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Abstract. This paper proposes the Turing stream cipher. Turing of-
fers up to 256-bit key strength, and is designed for extremely efficient
software implementation.It combines an LFSR generator based on that
of SOBER [21] with a keyed mixing function reminiscent of a block ci-
pher round. Aspects of the block mixer round have been derived from
Rijndael [6], Twofish [23], tc24 [24] and SAFER++ [17].

1 Introduction

Turing (named after Alan Turing) is a stream cipher designed to simultaneously
be:

– Extremely fast in software on commodity PCs,
– Usable in very little RAM on embedded processors, and
– Able to exploit parallelism to enable fast hardware implementation.

The Turing stream cipher has a major component, the word-oriented Linear
Feedback Shift Register (LFSR), which originated with the design of the SOBER
family of ciphers [13, 14, 21]. Analyses of the SOBER family are found in [1–3,
11]. The efficient LFSR updating method is modelled after that of SNOW [9].
Turing combines the LFSR generator with a keyed mixing-function reminiscent
of a block cipher round. The S-box used in this mixing round is partially derived
from the SOBER-t32 S-box [14]. Further aspects of this mixing function have
been derived from Rijndael [6], Twofish [23], tc24 [24] and SAFER++ [17].

Turing is designed to meet the needs of embedded applications that place se-
vere constraints on the amount of processing power, program space and memory
available for software encryption algorithms. Since most of the mobile telephones
in use incorporate a microprocessor and memory, a software stream cipher that
is fast and uses little memory would be ideal for this application. Turing over-
comes the inefficiency of binary LFSRs in a manner similar to SOBER and
SNOW, and a number of techniques to greatly increase the generation speed of
the pseudo-random stream in software on a general processor. Turing allows an
implementation tradeoff between small memory use, or very high speed using
pre-computed tables. Reference source code showing small memory, key agile,
and speed-optimized implementations is available at [22], along with a test har-
ness with test vectors. The reference implementation (TuringRef.c) should be
viewed as the definitive description of Turing.
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Fig. 1. Block diagram for Turing

Turing has four components: key loading, Initialisation vector (IV) loading,
an LFSR, and a keyed non-linear filter (NLF). The key loading initializes the
keyed S-boxes, and the IV loading initializes the LFSR. The LFSR and NLF then
generate key stream in 160-bit blocks (see Figure 1). Five 32-bit words selected
from the LFSR are first mixed, then passed through a highly-nonlinear, key-
dependent S-box transformation, and mixed again. The resulting 5-word nonlin-
ear block is combined with 5 new LFSR words to create 160 bits of keystream.
The final addition of 5 LFSR words (called whitening) provides the output with
good statistical properties, while the nonlinear block hides the linear properties
of the LFSR. For each 160-bit block of key stream, the LFSR state is updated 5
times.

The paper is set out as follows. First, the LFSR is defined in Section 2.
Section 3 describes the NLF and explains how the overall structure of Turing
operates. The key and initialization vector loading is described in Section 4.
Section 5 discusses performance, and Section 6 analyses security and possible
attacks.

Turing uses “big-endian” byte ordering, in which the most significant byte
of a multi-byte quantity appears first in memory. For example, a 32-bit word A
has bytes indexed as (A0, A1, A2, A3) where A0 is the most significant byte.



2 LFSR of Turing

Binary Linear Feedback Shift Registers can be extremely inefficient in software
on general-purpose microprocessors. LFSRs can operate over any finite field, so
an LFSR can be made more efficient in software by utilizing a finite field more
suited to the processor. Particularly good choices for such a field are the Galois
Field with 2w elements (GF (2w)), where w is related to the size of items in the
underlying processor, usually bytes or 32-bit words. The elements of this field
and the coefficients of the recurrence relation occupy exactly one unit of storage
and can be efficiently manipulated in software.

The standard representation of an element A in the field GF (2w) is a w-
bit word with bits (aw−1, aw−2, . . . , a1, a0), which represents the polynomial
aw−1z

w−1 + . . . + a1z + a0. Elements can be added and multiplied: addi-
tion of elements in the field is equivalent to XOR. To multiply two elements of
the field we multiply the corresponding polynomials modulo 2, and then reduce
the resulting polynomial modulo a chosen irreducible polynomial of degree w.

It is also possible to represent GF (2w) using a subfield. For example, rather
than representing elements of GF (2w) as degree-31 polynomials over GF (2),
Turing uses 8-bit bytes to represent elements of a subfield GF (28), and 32-bit
words to represent degree-3 polynomials over GF (28). This is isomorphic to the
standard representation, but not identical. The subfield B = GF (28) of bytes is
represented in Turing modulo the irreducible polynomial z8 + z6 + z3 + z2 + 1.
Bytes represent degree-7 polynomials over GF (2); the constant β0 = 0x67 below
represents the polynomial z6 + z5 + z2 + z + 1 for example. The Galois finite
field W = B4 = GF ((28)4) of words can now be represented using degree-
3 polynomials where the coefficients are bytes (subfield elements of B). For
example, the word 0xD02B4367 represents the polynomial 0xD0y3 + 0x2By2 +
0x43y + 0x67. The field W can be represented by an irreducible polynomial
y4 + β3y

3 + β2y
2 + β1y + β0. The specific coefficients βi used in Turing are best

given after describing Turing’s LFSR.
An LFSR of order k over the field GF (2w) generates a stream of w-bit LFSR

words {S[i]} using a register of k memory elements (R[0],R[1],...,R[k-1]).
The register stores the values of k successive LFSR words so after i clocks the
register stores the values of (S[i], S[i + 1], ..., S[i + k − 1]). At each clock, the
LFSR computes the next LFSR word S[i + k] in the sequence using a GF (2w)
recurrence relation

S[i + k] = α0S[i] + α1S[i + 1] + · · · + αk−1S[i + k − 1] , (1)

and updates the register (here new contains the value of S[i + k]):

R[0] = R[1]; R[1] = R[2]; ...; R[15] = R[16]; R[16] = new;

The register now contains (S[(i + 1)], S[(i + 1) + 1], ..., S[(i + 1) + k − 1]). The
linear recurrence (1) is commonly represented by the characteristic polynomial
p(X) = Xk −∑k−1

j=0 αjX
j .



In the case of Turing, the LFSR consists of k = 17 words of state in-
formation with w = 32-bit words. The LFSR was developed in three steps.
First, the characteristic polynomial of the Turing LFSR was chosen to be of the
form p(X) = X17 + X15 + X4 + α, over GF (232). The exponents {17, 15, 4, 0}
were chosen because they provide good security; the use of exponents dates
back to the design of SOBER-t16 and SOBER-t32 [13]. Next, the coefficient
α = 0x00000100 ≡ 0x00 · y3 +0x00 · y2 +0x01 · y +0x00 = y, was chosen be-
cause it allows an efficient software implementation: multiplication by α consists
of shifting the word left by 8 bits, and adding (XOR) a pre-computed constant
from a table indexed by the most significant 8 bits, as in SNOW. A portion of
this table Multab for Turing is shown in Appendix A. In C code, the new word
to be inserted in the LFSR is calculated:

new = R[15] ^ R[4] ^ (R[0] << 8) ^ Multab[ R[0] >> 24];

where ^ is the XOR operation; << is the left shift operation; and >> is the right
shift operation. Finally, the irreducible polynomial representing the Galois field
W was chosen to be y4 + 0xD0 · y3 + 0x2B · y2 + 0x43 · y + 0x67, since it satisfies
the following constraints:

– The LFSR must have maximum length period. The period has a
maximum length (2544 − 1) when the field representations make p(X) a
primitive polynomial of degree 17 in the field W .

– Half of the coefficients of bit-wise recurrence must be 1. The Tur-
ing LFSR is mathematically equivalent to 32 parallel bit-wide LFSRs over
GF (2): each of length equivalent to the total state 17× 32 = 544; each with
the same recurrence relation; but different initial state [15]. Appendix D
shows the polynomial p1(x), corresponding to the binary recurrence for the
Turing LFSR. Requiring half of the coefficients to be 1 is ideal for maximum
diffusion and strength against cryptanalysis.

The key stream is generated as follows (see Figure 1). First, the LFSR is
clocked. Then the 5 values in R[16], R[13], R[6], R[1], R[0], are selected
as the inputs (A, B,C, D,E) (respectively) to the nonlinear filter (NLF). The
NLF produces the nonlinear block (Y A, Y B, Y C, Y D, Y E) from (A,B, C, D,E).
The LFSR is clocked an additional three times, and the values in R[14], R[12],
R[8], R[1], R[0] of this new state (referred to as WA, WB, WC, WD,WE)
are selected for the whitening. These five words are added (modulo 232) to
the corresponding nonlinear-block words to form a 160-bit key stream block
(ZA, ZB, ZC,ZD,ZE). Finally, the LFSR is clocked once more before generat-
ing the next key stream block (a total of five clocks between producing outputs).

The key stream is output in the order ZA, . . . , ZE; most significant byte of
each word first. Issues of buffering bytes to encrypt data that is not aligned as
multiples of 20 bytes are considered outside the scope of this document.



3 The Nonlinear Filter

The only component of Turing that is explicitly nonlinear is its S-boxes. Addi-
tional nonlinearity also comes from the combination of the operations of addition
modulo 232 and XOR; while each of these operations is linear in its respective
mathematical group, each is slightly nonlinear in the other’s group. As shown in
Figure 1, the nonlinear filter in Turing consists of:

– Selecting the 5 input words A, B,C, D,E;
– Mixing the words using a 5-word Pseudo-Hadamard Transform (5-PHT),

resulting in 5 new words TA, TB, TC, TD, TE.
– Applying a 32 × 32 S-box construction to each of the words to form XA,

XB, XC, XD, XE. Prior to applying the S-box construction, the words TB,
TC and TD are rotated left by 8, 16 and 24 bits respectively, to address a
potential attack described below. The S-box construction mixes the bytes
within each word using four key-dependent, 8 → 32 nonlinear S-boxes.

– Again mixing using the 5-PHT to form the words Y A, Y B, Y C, Y D, Y E of
the nonlinear block .

Note that the use of variables XA,XB and so forth is only to make the expla-
nations simple. In practise, the same variable A would be overwritten for each
of TA, XA, Y A, ZA, and similarly for B, C,D, E.

3.1 The “Pseudo-Hadamard Transform” (PHT)

In the cipher family of SAFER [16], Massey uses this very simple construct
(called a Pseudo-Hadamard Transform) to mix the values of two bytes: (a, b) =
(2a + b, a + b), where the addition operation is addition modulo 28, the size
of the bytes. The operation can further extended to mix an arbitrary number
of words (often called a n-PHT). Such operations are used in the SAFER++
block cipher [17]), and the tc24 block cipher [24]. The Turing NLF uses addition
modulo 232 to perform a 5-PHT:
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Note that all diagonal entries are 2 except the last diagonal entry is 1, not 2. In
C code, this is easily implemented and highly efficient:

E = A + B + C + D + E;
A = A + E; B = B + E; C = C + E; D = D + E;



3.2 The S-box Construction

Turing S-box construction transforms each word using four logically indepen-
dent 8 → 32 S-boxes S0, S1, S2, S3. These 8 → 32 S-boxes are applied to the
corresponding bytes of the input word and XORed, in a manner similar to that
used in Rijndael [6]. However, unlike Rijndael, this transformation is unlikely to
be invertible, as the expansion from 8 bits to 32 bits is nonlinear. These four
8 → 32 S-boxes are based in turn on a fixed 8 → 8 bit permutation denoted
Sbox and a fixed nonlinear 8 → 32 bit function denoted Qbox, iterated with the
data modified by variables derived during key setup.

The Sbox. The fixed 8 → 8 S-box is referred to in the rest of this document
as Sbox[.]. It is a permutation of the input byte, has a minimum nonlinearity of
104, and is shown in Appendix B. The Sbox is derived by the following proce-
dure, based on the well-known stream cipher RC4TM. RC4 was keyed with the
11-character ASCII string “Alan Turing”, and then 256 generated bytes were
discarded. Then the current permutation used in RC4 was tested for nonlinear-
ity, another byte generated, etc., until a total of 10000 bytes had been generated.
The best observed minimum nonlinearity was 104, which first occurred after 736
bytes had been generated. The corresponding state table, that is, the internal
permutation after keying and generating 736 bytes, forms Sbox. By happy coin-
cidence, this permutation also has no fixed points (i.e. ∀x, Sbox[x] 6= x).

The Qbox. The Qbox is a fixed nonlinear 8 → 32-bit table, shown in Appendix c.
It was developed by the Queensland University of Technology at our request [8].
It is best viewed as 32 independent Boolean functions of the 8 input bits. The
criteria for its development were: the functions should be highly nonlinear (each
has nonlinearity of 114); the functions should be balanced (same number of
zeroes and ones); and the functions should be pairwise uncorrelated.

Computing the Keyed 8 → 32 S-boxes. Turing uses four keyed 8 → 32
S-boxes S0, S1, S2, S3. The original key is first transformed into the mixed key
during key loading (see Section 4.1). The mixed key is accessed as bytes Ki[j];
the j index (0 ≤ j < N , where N is the number of words of the key) locates the
word of the stored mixed key, while the i index (0 ≤ i ≤ 3) is the byte of the
word, with the byte numbered 0 being the most significant byte.

Each S-box Si (0 ≤ i ≤ 3) uses bytes from the corresponding byte positions
of the scheduled key. The process is best presented in algorithmic form. The
following code implements the entire S-box construction including the XOR of
the four outputs of the individual S − boxes. The value w is the input word,
and the integer r is the amount of rotation (recall that TB, TC, TD have their
inputs rotated before being input to the S-box construction).

static WORD S(WORD w, int r)
{

register int i;
BYTE b[4];
WORD ws[4];



w = ROTL(w, r); /* cyclic rotate w to left by r bits*/
WORD2BYTE(w, b); /* divide w into bytes b[0]...b[3] */
ws[0] = ws[1] = ws[2] = ws[3] = 0;
for (i = 0; i < keylen; ++i) {

/* compute b[i]=t_i and ws[i]=w_i */
/* B(A,i) extracts the i-th byte of A */

b[0] = Sbox[B(K[i],0) ^ b[0]]; ws[0] ^= ROTL(Qbox[b[0]],i+0);
b[1] = Sbox[B(K[i],1) ^ b[1]]; ws[1] ^= ROTL(Qbox[b[1]],i+8);
b[2] = Sbox[B(K[i],2) ^ b[2]]; ws[2] ^= ROTL(Qbox[b[2]],i+16);
b[3] = Sbox[B(K[i],3) ^ b[3]]; ws[3] ^= ROTL(Qbox[b[3]],i+24);
}

/* now xor the individual S-box outputs together */
w = (ws[0] & 0x00FFFFFFUL) | (b[0] << 24); /* S_0 */
w ^= (ws[1] & 0xFF00FFFFUL) | (b[1] << 16); /* xor S_1 */
w ^= (ws[2] & 0xFFFF00FFUL) | (b[2] << 8); /* xor S_2 */
w ^= (ws[3] & 0xFFFFFF00UL) | b[3]; /* xor S_3 */
return w;

}

We shall briefly explain the process for an individual 8×32 S-box. The input
byte b is combined with a key byte and passed through the fixed Sbox, the result
is combined with another key byte, and so on, to form a temporary result:

ti(x) = Sbox[Ki[N − 1]⊕ Sbox[Ki[N − 2]⊕ · · ·Sbox[Ki[0]⊕ x] · · ·]],

where ⊕ is the XOR operator, and N is the number of words in the key. Note
that the byte function ti : x → ti(x) forms a permutation. This process can be
visualised as the input byte “bouncing around” under the control of the key.
At each bounce, a rotated word from the Qbox is accumulated into another
temporary word wi(x); the rotation depends on the byte position in question
and the stage of progress, ensuring that no entries of the Qbox can cancel each
other out. Finally, the byte in position i of wi(x) is replaced with ti(x) to form
the output Si(x) to ensure that the byte in position i is balanced with respect
to the input.

4 Keying the Stream Cipher

For Turing, the key and Initialization Vector (IV) are presented as a byte stream,
and converted to 32-bits words in the most significant byte first (big-endian) rep-
resentation. The key and IV must therefore be multiples of 4 bytes each. The
minimum size of the key is 32 bits; although clearly this is useless cryptograph-
ically, Turing with a 32-bit key makes a good, seedable pseudorandom number
generator for statistical and simulation purposes. We hope for security equal to
key enumeration for keys up to 256 bits. The largest key size supported is 256
bits.



The minimum size of the IV is zero, however an IV loading stage is manda-
tory even in this case, because the LFSR is initialized when the IV is loaded.
The maximum size of the IV is determined by the key length; the sum of the
key length and IV length must be no more than 12 words (384 bits). There is no
requirement that the size of the IV be constant. The structure of Turing guar-
antees that different key/IV length combinations will generate distinct output
streams. No more than 2160 (160-bit) blocks of output should be generated using
any one key/IV combination.

4.1 Key Loading

The original key undergoes two steps of transformation during key loading; a
byte-mixing step and a word-mixing step; resulting in the mixed key.

Byte-Mixing Step: The key bytes are mixed through the fixed Sbox and the
Qbox, to ensure that all bytes of the key affect all four of the keyed S-boxes. For
each word of the key, the bytes are transformed serially through the Sbox, using
the Qbox in an unbalanced Feistel structure for each byte to alter the other three
bytes of the word.

static WORD fixedS(WORD w)

{

WORD b;

b = Sbox[B(w, 0)]; w = ((w ^ Qbox[b]) & 0x00FFFFFF) | (b << 24);

b = Sbox[B(w, 1)]; w = ((w ^ ROTL(Qbox[b],8)) & 0xFF00FFFF) | (b << 16);

b = Sbox[B(w, 2)]; w = ((w ^ ROTL(Qbox[b],16)) & 0xFFFF00FF) | (b << 8);

b = Sbox[B(w, 3)]; w = ((w ^ ROTL(Qbox[b],24)) & 0xFFFFFF00) | b;

return w;

}

Word-Mixing Step: An n-PHT transform forms the mixed key words. The
transformation from the original key to the mixed key is reversible, ensuring
that no keys are equivalent. The resulting words are stored for subsequent use;
they occupy the same amount of space as the original key, which is no longer
needed. These words will be used in the key-dependent S-boxes, and also during
the IV loading process to initialize the LFSR.

If the fastest implementation of Turing is desired, at this point each the
four keyed S-boxes can be “pre-computed” and stored in four tables, each with
256 32-bit entries. For each S-box, the 256 outputs of the keyed S-boxes are
computed and stored in a table, indexed by the corresponding input values. The
combined S-box construction then consist of four byte-index table lookups and
four word XOR operations for each input word. A similar optimization is used
in fast implementations of Rijndael.

Note. The role of the mixing steps in the key loading is to prevent related-key
attacks. For embedded applications with a key fixed in read-only memory, it is
permissible to skip the key-loading stage and use a high quality cryptographic key
directly as the mixed key (i.e., as if it was the output of the key-loading stage).
Another alternative is to provision the mixed key (rather than the original key)
directly into the hardware.



4.2 IV Loading

The Initialization Vector (IV) loading process initializes the LFSR with values
derived from a non-linear mixing of the key and the IV. Let L be the length in
words of the key, and I be the length in words of the IV. The LFSR register is
initialized in the following manner:

– The IV words are copied into place and processed using the byte-mixing step
fixedS() described above.

– The mixed key words are appended, without further processing.
– A single word, 0x010203LI is appended, where L and I are presumed to be

hexadecimal form. This ensures that different length keys and IVs cannot
create the same initial LFSR state.

– The remaining words of the register are filled by adding the immediately
previous word to the word (L+ I) before that, then processing the resulting
word with the keyed 32×32 S-box construction (here denoted S()). That is,
the k-th word R[k] (L+I+1 ≤ k < 17) is set to S(R[k−1]]+R[k−L−I−1]]).

– Finally, once the LFSR has been filled with data, the contents are mixed
with a 17-PHT. Keystream generation can now begin.

5 Performance

If sufficient random-access memory (RAM) is available, the operations of the
four keyed S-boxes can be precalculated at the time of key setup, resulting in
four tables: one for each byte of the input word.

Many current high-end microprocessor CPUs allow multiple instructions to
execute at once, if the instructions are sufficiently independent. Note that the op-
erations mentioned above are all highly parallel, allowing very good performance
on such processors. Similarly hardware or FPGA implementations can achieve
high throughput using parallel paths. In the cases where the key is provisioned
into hardware, it is possible for the entire key scheduling process, including the
calculation of these tables, to be done at the time of provisioning. Thus, instead
of 4K bytes of RAM and 1280 bytes of ROM, 4K bytes of ROM is sufficient and
yields a very fast implementation (A further 1024 bytes of ROM is still required
for the multiplication table.)

Lastly, note that there is no accumulation of nonlinear data, nor is the clock-
ing irregular. Therefore, if it is desirable to generate a small amount of keystream
offset in a much larger block, this can be done by “fast forwarding” the LFSR
using polynomial or matrix exponentiation in logarithmic time, rather than the
linear time that would be required to generate and discard the intermediate
output.

Turing provides flexibility of efficient implementation. There are 4 separate
implementations in the source code archive [22]:

– TuringRef.c, an unoptimized reference implementation, which also uses little
RAM. It does not precompute any tables.



– TuringTab.c precomputes the keyed S-boxes when the key is set. It uses 4K
bytes of RAM in addition to the 1280-byte Multab for the LFSR.

– TuringLazy.c is a key-agile implementation, which fills in entries of the S-box
tables only as they are required (lazy evaluation). Thus key and IV setup
are relatively fast, and encryption speed is adequate.

– TuringFast.c uses S-box tables computed at key setup time, and performs
as much computation inline as possible.

Table 1 shows various performance figures. These are measured times on an IBM
laptop with 900MHz mobile Pentium III processor, using Microsoft Visual C++
V6.0, with the optimization options for “Release” build. Comparison times for
Brian Gladman’s (highly optimized) implementation of AES and our implemen-
tation of an RC4 compatible cipher with a bulk encryption interface are also
shown. All figures are for 128-bit keys. We consider RC4’s keying operation to
actually be “IV setup”, and this does not include time to either discard gener-
ated bytes or to hash the key and IV, which would be necessary for security.

6 Security Analysis

In this section, we attempt to justify Turing’s security by reference to the mech-
anisms by which it defeats a variety of known attacks. In this analysis we assume
the attacker has direct access to the stream generator output.

Summary. A keystream generator that exhibits basic statistical biases or de-
tectable characteristics is weak. The LFSR used has well studied statistical prop-
erties that translate directly to the output. Additionally the highly nonlinear,
key-dependent transformation in the core of Turing serves to disguise the inher-
ent linearity of the LFSR output. We have extensively tested output from Turing
using the Crypt-X package [7] and have detected no statistical weaknesses.

Cipher MByte/s cycles/B Key IV setup tables Additional
(cycles) (cycles) (Bytes) RAM (Bytes)

TuringRef 6.04 149.01 477.00 4272.31 2304 68
TuringLazy 26.92 33.43 1802.70 991.80 2304 4164
TuringTab 29.94 30.06 72457.93 900.90 2304 4164
TuringFast 146.95 6.12 72417.12 882.90 2304 4164

arrsyfor 24.00 37.49 0.00 10347.42 0 258
AES enc. 33.53 26.85 239.00 0.00 20480 176

Table 1. Performance figures comparing the speed of various implementations of Tur-
ing against AES and RC4 (arrsyfor).



6.1 Period

The LFSR is clocked five times for each output block, and five is a factor of the
LFSR period, the period of any cycle is (2544− 1)/5 blocks. This corresponds to
the expected period of (2544 − 1) words.

6.2 Guess and Determine Attacks

The choice of feedback positions for the LFSR and output positions to the NLF
is copied to Turing from the SOBER t-class ciphers [13] (the LFSR taps and
NLF taps respectively). The taps were chosen starting with the criteria that the
NLF taps form a “full positive difference set”, so that as words move through
the register and are selected as input to the nonlinear filter function, no pair of
words is used more than once [10]. The combination of taps for the LFSR and
NLF was then mechanically optimized against guess and determine attacks [1,
2, 12]. In addition, the attacks rely upon the fact that the nonlinear function can
be rewritten so that given its output, and (n− 1) of its n inputs, the remaining
input can be determined. Turing’s nonlinear filter function design frustrates this
by (a) being key-dependent, (b) being non-invertible, and (c) requiring a large
amount of output to build a large inversion table. However, the choice of output
positions has proven to frustrate other attacks. It’s worth noting that SOBER-
t32 (and hence the underlying structure of Turing) has been extensively analyzed
for the NESSIE project [19], and it seems that the structure should provide a
minimum complexity exceeding the enumeration of 256-bit keys.

6.3 Analysis of the Non-linear Filter

Coppersmith et. al. have defined a fairly general model [4] for Distinguishing
Attacks against nonlinear filter generators. While there could exist other attacks
on the cipher, it seems that most attacks are likely to reduce to some variation
on this model, so we describe our analysis in terms of this model. The model
assumes that some significant correlation can be identified in the filter function,
and that this correlation will remain usable after outputs have been combined
in such a way as to eliminate the linear part from consideration.

The attack relies on finding a highly-correlated linear relationship between
the LFSR state and some function of the outputs. Courtois [5] recently described
an algebraic attack on LFSR-based stream ciphers exploiting a highly-correlated
Boolean functions of bits of the LFSR state and bits of the key stream. These
functions are called approximations to the NLF. The approximations do not
need to be linear, however the algebraic normal forms of these approximations
do need to be of low order. This analysis of the NLF explains why we believe all
low-order approximations to the NLF will have low correlation, thus resisting
algebraic attacks.

The S-boxes. The XORing of the four outputs of the 8 × 32 S-boxes makes
it likely that approximations require approximating the four individual 8 × 32



S-boxes rather than just one 8×32 S-boxes. The S-boxes in Turing are further de-
signed to limit the correlation of low-order approximations. We are still perform-
ing detailed analysis of typical S-boxes used by Turing, but generally speaking
the nonlinear functions are complex and of high degree and each involve at least
8 intermediate binary variables. The keying of the S-boxes provides significant
protection since an attacker must either consider: (1) average-key correlations-
expected to be negligible; or (2) key specific approximations- although these are
difficult to find without access to the key.

A final comment on the S-boxes. Recall that the accumulated word wi(x)
is highly nonlinear with respect to the input, and highly dependent on the key
material, however the bit positions in it are not likely to be balanced. Each byte
function ti, being a permutation, is by definition balanced. Replacing byte i of
wi(x) with ti(x) forms an output of Si that is balanced in byte i. Thus, when all
the S-box outputs are XORed, the output is balanced in each output bit, and
the distribution of values is uniform for each byte position. However, for a given
key, the distribution of outputs from the whole 32×32 S-box construction is not
uniform. When the key is fixed, the S-box construction appears to be 32 × 32
pseudorandom function.

The 5-PHT. The main advantage using of the 5-PHT is its speed and paral-
lelism, however it is not as good a mixing function as could be desired. There are
linear approximations between the LSBs of the inputs and output that hold with
probability one and many quadratic approximations that hold with probability
one.

A further undesirable characteristic is that if two of the input words A, B,
C, or D are equal, they remain equal after the transformation (e.g. A = B ⇒
TA = TB). The S-boxes operate only on individual words, and so also preserve
this equality. This equality is preserved in the next 5-PHT so the two words in
the nonlinear block are also equal. This undesirable differential characteristic is
addressed by rotating the input to the S-boxes corresponding to TB, TC, and
TD.

6.4 Analysis of the Whitening

While the S-boxes do a good job of masking the linearity of the underlying
LFSR, the distribution of outputs from the 32 × 32 S-box construction (for a
given secret key) is likely to be far from uniform. Thus, over the lifetime of a key,
the distribution of 160-bits outputs from the NLF will be far from uniform. Our
analysis indicates that, for a given key, the NLF is a 160 × 160 pseudorandom
function. The whitening has three effects: first, it makes the outputs uniform;
second, these operations “lock in” the mixing of the last 5-PHT stage, since an
attacker needs to remove the effects of these words before being able to reverse
these mixing rounds; finally, by adding five new words, more than half of the
register state is involved in the filter function.

Unfortunately, the whitening is linear in the LSBs of each word. The lin-
ear nature of the LFSR means that the whitening blocks satisfy bit-wise linear



recurrence relations. The corresponding key stream blocks can be combined to
cancel the LSBs of the whitening and get a linear relationship between the LSBs
of the key stream blocks and the LSBs of the nonlinear blocks.

The choice of LFSR values used in the whitening was based on three criteria:
no LFSR word should be used in the Final Addition Stage of more than one
output block; the taps should be a full positive difference set; and no input to
the final addition stage should be used in the NLF of more than one output block.
The first criteria is the most important. If this first criterion is not satisfied, then
an attacker obtains additional linear relationships between the LSBs of the key
stream blocks and nonlinear blocks. When combined with the linear relationships
discussed in the previous paragraph, the attacker could obtain a solvable system
of equations, and Turing would be broken.

6.5 Analysis of the Key Loading and IV Loading

Key Loading. Related Key Attacks: Related key attacks assume that the at-
tacker can somehow obtain key stream from keys that are closely related to that
key being attacked. Turing’s key loading mechanism exists solely to address this
attack, by ensuring that a change to any single byte of the key will significantly
(and nonlinearly) alter the behaviour of all the S-boxes and also the initial load-
ing of the LFSR. The transformation performed is bijective and publicly known,
so it is easy to create pairs of input keys which are very similar after transfor-
mation. However, finding a key whose transformation is similar to that of an
unknown key appears difficult.

IV Loading. It is well known that key stream generated by a synchronous
stream-cipher should not be re-used, irrespective of the security of the cipher.
Turing has an integrated mechanism to support Initialization Vectors (IVs)
which allows many key streams to be generated from the same shared key.

Related / Chosen Initialization Vector Attacks: Initialization Vectors are of-
ten related (e.g. counters are often used) and might even be chosen by the
attacker. The IV is used to initialize the LFSR, so we have been careful to fill
the LFSR in a highly key-dependent and nonlinear manner. Any change in the
IV first makes a large change in the corresponding word loaded. That word will
cause an unpredictable change in at least one of the fill words, then those changes
will be propagated through the LFSR with the 17-PHT transform. LFSR states
derived from different IVs are less obviously related than states drawn from
different segments of the same output stream.
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Appendix A. Portion of Multiplication Table for Turing

/* Multiplication table for Turing */
unsigned long Multab[256] = {

0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9,
0x97AC41D1, 0x478702B6, 0x7AFAC71F, 0xAAD18478,

...
0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789,
0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658,

};

Appendix B: the Sbox

unsigned char Sbox[256] = {
0x61, 0x51, 0xeb, 0x19, 0xb9, 0x5d, 0x60, 0x38,
0x7c, 0xb2, 0x06, 0x12, 0xc4, 0x5b, 0x16, 0x3b,
0x2b, 0x18, 0x83, 0xb0, 0x7f, 0x75, 0xfa, 0xa0,
0xe9, 0xdd, 0x6d, 0x7a, 0x6b, 0x68, 0x2d, 0x49,
0xb5, 0x1c, 0x90, 0xf7, 0xed, 0x9f, 0xe8, 0xce,
0xae, 0x77, 0xc2, 0x13, 0xfd, 0xcd, 0x3e, 0xcf,
0x37, 0x6a, 0xd4, 0xdb, 0x8e, 0x65, 0x1f, 0x1a,
0x87, 0xcb, 0x40, 0x15, 0x88, 0x0d, 0x35, 0xb3,
0x11, 0x0f, 0xd0, 0x30, 0x48, 0xf9, 0xa8, 0xac,
0x85, 0x27, 0x0e, 0x8a, 0xe0, 0x50, 0x64, 0xa7,
0xcc, 0xe4, 0xf1, 0x98, 0xff, 0xa1, 0x04, 0xda,
0xd5, 0xbc, 0x1b, 0xbb, 0xd1, 0xfe, 0x31, 0xca,
0xba, 0xd9, 0x2e, 0xf3, 0x1d, 0x47, 0x4a, 0x3d,
0x71, 0x4c, 0xab, 0x7d, 0x8d, 0xc7, 0x59, 0xb8,



0xc1, 0x96, 0x1e, 0xfc, 0x44, 0xc8, 0x7b, 0xdc,
0x5c, 0x78, 0x2a, 0x9d, 0xa5, 0xf0, 0x73, 0x22,
0x89, 0x05, 0xf4, 0x07, 0x21, 0x52, 0xa6, 0x28,
0x9a, 0x92, 0x69, 0x8f, 0xc5, 0xc3, 0xf5, 0xe1,
0xde, 0xec, 0x09, 0xf2, 0xd3, 0xaf, 0x34, 0x23,
0xaa, 0xdf, 0x7e, 0x82, 0x29, 0xc0, 0x24, 0x14,
0x03, 0x32, 0x4e, 0x39, 0x6f, 0xc6, 0xb1, 0x9b,
0xea, 0x72, 0x79, 0x41, 0xd8, 0x26, 0x6c, 0x5e,
0x2c, 0xb4, 0xa2, 0x53, 0x57, 0xe2, 0x9c, 0x86,
0x54, 0x95, 0xb6, 0x80, 0x8c, 0x36, 0x67, 0xbd,
0x08, 0x93, 0x2f, 0x99, 0x5a, 0xf8, 0x3a, 0xd7,
0x56, 0x84, 0xd2, 0x01, 0xf6, 0x66, 0x4d, 0x55,
0x8b, 0x0c, 0x0b, 0x46, 0xb7, 0x3c, 0x45, 0x91,
0xa4, 0xe3, 0x70, 0xd6, 0xfb, 0xe6, 0x10, 0xa9,
0xc9, 0x00, 0x9e, 0xe7, 0x4f, 0x76, 0x25, 0x3f,
0x5f, 0xa3, 0x33, 0x20, 0x02, 0xef, 0x62, 0x74,
0xee, 0x17, 0x81, 0x42, 0x58, 0x0a, 0x4b, 0x63,
0xe5, 0xbe, 0x6e, 0xad, 0xbf, 0x43, 0x94, 0x97,

};

Appendix C: The Qbox

WORD Qbox[256] = {
0x1faa1887, 0x4e5e435c, 0x9165c042, 0x250e6ef4,
0x5957ee20, 0xd484fed3, 0xa666c502, 0x7e54e8ae,
0xd12ee9d9, 0xfc1f38d4, 0x49829b5d, 0x1b5cdf3c,
0x74864249, 0xda2e3963, 0x28f4429f, 0xc8432c35,
0x4af40325, 0x9fc0dd70, 0xd8973ded, 0x1a02dc5e,
0xcd175b42, 0xf10012bf, 0x6694d78c, 0xacaab26b,
0x4ec11b9a, 0x3f168146, 0xc0ea8ec5, 0xb38ac28f,
0x1fed5c0f, 0xaab4101c, 0xea2db082, 0x470929e1,
0xe71843de, 0x508299fc, 0xe72fbc4b, 0x2e3915dd,
0x9fa803fa, 0x9546b2de, 0x3c233342, 0x0fcee7c3,
0x24d607ef, 0x8f97ebab, 0xf37f859b, 0xcd1f2e2f,
0xc25b71da, 0x75e2269a, 0x1e39c3d1, 0xeda56b36,
0xf8c9def2, 0x46c9fc5f, 0x1827b3a3, 0x70a56ddf,
0x0d25b510, 0x000f85a7, 0xb2e82e71, 0x68cb8816,
0x8f951e2a, 0x72f5f6af, 0xe4cbc2b3, 0xd34ff55d,
0x2e6b6214, 0x220b83e3, 0xd39ea6f5, 0x6fe041af,
0x6b2f1f17, 0xad3b99ee, 0x16a65ec0, 0x757016c6,
0xba7709a4, 0xb0326e01, 0xf4b280d9, 0x4bfb1418,
0xd6aff227, 0xfd548203, 0xf56b9d96, 0x6717a8c0,
0x00d5bf6e, 0x10ee7888, 0xedfcfe64, 0x1ba193cd,
0x4b0d0184, 0x89ae4930, 0x1c014f36, 0x82a87088,
0x5ead6c2a, 0xef22c678, 0x31204de7, 0xc9c2e759,



0xd200248e, 0x303b446b, 0xb00d9fc2, 0x9914a895,
0x906cc3a1, 0x54fef170, 0x34c19155, 0xe27b8a66,
0x131b5e69, 0xc3a8623e, 0x27bdfa35, 0x97f068cc,
0xca3a6acd, 0x4b55e936, 0x86602db9, 0x51df13c1,
0x390bb16d, 0x5a80b83c, 0x22b23763, 0x39d8a911,
0x2cb6bc13, 0xbf5579d7, 0x6c5c2fa8, 0xa8f4196e,
0xbcdb5476, 0x6864a866, 0x416e16ad, 0x897fc515,
0x956feb3c, 0xf6c8a306, 0x216799d9, 0x171a9133,
0x6c2466dd, 0x75eb5dcd, 0xdf118f50, 0xe4afb226,
0x26b9cef3, 0xadb36189, 0x8a7a19b1, 0xe2c73084,
0xf77ded5c, 0x8b8bc58f, 0x06dde421, 0xb41e47fb,
0xb1cc715e, 0x68c0ff99, 0x5d122f0f, 0xa4d25184,
0x097a5e6c, 0x0cbf18bc, 0xc2d7c6e0, 0x8bb7e420,
0xa11f523f, 0x35d9b8a2, 0x03da1a6b, 0x06888c02,
0x7dd1e354, 0x6bba7d79, 0x32cc7753, 0xe52d9655,
0xa9829da1, 0x301590a7, 0x9bc1c149, 0x13537f1c,
0xd3779b69, 0x2d71f2b7, 0x183c58fa, 0xacdc4418,
0x8d8c8c76, 0x2620d9f0, 0x71a80d4d, 0x7a74c473,
0x449410e9, 0xa20e4211, 0xf9c8082b, 0x0a6b334a,
0xb5f68ed2, 0x8243cc1b, 0x453c0ff3, 0x9be564a0,
0x4ff55a4f, 0x8740f8e7, 0xcca7f15f, 0xe300fe21,
0x786d37d6, 0xdfd506f1, 0x8ee00973, 0x17bbde36,
0x7a670fa8, 0x5c31ab9e, 0xd4dab618, 0xcc1f52f5,
0xe358eb4f, 0x19b9e343, 0x3a8d77dd, 0xcdb93da6,
0x140fd52d, 0x395412f8, 0x2ba63360, 0x37e53ad0,
0x80700f1c, 0x7624ed0b, 0x703dc1ec, 0xb7366795,
0xd6549d15, 0x66ce46d7, 0xd17abe76, 0xa448e0a0,
0x28f07c02, 0xc31249b7, 0x6e9ed6ba, 0xeaa47f78,
0xbbcfffbd, 0xc507ca84, 0xe965f4da, 0x8e9f35da,
0x6ad2aa44, 0x577452ac, 0xb5d674a7, 0x5461a46a,
0x6763152a, 0x9c12b7aa, 0x12615927, 0x7b4fb118,
0xc351758d, 0x7e81687b, 0x5f52f0b3, 0x2d4254ed,
0xd4c77271, 0x0431acab, 0xbef94aec, 0xfee994cd,
0x9c4d9e81, 0xed623730, 0xcf8a21e8, 0x51917f0b,
0xa7a9b5d6, 0xb297adf8, 0xeed30431, 0x68cac921,
0xf1b35d46, 0x7a430a36, 0x51194022, 0x9abca65e,
0x85ec70ba, 0x39aea8cc, 0x737bae8b, 0x582924d5,
0x03098a5a, 0x92396b81, 0x18de2522, 0x745c1cb8,
0xa1b8fe1d, 0x5db3c697, 0x29164f83, 0x97c16376,
0x8419224c, 0x21203b35, 0x833ac0fe, 0xd966a19a,
0xaaf0b24f, 0x40fda998, 0xe7d52d71, 0x390896a8,
0xcee6053f, 0xd0b0d300, 0xff99cbcc, 0x065e3d40,

};



Appendix D: The Binary Equivalent Polynomial p1

The Turing LFSR is equivalent to 32 parallel binary LFSRs with a charac-
teristic polynomial (shown in binary, with the first bit being the constant term
and increasing exponent):

1000000000000000010101010101011101110111011000110110001111100011
0110011010110011100100011110010111110011110110011110011001001100
0011110001101011011111010101110010001001111001110111101001110111
0101111001000000000101100001001011101101111110100000111010000111
1000111101011100001110000001000000101111110100011100000000101011
0111011100100011110000101111111010110011101100011111000110010100
1010111101011111110000011110111101110010001100000010110111000010
1000101111000111111100001010100111100001110011110111100010100000
001000011100000000001000100000001

That is, p1(x) = 1 + x17 + x19 + x21 + x23 + x25 + x27 + x29 + x30 + · · ·+ x520 +
x521 + x532 + x536 + x544. This polynomial has 273 nonzero terms.


