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Prime Field
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Abstract

Counting the order of the Jacobian group of a hyperelliptic curve over a finite field
is very important for constructing a hyperelliptic curve cryptosystem (HECC), but
known algorithms to compute the order of a Jacobian group for a general curve over
a given large prime field need very long running times. In this note, we propose a
practical polynomial-time algorithm to compute the order of the Jacobian group for a
hyperelliptic curve of type y? = x° + ax over a given large prime field Fp, e.g. an 80-bit
field. We also investigate the order of the Jacobian group for such curve and determine
the necessary condition to be suitable for HECC, that is, to satisfy that the order of
the Jacobian group is of the form [ - ¢ where [ is a prime number greater than about
2160 and ¢ is a very small integer. Moreover we show some examples of a suitable curve
for HECC obtained by using our algorithm.

1 Introduction

Let C be a hyperelliptic curve of genus 2 over F,. Let Jo be the Jacobian variety of C' and
Jo(F,) the Jacobian group of C' which is the set of F,-rational points of Jeo. Jo(F,) is a finite
abelian group and we can construct a public-key-cryptosystem with it. The advantage of
this system to an elliptic curve cryptosystem (ECC) is that we can construct a cryptosystem
at the same security level as an elliptic one by using a defining field in a half size, that is, we
need a 160-bit field to construct a secure ECC, but for a hyperelliptic curve cryptosystem
(HECC) we only need an 80-bit field. The order of the Jacobian group of a hyperelliptic
curve defined over an 80-bit field is about 160-bit. It is said that §Jo(F,) = ¢ - [ where [ is
a prime number greater than about 2'%° and ¢ is a very small integer is suitable for HECC.
We call a hyperelliptic curve “suitable for HECC” if its Jacobian group has such a suitable
order.

As in the case of ECC, counting the order of the Jacobian group Jo(IF,) is very important
for constructing HECC. But it is very difficult to count for a curve defined over an 80-bit
field and there are very few results on it: Gaudry-Harley’s algorithm [6] [10] can compute
the order of a random hyperelliptic curve over an 80-bit field but their algorithm is useful
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only for an extension field of a small prime field. For a hyperelliptic curve with complex
multiplication, there are known algorithms to construct a curve with its Jacobian group
having a 160-bit prime factor. But these algorithms cannot be used to compute the order
of a Jacobian group over a given defining field. Furthermore, the above algrithms need
very long running times. For special curves, it is possible to obtain a fast point counting
algorithm. Buhler-Koblitz [2] obtained such algorithm for a special curve of type y?+y = ="
over a prime field F,, where n is an odd prime such that p =1 (mod n).

In this note, we propose a fast algorithm to compute the order of the Jacobian group
Jo(F,) for a hyperelliptic curve C' of type y* = x° 4+ ax over a large prime field F,, which
is different from one of Buhler-Koblitz [2]. The expected running time of our algorithm
is O(In*p). The program based on our algorithm runs instantaneously on a system with
Celeron 600MHz CPU and less than 1GB memory. It only takes less than 0.1 seconds
even for 160-bit prime fields. Moreover we investigate the order of the Jacobian group for
the above curve and determine the necessary condition to be suitable for HECC. In the
last section of this note, we show some examples of hyperelliptic curves suitable for HECC
obtained by using our algorithm.

2 Basic facts on Jacobian varieties over a finite field

Here we recall basic facts on the order of Jacobian groups of hyperelliptic curves over a finite
field. ( cf. [6], [8] )

2.1 General theory

Let p be a prime number, F, is a finite field of order ¢ = p' and C' a hyperelliptic curve of
genus g defined over F,. Then the defining equation of C' is given as

y? = f(x)

where f(z) is a polynomial in F,[x] of degree 2¢g + 1.

Let Jo be the Jacobian variety of a hyperelliptic curve C. We denote the group of Fy-
rational points on Jo by Jo(F,). Let x,(t) be the characteristic polynomial of ¢g-th power
Frobenius endomorphism of C. Then, the order §Jo(F,) is given by

tJc(Fy) = xq(1).

The following ”Hasse-Weil bound” is a famous inequality which bounds §.Jo(F,).

[(Va—1*] < tJ(F,) < [(vVa+1)*].

Due to Mumford [11], a point on Jo(F,) can be represented by a pair (u(x),v(z)) where
u(x) and v(z) are polynomials in F,[z] with degv(z) < degu(x) < 2 such that u(z) divides
f(x) —v(z)% The identity element of the addition law is represented by (1,0). We refer
this representation as “Mumford representation” in the following. By using Mumford repre-
sentation of a point on Jo(F,), we obtain an algorithm for adding two points on Je(F,) (cf.
Cantor’s algorithm [3], Harley’s algorithm [6]).

2.2 Hasse-Witt matrix and the order of Jo(F,)

There is a well-known method to calculate §.J¢(F,) (mod p) by using the Hasse-Witt matrix.
The method is based on the following two theorems ([9, 14]).
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Theorem 2.1. Let y?> = f(z) with deg f = 2g + 1 be the equation of a genus g hyperelliptic
curve. Denote by c; the coefficient of x* in the polynomial f(z)P~Y/2. Then the Hasse- Witt
matriz 1 given by

A = (Cip-j)1<ij<g-

For A = (ay), put A®) = (af;). Then we have the following theorem.

Theorem 2.2. Let C be a curve of genus g defined over a finite field F, where ¢ = p'. Let
A be the Hasse-Witt matrixz of C, and let

171)

A¢:AA(p)A(p)--~A(p

Let k(t) be the characteristic polynomial of the matriz Ay and x, the characteristic polynomial
of the q-th power Frobenius endomorphism. Then

Xq(t) = (=1)tk(t) (mod p).

Due to the above two theorems, we can calculate fJo(F,) (mod p) by the following
formula.

tJc(Fy) = (=1)s(1)  (mod p)

But this method is not practical in general when p is very large.

3 Counting the number of points on Jacobian variety

We only consider the case of genus 2 in the following. Let f(z) be a polynomial in F,[z]
of degree 5, C' a hyperelliptic curve over F, of genus 2 defined by the equation y* = f(z).
Then, the characteristic polynomial x,(¢) of the ¢g-th power Frobenius endomorphism of C'
is of the form:

Xg(t) =t — 81 + sot® — sigt + ¢*, s € Z,

|s1] < 4y/q, |sa] < 6q.
Hence Jo(F,) is given by the following formula:
1Jo(F,) = ¢ +1—s1(q+ 1) + s
We also note on the well-known fact that s; are given by
si=1+qg—M and sy=(My—1—¢*+5?)/2

where M; is the number of I i-rational points on C' (cf. [8]).
The following sharp bound is useful for calculating §Jo(F,).

Lemma 3.1 (cf. [12, 10]). [2,/q|s1| — 2q] < 52 < [s7/4 4+ 2q]
Here we consider how to calculate §Jo(F,) (mod p) when ¢ = p.

Lemma 3.2. Let ¢; be the coefficient of o in f(x)®P~Y/2. Then

$1 = Cp—1 + Cp—2  (mod p)

Sy = Cp_1Cap—2 + Cp_2Cop—1  (mod p).



Proof. First of all, the matrix A in Theorem 2.1 is as follows.
A= (Pt 92
Cop—1 Cop—2

K(t) = - (cp—1 + copa)t + (cp1C2p2 + Cp2C2p 1)

Then we have

and by Theorem 2.2 we have
th — 51t + spt?
=t — (cp1 + Ccop2)t® + (Cp1Cop2 + CpoCop 1)t
(mod p).
Hence
$1 = C¢p—1 + Cp—o  (mod p)
So = Cp_1Cap—2 + Cp_2Cop—1  (mod p)
[
Remark 3.3. Since [s1| < 4,/p, if p > 64 then sy is uniquely determined by c,—1, czp—2.

Moreover, by Lemma 3.1, if so (mod p) is determined, then there are only at most five
possibilities for the value of ss.

When p is very large, it is difficult to calculate s; (mod p) in general even in the case of
g = 2. But for hyperelliptic curves of special type, we can calculate them in a remarkably
short time even when p is extremely large, e.g. 160-bit.

Now we show the following theorem which is essential to construct our algorithm.

Theorem 3.4. Let a be an element of F,, C' a hyperelliptic curve defined by the equation
y? = 2° + ax and Jo the Jacobian variety of C. Then sy, so are given as follows.

1. ifp=1 (mod 8), then
51 = (—1)P71/82¢(q®P=D/8 L (P=1/8) " (mod p),
sy = 4c%aP V2 (mod p)
where ¢ is an integer satisfying p = ¢* +2d*, c =1 (mod 4).
2. if p=3 (mod 8), then
s1 =0 (mod p),
sy = —4c%aP~ V2 (mod p)
where ¢ is an integer such that p = ¢ + 2d>.
3. if otherwise, then s; =0 (mod p), s2 =0 (mod p).
Proof. Since

Sy
(ng + ax)T = Z ( 2 )x4r+(pl)/2a(pl)/2?“’
- r

the necessary condition for an entry c;,—; of the Hasse-Witt matrix A = (;” ! cCp _2)
2p—1 2p—2

of C' being non-zero is that there must be an integer 7, 0 < r < (p — 1)/2 such that
4r + (p — 1)/2 =ip — j. Then there are the following three possibilities:
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1. ifp=1 (mod 8), then A = <CP01 0 )
. _ 0 Cp—2
2. if p=3 (mod 8), then A = ,
Cop—1 0
3. if p#£ 1,3 (mod 8), then A = O.

Case (1). Put f = (p —1)/8. Then, since 4r + (p — 1)/2 = p — 1 for ¢,_;, we have
r=(p-1)/8=fandc,; = (4f)a3f. For ¢y,9, since 4r + (p — 1)/2 = 2p — 2, we have

f
r=3(p—1)/8 = 3f and c9p» = (gﬁ)af . Then from the result of Hudson-Williams 7,
Theorem 11.2], we have
4
(]{) = (—1)'2¢ (mod p)
where p = ¢® + 2d*, and ¢ = 1 (mod 4). Since (4f) = (g;), we have the conclusion.

Case (2). By the condition, it is obvious that s; = 0 (mod p). Put f = (p—3)/8. Then,
since 4r+ (p—1)/2 =p—2for ¢, 5, we have r = (p—3)/8 = f and ¢, 5 = (4ff1)a3i+1.1 For
Cop—1, since dr + (p—1)/2=2p—1, we have r = 3p—1)/8 =3f + 1 and c9p_1 = (?jil)af.
From the result of Berndt-Evans-Williams [1, Theorem 12.9.7],

4 1
( S+ ) = —2¢ (mod p)
f
where p = ¢ + 2d? and ¢ = (—1)/ (mod 4). Since (g}cﬁ) = (4f;r1), we have
Af +1\°
Sy = —( f; > a1 (mod p)

= —4c2a® 2 (mod p)
Case (3). This is obvious. O

Remark 3.5. Note that the Jacobian variety of > = 2° + ax has a point of order 2. Then
the order of Jo(F,) is always even. By Lemma 3.1, if p > 64, then there are only at most
three possibilities for the value of ss.

By using the above result, we can calculate (at most three) possibilities of §Jo(IF,) in a
very short time. Then to get §J(F,), we only have to multiply a random point on Je(F,)
by each possible order.

The following remark is also important.

Remark 3.6. If p > 16 in (2) and (3), we have s; = 0.

4 Study on the order of Jacobian groups

Before considering about a counting-point algorithm, we study the order of the Jacobian
group more precisely. Due to Theorem 3.4, we divide the situation into the following three
cases: (1) p=1 (mod 8), (2) p=3 (mod 8), (3) p=5,7 (mod 8).



4.1 The case of p=1 (mod &)

Lemma 4.1. Let p be a prime number such that p = 1 (mod 8) and C a hyperelliptic
curve over F, defined by an equation y* = 2° + ax. If aP~V/2 =1, then 4 divides §Jc(F,).
Moreover, if a?~Y/* =1, then 16 divides $Jo(F,).

Proof. First note that there is a primitive 8th root of unity, say (s, in IF, because 8 divides
p— 1. If a?»~V/2 = 1, then there exists an element b € F, such that b*> = a. Then

2+ ax = 2° + bPx = x(l‘Q + Cgb)($2 - ngb)

It is easy to see that (z,0) and (z? + (2b,0), which are points on Jo(F,) in the Mumford
representation, generate a subgroup of order 4 in Jo(IF,). Hence 4 divides §Jo(F)).
If a»~1V/4 = 1, there is an element u in [, such that a = u*. Then

2° +ar = 2° + vtz = x(z + Gu) (@ — Gu)(z + (u) (v — Gu).

It is easy to see that (z,0), (z + (gu,0), (x — (su,0) and (x + (Ju,0) generate a subgroup of
order 16 in Jo(F,). Hence 16 divides §Jo(F,). O

Theorem 4.2. Let p be a prime number such that p > 64 and p = 1 (mod 8) and C a

hyperelliptic curve over F, defined by an equation y* = x° + ax. If (2) =1, then the order
p

of Jo(F,) is as follows:

1. ifp=1 (mod 16) and aP~V/® =1, then
tJo(F,) =(14+p— 2¢)?,

)
2. ifp=9 (mod 16) and aP~V/8 =1, then
1Jc(Fp) = (1 +p +2¢)?,
3. if p=1 (mod 16) and a®~V/® = —1, then
1Jc(Fp) = (1 +p +2¢)?,
4. if p=9 (mod 16) and a?~Y/8 = —1, then
1Jc(Fp) = (1+p — 20)?,

5. if otherwise, t.Jo(Fp) = (1 — p)? + 4¢?
where p = c® 4+ 2d?, c,d € Z and ¢ =1 (mod 4).
Proof. First of all, from Theorem 3.4, we have that
51 = (—1)P~1/82¢ (a3(p—1)/8 + a(p—l)/S) (mod p)
and
sy =4c*  (mod p)

for all cases.

For the case (1), from Theorem 3.4 we have s; = 4¢ (mod p). By the definition of c,
¢ < p and hence 0 < |4¢| < 4,/p. Since p > 64 and Remark 3.3, we have that s; = 4c.
Moreover since |sy| < 6p and 0 < 4¢? < 4p, sq is of the form 4¢? +mp, =9 <m <5, m € Z.
Then fJo(Fp) = 1+ p* — 4c(1 + p) +4c¢* + mp where m is an integer such that —9 < m < 5.
Since fJo(F,) =0 (mod 16) from Lemma 4.1, 1 + p? — 4c(1 + p) +4c* + mp =0 (mod 16).
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Since p =1 (mod 8) and ¢ =1 (mod 4), we have mp =2 (mod 16) and then m = 2. Hence
tJo(Fp) =14 p* —4e(1+p) +4c2+2p = (1 +p — 2¢)*.

For the cases (2), (3), (4), we can show in the same way.

For the case (5), a?~1/8 is a primitive 4th root of unity and a*®—1/8 +qP~1/8 = 0. So we
have that s; = 0 by Theorem 3.4 and p > 64. Since |ss| < 2p in this case by Lemma 3.1 and
0 < 4c? < 4p by the definition of ¢, sy is of the form 4c*+mp, m € {—5, -4, -3, -2, —1,0,1}.
On the other hand, since 1+ p* =2 (mod 4) and $Jo(F,) = 0 (mod 4) by Lemma 4.1, we
have that s, = 2 (mod 4). Hence we obtain m = —2 and fJo(F,) = 1 + p* + 4¢* — 2p =
(1—p)* +4c% O

. . . a . .

Hence in particular if p = 1 (mod 8) and (2—9) = 1, then C with a®1/* = 1 is not

suitable for HECC.

4.2 The case of p =3 (mod &)

—1
In this case we first note that <—) = —1.
p

Lemma 4.3. For a hyperelliptic curve C : y* = 2° + ax, a € F, where p = 3 (mod 8), the
followings hold:

1. if (2) =1, then 4 divides §Jc(F)),
p

2. if (E) = —1, then 8 divides §Jc(F)).
p

-1
Proof. 1f (2) = 1, then there exists an element b € F,, such that a = b*. Since (—) =—1,
p p

either 2b or —2b is a square. If 2b = u?, then
2° +axr = v{(z* + b)* — 2b2?} = 2(2* + ux + b)(z* — ux +b)
over F,, and (z,0) and (2?4 uz +b,0) generate a subgroup of order 4 in Jo(F,). If —2b = u?,
2° + axr = v{(2* — b)* — (=2b)2°} = x(2* + ux — b)(2® — ux — b)
over F, and (x,0) and (z* + uz — b,0) generate a subgroup of order 4 in Jo(F,).

(%) = —1, then 2° + ax factors into a form z(z + 8)(z — 8) (2?4 ) over F,,. It is easy
to see tllljat (x,0), (x+ ,0) and (z — [3,0) generate a subgroup of order 8 in Jo(IF,). ]
Theorem 4.4. Let p be a prime number such that p > 16 and p = 3 (mod 8) and C a
hyperelliptic curve over F, defined by the equation y* = x° +ax. If (g) =1, then the order
of the Jacobian group Jo(Fp) is (1 +p+ 2¢)(1+ p — 2¢) where p = ¢ + 2d?, ¢,d € Z.

Proof. The order Jo(F,) is given by 1+p?+sg because s; = 0. Moreover sy = —4c2aP~D/2 =

—4c? (mod p). Since |sy| < 2p, s = —4c? +mp where m € Z such that —2p < —4c* +mp <

2p. By the definition of ¢, 0 < ¢? < p and —4p < —4¢? < 0. Hence we have —1 < m < 5.
Since 4 divides §.Jo(F,) by Lemma 4.3,

41(1+p* +mp —4c®), —1<m<5.
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By p =3 (mod 8) and ¢® =1 (mod 4), we have the condition
l+p°+mp—4c2=2+3m =0 (mod 4).
and we obtain m = 2. Hence
tJc(F,) =1+ p* 4+ 2p —4c = (1 +p+20)(1 +p — 2¢).
[l

Theorem 4.5. Let p be a prime number such that p > 16 and p = mod 8) and C' a

3 (

hyperelliptic curve over I, defined by the equation y = 2%+ azx. If (ﬂ) —1, then the
p

order of the Jacobian group Jo(F,) is (p — 1) + 4c* where p = ¢* + 2d?, ¢,d € Z.

Proof. In this case,
tJo(Fy) =14 p* + mp + 4¢?
where —2p < mp + 4¢* < 2p and —5 < m < 1. Since 8 divides §Jo(F,) by Lemma 4.3,
1+p°+mp+4c=6+3m =0 (mod 8)
and we obtain m = —2. Hence
tJo(F,) =1+ p* —2p+4c® = (1 — p)® + 4%
O
Hence in this case, §.Jo(FF,) only depends on p and the value of the Jacobi symbol for a

in F,. And in particular, C' is not suitable for HECC if (g) =1
p

4.3 The case of p=5,7 (mod 8)

This is the case that the Jacobian variety J¢ is supersingular (cf. [15]).

Theorem 4.6. Let p be a prime number such that p > 16 and p = 5, 7 (mod 8) and C a
hyperelliptic curve over F, defined by the equation y* = x° + ax. Then,

1. if p=>5 (mod 8) and (%) =1, then §Jc(F,) = (1 £ p)?,

2. ifp="5 (mod 8) and (9) = —1, then 8Jo(F,) = 1 + p?,
p

3. if p=T (mod 8), then §Jo(F,) = (1 £p)?,

Proof. The order Jo(F,) is given by 1 + p* + sy because s; = 0. Moreover, s, = 0 or
+2p by Lemma 3.1 and Remark 3.5. Note that sy = (My — 1 — p?)/2 in this case and
M, is given by 1+ tR + 26Q where R = {z € Fj2|2° + az = 0} and Q = {z € Fp|z® +
ax is a non-zero square }. Since F,2 has a primitive 8th root of unity, say (s, and if u € Q)
then (Gu € @, we have that 4 divides Q.

In the case of p = 5 (mod 8) and ) —1, R = 1 and we have M; = 2 (mod 8).
p

Hence in this case, sy =0 (mod 4) and we have that s; = 0.
In other cases, R = 5 and we have M, = 6 (mod 8). Hence in these case, s = 2 (mod 4)
and we have that sy = +2p.

So in this case, C' is not suitable for HECC if p = 5 (mod 8) with <]%> =lorp="7
(mod 8).



4.4 Necessary condition to be suitable for HECC

From the results in this section, we have the following corollary.

Corollary 4.7. Let p be a prime number and C a hyperelliptic curve defined by an equation
y*> = 2° 4+ ax where a € F,. Then C' is not suitable for HECC if one of the followings holds:

1. p=1 (mod 8), aP~V/* =1,

2. p=3 (mod 8), (%) =1,

3. p=5 (mod 8), (9) —1,

p
4. p=7 (mod 8).

5 Algorithm

We describe our algorithm based on Theorem 3.4. We only focus on the case (1) in Theorem
3.4 with the additional condition a?~1/2 = —1 because for other cases we gave the formula
for the order of Jacobian groups in the previous section.

Input: a € F, p(=8f +1 > 64)
Output: §Jo(F,) (C : a hyperelliptic curve of genus 2 defined by y? = z° + ax)

1. Calculate an integer ¢ such that p = ¢ +2d? ¢ =1 (mod 4) (Cornacchia’s Algorithm)
2. Determine s;.
s« (—1)P=D/89¢(g3P=D/8 4 (=1)/8) " (mod p) 0<s<p-—-1)

31<—{S (s < 4,/p)
s—p (s>4p)

3. Determine the list S of candidates of s,.

t «— 4c*aP~V/2 (mod p) 0<t<p-—-1)

{t+2mp | 2\/p|s1| —2p <t +2mp < s}/4+2p} (t: even)
$—
{t+@m+Dp | 2/pls1] =20 <t+ (2m+1)p < s?/4+2p} (t: odd)

4. Calculate the list L of candidates of §Jo(F,).

L<—{1+p2—81(p+1)+82 |82€S}

5. If L = 1, return the unique element of L, else determine §Jo(F,) by multiplying a
random point D (in the Mumford representation) on Jo(F,) by each element of L.

It is easy to show that the expected running time of the above algorithm is O(In* p). (For
an estimation for Cornacchia’s algorithm and so on, see Cohen’s book [5].)



6 Searching Suitable Curves for HECC and Results

For hyperelliptic curves of type C' : y* = z° + ax, a € F,, we have searched hyperelliptic
curves suitable for HECC. Since Jo(F,) for such curve has a 2-torsion point (Remark 3.5),
the best possible order of its Jacobian group is 2/ where [ is prime. The case of p = 1,5

(mod 8) and <ﬁ> = —1 is the only one such case due to the results in Section 4.
p
Since J¢ is supersingular when p =5 (mod 8), we only focus on the case p =1 (mod 8)

p
section. All computation below were done by Mathematica 4.1®1 on Celeron 600MHz with

less than 1GB memory (OS: FreeBSD 4.4).
FExamples 6.1.

a
with (—) = —1. Our search is based on the algorithm which we proposed in the previous

p = 2417851639229258349419161(82-bit), a = 16807,

Jo(F,) = 5846006549324650191248125613942200572806220552962
= 2 x 2923003274662325095624062806971100286403110276481
= 2 x (a 162-bit prime)
(The computation took 0.04s.)

p = 4835703278458516698822641(82-bit), a = 243,

Jo(F,) = 23384026197286693734683162559398770155678059933602
= 2 x 11692013098643346867341581279699385077839029966801
= 2 x (a 163-bit prime)
(The computation took 0.04s.)

p = 2923003274661805836407369665432566039311865180529(162-bit), a = 371293,

JC (IFP) — 8543948143683640329580084318401338115672828124663448275867130387651937373152534160174163969676194
- 2 X 4271974071841820164790042159200669057836414062331724137933565193825968686576267080087081984838097
= 2 x (a 321-bit prime)
(The computation took 0.07s.)
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