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Abstract

Counting the order of the Jacobian group of a hyperelliptic curve over a finite field
is very important for constructing a hyperelliptic curve cryptosystem (HECC), but
known algorithms to compute the order of a Jacobian group for a general curve over
a given large prime field need very long running times. In this note, we propose a
practical polynomial-time algorithm to compute the order of the Jacobian group for a
hyperelliptic curve of type y2 = x5 +ax over a given large prime field Fp, e.g. an 80-bit
field. We also investigate the order of the Jacobian group for such curve and determine
the necessary condition to be suitable for HECC, that is, to satisfy that the order of
the Jacobian group is of the form l · c where l is a prime number greater than about
2160 and c is a very small integer. Moreover we show some examples of a suitable curve
for HECC obtained by using our algorithm.

1 Introduction

Let C be a hyperelliptic curve of genus 2 over Fq. Let JC be the Jacobian variety of C and
JC(Fq) the Jacobian group of C which is the set of Fq-rational points of JC . JC(Fq) is a finite
abelian group and we can construct a public-key-cryptosystem with it. The advantage of
this system to an elliptic curve cryptosystem (ECC) is that we can construct a cryptosystem
at the same security level as an elliptic one by using a defining field in a half size, that is, we
need a 160-bit field to construct a secure ECC, but for a hyperelliptic curve cryptosystem
(HECC) we only need an 80-bit field. The order of the Jacobian group of a hyperelliptic
curve defined over an 80-bit field is about 160-bit. It is said that ]JC(Fq) = c · l where l is
a prime number greater than about 2160 and c is a very small integer is suitable for HECC.
We call a hyperelliptic curve “suitable for HECC” if its Jacobian group has such a suitable
order.

As in the case of ECC, counting the order of the Jacobian group JC(Fq) is very important
for constructing HECC. But it is very difficult to count for a curve defined over an 80-bit
field and there are very few results on it: Gaudry-Harley’s algorithm [6] [10] can compute
the order of a random hyperelliptic curve over an 80-bit field but their algorithm is useful
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only for an extension field of a small prime field. For a hyperelliptic curve with complex
multiplication, there are known algorithms to construct a curve with its Jacobian group
having a 160-bit prime factor. But these algorithms cannot be used to compute the order
of a Jacobian group over a given defining field. Furthermore, the above algrithms need
very long running times. For special curves, it is possible to obtain a fast point counting
algorithm. Buhler-Koblitz [2] obtained such algorithm for a special curve of type y2 +y = xn

over a prime field Fp where n is an odd prime such that p ≡ 1 (mod n).
In this note, we propose a fast algorithm to compute the order of the Jacobian group

JC(Fp) for a hyperelliptic curve C of type y2 = x5 + ax over a large prime field Fp, which
is different from one of Buhler-Koblitz [2]. The expected running time of our algorithm
is O(ln4 p). The program based on our algorithm runs instantaneously on a system with
Celeron 600MHz CPU and less than 1GB memory. It only takes less than 0.1 seconds
even for 160-bit prime fields. Moreover we investigate the order of the Jacobian group for
the above curve and determine the necessary condition to be suitable for HECC. In the
last section of this note, we show some examples of hyperelliptic curves suitable for HECC
obtained by using our algorithm.

2 Basic facts on Jacobian varieties over a finite field

Here we recall basic facts on the order of Jacobian groups of hyperelliptic curves over a finite
field. ( cf. [6], [8] )

2.1 General theory

Let p be a prime number, Fq is a finite field of order q = pl and C a hyperelliptic curve of
genus g defined over Fq. Then the defining equation of C is given as

y2 = f(x)

where f(x) is a polynomial in Fq[x] of degree 2g + 1.
Let JC be the Jacobian variety of a hyperelliptic curve C. We denote the group of Fq-

rational points on JC by JC(Fq). Let χq(t) be the characteristic polynomial of q-th power
Frobenius endomorphism of C. Then, the order ]JC(Fq) is given by

]JC(Fq) = χq(1).

The following ”Hasse-Weil bound” is a famous inequality which bounds ]JC(Fq).

d(√q − 1)2ge ≤ ]J(Fq) ≤ b(√q + 1)2gc.
Due to Mumford [11], a point on JC(Fq) can be represented by a pair 〈u(x), v(x)〉 where

u(x) and v(x) are polynomials in Fq[x] with deg v(x) < deg u(x) ≤ 2 such that u(x) divides
f(x) − v(x)2. The identity element of the addition law is represented by 〈1, 0〉. We refer
this representation as “Mumford representation” in the following. By using Mumford repre-
sentation of a point on JC(Fq), we obtain an algorithm for adding two points on JC(Fq) (cf.
Cantor’s algorithm [3], Harley’s algorithm [6]).

2.2 Hasse-Witt matrix and the order of JC(Fq)

There is a well-known method to calculate ]JC(Fq) (mod p) by using the Hasse-Witt matrix.
The method is based on the following two theorems ([9, 14]).
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Theorem 2.1. Let y2 = f(x) with deg f = 2g + 1 be the equation of a genus g hyperelliptic
curve. Denote by ci the coefficient of xi in the polynomial f(x)(p−1)/2. Then the Hasse-Witt
matrix is given by

A = (cip−j)1≤i,j≤g.

For A = (aij), put A(pi) = (api

ij ). Then we have the following theorem.

Theorem 2.2. Let C be a curve of genus g defined over a finite field Fq where q = pl. Let
A be the Hasse-Witt matrix of C, and let

Aφ = AA(p)A(p) · · ·A(pl−1).

Let κ(t) be the characteristic polynomial of the matrix Aφ and χq the characteristic polynomial
of the q-th power Frobenius endomorphism. Then

χq(t) ≡ (−1)gtgκ(t) (mod p).

Due to the above two theorems, we can calculate ]JC(Fq) (mod p) by the following
formula.

]JC(Fq) ≡ (−1)gκ(1) (mod p)

But this method is not practical in general when p is very large.

3 Counting the number of points on Jacobian variety

We only consider the case of genus 2 in the following. Let f(x) be a polynomial in Fq[x]
of degree 5, C a hyperelliptic curve over Fq of genus 2 defined by the equation y2 = f(x).
Then, the characteristic polynomial χq(t) of the q-th power Frobenius endomorphism of C
is of the form:

χq(t) = t4 − s1t
3 + s2t

2 − s1qt + q2, si ∈ Z,

|s1| ≤ 4
√

q, |s2| ≤ 6q.

Hence JC(Fq) is given by the following formula:

]JC(Fq) = q2 + 1− s1(q + 1) + s2.

We also note on the well-known fact that si are given by

s1 = 1 + q −M1 and s2 = (M2 − 1− q2 + s2
1)/2

where Mi is the number of Fqi-rational points on C (cf. [8]).
The following sharp bound is useful for calculating ]JC(Fq).

Lemma 3.1 (cf. [12, 10]). d2√q|s1| − 2qe ≤ s2 ≤ bs2
1/4 + 2qc

Here we consider how to calculate ]JC(Fp) (mod p) when q = p.

Lemma 3.2. Let ci be the coefficient of xi in f(x)(p−1)/2. Then

s1 ≡ cp−1 + c2p−2 (mod p)

s2 ≡ cp−1c2p−2 + cp−2c2p−1 (mod p).
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Proof. First of all, the matrix A in Theorem 2.1 is as follows.

A =

(
cp−1 cp−2

c2p−1 c2p−2

)
.

Then we have
κ(t) = t2 − (cp−1 + c2p−2)t + (cp−1c2p−2 + cp−2c2p−1)

and by Theorem 2.2 we have

t4 − s1t
3 + s2t

2

≡ t4 − (cp−1 + c2p−2)t
3 + (cp−1c2p−2 + cp−2c2p−1)t

2

(mod p).

Hence

s1 ≡ cp−1 + c2p−2 (mod p)

s2 ≡ cp−1c2p−2 + cp−2c2p−1 (mod p)

Remark 3.3. Since |s1| ≤ 4
√

p, if p > 64 then s1 is uniquely determined by cp−1, c2p−2.
Moreover, by Lemma 3.1, if s2 (mod p) is determined, then there are only at most five
possibilities for the value of s2.

When p is very large, it is difficult to calculate si (mod p) in general even in the case of
g = 2. But for hyperelliptic curves of special type, we can calculate them in a remarkably
short time even when p is extremely large, e.g. 160-bit.

Now we show the following theorem which is essential to construct our algorithm.

Theorem 3.4. Let a be an element of Fp, C a hyperelliptic curve defined by the equation
y2 = x5 + ax and JC the Jacobian variety of C. Then s1, s2 are given as follows.

1. if p ≡ 1 (mod 8), then

s1 ≡ (−1)(p−1)/82c(a3(p−1)/8 + a(p−1)/8) (mod p),

s2 ≡ 4c2a(p−1)/2 (mod p)

where c is an integer satisfying p = c2 + 2d2, c ≡ 1 (mod 4).

2. if p ≡ 3 (mod 8), then

s1 ≡ 0 (mod p),

s2 ≡ −4c2a(p−1)/2 (mod p)

where c is an integer such that p = c2 + 2d2.

3. if otherwise, then s1 ≡ 0 (mod p), s2 ≡ 0 (mod p).

Proof. Since

(x5 + ax)
p−1
2 =

(p−1)/2∑
i=0

(p−1
2

r

)
x4r+(p−1)/2a(p−1)/2−r,

the necessary condition for an entry cip−j of the Hasse-Witt matrix A =

(
cp−1 cp−2

c2p−1 c2p−2

)

of C being non-zero is that there must be an integer r, 0 ≤ r ≤ (p − 1)/2 such that
4r + (p− 1)/2 = ip− j. Then there are the following three possibilities:
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1. if p ≡ 1 (mod 8), then A =

(
cp−1 0
0 c2p−2

)
,

2. if p ≡ 3 (mod 8), then A =

(
0 cp−2

c2p−1 0

)
,

3. if p 6≡ 1, 3 (mod 8), then A = O.

Case (1). Put f = (p − 1)/8. Then, since 4r + (p − 1)/2 = p − 1 for cp−1, we have
r = (p − 1)/8 = f and cp−1 =

(
4f
f

)
a3f . For c2p−2, since 4r + (p − 1)/2 = 2p − 2, we have

r = 3(p − 1)/8 = 3f and c2p−2 =
(
4f
3f

)
af . Then from the result of Hudson-Williams [7,

Theorem 11.2], we have (
4f

f

)
≡ (−1)f2c (mod p)

where p = c2 + 2d2, and c ≡ 1 (mod 4). Since
(
4f
f

)
=

(
4f
3f

)
, we have the conclusion.

Case (2). By the condition, it is obvious that s1 ≡ 0 (mod p). Put f = (p− 3)/8. Then,
since 4r + (p− 1)/2 = p− 2 for cp−2, we have r = (p− 3)/8 = f and cp−2 =

(
4f+1

f

)
a3f+1. For

c2p−1, since 4r + (p− 1)/2 = 2p− 1, we have r = (3p− 1)/8 = 3f + 1 and c2p−1 =
(
4f+1
3f+1

)
af .

From the result of Berndt-Evans-Williams [1, Theorem 12.9.7],

(
4f + 1

f

)
≡ −2c (mod p)

where p = c2 + 2d2 and c ≡ (−1)f (mod 4). Since
(
4f+1
3f+1

)
=

(
4f+1

f

)
, we have

s2 ≡ −
(

4f + 1

f

)2

a4f+1 (mod p)

≡ −4c2a(p−1)/2 (mod p)

Case (3). This is obvious.

Remark 3.5. Note that the Jacobian variety of y2 = x5 + ax has a point of order 2. Then
the order of JC(Fp) is always even. By Lemma 3.1, if p > 64, then there are only at most
three possibilities for the value of s2.

By using the above result, we can calculate (at most three) possibilities of ]JC(Fp) in a
very short time. Then to get ]JC(Fp), we only have to multiply a random point on JC(Fp)
by each possible order.

The following remark is also important.

Remark 3.6. If p > 16 in (2) and (3), we have s1 = 0.

4 Study on the order of Jacobian groups

Before considering about a counting-point algorithm, we study the order of the Jacobian
group more precisely. Due to Theorem 3.4, we divide the situation into the following three
cases: (1) p ≡ 1 (mod 8), (2) p ≡ 3 (mod 8), (3) p ≡ 5, 7 (mod 8).
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4.1 The case of p ≡ 1 (mod 8)

Lemma 4.1. Let p be a prime number such that p ≡ 1 (mod 8) and C a hyperelliptic
curve over Fp defined by an equation y2 = x5 + ax. If a(p−1)/2 = 1, then 4 divides ]JC(Fp).
Moreover, if a(p−1)/4 = 1, then 16 divides ]JC(Fp).

Proof. First note that there is a primitive 8th root of unity, say ζ8, in Fp because 8 divides
p− 1. If a(p−1)/2 = 1, then there exists an element b ∈ Fp such that b2 = a. Then

x5 + ax = x5 + b2x = x(x2 + ζ2
8b)(x

2 − ζ2
8b)

It is easy to see that 〈x, 0〉 and 〈x2 + ζ2
8b, 0〉, which are points on JC(Fp) in the Mumford

representation, generate a subgroup of order 4 in JC(Fp). Hence 4 divides ]JC(Fp).
If a(p−1)/4 = 1, there is an element u in Fp such that a = u4. Then

x5 + ax = x5 + u4x = x(x + ζ8u)(x− ζ8u)(x + ζ3
8u)(x− ζ3

8u).

It is easy to see that 〈x, 0〉, 〈x + ζ8u, 0〉, 〈x− ζ8u, 0〉 and 〈x + ζ3
8u, 0〉 generate a subgroup of

order 16 in JC(Fp). Hence 16 divides ]JC(Fp).

Theorem 4.2. Let p be a prime number such that p > 64 and p ≡ 1 (mod 8) and C a

hyperelliptic curve over Fp defined by an equation y2 = x5 + ax. If

(
a

p

)
= 1, then the order

of JC(Fp) is as follows:

1. if p ≡ 1 (mod 16) and a(p−1)/8 = 1, then
]JC(Fp) = (1 + p− 2c)2,

2. if p ≡ 9 (mod 16) and a(p−1)/8 = 1, then
]JC(Fp) = (1 + p + 2c)2,

3. if p ≡ 1 (mod 16) and a(p−1)/8 = −1, then
]JC(Fp) = (1 + p + 2c)2,

4. if p ≡ 9 (mod 16) and a(p−1)/8 = −1, then
]JC(Fp) = (1 + p− 2c)2,

5. if otherwise, ]JC(Fp) = (1− p)2 + 4c2

where p = c2 + 2d2, c, d ∈ Z and c ≡ 1 (mod 4).

Proof. First of all, from Theorem 3.4, we have that

s1 ≡ (−1)(p−1)/82c
(
a3(p−1)/8 + a(p−1)/8

)
(mod p)

and
s2 ≡ 4c2 (mod p)

for all cases.
For the case (1), from Theorem 3.4 we have s1 ≡ 4c (mod p). By the definition of c,

c2 < p and hence 0 < |4c| < 4
√

p. Since p > 64 and Remark 3.3, we have that s1 = 4c.
Moreover since |s2| ≤ 6p and 0 < 4c2 < 4p, s2 is of the form 4c2 + mp, −9 ≤ m ≤ 5, m ∈ Z.
Then ]JC(Fp) = 1 + p2− 4c(1 + p) + 4c2 + mp where m is an integer such that −9 ≤ m ≤ 5.
Since ]JC(Fp) ≡ 0 (mod 16) from Lemma 4.1, 1 + p2 − 4c(1 + p) + 4c2 + mp ≡ 0 (mod 16).
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Since p ≡ 1 (mod 8) and c ≡ 1 (mod 4), we have mp ≡ 2 (mod 16) and then m = 2. Hence
]JC(Fp) = 1 + p2 − 4c(1 + p) + 4c2 + 2p = (1 + p− 2c)2.

For the cases (2), (3), (4), we can show in the same way.
For the case (5), a(p−1)/8 is a primitive 4th root of unity and a3(p−1)/8+a(p−1)/8 = 0. So we

have that s1 = 0 by Theorem 3.4 and p > 64. Since |s2| ≤ 2p in this case by Lemma 3.1 and
0 < 4c2 < 4p by the definition of c, s2 is of the form 4c2+mp, m ∈ {−5,−4,−3,−2,−1, 0, 1}.
On the other hand, since 1 + p2 ≡ 2 (mod 4) and ]JC(Fp) ≡ 0 (mod 4) by Lemma 4.1, we
have that s2 ≡ 2 (mod 4). Hence we obtain m = −2 and ]JC(Fp) = 1 + p2 + 4c2 − 2p =
(1− p)2 + 4c2.

Hence in particular if p ≡ 1 (mod 8) and

(
a

p

)
= 1, then C with a(p−1)/4 = 1 is not

suitable for HECC.

4.2 The case of p ≡ 3 (mod 8)

In this case we first note that

(−1

p

)
= −1.

Lemma 4.3. For a hyperelliptic curve C : y2 = x5 + ax, a ∈ Fp where p ≡ 3 (mod 8), the
followings hold:

1. if

(
a

p

)
= 1, then 4 divides ]JC(Fp),

2. if

(
a

p

)
= −1, then 8 divides ]JC(Fp).

Proof. If

(
a

p

)
= 1, then there exists an element b ∈ Fp such that a = b2. Since

(−1

p

)
= −1,

either 2b or −2b is a square. If 2b = u2, then

x5 + ax = x{(x2 + b)2 − 2bx2} = x(x2 + ux + b)(x2 − ux + b)

over Fp and 〈x, 0〉 and 〈x2 +ux+ b, 0〉 generate a subgroup of order 4 in JC(Fp). If −2b = u2,

x5 + ax = x{(x2 − b)2 − (−2b)x2} = x(x2 + ux− b)(x2 − ux− b)

over Fp and 〈x, 0〉 and 〈x2 + ux− b, 0〉 generate a subgroup of order 4 in JC(Fp).

If

(
a

p

)
= −1, then x5 +ax factors into a form x(x+β)(x−β)(x2 +γ) over Fp. It is easy

to see that 〈x, 0〉, 〈x + β, 0〉 and 〈x− β, 0〉 generate a subgroup of order 8 in JC(Fp).

Theorem 4.4. Let p be a prime number such that p > 16 and p ≡ 3 (mod 8) and C a

hyperelliptic curve over Fp defined by the equation y2 = x5 + ax. If

(
a

p

)
= 1, then the order

of the Jacobian group JC(Fp) is (1 + p + 2c)(1 + p− 2c) where p = c2 + 2d2, c, d ∈ Z.

Proof. The order JC(Fp) is given by 1+p2+s2 because s1 = 0. Moreover s2 ≡ −4c2a(p−1)/2 ≡
−4c2 (mod p). Since |s2| ≤ 2p, s2 = −4c2 +mp where m ∈ Z such that −2p ≤ −4c2 +mp ≤
2p. By the definition of c, 0 < c2 < p and −4p < −4c2 < 0. Hence we have −1 ≤ m ≤ 5.

Since 4 divides ]JC(Fp) by Lemma 4.3,

4|(1 + p2 + mp− 4c2), −1 ≤ m ≤ 5.
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By p ≡ 3 (mod 8) and c2 ≡ 1 (mod 4), we have the condition

1 + p2 + mp− 4c2 ≡ 2 + 3m ≡ 0 (mod 4).

and we obtain m = 2. Hence

]JC(Fp) = 1 + p2 + 2p− 4c2 = (1 + p + 2c)(1 + p− 2c).

Theorem 4.5. Let p be a prime number such that p > 16 and p ≡ 3 (mod 8) and C a

hyperelliptic curve over Fp defined by the equation y2 = x5 + ax. If

(
a

p

)
= −1, then the

order of the Jacobian group JC(Fp) is (p− 1)2 + 4c2 where p = c2 + 2d2, c, d ∈ Z.

Proof. In this case,
]JC(Fp) = 1 + p2 + mp + 4c2

where −2p ≤ mp + 4c2 ≤ 2p and −5 ≤ m ≤ 1. Since 8 divides ]JC(Fp) by Lemma 4.3,

1 + p2 + mp + 4c2 ≡ 6 + 3m ≡ 0 (mod 8)

and we obtain m = −2. Hence

]JC(Fp) = 1 + p2 − 2p + 4c2 = (1− p)2 + 4c2.

Hence in this case, ]JC(Fp) only depends on p and the value of the Jacobi symbol for a

in Fp. And in particular, C is not suitable for HECC if

(
a

p

)
= 1.

4.3 The case of p ≡ 5, 7 (mod 8)

This is the case that the Jacobian variety JC is supersingular (cf. [15]).

Theorem 4.6. Let p be a prime number such that p > 16 and p ≡ 5, 7 (mod 8) and C a
hyperelliptic curve over Fp defined by the equation y2 = x5 + ax. Then,

1. if p ≡ 5 (mod 8) and

(
a

p

)
= 1, then ]JC(Fp) = (1± p)2,

2. if p ≡ 5 (mod 8) and

(
a

p

)
= −1, then ]JC(Fp) = 1 + p2,

3. if p ≡ 7 (mod 8), then ]JC(Fp) = (1± p)2,

Proof. The order JC(Fp) is given by 1 + p2 + s2 because s1 = 0. Moreover, s2 = 0 or
±2p by Lemma 3.1 and Remark 3.5. Note that s2 = (M2 − 1 − p2)/2 in this case and
M2 is given by 1 + ]R + 2]Q where R = {x ∈ Fp2|x5 + ax = 0} and Q = {x ∈ Fp2|x5 +
ax is a non-zero square }. Since Fp2 has a primitive 8th root of unity, say ζ8, and if u ∈ Q
then ζ2

8u ∈ Q, we have that 4 divides Q.

In the case of p ≡ 5 (mod 8) and

(
a

p

)
= −1, R = 1 and we have M2 ≡ 2 (mod 8).

Hence in this case, s2 ≡ 0 (mod 4) and we have that s2 = 0.
In other cases, R = 5 and we have M2 ≡ 6 (mod 8). Hence in these case, s2 ≡ 2 (mod 4)

and we have that s2 = ±2p.

So in this case, C is not suitable for HECC if p ≡ 5 (mod 8) with

(
a

p

)
= 1 or p ≡ 7

(mod 8).
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4.4 Necessary condition to be suitable for HECC

From the results in this section, we have the following corollary.

Corollary 4.7. Let p be a prime number and C a hyperelliptic curve defined by an equation
y2 = x5 + ax where a ∈ Fp. Then C is not suitable for HECC if one of the followings holds:

1. p ≡ 1 (mod 8), a(p−1)/4 = 1,

2. p ≡ 3 (mod 8),

(
a

p

)
= 1,

3. p ≡ 5 (mod 8),

(
a

p

)
= 1,

4. p ≡ 7 (mod 8).

5 Algorithm

We describe our algorithm based on Theorem 3.4. We only focus on the case (1) in Theorem
3.4 with the additional condition a(p−1)/2 = −1 because for other cases we gave the formula
for the order of Jacobian groups in the previous section.

Input: a ∈ Fp, p(= 8f + 1 > 64)
Output: ]JC(Fp) (C : a hyperelliptic curve of genus 2 defined by y2 = x5 + ax)

1. Calculate an integer c such that p = c2 +2d2, c ≡ 1 (mod 4) (Cornacchia’s Algorithm)

2. Determine s1.

s ← (−1)(p−1)/82c(a3(p−1)/8 + a(p−1)/8) (mod p) (0 ≤ s ≤ p− 1)

s1 ←
{

s (s < 4
√

p)

s− p (s > 4
√

p)

3. Determine the list S of candidates of s2.

t ← 4c2a(p−1)/2 (mod p) (0 ≤ t ≤ p− 1)

S ←
{{

t + 2mp
∣∣ 2
√

p|s1| − 2p ≤ t + 2mp ≤ s2
1/4 + 2p

}
(t: even){

t + (2m + 1)p
∣∣ 2
√

p|s1| − 2p ≤ t + (2m + 1)p ≤ s2
1/4 + 2p

}
(t: odd)

4. Calculate the list L of candidates of ]JC(Fp).

L ← {
1 + p2 − s1(p + 1) + s2 | s2 ∈ S

}

5. If ]L = 1, return the unique element of L, else determine ]JC(Fp) by multiplying a
random point D (in the Mumford representation) on JC(Fp) by each element of L.

It is easy to show that the expected running time of the above algorithm is O(ln4 p). (For
an estimation for Cornacchia’s algorithm and so on, see Cohen’s book [5].)
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6 Searching Suitable Curves for HECC and Results

For hyperelliptic curves of type C : y2 = x5 + ax, a ∈ Fp, we have searched hyperelliptic
curves suitable for HECC. Since JC(Fp) for such curve has a 2-torsion point (Remark 3.5),
the best possible order of its Jacobian group is 2l where l is prime. The case of p ≡ 1, 5

(mod 8) and

(
a

p

)
= −1 is the only one such case due to the results in Section 4.

Since JC is supersingular when p ≡ 5 (mod 8), we only focus on the case p ≡ 1 (mod 8)

with

(
a

p

)
= −1. Our search is based on the algorithm which we proposed in the previous

section. All computation below were done by Mathematica 4.1 r©1 on Celeron 600MHz with
less than 1GB memory (OS: FreeBSD 4.4).

Examples 6.1.

p = 2417851639229258349419161(82-bit), a = 16807,

JC(Fp) = 5846006549324650191248125613942200572806220552962

= 2× 2923003274662325095624062806971100286403110276481

= 2× (a 162-bit prime)

(The computation took 0.04s.)

p = 4835703278458516698822641(82-bit), a = 243,

JC(Fp) = 23384026197286693734683162559398770155678059933602

= 2× 11692013098643346867341581279699385077839029966801

= 2× (a 163-bit prime)

(The computation took 0.04s.)

p = 2923003274661805836407369665432566039311865180529(162-bit), a = 371293,

JC(Fp) = 8543948143683640329580084318401338115672828124663448275867130387651937373152534160174163969676194

= 2× 4271974071841820164790042159200669057836414062331724137933565193825968686576267080087081984838097

= 2× (a 321-bit prime)

(The computation took 0.07s.)
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