to see if (r,R) ∈ HashList for some value of R. If so, output R and
halt.

2. Otherwise, generate R uniformly at random from the set {0, 1}n1+n2 , add
(r,R) to HashList and output R.

We use these simulators in the standard way, as shown in Section 3, to invert
the ciphertext C∗1 . We therefore require that the simulators perfectly simulate
the attacker’s normal environment up until the point where the inverse of C∗1 is
found. It is with some regret that we note that this is not the case at the moment,
because when the hash function is queried on the input r∗ the simulators will
output a random bit string instead of the “proper” answer R∗. We must tweak
the environment slightly to show that this does not make a significant difference.

Let Game 4 be similar to Game 3 but, if the hash function is evaluated
on the input r∗ before the mask generating function is evaluated on the input
D(C∗1 , sk), then the hash function outputs an appropriately sized bit-string that
has been generated at random. The simulators certainly perfectly simulate this
environment. Let A4 be the event that the attacker wins in Game 4 and let
E be the event that the hash function is evaluated on the input r∗ before the
mask generating function is evaluated on the input D(C∗1 , sk). Since Game 3 and
Game 4 are identical provided E does not occur, so

|Pr[A3]− Pr[A4]| ≤ Pr[E] .

Now, since the mask generating function has not been evaluated on D(C∗1 , sk),
the attacker can have no knowledge of MGF (D(C∗1 , sk)) = C∗2 ⊕ r∗. So, since
C∗2 is known, the attacker can have no knowledge of r∗ and so the only way that
the hash function Hash can be evaluated on r∗ is by chance. Therefore,

|Pr[A3]− Pr[A4]| ≤ Pr[E] ≤ qH + qD

2n

Now that we have now simulated the environment successfully, we can use
standard techniques to show that the probability that we successfully invert the



given ciphertext is at least the advantage of the attacker in Game 4. Hence the
probability that we successfully invert the ciphertext in Game 1 is at least

Adv − qH + qD

2n
− qD

|M| −
qD

2n|C| .

So, if there exists an attacker for the KEM that has non-negligible advantage then
there exists an algorithm that inverts the underlying encryption scheme with
non-negligible advantage. Alternatively, if the underlying encryption scheme is
one-way secure then the KEM will be IND-CCA2 secure.


