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Abstract

NTRU([3]) is an efficient public-key cryptosystem proposed by Hoff-
stein, Pipher, and Silverman. In [4], some modifications were made to
the original scheme to make the system even faster. We give three chosen-
ciphertext attacks on the un-padded version of this optimized NTRU cryp-
tosystem. Any one of the three attacks will recover the private key with
just a few queries to the decryption machine.

1 Introduction

In the work [3], Hoffstein, Pipher, and Silverman presented a new public-key
cryptosystem named NTRU. Security of the NTRU cryptosystem comes from
the interaction of polynomial mixing systems and the independence of reduction
modulo two numbers p and q. Efficiency of this system is one of its biggest
merits, and the system is being considered by organizations for standards([1, 6]).

The NTRU cryptosystem depends on several parameters and in the original
work, the value p = 3 was suggested. With this choice, the message space is
defined by polynomials with coefficients in the set {−1, 0, 1}. This certainly is
not friendly to computer systems, which are binary in nature. Hence, in [4], it
was suggest that p = x+ 2 be used. The message space now consists of binary
polynomials. Special form for the private key was also introduced. It is set to
be

f = 1 + p ∗ F.

It removes the need for an inversion calculation during key setup and also
simplifies the decryption process. We shall call this the optimized NTRU cryp-
tosystem.

While there are many reports on the security of the original NTRU cryp-
tosystem, the optimized NTRU system has not gone through much analysis. It
is generally believed that the security of the optimized NTRU cryptosystem is
equivalent to the original one. We show in this paper that without padding,
the optimized NTRU system is much weaker than the original system from
the viewpoint of chosen-ciphertext attacks. The optimizations, especially, the
choice of special forms for the private key, has introduced new weakness into
the NTRU cryptosystem.

In practice, the polynomial F, used in defining the private key f , is also set
to be of special form. It is taken to be either
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1. a binary polynomial, or

2. of the form a ∗ b + c, where a, b, and c are sparse binary polynomials.

It is even suggested in [4] that polynomial satisfying both conditions be used
for F.

We present three chosen-ciphertext attacks in this paper. Under realistic
values of various parameters, our first two attacks will recover the private key
up to one of a few candidates, if F is binary. At most 4 (usually just 2) trial
texts will be needed for the first attack and the second attack makes just one
query to the decryption machine. The two attacks are still applicable when F

is not binary, although with smaller strength.
The third attack is the strongest of our three attacks. Under normal con-

ditions, it uses just one query to the decryption machine and completely deter-
mines the private key. It does not depend on the form of F.

The paper is organized as follows. Section 2 describes the un-padded version
of optimized NTRU cryptosystem. This will set the grounds of our attack.
Section 3, 4, and 5 explains the three chosen-ciphertext attacks. The last section
closes the paper with some comments.

2 Description of the NTRU cryptosystem

Review of the NTRU cryptosystem is given in this section. We mostly follow [1,
4] ignoring the padding part.

Let N be an odd prime. We will be working over the ringR = Z[x]/(xN−1).
The ring R is identified with the set of integer polynomials of degree less than
N . Multiplication in R is denoted by ∗. We set p = x+2 ∈ R and fix a positive
integer q relatively prime to p.

2.1 Key generation

The private key
f = 1 + p ∗ F ∈ R (1)

is chosen so that it is invertible modulo q. The inverse will be denoted by fq so
that

f ∗ fq ≡ 1 (mod q). (2)

The polynomial F, used in defining the private key f is either

1. a binary polynomial with dF -many nonzero coefficients, or

2. of the form F1 ∗F2 +F3 with each Fi a binary polynomial with dFi
-many

nonzero coefficients.

The values dF and dFi
are predefined public values. We shall name the first

case binary-F, and call the second one LHW-F(low Hamming weight).
Another random binary polynomial g with dg coefficients equal to 1 is cho-

sen, and the public key is set to

h = p ∗ fq ∗ g (mod q). (3)
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N q dF dF1
dF2

dF3
dg dr

251 128 72 8 8 8 72 72
347 128 64 7 8 8 173 64
503 256 420 20 20 20 251 170

Table 1: Realistic parameter values

Realistic values for various parameters are given in Table 1([1]). Notice that
dF = dF1

· dF2
+ dF3

in all cases.

2.2 Encryption

To encrypt a binary message m ∈ R, a random binary polynomial r ∈ R is
chosen with dr coefficients equal to 1. The value

e = r ∗ h + m (mod q) (4)

is calculated to be the ciphertext.

2.3 Decryption

To explain the decryption process, we first need to explain the notion of taking
residue modulo p. Given a polynomial f(x) ∈ R, there (almost) always exists
a unique binary polynomial g(x) ∈ R satisfying

f(−2) ≡ g(−2) (mod 2N + 1).

We denote by Modp(f(x)), this unique binary polynomial. There is one excep-

tion to the existence of such a binary polynomial, which is when f(−2) = 2N+1+2
3

(mod 2N +1). In this case, we take Modp(f(x)) = 2+x2 +x4 + · · ·+xN−1. In
short, the operator Modp chooses a specific representative of a given polynomial
modulo p.

We also define the operator ModAq for any real number A. Given n in either

Zq or Z, the value ModAq (n) will be the unique integer congruent to n modulo

q, contained in the interval (A − q
2 ,A + q

2 ]. The operator ModAq will also be
applied to polynomials with coefficients in Zq or Z.

Given a ciphertext e, the decryption process is done as follows.

1. I ← Mod
N
2
q (e(1)− r(1) · h(1)).

2. A ← 1
N
(p(1) · r(1) · g(1) + I · f(1)).

3. a← ModAq (f ∗ e).

4. Output Modp(a).

We refer the readers to [9] for explanation on why this works.

Remark 2.1. Since r(1) = dr, g(1) = dg, and f(1) = 1+3 · dF , the values I and
A may be calculated from just e and public values.
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Remark 2.2. The value I is calculated as

I = Mod
N
2
q

(

fq(1) · (a(1)− p(1) · r(1) · g(1))
)

in [1, 6, 10]. This may seem different from what is done in step 1. Furthermore,
in this form, knowledge of the secrete information fq also seems to be required.
But both are calculating the same value m(1), assuming that it is close to N

2 .

3 Attack exploiting modulo q reduction

The chosen-ciphertext attacks on NTRU presented up to now ([2, 5, 7]) has
focused on the wrapping behavior of the modulo q reduction process done during
decryption. We apply this idea to the p = x+2 case, but our method is different
from previous methods in two aspects. First is that, in our method, the choice
of ciphertext does not depend on previous queries to the decryption machine.
The second point is that our attack is no longer a reaction attack. We do need
to see the decrypted output of our chosen ciphertext.

The ciphertexts to be inserted in the decryption machine are determined
for each public key through pre-computations. The number of queries to the
decryption machine needed is less than twice the size of the coefficient set for
f . If the coefficient set for f is small, the number of queries needed could be
much smaller. We shall determine f completely.

Remark 3.1. Reaction attacks still seem to be applicable to the un-padded
optimized NTRU cryptosystem. No new idea is needed in doing this, but the
process does become much more complicated. We shall not deal with it here.

3.1 The attack

We shall explain the chosen-ciphertext attack with a concrete example. Take
the value N = 251 and q = 128 from Table 1 and assume that the coefficient
set of f is {0, 1, 2}. Application of this method to bigger coefficient set will be
straightforward. We propose to run the constant polynomial e = e (for some
0 ≤ e < q) through the decryption machine. As stated by Remark 2.1, given e

and a specific public key h, anybody may find the value A. Let us fix a public
key h and write A(e) to denote the value A corresponding to the constant
polynomial e = e.

For the parameter values given in the N = 251 row of Table 1 we can
calculate

f(1) = 1 + (1 + 2) · F(1) = 1 + 3 · dF = 217,

fq(1) ≡ f(1)−1 ≡ 105 (mod q),

r(1) · h(1) ≡ dr · 3 · fq(1) · dg ≡ 64 (mod q).

With this, we can find the I and A values for various e = e. Gather terms of
the private key f according to their coefficients and write

f = 0 · f0 + 1 · f1 + 2 · f2. (5)
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The coefficients of f ∗ e will belong to the set {0, e, 2e}. Below, we have drawn
their position relative to A(e) for some chosen e values.
• e = 24, A(e) ; 138.04

0 128 256

0 e 2e

↓ ↓ ↓

A − 3q

2
A− q

2
A A+ q

2

↑ ↑ ↑ ↑

• e = 63, A(e) ; 171.76

0 128 256

0 e 2e

↓ ↓ ↓

A − 3q

2
A− q

2
A A+ q

2

↑ ↑ ↑ ↑

• e = 105, A(e) ; 208.07

0 128 256

0 e 2e

↓ ↓ ↓

A − 3q

2
A− q

2
A A+ q

2

↑ ↑ ↑ ↑

Let us fix e = 63 and follow through the decryption steps with the help of
the above drawing.

a(e) = ModA(e)
q (f ∗ e)

= ModA(e)
q (0 · f0 + e · f1 + 2e · f2)

= (0 + q) · f0 + (e + q) · f1 + 2e · f2

= e · f + q · (f0 + f1).

Let us do this once more with e′ = 105.

a(e′) = ModA(e′)
q (f ∗ e′)

= ModA(e′)
q (0 · f0 + e′ · f1 + 2e′ · f2)

= (0 + 2q) · f0 + (e′ + q) · f1 + 2e′ · f2

= e′ · f + q · (2f0 + f1).

We may observe that the difference of the outputs from the decryption machine
satisfies

D(e, e′) := Modp(a(e))−Modp(a(e
′))

≡ a(e)− a(e′) (mod p)

= (e− e′) · f − q · f0

= (e− e′) · (1 + p · F)− q · f0

≡ (e− e′)− q · f0 (mod p).
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Denote the modulo p inverse of q by qp so that qp · q ≡ 1 (mod p). We may
now obtain

Modp

(

− qp ·
(

D(e, e′)− (e− e′)
))

= Modp

(

qp · q · f0
)

= Modp(f0) = f0.

We stress that all three equalities above are true equalities in the ring R. They
are stronger than just modulo p equivalence relations. The last equality follows
since f0 is a binary polynomial. We have found all terms of f having coefficients
equal to 0 with just two queries to the decryption machine.

The above argument obtained f0 because the value 0 crossed over the value
A − 3q

2 as we changed e to e′ and since neither e nor 2e went over any ModAq
operation boundary. If we work with e = 24 and e′ = 63, we can similarly
obtain f2. The remaining terms will now have coefficient equal to 1 and we
have found the private key f with just three queries to the decryption machine.

Remark 3.2. In the above calculations, we’ve used the fact f ≡ 1 (mod p).
Hence this attack is not applicable to the original NTRU cryptosystem.

3.2 Feasibility of attack

We shall use the notation

dc(n,A) =
1

q
(n−ModAq (n)) (6)

for any integer n and centering value A. An equivalent definition would be

ModAq (n) = n− q · dc(n,A).

It measures how far n is from the representative interval. When the value A is
clear from context, dc(n) will be used.

Let the coefficient set of f be {0, 1, . . . , t}. To argue that the previous section
is a meaningful attack on un-padded version of optimized NTRU, it remains
to consider how likely it is to find an (e, e′) pair with dc(i · e,A(i · e)) and
dc(i · e′,A(i · e′)) differing at just one 0 ≤ i ≤ t. We have no proof that enough
such pairs may always be found, but will give an informal argument showing
that this is highly possible. Also, a complete solution for the N = 251 case is
provided in the Appendices as an example.

Examine what happens to the dc-values when we increase e by just 1. If
we study the procedure for calculating A(e), we find that setting e ← e + 1
increases A(e), in most cases (exception occurs when I goes over the modulo

q boundary), by f(1)
N

. For the parameter values given in Table 1, this value is
roughly 0.86 (N = 251), 0.56 (N = 347), and 2.51 (N = 503) for each case. Of
course, setting e← e + 1 increase i · e by the amount i. We want to point out
that not all t + 1 of these values i can be close to f(1)

N
at the same time.

The second point we want to make is that, as we change e from 0 to q − 1,
the values i · e all start as being equal to 0 and end up spreading out over an
interval of length t · q. So the t+1 dc-values will start out as the same and end
up as different.
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These two points convince us that not all of the dc-values can stay constant
over the change of e from 0 to q − 1.

Finally, we want to call to attention one more point. Since the distance
between i · e and (i + 1) · e is less than q, if e is big enough, it is almost
impossible (again, the same exception apply) for two adjacent dc-values to
change simultaneously, as we increase e by 1. Non-adjacent dc-values have a
better chance of changing simultaneously, but since they have to be apart by a
multiple of q for this to happen, this is not too frequent.

If this does not convince the reader, we can just roughly say that we have
about q equations in hand to solve for t + 1 variables.

For the case N = 251, we have given a table of dc-values in Appendix A.
As we have already seen, for the parameter values given in the first row of
Table 1, we have r(1)h(1) = 64. Notice that the maximum possible value for the
coefficient of f , in either the binary-F or the LHW-F case, is 28 = 3 · (8+1)+1.
So, for each e = 0, 1, . . . , q − 1, we’ve listed the values dc(i · e,A(i · e)) for
i = 0, 1, . . . , 28.

In Appendix B, we used these values to give an explicit instruction for
determining the private key f completely with 52 queries to the decryption
machine. In practice, we do not expect f to contain coefficients as large as 28.
So the process would be a lot shorter.

If the coefficient set of f is just {0, 1, 2, 3}, which is highly probable in the
binary-F case, Appendix C explains how one could obtain f completely with
just one or two queries to the decryption machine.

4 Attack using pq

In this section, we assume the private key is given by a binary-F. We present a
chosen-ciphertext attack which makes one query to the decryption machine and
recovers the private key completely. Remarks on implications of this method
on the LHW-F case is given at the end of this section.

Let us denote the modulo q inverse of p by pq, so that

pq ∗ p ≡ 1 (mod q).

If q = 2k, we may specifically set

pq =
k
∑

i=1

(−2)i−1xN−i (mod q). (7)

4.1 Simple case

If we insert pq into the decryption machine, it will calculate

a = Mod
A(pq)
q (f ∗ pq)

= ModAq
(

(1 + p ∗ F) ∗ pq

)

= ModAq (pq + F).
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Since all the coefficients of F are either 0 or 1, with high probability, we will
have

a = ModAq (pq) + F. (8)

Assume for the moment that this is true. Then, we have

Modp(a)−ModAq (pq) ≡ a−ModAq (pq) ≡ F (mod p).

Notice that the first term on the left is the output of the decryption machine,
and that the second term on the left may readily be computed. Hence we may
obtain

Modp

(

Modp(a)−ModAq (pq)
)

= Modp(F) = F.

The second equality holds, since F is a binary polynomial. We have obtained
the private key f = 1 + p ∗ F with just one query.

Remark 4.1. This attack obviously relies on the form of the private key f =
1+p ∗F. Hence this attack may not be applied to the original NTRU scheme.

It remains to justify equation (8). For parameters given in Table 1, we have
calculated various values.

N f(1) fq(1) r(1)h(1) pq(1) I(pq) A(pq)

251 217 105 64 43 107 154.47
347 193 65 64 43 235 226.43
503 1261 229 242 171 185 718.28

Some of these values are defined only up to modulo q. Now, using equation (7)
and this table, we list all coefficients (including the one corresponding to zero)
of ModAq (pq) in the following table. We’ve also written down the lower and
upper boundaries (LB,UB) of the representative interval. Last column contains
the distance between UB and the coefficient maximum.

N LB coefficients UB headroom

251 91 129, 126, 132, 120, 144, 96, 192, 128 218 26
347 163 257, 254, 260, 248, 272, 224, 192, 256 290 18
503 591 769, 766, 772, 760, 784, 736, 832, 640, 768 846 14

So at least, for the parameter values given in Table 1, equation (8) is always
satisfied.

4.2 Wrapping case

Assumption of the previous subsection, namely, equation (8), fails if and only
if

1. some coefficient c of Mod
A(pq)
q (pq) satisfies c ≤ A(pq) +

q
2 < c + 1,

2. and the corresponding coefficient of F is equal to 1.

Since we know the exact polynomial ModAq (pq), we know which coefficients
satisfy the first of the above conditions. Suppose some coefficient ci of the
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xi term in ModAq (pq) satisfies both conditions. Suppose further that such a
coefficient is unique. Then

a = ModAq (pq + F)

= ModAq (pq)− qxi + F.

And the output of the decryption machine satisfies

Modp(a) ≡ ModAq (pq)− qxi + F (mod p).

As before, we may obtain the private key by computing

Modp

(

Modp(a)−ModAq (pq) + qxi
)

= Modp(F) = F.

In conclusion, if pq contains t-many coefficients satisfying the above condi-
tion 1, with just one query to the decryption machine, we may find 2t candidates
for F, one of which corresponds to the true private key f = 1 + p ∗ F.

Remark 4.2. If q = 2k, we know from equation (7) that all of the coefficients of
pq are distinct modulo q. (Read next remark to see why this isn’t strictly true.)
Hence there can be at most one coefficient satisfying the first of the above two
conditions.

Remark 4.3. In the q = 2k case, if it happens that some coefficient c ≡ 0
(mod q) satisfies the first condition, application of this method is not feasible.
But with some modifications we could use −pq or even 2pq in a similar attack.

4.3 LHW-F with small coefficients

We consider application of the above method to LHW-F case. The attack on
this case is not as strong as the above, but is still meaningful.

Suppose that the coefficients of F belong to the set {0, 1, . . . , `}. For
the parameter values given in Table 1 and LHW-F, we may take ` to be
min(dF1

, dF2
) + 1 = 9, 8, 21 for N equal to 251, 347, 503, respectively. Then we

should start by checking for coefficients c of Mod
A(pq)
q (pq) satisfying

c ≤ A(pq) +
q

2
< c + `.

For the case q = 2k, we’ve seen that the coefficients of pq are relatively far
apart from each other, so that for small `, the number of such coefficients will
be small. Actually, referring to the headroom column of the above table, we
see that this is wholly impossible for the N = 251 case (9 ≤ 26) and N = 347
case (8 ≤ 28). For N = 503 case, we only need to worry about the possibility
of F coefficient corresponding to the 832 · xN−7 term of pq being greater than
14. This should be rare enough.

In any case, we can obtain a small number of candidates for Modp(F), one
of which is a correct value. We have not obtained the private key itself, but
know F up to modulo p.

We shall now restrict to the case N = 251 with LHW-F. We have

F = F1 ∗ F2 + F3 (9)
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with each Fi having dFi
= 8 coefficients equal to 1. We shall provide two lines

of thought for this case.
The first is somewhat artificial. For LHW-F, there is a non-dismissible

possibility of it satisfying the following two conditions.

1. The coefficients of F belong to the set {0, 1, 2}.

2. If the term 2xi appears in F, the xi+1 and xi+2 terms are zero.

We shall continue under this assumption. It is clear that

2 · xi + 0 · xi+1 + 0 · xi+2 ≡ 0 · xi + xi+1 + xx+2 (mod p).

Hence for every occurrence of consecutive coefficients (0, 1, 1) in Modp(F), the
corresponding coefficients of F could either have been (0, 1, 1) or (2, 0, 0). It is
clear that these two cases cover the whole possibility. So if there are t occurrence
of (0, 1, 1) in F, we obtain 2t candidates for F, one of which is the true value
under the above two assumptions. The number t will usually be small. Of
course, we could relax the two condition and find a bigger set of candidates
which would contain F with a higher probability.

The second idea is to do an (almost) exhaustive search. The number of F

of the form (9) is about
N · (NC7)

2 · NC8.

But now, we may just run F1 and F2 through all possible binary polynomials
with dF1

= dF2
= 8 nonzero terms, and use the Modp(F) value to find the

uniquely corresponding F3. Probability of the obtained F3 having dF1
= 8

coefficients equal to 1 is about p(1)/N and this reduces the size of key space to
just

N · (NC7)
2 ·

p(1)

N
= 3 · (NC7)

2.

While this is not a feasible attack, it is still a huge improvement over an ex-
haustive search.

5 Attack using the public key h

This section contains the simplest, and perhaps, the strongest of our attacks
on un-padded NTRU. Using just one query to the decryption machine, we shall
obtain completely, the binary polynomial g used in defining the public key, with
probability (q − 1)/q. Since the public key is given by h = p ∗ fq ∗ g, this is
(almost) equivalent to having obtained the private key f .

As before, let pq be the modulo q inverse of p. We run e = pq ∗ h through
the decryption machine. The output of the machine will be

Modp ModAq (f ∗ e) = Modp ModAq (f ∗ pq ∗ p ∗ fq ∗ g)

= Modp ModAq (g).

Recall the notation (6). With probability (q − 1)/q, we can expect to have
dc(0) = dc(1). For the parameter values of Table 1, we may easily check that
they are equal.
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N I(pq ∗ h) A(pq ∗ h) LB UB dc(0) dc(1)

251 72 124.21 61 188 -1 -1
347 173 191.95 128 255 -1 -1
503 149 628.03 501 756 -2 -2

Assume dc(0) = dc(1) and let d denote the common value. Set

S(x) = 1 + x + · · ·+ xN−1.

Then, we may write
ModAq (g) = g − d · q · S(x).

Hence

Modp

(

ModAq (f ∗ e)
)

+ d · q · S(x) ≡ ModAq (g) + d · q · S(x) ≡ g (mod p)

and we may obtain

Modp

(

Modp

(

ModAq (f ∗ e)
)

+ d · q · S(x)
)

= g

from just one query to the decryption machine. The value

f ∗ h ≡ f ∗ p ∗ fq ∗ g ≡ p ∗ g (mod q)

is in our hands. Now, if h is invertible modulo q, or equivalently, if g is invertible
module q, we can obtain f modulo q. We know the form of f , so can find f

exactly. Furthermore, the random binary polynomial g is invertible with a very
high probability. Even if it is not, we still have the possibility of using a pseudo
inverse of h to obtain f .

Remark 5.1. Attack presented in this section cannot be applied to the original
NTRU scheme. Fundamentally, this attack is only possible because we have
chosen f to satisfy fp = 1

Remark 5.2. In the case dc(0) 6= dc(1), we may use −pq ∗h in a similar attack.
Again, we have about 1/q chance of encountering the same problem.

Remark 5.3. Suppose dc(0) 6= dc(1), or equivalently, dc(0) + 1 = dc(1). We
may write g = 0 · g0 + 1 · g1 with S(x) = g0 + g1. Then

Modp

(

ModAq (g)
)

+ q · dc(0) · S(x)

≡ g − q · dc(0) · g0 − q · dc(1) · g1 + q · dc(0) · (g0 + g1) (mod p)

= 0 · g0 + (1− q) · g1

= (1− q) · (0 · g0 + 1 · g1) = (1− q) · g.

Hence, if 1− q is invertible modulo p in R, we may find g. This is true for the
values N = 251 with q = 128 and N = 347 with q = 128.
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6 Conclusion

We’ve seen three chosen-ciphertext attacks on the un-padded version of opti-

mized NTRU cryptosystem. The first of these, given in Section 3, uses the
wrapping idea of previous reaction attacks. Other two attacks presented here,
given in Section 4 and Section 5, are new. Using practical values of various pa-
rameters, in many cases, we could obtain the private key with just one query to
the decryption machine. Since chosen-ciphertext attacks are realistic in some
situations, for example, with smart cards, optimized NTRU should never be
used without padding.

All three attacks presented depend on the private key being of the form

f = 1 + p ∗ F.

None of these attacks are applicable to the original NTRU cryptosystem. So,
while the choice of such a private key does make the NTRU cryptosystem more
efficient, it also greatly weakens the system. This weakness fundamentally
originates from having made the modulo p inverse of f equal to 1. Hence,
without abandoning the central idea used in the optimization, the scheme itself
cannot be re-strengthened to the previous level.

However, we believe any reasonable padding scheme will provide the opti-
mized NTRU cryptosystem protection from our attacks. Of course, with explicit
hash functions chosen to be used in the padding schemes, the story could be
different. This part still remains to be considered.
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Appendix A

We have used N = 251, q = 128, and dF = dg = dr = 72 in the following.
We list A(i · e) and values dc(i · e,A(i · e)) for each i = 0, 1, . . . , 28 and e =
0, 1, . . . , q − 1.

N = 251, q = 128, r(1)h(1) = 64

e A(e) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0, 117.29, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1, 118.16, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2, 119.02, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
3, 119.88, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
4, 120.75, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5, 121.61, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6, 122.48, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7, 123.34, -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
8, 124.21, -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9, 125.07, -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

10, 125.94, -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
11, 126.80, -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12, 127.67, -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2
13, 128.53, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2
14, 129.39, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
15, 130.26, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
16, 131.12, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
17, 131.99, -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3
18, 132.85, -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3
19, 133.72, -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3
20, 134.58, -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
21, 135.45, -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4
22, 136.31, -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4
23, 137.18, -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4
24, 138.04, -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4
25, 138.90, -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
26, 139.77, -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5
27, 140.63, -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5
28, 141.50, -1 -1 -1 0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5
29, 142.36, -1 -1 -1 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5
30, 143.23, -1 -1 -1 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5
31, 144.09, -1 -1 -1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6
32, 144.96, -1 -1 -1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6
33, 145.82, -1 -1 -1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6
34, 146.69, -1 -1 -1 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
35, 147.55, -1 -1 -1 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7
36, 148.41, -1 -1 -1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6 7
37, 149.28, -1 -1 -1 0 0 0 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7
38, 150.14, -1 -1 -1 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 7
39, 151.01, -1 -1 -1 0 0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7
40, 151.87, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 7 8
41, 152.74, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 8
42, 153.60, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8
43, 154.47, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7 7 7 8 8 8
44, 155.33, -1 -1 -1 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8
45, 156.20, -1 -1 -1 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8 8 9
46, 157.06, -1 -1 -1 0 0 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9
47, 157.92, -1 -1 0 0 0 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 6 7 7 8 8 8 9 9
48, 158.79, -1 -1 0 0 0 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 9 9 9
49, 159.65, -1 -1 0 0 0 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9
50, 160.52, -1 -1 0 0 0 1 1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7 7 8 8 9 9 9 10
51, 161.38, -1 -1 0 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 10
52, 162.25, -1 -1 0 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 10 10
53, 163.11, -1 -1 0 0 0 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 7 7 8 8 9 9 9 10 10
54, 163.98, -1 -1 0 0 0 1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7 8 8 8 9 9 10 10 11
55, 164.84, -1 -1 0 0 0 1 1 2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 9 10 10 11
56, 165.71, -1 -1 0 0 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 11 11
57, 166.57, -1 -1 0 0 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 8 8 8 9 9 10 10 11 11
58, 167.43, -1 -1 0 0 1 1 1 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 9 9 10 10 10 11 11
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59, 168.30, -1 -1 0 0 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 11 11 12
60, 169.16, -1 -1 0 0 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 12
61, 170.03, -1 -1 0 0 1 1 2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12
62, 170.89, -1 -1 0 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12
63, 171.76, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 12 12
64, 172.62, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
65, 173.49, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
66, 174.35, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 12 13 13
67, 175.22, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 11 12 12 13 13
68, 176.08, -1 -1 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13
69, 176.94, -1 -1 0 0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 12 13 13 14
70, 177.81, -1 -1 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 11 12 12 13 13 14
71, 178.67, -1 -1 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 11 12 12 13 14 14
72, 179.54, -1 -1 0 0 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 12 12 13 13 14 14
73, 180.40, -1 -1 0 0 1 1 2 3 3 4 4 5 5 6 7 7 8 8 9 9 10 11 11 12 12 13 13 14 15
74, 181.27, -1 -1 0 0 1 1 2 3 3 4 4 5 6 6 7 7 8 8 9 10 10 11 11 12 12 13 14 14 15
75, 182.13, -1 -1 0 0 1 2 2 3 3 4 4 5 6 6 7 7 8 9 9 10 10 11 11 12 13 13 14 14 15
76, 183.00, -1 -1 0 0 1 2 2 3 3 4 5 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15
77, 183.86, -1 -1 0 0 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 12 13 14 14 15 15
78, 184.73, -1 -1 0 0 1 2 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 11 12 13 13 14 14 15 16
79, 185.59, -1 -1 0 0 1 2 2 3 3 4 5 5 6 7 7 8 8 9 10 10 11 12 12 13 13 14 15 15 16
80, 186.45, -1 -1 0 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 12 13 14 14 15 15 16
81, 187.32, -1 -1 0 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16
82, 188.18, -1 -1 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 13 13 14 15 15 16 16
83, 189.05, -1 -1 0 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 12 13 13 14 15 15 16 17
84, 189.91, -1 -1 0 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12 12 13 14 14 15 16 16 17
85, 190.78, -1 -1 0 1 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12 12 13 14 14 15 16 16 17
86, 191.64, -1 -1 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13 14 15 15 16 17 17
87, 192.51, -2 -1 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13 14 15 15 16 17 18
88, 193.37, -2 -1 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 12 12 13 14 14 15 16 16 17 18
89, 194.24, -2 -1 0 1 1 2 3 3 4 5 5 6 7 8 8 9 10 10 11 12 12 13 14 14 15 16 17 17 18
90, 195.10, -2 -1 0 1 1 2 3 3 4 5 6 6 7 8 8 9 10 10 11 12 13 13 14 15 15 16 17 17 18
91, 195.96, -2 -1 0 1 1 2 3 3 4 5 6 6 7 8 8 9 10 11 11 12 13 13 14 15 16 16 17 18 18
92, 196.83, -2 -1 0 1 1 2 3 3 4 5 6 6 7 8 9 9 10 11 11 12 13 14 14 15 16 16 17 18 19
93, 197.69, -2 -1 0 1 1 2 3 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 14 15 16 17 17 18 19
94, 198.56, -2 -1 0 1 1 2 3 4 4 5 6 7 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18 18 19
95, 199.42, -2 -1 0 1 1 2 3 4 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 16 17 18 18 19
96, 200.29, -2 -1 0 1 1 2 3 4 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 16 17 18 19 19
97, 201.15, -2 -1 0 1 1 2 3 4 4 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 17 18 19 20
98, 202.02, -2 -1 0 1 1 2 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 18 18 19 20
99, 202.88, -2 -1 0 1 2 2 3 4 5 5 6 7 8 8 9 10 11 12 12 13 14 15 15 16 17 18 19 19 20

100, 203.75, -2 -1 0 1 2 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 15 16 16 17 18 19 20 20
101, 204.61, -2 -1 0 1 2 2 3 4 5 6 6 7 8 9 9 10 11 12 13 13 14 15 16 17 17 18 19 20 20
102, 205.47, -2 -1 0 1 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13 14 14 15 16 17 18 18 19 20 21
103, 206.34, -2 -1 0 1 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13 14 14 15 16 17 18 19 19 20 21
104, 207.20, -2 -1 0 1 2 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 15 16 17 18 19 20 20 21
105, 208.07, -2 -1 0 1 2 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20 21 21
106, 208.93, -2 -1 0 1 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 14 15 16 17 17 18 19 20 21 22
107, 209.80, -2 -1 0 1 2 3 3 4 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17 18 18 19 20 21 22
108, 210.66, -2 -1 0 1 2 3 3 4 5 6 7 8 8 9 10 11 12 13 14 14 15 16 17 18 19 19 20 21 22
109, 211.53, -2 -1 0 1 2 3 3 4 5 6 7 8 9 9 10 11 12 13 14 15 15 16 17 18 19 20 20 21 22
110, 212.39, -2 -1 0 1 2 3 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 16 17 18 19 20 21 22 22
111, 213.25, -2 -1 0 1 2 3 4 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23
112, 214.12, -2 -1 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 18 19 20 21 22 23
113, 214.98, -2 -1 0 1 2 3 4 5 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 20 21 22 23
114, 215.85, -2 -1 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 21 22 23
115, 216.71, -2 -1 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 23
116, 217.58, -2 -1 0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24
117, 218.44, -2 -1 0 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24
118, 219.31, -2 -1 0 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 19 20 21 22 23 24
119, 220.17, -2 -1 0 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24
120, 221.04, -2 -1 0 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
121, 221.90, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 21 22 23 24 25
122, 222.76, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25
123, 223.63, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25
124, 224.49, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25
125, 225.36, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
126, 115.56, -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
127, 116.43, -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Appendix B

For the parameters given by the N = 251 row of Table 1, we give an explicit
set of instructions for determining the private key f assuming that it is given
by a LHW-F. The first column contains the e values. Applying methods of
Section 3 with e and e′ = e + 1, we can obtain the term or sum of terms given
in the third column. Using this together with information already obtained in
higher rows, the term given in the last column is obtained. This is constructed
from information given in Appendix A.
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e e′

1 2 f28 f28
15 16 f21 f21
48 49 f23 f23
51 52 f27 f27
56 57 f20 f20
84 85 f3 f3
102 103 f25 f25
23 24 f14 + f25 f14
26 27 f22 + f27 f22
33 34 f10 + f14 f10
40 41 f18 + f21 f18
41 42 f24 + f27 f24
54 55 f16 + f23 f16
59 60 f19 + f21 f19

e e′

61 62 f8 + f10 f8
86 87 f0 + f28 f0
116 117 f9 + f20 f9
120 121 f13 + f14 f13
121 122 f15 + f16 f15
5 6 f10 + f11 f10
10 11 f6 + f18 f6
17 18 f11 + f19 + f26 f26
19 20 f10 + f17 + f23 f17
4 5 f12 + f13 + f14 f12
8 9 f7 + f22 + f23 f7
74 75 f5 + f17 + f24 f5
57 58 f4 + f13 + f22 + f24 f4
46 47 f2 + f13 + f24 + f27 f2

The reader can check that the only term not appearing in the last column is f1.
It may readily be set to all remaining terms.

Careful counting will show that 52 queries were needed to determine f com-
pletely. Since we’ve been very lazy in making this table, there would be ways
to reduce this number.

Appendix C

Content of this section may not qualify as an attack on NTRU, but contains
information which could be useful when used together with some form of attack.

We assume that the private key (1), is given by a binary-F and that the
constant term of f is not 4, so that the coefficient set of f is {0, 1, 2, 3}.

Let us denote by (f0, f1, . . . , fN−1), the coefficients of f . Likewise, the coef-
ficients of F will be denoted with (F0, . . . , FN−1). Notice

fi = 2 · Fi + Fi−1

for all i 6= 0. So the parity (E/O) of fi determines Fi−1 completely. Similarly,
knowing whether fi belongs to the set L = {0, 1} or H = {2, 3} determines Fi

completely. Once more, if fi belongs to I = {1, 2}, then Fi = 1−Fi−1 and if fi

belongs to B = {0, 3}, then Fi = Fi−1.
We may use this argument as follows. Suppose we know that f is of the

form
f = (?, L, H, H, H, L, L, H, L, H, . . . ).

Then we must have

F = (?, 0, 1, 1, 1, 0, 0, 1, 0, 1, . . . )

and hence
f = (?, ?, 2, 3, 3, 1, 0, 2, 1, 2, . . . )
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We may conclude that, even though the coefficient set of f is of size 4, knowing
one bit of information for each fi (i 6= 0), in the form of E/O, L/H, or I/B, is
enough to determine f almost completely.

This may not have any impact on the security of NTRU cryptosystem by
itself, but may be useful when combined with other methods of attacks. For
example, for the N = 251 case, still assuming that the coefficients of f belong
to the set {0, 1, 2, 3}, using Appendix A, we see that

a(70) = 70 · f + q(f0 + f1),

in the notation of Section 3. Hence, with just one query to the decryption
machine, we can obtain

Modp

(

qp
(

Modp(a(70))− 70
)

)

= f0 + f1.

This determines whether each fi belongs to L or H, so determines f almost
completely.

If we are not so lucky as to find such an e, we could use the difference of
two queries to the decryption machine in a similar attack.
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