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Abstract. This paper proposes the Turing stream cipher. Turing offers up to 
256-bit key strength, and is designed for extremely efficient software 
implementation. It combines an LFSR generator based on that of SOBER[27] 
with a keyed mixing function reminiscent of a block cipher round. Aspects of 
the block mixer round have been derived from Rijndael[20], Twofish[21], 
tc24[23] and SAFER[22]. 

1. Introduction 

Turing (named after Alan Turing) is a stream cipher designed to simultaneously be: 
• Extremely fast in software on commodity PCs 
• Usable in very little RAM on embedded processors 
• Exploit parallelism to enable fast hardware implementation. 

The Turing stream cipher has a major component, the Linear Feedback Shift 
Register, which originated with the design of SOBER [17-19,25-27].  Analyses of the 
SOBER family are found in [2,3,4,5,9,10]. The S-box used in Turing is partially 
derived from that used in SOBER-t32 and is described in [7]. The efficient LFSR 
updating method is modeled after that of SNOW 2.0 [24]. 

Turing combines the LFSR generator with a keyed mixing function reminiscent of 
a block cipher round. Aspects of the block mixing function have been derived from 
Rijndael[20], Twofish[21], tc24[23] and SAFER[22]. 

Turing is designed to meet the needs of embedded applications such as voice 
encryption in wireless telephones that place severe constraints on the amount of 
processing power, program space and memory available for software encryption 
algorithms. Since most of the mobile telephones in use incorporate a microprocessor 
and memory, a software stream cipher that is fast and uses little memory would be 
ideal for this application. Turing overcomes the inefficiency of binary LFSRs in a 
manner similar to SNOW 2.0[24] by utilizing an LFSR defined over GF((28)4) (a 
different isomorphic representation of GF(232)) and a number of techniques to greatly 
increase the generation speed of the pseudo-random stream in software on a general 
processor. Turing allows an implementation tradeoff between small memory use, or 
very high speed using pre-computed tables. Reference source code showing small 
memory, key agile, and speed-optimized implementations is available at [29]. 
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Turing has four components: key loading, Initialisation vector (IV) loading, an 
LFSR, and a keyed non-linear filter (NLF). A block diagram of the latter two is 
shown in Figure 1. 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The components of the Turing stream cipher. 
Five words selected from the LFSR are first mixed, then passed through a highly 

nonlinear S-box transformation, mixed again, and combined with four new words 
directly from the LFSR, to create 160 bits of keystream. 

Byte Ordering Considerations 

Turing utilizes native processor operations on word-sized data items, but is 
expected to accept keys that are simply strings of bytes, and to produce a stream of 
bytes as output for encryption purposes. This means that a translation between native 
byte ordering and external byte ordering is necessary to ensure compatibility between 
implementations running on different processors. Since all Internet standards are 
defined using “big-endian” byte ordering, in which the most significant byte of a 
multi-byte quantity appears first in memory, this is what is chosen for Turing. On 
“little-endian” machines, the bytes of the key and IV must be assembled into words, 
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and the words of the output stream must be byte reversed before being XORed into 
the buffer. 

Note that it is simple to define a cipher that is exactly equivalent to Turing except 
that it is “little-endian”. This cipher would share all the security aspects of the 
original, but might execute a bit more efficiently on such CPUs. (In practice, 
compilers often recognize the idiom to do the byte-swapping and generate extremely 
efficient code; we could not measure any difference in execution time between raw 
and byte-swapped versions on either Sun Ultra-SPARC or mobile Pentium III 
processors.) 

 
The paper is set out as follows. First, the LFSR is defined in Section 2. Section 3 

describes the NLF and explains how the overall structure of Turing operates. The key 
and initialization vector loading is described in Section 4. Section 5 discusses 
performance, and Section 6 analyses security and possible attacks. 

2. LFSR of Turing 

2.1 Linear Feedback Shift Register Generalities 

 
Binary Linear Feedback shift registers can be extremely inefficient in software on 

general-purpose microprocessors. LFSRs can operate over any finite field, and can be 
made more efficient in software by utilizing a finite field more suited to the processor. 
Particularly good choices for such a field are the Galois Field with 2w elements 
(GF(2w)), where w is related to the size of items in the underlying processor, usually 
bytes or 32-bit words. The elements of this field and the coefficients of the recurrence 
relation occupy exactly one unit of storage and can be efficiently manipulated in 
software. In the meantime, the order k of the recurrence relation that encodes the same 
amount of state is reduced by a factor of w. 

The field (2 )wGF  can be represented (the standard representation) as the modulo 
2 coefficients of all polynomials with degree less than w. That is, an element a of the 
field is represented by a w-bit word with bits 1 2 1 0( , , , , )w wa a a a− − K , which represents 
the polynomial 

1 2
1 2 1 0

w w
w wa x a x a x a− −

− −+ + + +L .  

Turing takes this a step further, using 8-bit bytes to represent elements of GF(28), 
and 32-bit words to represent degree-3 polynomials of bytes. The LFSR consists of 17 
words of state information. Thus w = 32. 

The LFSR is mathematically equivalent to w parallel bit-wide shift registers over 
(2)GF  each of length equivalent to the total state 17w, each with the same recurrence 

relation but different initial state [10]. Let the polynomial 1 ( )p x  represent the LFSR 
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over (2)GF . The configuration is chosen to make updating the LFSR as efficient as 
possible, subject to the following constraints:  

• The LFSR has maximum length period. The period has a maximum length 
of 217w-1 when p(x)  is a primitive polynomial of degree 17. 

• Half of the coefficients of 1 ( )p x are 1. This condition is ideal for maximum 
diffusion and strength against cryptanalysis. 

2.2 Specifics of the LFSR 

B, the bytes , represents the Galois finite field GF(28) represented modulo the 
irreducible polynomial z8 + γ7z

7 + γ6z
6 + γ5z

5 + γ4z4 + γ3z
3 + γ2z

2 + γ1z + γ0, where the γI 
are bits, specifical ly z8 + z6 + z3 + z2 + 1. The constant β0 = 0x67 below represents the 
polynomial z6 + z5 + z2 + z + 1 for example. 

W, the words , represents the Galois finite field GF( B4) represented modulo the 
irreducible polynomial y4 + β3y

3 + β2y2 + β1y + β0, where the βi ∈ B are bytes, 
specifically y4 + 0xD0.y3 + 0x2B.y2 + 0x43.y + 0x67. The element α used below is the 
polynomial y.  

The Turing LFSR, then, consists of 17 32-bit words , with characteristic polynomial 
x17 + x15 + x4 + α , where α ∈  W is the polynomial y. 

T he equivalent binary polynomial is shown in Appendix D. 
Having defined all of that, implementation of the LFSR can be done very 

efficiently, because the constant α  is so simple. Multiplication by α consists of 
shifting the word left by 8 bits, and adding (X OR) a precomputed constant from a 
table indexed by the most significant 8 bits. In C, calculating the new word to be 
inserted in the LFSR is: 
new = R[15] ^ R[4] ^ (R[0] << 8) ^ Multab[R[0] >> 24]; 

with the precomputed table shown in Appendix A. 
The LFSR can then be updated by: 
R[0] = R[1]; R[1] = R[2]; ... ; R[16] = R[17]; R[17] = new; 
After updating the LFSR, 5 words from its state are selected for input to the 

nonlinear filter. These are r16, r13, r6, r1, r0, referred to as A, B, C, D, E (respectively) 
below. These tap positions form a “full positive difference set”, so that as words move 
through the register and are selected as input to the nonlinear filter function, no pair of 
words is used more than once [8]. For each block of output produced, the shift  register 
is stepped twice, with elements drawn from the same positions, so 9 of the 17 
elements are used (element 0 after the first step becomes element 1 after the second 
step). 

 

3. The Nonlinear Filter 

The only component of Turing that is explicitly nonlinear is its S-boxes. Additional 
nonlinearity also comes from the combination of the operations of addition modulo 
232 and XOR; while each of these operations is linear in its respective mathematical 
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group, each is slightly nonlinear in the other’s group. The nonlinear filter in Turing 
consists of: 

• Stepping the LFSR and selecting the 5 input words 
• Mixing the words using the Pseudo-Hadamard Transform 1 
• Transforming the bytes with keyed transformations, and mixing the words 

using four 8→32 bit nonlinear S-boxes 
• Again mixing the words using the Pseudo-Hadamard Transform 
• Stepping the LFSR again and adding (mod 232) more input words 

3.1 The Key-Dependent S-box Transformation 

Turing transforms each word using four logically independent 8→32 S-boxes applied 
to each byte of the input word and XORed, in a manner similar to that used in 
Rijndael[20]. However, unlike Rijndael, this transformation is in general not 
invertible, as the expansion to 32 bits is nonlinear. 

These S-boxes are based in turn on a fixed 8→8 bit permutation S-box and a fixed 
nonlinear 8→ 32 bit Qbox, iterated with the data modified by variables derived during 
key setup. 

The words B, C and D  are rotated left by 8, 16 and 24 bits respectively, before the 
S-box transformation, to address a potential attack described below. 

3.1.1 Derivation of the Sbox 
The fixed S-box is referred to in the rest of this document as Sbox[.]. It is a 

permutation of the input byte, and has a minimum nonlinearity of 104, and is shown 
in Appendix B. The S-box shown was derived by the following procedure, based on 
the well-known stream cipher RC4™. RC4 was keyed with the 11-character ASCII  
string "Alan Turing", and then 256 generated bytes were discarded. Then the current 
permutation used in RC4 was tested for nonlinearity, another byte generated, etc., 
until a total of 10000 bytes had been generated. The best observed minimum 
nonlinearity was 104, which first occurred after 736 bytes had been generated. The 
corresponding state table, that is its internal permutation after keying and generating 
736 bytes, forms Sbox. By happy coincidence it also has no fixed points (ie. ∀x, 
Sbox[x] ≠ x). 

3.1.2 Derivation of the Qbox 
The Qbox is a fixed nonlinear 8→32-bit table. It was developed by the Queensland 

University of Technology at our request[7]. It is best viewed as 32 independent 
Boolean functions of the 8 input bits. The criteria for its development were:  

• the functions should be highly nonlinear (each has nonlinearity of 114) 
• the functions should be balanced 
• the functions should be pairwise uncorrelated 

                                                                 
1  Calling this a “Pseudo-Hadamard Transform” is a bit of a stretch, but we couldn’t think of a 

better term for it. Some documents call it n-PHT. 
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3.1.3 The Key Dependent Sboxes 
Turing uses four keyed 8→32 bit S-boxes Si which can be calculated when required 
for small memory or key -agile implementation, or pre -calculated at key setup time for 
high throughput implementation. The fixed Sbox and Qbox together require 1280 
bytes of read -only memory. If the keyed S-boxes are pre-calculated they require 4k of 
memory. Each data word is broken into bytes, and the outputs of the four S-boxes 
applied to the bytes are XORed. 

The key material is accessed as words k j , 0≤ j < N, where N is the number of words 
in the key. Section 4.1 below describes the key scheduling process. 

Si (0 ≤ i ≤  3) is derived from the corresponding byte positions of the scheduled key. 
The input byte is combined with a key byte and passed through the Sbox, the result is 
combined with another key byte, and so on, to form a temporary result.  

 ti(x) = Sbox[Ki,N-1 ⊕ Sbox[K i,N-2 ⊕  … Sbox[K i,0 ⊕ x]…]] 
where ⊕ is the XOR operator, and N is the number of words in the key. Note that ti(.) 
forms a permutation. This process can be visualised as the input byte “bouncing 
around” under the control of the key. At ea ch bounce, a rotated word from the Qbox is 
accumulated into another temporary word w; the rotation depends on the byte position 
in question and the stage of progress, ensuring that no entries of the Qbox can cancel 
each other out. 

The accumulated word w is highly nonlinear with respect to the input, and highly 
dependent on the key material, however the bit positions in it are not likely to be 
balanced. The byte t, being a permutation, is by definition balanced. So replacing the 
corresponding byte of w with t forms the final word for this input byte. The following 
C code illustrates this process for a single byte position (position 0, most significant 
byte): 

WORD S0(BYTE b) 
{ 
    int  i; 
    WORD  ws; 
 
    ws = 0; 
    for (i = 0; i < keylen; ++i) { 
  b = Sbox[B(K[i], 0) ^ b; 

ws ^= ROTL(Qbox[b], i + 0); /* “+0” for MSB */ 
    } 
    ws  = (ws & 0x00FFFFFFUL) | (b << 24); 
    return ws; 
} 

3.4 The “Pseudo-Hadamard Transform” (PHT) 

In the cipher family of SAFER, Massey uses this very simple construct to mix the 
values of two bytes: (a, b) = (2a+b, a+b), where the addition operation is addition 
modulo 28, the size of the bytes. In Turing, the operation is extended to mix words, 
using addition modulo 232, and is further extended to mix an arbitrary number of 
words. As an example, 5 words A..E are mixed by the matrix multiplication: 
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Note that all diagonal entries are 2 except the last diagonal entry is 1, not 2. In C, 

this is easily implemented: 
 
E = A + B + C + D + E; 
A += E; B += E; C += E; D += E; 
 
This extended PHT construction is due to Tom St Denis, used in his tc24 block 

cipher [23], although others have apparently done the same thing. 

3.5 The Final Addition Stage  

The first four operations of the nonlinear filter are not invertible. In particular, not all 
160-bit results are possible, and the results produced are not equally likely. Adding 
more input words to the output has three effects: first, it makes all output values 
possible and equally likely2; second, these operations “lock in” the mixing of the last 
PHT stage, since an attacker needs to remove the effects of these words before being 
able to reverse these mixing rounds; finally, by adding four new words, approximately 
half of the register state is involved in the filter function. 

3.5 Output 

The five words produced by this processing are used as the output keystream, in the 
order A..E , most significant byte of each word first. Issues of buffering bytes to 
encrypt data that is not aligned as multiples of 20 bytes are considered outside the 
scope of this document. 

4 Keying the Stream Cipher 

For Turing, the key and Initialization Vector (IV) are presented as a byte stream, 
and converted to 32-bits words in the most significant byte first (big-endian) 
representation. The key and IV must therefore be multiples of 4 bytes each. 

The minimum size of the key is 32 bits; although clearly this is useless 
cryptographically, Turing makes a reasonably good pseudorandom number generator 
                                                                 
2 This would be true if the new words were completely independent of the original input words, 

however one word is reused. It’s very close to true, though. 
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for statistical and simulation purposes. We hope for security equal to key enumeration 
for keys up to 256 bits. The largest key size supported is 256 bits. There is usually a 
key -loading stage, but for embedded applications with a key fixed in read-only 
memory, it is permissible for a high quality cryptographic key to be used directly as if 
it was the output of the key loading stage. 

The minimum size of the IV is zero, however an IV loading stage is mandatory 
even in this case, because the LFSR is initialized when the IV is loaded. The 
maximum size of the IV is determined by the key length, such that the sum of the key 
length and IV length is no more than 12 words (384 bits). There is no requirement that 
the size of the IV be constant. 

The structure of Turing guarantees that different key/IV length combinations will 
generate distinct output streams. No more than 2160 (160-bit) blocks of output should 
be generated using any one key/IV combination. (We don’t consider this to be a 
meaningful limitation, nor will we consider distinguishing attacks that require more 
than this amount of known plaintext to be a weakness in Turing.) 
 

4.1 Key Loading 

Turing’s key loading process mixes the key bytes through the fixed S-box and the 
Q-box, to ensure that all bytes of the key affect all four of the keyed S-boxes. For 
each word of the key, the bytes are transformed serially through the S-box, using the 
Q-box in an unbalanced Feistel structure for each byte to alter the other three bytes of 
the word. After this, the words are mixed using the extended PHT transform. Thus the 
transformation is reversible, ensuring that no keys are equivalent. The resulting words 
are stored for subsequent use; they occupy the same amount of space as the original 
key, which is no longer needed. These words will be used in the key-dependent S-
boxes, and also during the IV loading process to initialize the LFSR. 

Note that the only reason for the key transformation is to thwart the somewhat 
unlikely related key attack; without some sort of mixing, similar keys would produce 
similar key-dependent S-boxes. With this mixing, an attacker would need to know the 
key to be able to predict or minimize the effect of a related key. This is why we allow 
the possibility that the processed key can be provisioned directly into hardware. 

The bytes Ki,j mentioned above are the bytes of these stored words; the j index (0 ≤ 
j < N, where N is the number of words of the key) locates the word of the stored 
mixed key, while the i index (0 ≤ i ≤ 3) is the byte of the word, with the byte 
numbered 0 being the most significant byte. 

If the fastest implementation of Turing is desired, at this point the effect of the 
keyed S-boxes can be computed into four tables, each with 256 32-bit entries. The 
combined operations then consist of four byte-index table lookups and four word 
XOR operations for each input word. A similar optimization is used in fast 
implementations of Rijndael. 
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4.2 IV loading 

The Initialization Vector loading process initializes the LFSR with values derived 
from a non-linear mixing of the key and the IV. The LFSR is initialized with words in 
the following manner: 

• The IV words are copied into place and processed using the same 
invertible S-box transformation mentioned in the preceding section 

• The key words are appended, without further processing 
• Let L be the length (in words) of the key, and I be the length in words of 

the IV. A single word, 0x010203LI is appended. This ensures that 
different length keys and IVs cannot create the same initial LFSR state. 

• The remaining words of the register are filled by adding the immediately 
previous word to the word (L+I) before that, then processing the resulting 
word with the keyed S-box. That is, the kth word Kk (L+I+1 ≤ k < 17) is 
set to S[Kk-1+Kk- L-I-1]. 

• Finally, once the LFSR has been filled with data, the contents are mixed 
with a 17-word-wide PHT. Keystream generation can now begin. 

5. Performance  

If sufficient random-access memory is available, the operations of the four keyed S-
boxes can be precalculated at the time of key setup, resulting in four tables, one for 
each byte of the input word.  

Many current high-end microprocessor CPUs allow multiple instructions to 
execute at once, if the instructions are sufficiently independent. Note that the 
operations mentioned above are all highly parallel, allowing very good performance 
on such proces sors. Similarly hardware or FPGA implementations can achieve high 
throughput using parallel paths. 

In the cases where the key is provisioned into hardware, it is possible for the entire 
key scheduling process, including the calculation of these tables, to be done at the 
time of provisioning; thus, instead of 4K bytes of RAM and 1280 bytes of ROM, 4K 
bytes of ROM is sufficient and yields a very fast implementation. (A further 1024 
bytes of ROM is still required for the multiplication table.) 

Lastly, note that there is no accumulation of nonlinear data, nor is the clocking 
irregular. Therefore, if it is desirable to generate a small amount of keystream offset in 
a much larger block, this can be done by “fast forwarding” the LFSR using 
polynomial or matrix exponentiation in logarithmic time, rather than the linear time 
that would be required to generate and discard the intermediate output. 
 

Turing provides flexibility of efficient implementation. The source code archive 
[29] includes 4 separate implementations. These are: 

• TuringRef.c, an unoptimized reference implementation, which also uses 
little Random Access Memory. It does not precompute any tables.  

• TuringTab.c precomputes the tables required by the keyed S-boxes when 
the key is set. It uses 4K bytes of RAM in addition to the LFSR.  
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• TuringLazy.c is a key-agile implementation, which fills in entries of the 
S-box tables only as they are required (lazy evaluation). Thus key and IV 
setup are relatively fast, and encryption speed is adequate. 

• TuringFast.c uses S-box tables computed at key setup time, and performs 
as much computation inline as possible. 

The following table shows various performance figures. These are measured times 
on an IBM laptop with 900MHz Pentium III processor, using Microsoft Visual C++ 
V6.0, with the optimization options for “Release” build. Comparison times for Brian 
Gladman’s (highly optimized) implementation of AES and our implementation of an 
RC4 compatible cipher with a bulk encryption interface are also shown. 

 
Cipher cycles/B Key IV setup tables RAM MByte/s
TuringRef 134.92 477.00 4272.31 2304 68 6.67
TuringLazy 20.73 1802.70 991.80 2304 4164 43.42
TuringTab 17.26 72457.93 900.90 2304 4164 52.15
TuringFast 5.45 72417.12 882.90 2304 4164 165.15
arrsyfor 37.49 0.00 10347.42 0 258 24.00
AES enc. 26.85 239.00 0.00 20480 176 33.53

MHz 900.00

 
Notes: All figures are for 128-bit keys. We consider RC4’s keying operation to 

actually be “IV setup”, and this does not include time to either discard generated bytes 
or to hash the key and IV, which would be necessary for security. 

6. Security 

In this section, we attempt to justify Turing’s security by reference to the mechanisms 
by which it defeats a variety of known attacks. The underlying philosophy of Turing 
is to combine two independently strong mechanisms in a manner that allows each one 
to protect the other against standard attacks. The two mechanisms used are the 
nonlinear filter generator structure, in combination with the highly nonlinear, 
noninvertible key dependent S-box transformation. The security of Turing relies on 
both of these components. 

6.1 Known Plaintext 
Turing is a synchronous stream cipher, so the keystream generated is independent of 
the plaintext. Misuse of any stream cipher, such as reusing keystream, can result in 
compromise of the plaintext without actually revealing any information about the 
cipher generator itself. Turing increases safety by having an integrated mechanism to 
support Initialization Vectors making it easier to use correctly. 

To attack the stream generator itself requires significant knowledge about the 
plaintext, either completely known plaintext or at least significant redundancy in the 
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input language. In the discussion below, we will assume known or chosen plaintext, 
or equivalently that the attacker has direct access to the stream generator output. 

6.2 Statistical Attacks 
A keystream generator that exhibits basic statistical biases or detectable 
characteristics is weak. The LFSR used has well studied statistical properties that 
translate directly to the output. Additionally the highly nonlinear transformation in the 
core of Turing serves to disguise the inherent linearity of the LFSR output. 

We have extensively tested output from Turing using the Crypt-X package[6] and 
have detected no statistical weaknesses. 

6.3 Related Key and Related / Chosen Initialization Ve ctor Attacks 
Related key attacks assume that the attacker can somehow obtain output from a black 
box whose key is closely related to that of the cipher instance being attacked. Turing’s 
key loading mechanism exists solely to address this attack, by ensuring that a change 
to any single byte of the key will significantly (and nonlinearly) alter the behavior of 
all the S-boxes and also the initial loading of the LFSR. The transformation performed 
is bijective and publicly known, so it is easy to create pairs of input keys which are 
very similar after transformation, however finding a key which is similar to an 
unknown key appears difficult. 

Initialization Vectors are often related (e.g. counters are often used) and might even 
be chosen by the attacker. The IV is used to initialize the LFSR, so we have been 
careful to fill the LFSR in a highly key -dependent and nonlinear manner. Any change 
in the IV first makes a large change in the corresponding word loaded. That word will 
cause an unpredictable change in at least one of the fill words, then those changes will 
be propagated through the LFSR with the PHT transform. LFSR states derived from 
different IVs are less obviously related than states drawn from different segments of 
the same output stream. 

6.4 Correlation and Distinguishing Attacks 
Coppersmith et. al. have defined a fairly general model [28] for Distinguishing 
Attacks against nonlinear filter generators. The model assumes that some significant 
correlation can be identified in the filter function, and that this correlation will remain 
usable after outputs have been combined in such a way as to eliminate the linear part 
from consideration. 

Turing’s nonlinear filter has been defined to use a significant amount of input state, 
and to perform a strong transformat ion of it. While some correlations must by 
definition exist, and it is our hope that they might be sufficiently small to preclude this 
kind of attack, we do not rely on this hope for security. Instead, the fact that the S-
boxes are dependent on the secret key makes this kind of attack inapplicable. 

In turn, the unknown values being generated in the LFSR form a kind of 
“whitening” to protect the nonlinear filter function from analysis. 



 
 
The Turing Stream Cipher November 30, 2002  
 

The Turing Stream Cipher  November 30, 2002 

12 

 

6.5 Nonlinear Algebraic Attacks 
In [30] Courtois gives guidelines for nonlinear filter generators to be safe against 
higher order algebraic attacks. We are still performing detailed analysis of typical S-
boxes used by Turing, but generally speaking the nonlinear functions are complex and 
of high degree and each involve at least 8 intermediate binary variables. Additionally, 
the fact that the functions are key-dependent would appear to make this avenue of 
attack inapplicable. 

6.6 Guess and Determine Attacks 
Guess and Determine attacks proceed by using linear and nonlinear relatio ns to allow 
some state words to be guessed and others determined from them. The choice of 
feedback and output positions in Turing is copied from the SOBER t-class 
ciphers[20]. This structure was mechanically optimized against these kinds of attacks, 
and has been extensively analyzed for the NESSIE project, and should provide a 
minimum complexity exceeding the enumeration of 256-bit keys. In addition, the 
attacks rely upon the fact that the nonlinear function can be rewritten so that given its 
output, and n-1 of its n inputs, the remaining input can be determined. Turing’s 
nonlinear filter function design frustrates this, by (a) being key -dependent, (b) being 
noninvertible, and (c) requiring a large amount of output to build a large inversion 
table. 

6.7 Differential Trail 
The main advantage of the PHT construct is its speed and parallelism, however it is 
not as good a mixing function as could be desired. One undesirable characteristic is 
that if two of the input words from A, B, C, or D are equal, they remain equal after the 
transformation. The S-boxes operate only on individual words, and so also preserve 
this equality. This allowed an attack where a 64-bit assumption yielded 96 linear 
equations relating to the state of the register. Even though such this attack appeared to 
have complexity greater than 256-bit exhaustive search, this undesirable differential 
characteristic is addressed by rotating the input to the S-boxes corresponding to B, C, 
and D, making this advantage negligible. 
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Appendix A: Multiplication Table for Turing. 

/* Multiplication table for Turing using 0x72C688E8 */ 
unsigned long Multab[256] = { 
    0x00000000, 0x72C688E8, 0xE4C15D9D, 0x9607D575, 
    0x85CFBA77, 0xF709329F, 0x610EE7EA, 0x13C86F02, 
    0x47D339EE, 0x3515B106, 0xA3126473, 0xD1D4EC9B, 
    0xC21C8399, 0xB0DA0B71, 0x26DDDE04, 0x541B56EC, 
    0x8EEB7291, 0xFC2DFA79, 0x6A2A2F0C, 0x18ECA7E4, 
    0x0B24C8E6, 0x79E2400E, 0xEFE5957B, 0x9D231D93, 
    0xC9384B7F, 0xBBFEC397, 0x2DF916E2, 0x5F3F9E0A, 
    0x4CF7F108, 0x3E3179E0, 0xA836AC95, 0xDAF0247D, 
    0x519BE46F, 0x235D6C87, 0xB55AB9F2, 0xC79C311A, 
    0xD4545E18, 0xA692D6F0, 0x30950385, 0x42538B6D, 
    0x1648DD81, 0x648E5569, 0xF289801C, 0x804F08F4, 
    0x938767F6, 0xE141EF1E, 0x77463A6B, 0x0580B283, 
    0xDF7096FE, 0xADB61E16, 0x3BB1CB63, 0x4977438B, 
    0x5ABF2C89, 0x2879A461, 0xBE7E7114, 0xCCB8F9FC, 
    0x98A3AF10, 0xEA6527F8, 0x7C62F28D, 0x0EA47A65, 
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    0x1D6C1567, 0x6FAA9D8F, 0xF9AD48FA, 0x8B6BC012, 
    0xA27B85DE, 0xD0BD0D36, 0x46BAD843, 0x347C50AB, 
    0x27B43FA9, 0x5572B741, 0xC3756234, 0xB1B3EADC, 
    0xE5A8BC30, 0x976E34D8, 0x0169E1AD, 0x73AF6945, 
    0x60670647, 0x12A18EAF, 0x84A65BDA, 0xF660D332, 
    0x2C90F74F, 0x5E567FA7, 0xC851AAD2, 0xBA97223A, 
    0xA95F4D38, 0xDB99C5D0, 0x4D9E10A5, 0x3F58984D, 
    0x6B43CEA1, 0x19854649, 0x8F82933C, 0xFD441BD4, 
    0xEE8C74D6, 0x9C4AFC3E, 0x0A4D294B, 0x788BA1A3, 
    0xF3E061B1, 0x8126E959, 0x17213C2C, 0x65E7B4C4, 
    0x762FDBC6, 0x04E9532E, 0x92EE865B, 0xE0280EB3, 
    0xB433585F, 0xC6F5D0B7, 0x50F205C2, 0x22348D2A, 
    0x31FCE228, 0x433A6AC0, 0xD53DBFB5, 0xA7FB375D, 
    0x7D0B1320, 0x0FCD9BC8, 0x99CA4EBD, 0xEB0CC655, 
    0xF8C4A957, 0x8A0221BF, 0x1C05F4CA, 0x6EC37C22, 
    0x3AD82ACE, 0x481EA226, 0xDE197753, 0xACDFFFBB, 
    0xBF1790B9, 0xCDD11851, 0x5BD6CD24, 0x291045CC, 
    0x09F647F1, 0x7B30CF19, 0xED371A6C, 0x9FF19284, 
    0x8C39FD86, 0xFEFF756E, 0x68F8A01B, 0x1A3E28F3, 
    0x4E257E1F, 0x3CE3F6F7, 0xAAE42382, 0xD822AB6A, 
    0xCBEAC468, 0xB92C4C80, 0x2F2B99F5, 0x5DED111D, 
    0x871D3560, 0xF5DBBD88, 0x63DC68FD, 0x111AE015, 
    0x02D28F17, 0x701407FF, 0xE613D28A, 0x94D55A62, 
    0xC0CE0C8E, 0xB2088466, 0x240F5113, 0x56C9D9FB, 
    0x4501B6F9, 0x37C73E11, 0xA1C0EB64, 0xD306638C, 
    0x586DA39E, 0x2AAB2B76, 0xBCACFE03, 0xCE6A76EB, 
    0xDDA219E9, 0xAF649101, 0x39634474, 0x4BA5CC9C, 
    0x1FBE9A70, 0x6D781298, 0xFB7FC7ED, 0x89B94F05, 
    0x9A712007, 0xE8B7A8EF, 0x7EB07D9A, 0x0C76F572, 
    0xD686D10F, 0xA44059E7, 0x32478C92, 0x4081047A, 
    0x53496B78, 0x218FE390, 0xB78836E5, 0xC54EBE0D, 
    0x9155E8E1, 0xE3936009, 0x7594B57C, 0x07523D94, 
    0x149A5296, 0x665CDA7E, 0xF05B0F0B, 0x829D87E3, 
    0xAB8DC22F, 0xD94B4AC7, 0x4F4C9FB2, 0x3D8A175A, 
    0x2E427858, 0x5C84F0B0, 0xCA8325C5, 0xB845AD2D, 
    0xEC5EFBC1, 0x9E987329, 0x089FA65C, 0x7A592EB4, 
    0x699141B6, 0x1B57C95E, 0x8D501C2B, 0xFF9694C3, 
    0x2566B0BE, 0x57A03856, 0xC1A7ED23, 0xB36165CB, 
    0xA0A90AC9, 0xD26F8221, 0x44685754, 0x36AEDFBC, 
    0x62B58950, 0x107301B8, 0x8674D4CD, 0xF4B25C25, 
    0xE77A3327, 0x95BCBBCF, 0x03BB6EBA, 0x717DE652, 
    0xFA162640, 0x88D0AEA8, 0x1ED77BDD, 0x6C11F335, 
    0x7FD99C37, 0x0D1F14DF, 0x9B18C1AA, 0xE9DE4942, 
    0xBDC51FAE, 0xCF039746, 0x59044233, 0x2BC2CADB, 
    0x380AA5D9, 0x4ACC2D31, 0xDCCBF844, 0xAE0D70AC, 
    0x74FD54D1, 0x063BDC39, 0x903C094C, 0xE2FA81A4, 
    0xF132EEA6, 0x83F4664E, 0x15F3B33B, 0x67353BD3, 
    0x332E6D3F, 0x41E8E5D7, 0xD7EF30A2, 0xA529B84A, 
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    0xB6E1D748, 0xC4275FA0, 0x52208AD5, 0x20E6023D, 
}; 

Appendix B: the Sbox  

unsigned char Sbox[256] = { 
    0x61, 0x51, 0xeb, 0x19, 0xb9, 0x5d, 0x60, 0x38, 
    0x7c, 0xb2, 0x06, 0x12, 0xc4, 0x5b, 0x16, 0x3b, 
    0x2b, 0x18, 0x83, 0xb0, 0x7f, 0x75, 0xfa, 0xa0, 
    0xe9, 0xdd, 0x6d, 0x7a, 0x6b, 0x68, 0x2d, 0x49, 
    0xb5, 0x1c, 0x90, 0xf7, 0xed, 0x9f, 0xe8, 0xce, 
    0xae, 0x77, 0xc2, 0x13, 0xfd, 0xcd, 0x3e, 0xcf, 
    0x37, 0x6a, 0xd4, 0xdb, 0x8e, 0x65, 0x1f, 0x1a, 
    0x87, 0xcb, 0x40, 0x15, 0x88, 0x0d, 0x35, 0xb3, 
    0x11, 0x0f, 0xd0, 0x30, 0x48, 0xf9, 0xa8, 0xac, 
    0x85, 0x27, 0x0e, 0x8a, 0xe0, 0x50, 0x64, 0xa7, 
    0xcc, 0xe4, 0xf1, 0x98, 0xff, 0xa1, 0x04, 0xda, 
    0xd5, 0xbc, 0x1b, 0xbb, 0xd1, 0xfe, 0x31, 0xca, 
    0xba, 0xd9, 0x2e, 0xf3, 0x1d, 0x47, 0x4a, 0x3d, 
    0x71, 0x4c, 0xab, 0x7d, 0x8d, 0xc7, 0x59, 0xb8, 
    0xc1, 0x96, 0x1e, 0xfc, 0x44, 0xc8, 0x7b, 0xdc, 
    0x5c, 0x78, 0x2a, 0x9d, 0xa5, 0xf0, 0x73, 0x22, 
    0x89, 0x05, 0xf4, 0x07, 0x21, 0x52, 0xa6, 0x28, 
    0x9a, 0x92, 0x69, 0x8f, 0xc5, 0xc3, 0xf5, 0xe1, 
    0xde, 0xec, 0x09, 0xf2, 0xd3, 0xaf, 0x34, 0x23, 
    0xaa, 0xdf, 0x7e, 0x82, 0x29, 0xc0, 0x24, 0x14, 
    0x03, 0x32, 0x4e, 0x39, 0x6f, 0xc6, 0xb1, 0x9b, 
    0xea, 0x72, 0x79, 0x41, 0xd8, 0x26, 0x6c, 0x5e, 
    0x2c, 0xb4, 0xa2, 0x53, 0x57, 0xe2, 0x9c, 0x86, 
    0x54, 0x95, 0xb6, 0x80, 0x8c, 0x36, 0x67, 0xbd, 
    0x08, 0x93, 0x2f, 0x99, 0x5a, 0xf8, 0x3a, 0xd7, 
    0x56, 0x84, 0xd2, 0x01, 0xf6, 0x66, 0x4d, 0x55, 
    0x8b, 0x0c, 0x0b, 0x46, 0xb7, 0x3c, 0x45, 0x91, 
    0xa4, 0xe3, 0x70, 0xd6, 0xfb, 0xe6, 0x10, 0xa9, 
    0xc9, 0x00, 0x9e, 0xe7, 0x4f, 0x76, 0x25, 0x3f, 
    0x5f, 0xa3, 0x33, 0x20, 0x02, 0xef, 0x62, 0x74, 
    0xee, 0x17, 0x81, 0x42, 0x58, 0x0a, 0x4b, 0x63, 
    0xe5, 0xbe, 0x6e, 0xad, 0xbf, 0x43, 0x94, 0x97, 
}; 

Appe ndix C: the Qbox 

WORD Qbox[256] = { 
 0x1faa1887,   0x4e5e435c,   0x9165c042,   0x250e6ef4,    
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 0x5957ee20,   0xd484fed3,   0xa666c502,   0x7e54e8ae,    
 0xd12ee9d9,   0xfc1f38d4,   0x49829b5d,   0x1b5cdf3c,    
 0x74864249,   0xda2e3963,   0x28f4429f,   0xc8432c35,    
 0x4af40325,   0x9fc0dd70,   0xd8973ded,   0x1a02dc5e,    
 0xcd175b42,   0xf10012bf,   0x6694d78c,   0xacaab26b,    
 0x4ec11b9a,   0x3f168146,   0xc0ea8ec5,   0xb38ac28f,    
 0x1fed5c0f,   0xaab4101c,   0xea2db082,   0x470929e1,    
 0xe71843de,   0x508299fc,   0xe72fbc4b,   0x2e3915dd,    
 0x9fa803fa,   0x9546b2de,   0x3c233342,   0x0fcee7c3,    
 0x24d607ef,   0x8f97ebab,   0xf37f859b,   0xcd1f2e2f,    
 0xc25b71da,   0x75e2269a,   0x1e39c3d1,   0xeda56b36,    
 0xf8c9def2,   0x46c9fc5f,   0x1827b3a3,   0x70a56ddf,    
 0x0d25b510,   0x000f85a7,   0xb2e82e71,   0x68cb8816,    
 0x8f951e2a,   0x72f5f6af,   0xe4cbc2b3,   0xd34ff55d,    
 0x2e6b6214,   0x220b83e3,   0xd39ea6f5,   0x6fe041af,    
 0x6b2f1f17,   0xad3b99ee,   0x16a65ec0,   0x757016c6,    
 0xba7709a4,   0xb0326e01,   0xf4b280d9,   0x4bfb1418,    
 0xd6aff227,   0xfd548203,   0xf56b9d96,   0x6717a8c0,    
 0x00d5bf6e,   0x10ee7888,   0xedfcfe64,   0x1ba193cd,    
 0x4b0d0184,   0x89ae4930,   0x1c014f36,   0x82a87088,    
 0x5ead6c2a,   0xef22c678,   0x31204de7,   0xc9c2e759,    
 0xd200248e,   0x303b446b,   0xb00d9fc2,   0x9914a895,    
 0x906cc3a1,   0x54fef170,   0x34c19155,   0xe27b8a66,    
 0x131b5e69,   0xc3a8623e,   0x27bdfa35,   0x97f068cc,    
 0xca3a6acd,   0x4b55e936,   0x86602db9,   0x51df13c1,    
 0x390bb16d,   0x5a80b83c,   0x22b23763,   0x39d8a911,    
 0x2cb6bc13,   0xbf5579d7,   0x6c5c2fa8,   0xa8f4196e,    
 0xbcdb5476,   0x6864a866,   0x416e16ad,   0x897fc515,    
 0x956feb3c,   0xf6c8a306,   0x216799d9,   0x171a9133,    
 0x6c2466dd,   0x75eb5dcd,   0xdf118f50,   0xe4afb226,    
 0x26b9cef3,   0xadb36189,   0x8a7a19b1,   0xe2c73084,    
 0xf77ded5c,   0x8b8bc58f,   0x06dde421,   0xb41e47fb,    
 0xb1cc715e,   0x68c0ff99,   0x5d122f0f,   0xa4d25184,    
 0x097a5e6c,   0x0cbf18bc,   0xc2d7c6e0,   0x8bb7e420,    
 0xa11f523f,   0x35d9b8a2,   0x03da1a6b,   0x06888c02,    
 0x7dd1e354,   0x6bba7d79,   0x32cc7753,   0xe52d9655,    
 0xa9829da1,   0x301590a7,   0x9bc1c149,   0x13537f1c,    
 0xd3779b69,   0x2d71f2b7,   0x183c58fa,   0xacdc4418,    
 0x8d8c8c76,   0x2620d9f0,   0x71a80d4d,   0x7a74c473,    
 0x449410e9,   0xa20e4211,   0xf9c8082b,   0x0a6b334a,    
 0xb5f68ed2,   0x8243cc1b,   0x453c0ff3,   0x9be564a0,    
 0x4ff55a4f,   0x8740f8e7,   0xcca7f15f,   0xe300fe21,    
 0x786d37d6,   0xdfd506f1,   0x8ee00973,   0x17bbde36,    
 0x7a670fa8,   0x5c31ab9e,   0xd4dab618,   0xcc1f52f5,    
 0xe358eb4f,   0x19b9e343,   0x3a8d77dd,   0xcdb93da6,    
 0x140fd52d,   0x395412f8,   0x2ba63360,   0x37e53ad0,    
 0x80700f1c,   0x7624ed0b,   0x703dc1ec,   0xb7366795,    
 0xd6549d15,   0x66ce46d7,   0xd17abe76,   0xa448e0a0,    



 
 
The Turing Stream Cipher November 30, 2002  
 

The Turing Stream Cipher  November 30, 2002 

18 

 

 0x28f07c02,   0xc31249b7,   0x6e9ed6ba,   0xeaa47f78,    
 0xbbcfffbd,   0xc507ca84,   0xe965f4da,   0x8e9f35da,    
 0x6ad2aa44,   0x577452ac,   0xb5d674a7,   0x5461a46a,    
 0x6763152a,   0x9c12b7aa,   0x12615927,   0x7b4fb118,    
 0xc351758d,   0x7e81687b,   0x5f52f0b3,   0x2d4254ed,    
 0xd4c77271,   0x0431acab,   0xbef94aec,   0xfee994cd,    
 0x9c4d9e81,   0xed623730,   0xcf8a21e8,   0x51917f0b,    
 0xa7a9b5d6,   0xb297adf8,   0xeed30431,   0x68cac921,    
 0xf1b35d46,   0x7a430a36,   0x51194022,   0x9abca65e,    
 0x85ec70ba,   0x39aea8cc,   0x737bae8b,   0x582924d5,    
 0x03098a5a,   0x92396b81,   0x18de2522,   0x745c1cb8,    
 0xa1b8fe1d,   0x5db3c697,   0x29164f83,   0x97c16376,    
 0x8419224c,   0x21203b35,   0x833ac0fe,   0xd966a19a,    
 0xaaf0b24f,   0x40fda998,   0xe7d52d71,   0x390896a8,    
 0xcee6053f,   0xd0b0d300,   0xff99cbcc,   0x065e3d40,    
}; 

Appendix D: the Binary Equivalent Polynomial p1 

The Turing LFSR is equivalent to 32 parallel binary LFSRs with a characteristic 
polynomial (shown in binary, with the first bit being the constant term and increasing 
exponent): 

100000000000000001010101010101110111011101100011011000111110001101
100110101100111001000111100101111100111101100111100110010011000011
110001101011011111010101110010001001111001110111101001110111010111
100100000000010110000100101110110111111010000011101000011110001111
010111000011100000010000001011111101000111000000001010110111011100
100011110000101111111010110011101100011111000110010100101011110101
111111000001111011110111001000110000001011011100001010001011110001
111111000010101001111000011100111101111000101000000010000111000000
00001000100000001 

That is, p1(x) = 1 + x17 + x19 + x21 + x23 + x25 + x27 + x29 + x30 + … + x520 + x521 + x532 + 
x536 + x544. This polynomial has 273 nonzero terms. 


