
Proofs of Security for Password-Based Key Exchange
(IEEE P1363 AuthA Protocol and Extensions)

E. Bresson1, O. Chevassut2, and D. Pointcheval1

1 École normale supérieure, 75230 Paris Cedex 05, France
http://www.di.ens.fr/∼{bresson,pointche}, {Emmanuel.Bresson,David.Pointcheval}@ens.fr.

2 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,
http://www.itg.lbl.gov/∼chevassu, OChevassut@lbl.gov.

Abstract. Password-based key exchange schemes are designed to provide entities communicating over
a public network, and sharing a (short) password only, with a session key (e.g, the key is used for data
integrity and/or confidentiality). The focus of the present paper is on the analysis of schemes that have
been adopted by the IEEE P1363 Standard working group on password-based authenticated key-exchange
methods. We analyze the AuthA key exchange scheme and give the first complete proof of its security. Our
analysis shows that the AuthA protocol and its multiple modes of operations are provably secure under
the computational Diffie-Hellman intractability assumption. Our result also suggests a new mode allowing
AuthA to run on low-power computing devices such as smart-cards or pocket PCs.

1 Introduction

Problem. The need for secure authentication seems obvious when two entities–a client and a server–
communicate on the wired-Internet, but proving an identity over a public link is complex. The method
deployed by the engineers of the Secure Shell protocol (SSH) [1] to determine a client’s identity to
log him/her into another computer, execute commands in a remote machine, and move files from
one machine to another is to ask him/her to type-in a password. The remote machine maintains the
association between the client name and the password. Another method is to take advantage of a
public-key infrastructure (PKI) to check that an entity knows the secret-key corresponding to the
public-key embedded in a certificate. This method was adopted by the IETF TLS Working Group
to secure the traffic between a web browser and a bank server over the wired-Internet, but work is
currently under way to enrich this “transport layer” security protocol (TLS) with password-based
authentication methods [20].

The primary raison d’être for password-based authentication is to enable untrusted clients to
identify themselves to trusted servers through a lightweight process since no special hardwares to
carry the passwords or security infrastructures are required. One example is when a password is used
as a mean to establish a secure communication channel from the computing device a human is using
to the remote machine he/she wants to talk to. This process, or password-authenticated key-exchange
as it is often termed [5, 6, 14], provides the two computing devices with a session key to implement an
authenticated communication channel within which messages set over the wire are cryptographically
protected. Humans directly benefit from this approach since they only need to remember a low-quality
string (i.e. 4 decimal digits) chosen from a relatively small dictionary rather than a high-quality
symmetric encryption key.

The fundamental security goal for password-authenticated key exchange protocol to achieve is
security against dictionary attacks. One can not actually prevent the adversary from guessing a value
for the password and using this value in an attempt to impersonate a player. If the attack fails, the
adversary can eliminate this value from the list of possible passwords. However, one would like this
attack to be the only one the adversary can mount: after n active interactions with some participants
the adversary should not be able to eliminate a greater number of passwords than n. Namely, a
passive eavesdropping should be of no help to the adversary since an off-line exhaustive search on
the password should not get any bias on the actual password. The off-line exhaustive search is called
dictionary attack.

2

The need for lightweight authentication processes is even greater in the case of the wireless-Internet.
Wireless nodes are devices with particular mobility, computation and bandwidth requirements (i.e.
diskless base station, cellular phone, pocket PC, palm pilot, laptop computer, base station gateway)
that place severe restrictions when designing cryptographic mechanisms. The TLS protocol has been
enriched with elliptic-curve cipher suites to run on low-power devices [12] and has within the WAP
Forum evolved into a “transport layer” security protocol to secure mobile-commerce (WTLS) [18]. The
Wired Equivalent Privacy (WEP) protocol, which is part of the IEEE 802.11 standard, does relies
on high-quality symmetric encryption keys for protecting the wireless local-area network (WLAN)
traffic between a mobile device equipped with a wireless ethernet-card and a fixed access point, but
the WEP does not specify how the keys are established [8]. Currently, the IEEE 802.11 standard does
not specify any method for key exchange.

Contributions. This paper examines the security of the AuthA password-authenticated key exchange
protocol standardized by the IEEE P1363 Study Group on standard specifications for public-key
cryptography [13]. Although AuthA has been conjectured cryptographically secure by its authors, it
has still not been proven to resist dictionary attacks [3]. In this paper we provide the first complete
proofs of security for the AuthA protocol. We work out our proofs by first defining the execution of
AuthA in the communication model of Bellare et al. [2] and then adapting the proof techniques recently
published by Bresson et al. [9] for the password-based group key exchange.

We have defined the execution of AuthA in Bellare et al.’s model wherein the protocol entities are
modeled through oracles, and the various types of attacks are modeled by queries to these oracles.
This model enables a treatment of dictionary attacks by allowing the adversary to obtain honest
executions of the AuthA protocol. The security of AuthA against dictionary attacks depends on how
many interactions the adversary carries out against the protocol entities rather than on the adversary’s
computational power. Our analysis shows that some of the AuthA modes of operation achieve provable
security against dictionary attacks in both the random-oracle and ideal-cipher models [2, 4] under the
computational Diffie-Hellman intractability assumption.

Another significant contribution of the present paper is a new mode of operation that allows to run
AuthA on low-power computer devices such as contact-free smart-cards, cellular phones or palm pilots.
These devices raise the problem of designing a key exchange scheme that does not expel the battery
of the mobile. Our mode is a provably secure method requiring from the mobile to perform off-line
pre-computations before hand only. These pre-computations can be performed when the mobile is left
plugged into a rechargeable cradle once at home/desk; storage limitations have became less and less
restrictive with many of today additional memory cards (e.g, SD-cards). In the case of contact-free
smart-card and pacemaker devices, the pre-computations can be performed by the desktop computer
to which the mobile is attached.

Our paper is organized as follows. In the remainder of this section we summarize the related work.
In Section 2, we recall the model and the definitions that should be satisfied by a password-based
key exchange protocol. In Section 3, we show that OEKE, a “simplified” variant of a AuthA mode of
operation, is secure. In Section 4, we build on this result to show that some of the AuthA modes of
operation adopted by the IEEE P1363 Study Group and our new mode of operation for low-power
computing devices are secure.

Related Work. The IEEE P1363 Standard working group on password-based authenticated key-
exchange methods [14] has been focusing on key exchange protocols wherein clients use short passwords
in place of certificates to identify themselves to servers. This standardization effort has its roots in the
works of Bellare et al. [2] and Boyko et al. [7], wherein formal models and security goals for password-
based key agreement were first formulated. Bellare et al. analyzed the EKE protocol [5] (where EKE
stands for Encrypted Key Exchange); a classical Diffie-Hellman key exchange wherein the two flows
are encrypted using the password as common symmetric key. They presented a partial security result

3

of this “elegant” and efficient structure in both the random-oracle and ideal-cipher models. EKE later
evolved into the standardized AuthA protocol [3]. The work of Boyko et al., on the other hand, has
evolved into the SNAPI protocol proved secure in the random-oracle model using the multi-party
simulatability technique [16].

Bresson et al. recently extended the work of Bellare et al. to the multi-party setting [2, 9]. The
authors defined a model to securely design protocols aiming at distributing a session key among a
group of entities sharing the same (short) password, and presented a password-based key exchange
scheme proved secure in both the random-oracle and the ideal-cipher models.

The problem of modifying public-key schemes to run on low-power computing devices has first
received attention in the context of signature schemes [11, 17, 19], and has later spread to the task of
having a low-power mobile client device exchanges a session key with a powerful server [15, 21, 22].

2 Model

In this section we recall the formal model for security against dictionary attacks where the adversary’s
capabilities are modeled through queries. In this model, the players do not deviate from the protocol
and the adversary is not a player, but does control all the network communications.

2.1 Security Model

Players. We denote a server S and a user, or client, U that can participate in the key exchange
protocol P . Each of them may have several instances called oracles involved in distinct, but possibly
concurrent, executions of P . We denote client instances and server instances by U i and Sj (or by I
when we consider any kind of instance).

The client and the server share a low-entropy secret pw which is (uniformly) drawn from a small
dictionary Password of size N .

Abstract Interface. The protocol AuthA consists of the following algorithm:

– The key exchange algorithm KeyExch(U i, Sj) is an interactive protocol between U i and Sj that
provides the instances of U and S with a session key sk.

Queries. The adversary A interacts with the participants by making various queries. Let us explain
the capability that each query captures:

– Execute(U i, Sj): This query models passive attacks, where the adversary gets access to honest
executions of P between U i and Sj by eavesdropping.

– Reveal(I): This query models the misuse of the session key by instance I. The query is only
available to A if the attacked instance actually “holds” a session key and it releases sk to A.

– Send(I,m): This query models A sending a message to instance I. The adversary A gets back
the response I generates in processing the message m according to the protocol P . A query
Send(U i, Start) initializes the key exchange algorithm, and thus the adversary receives the flow
the client should send out to the server.

The Execute-query may at first seem useless since using the Send-query the adversary has the ability
to carry out honest executions of P among parties. Yet the Execute-query is essential for properly
dealing with dictionary attacks. The number qs of Send-queries directly asked by the adversary does
not take into account the number of Execute-queries. Therefore, qs represents the number of flows the
adversary may have built by itself, and thus the number of passwords it would have tried.

4

2.2 Security Notions

Freshness. The freshness notion captures the intuitive fact that a session key is not “obviously”
known to the adversary. An instance is said to be Fresh in the current protocol execution if the
instance has accepted and neither it nor the other instance with same session tag have been asked for
a Reveal-query.

The Test-query. The semantic security of the session key is modeled by an additional query Test(I).
The Test-query can be asked at most once by the adversary A and is only available to A if the attacked
instance I is Fresh. This query is answered as follows: one flips a (private) coin b and forwards sk
(the value Reveal(I) would output) if b = 1, or a random value if b = 0.

AKE Security. The security notions take place in the context of executing P in the presence of
the adversary A. The game Gameake(A, P) is initialized by drawing a password pw from Password,
providing coin tosses to A, all oracles, and then running the adversary by letting it asking a polynomial
number of queries as described above. At the end of the game, A outputs its guess b′ for the bit b
involved in the Test-query.

We denote the AKE advantage as the probability that A correctly guesses the value of b; more
precisely we define Advake

P (A) = 2Pr[b = b′] − 1, where the probability space is over all the random
coins of the adversary and all the oracles. The protocol P is said to be AKE-secure if A’s advantage
is negligible in the security parameter.

Authentication Another goal of the adversary is to impersonate the client or the server. In the
present paper, we focus on unilateral authentication of the client, thus we denote by Succc−auth

P (A)
the probability that A successfully impersonates a client instance in an execution of P : this means
that a server would accept a key while the latter is shared with no client. The protocol P is said to
be C-Auth-secure if such a probability is negligible in the security parameter.

2.3 Computational Diffie-Hellman assumption.

A (t, ε)-CDH attacker in G is a probabilistic machine ∆ running in time t such that

Succcdh
G (∆) = Pr

x,y
[∆(gx, gy) = gxy] ≥ ε

where the probability is taken over the random values x and y. The CDH-Problem is (t, ε)-intractable
if there is no (t, ε)-attacker in G. The CDH-assumption states that is the case for all polynomial t and
any non-negligible ε.

3 OEKE: One-Encryption Key Exchange

In this section, we describe OEKE, a “simplified” variant of a AuthA mode of operation [3], and prove
its security in the random-oracle and ideal-cipher models. At the core of this variant resides only one
flow of the basic Diffie-Hellman key exchange encrypted under the password and two protocol entities
holding the same password. It therefore slightly differs from the original EKE [2, 5] in the sense that
only one flow is encrypted using the password; instead of the two as usually done. But then, it is
clear that at least one authentication flow has to be sent. We show this is enough to satisfy the above
security notions.

5

Client U Server S

pw pw

accept← false accept← false

terminate← false terminate← false

x
R
← [1, q − 1] y

R
← [1, q − 1]

X ← gx
U,X

−−−−−−−−−−−→ Y ← gy

Y ← Dpw (Y
?)

S, Y
?

←−−−−−−−−−−− Y ? ← Epw (Y)

KU ← Y x KS ← Xy

Auth← H1(U‖S‖X‖Y ‖KU)
skU ← H0(U‖S‖X‖Y ‖KU)

accept← true
Auth

−−−−−−−−−−−→ Auth
?
= H1(U‖S‖X‖Y ‖KS)
if true, accept← true

skS ← H0(U‖S‖X‖Y ‖KS)

terminate← true terminate← true

Fig. 1. An execution of the protocol OEKE, run by the client U and the server S. The session key is sk =
H0(U‖S‖X‖Y ‖Y

x) = H0(U‖S‖X‖Y ‖X
y).

3.1 Description of the Scheme

The arithmetic is in a finite cyclic group G = 〈g〉 of order a `-bit prime number q, where the operation
is denoted multiplicatively. Hash functions from {0, 1}? to {0, 1}`0 and {0, 1}`1 are denoted H0 and
H1. A block cipher is denoted (Ek,Dk) where k ∈ Password. We also define Ḡ to be equal to G\{1},
thus Ḡ = {gx |x ∈ Z?

q}.
As illustrated on Figure 1 (with an honest execution of the OEKE protocol), the protocol runs

between a client U and a server S, and the session-key space SK associated to this protocol is {0, 1}`0

equipped with a uniform distribution. Client and server initially share a low-quality string pw , the
password, uniformly drawn from the dictionary Password.

The protocol consists of three flows. The client chooses a random exponent x and computes the
value gx which he sends to the server. The server in turn chooses a random exponent y, computes
the value gy, and encrypts the latter under the password pw before to send it out on the wire. Upon
receiving the client’s flow, the server computes the Diffie-Hellman secret value gxy, and from it the
session key sk. Upon receiving the server’s flow, the client decrypts the ciphertext, computes the Diffie-
Hellman secret value, and an authentication tag Auth for client-to-server unilateral authentication.
The client then sends out this authenticator. If the authenticator verifies on the server side, the client
and the server have successfully exchanged the session key sk.

3.2 Semantic Security

In this section, we assert that under reasonable and well-defined intractability assumptions the protocol
securely distributes session keys. More precisely, in this section, we deal with the semantic security
goal. We consider the unilateral authentication goal in the next section. In the proof below, we do
not consider forward-secrecy, for simplicity, but the semantic security still holds in this context, with
slightly different bounds. The details can be found in the Appendix D. However, remember that any
security result considers concurrent executions.

Theorem 1 (AKE Security). Let P be the above protocol, SK be the session-key space and Password

be a finite dictionary of size N equipped with the uniform distribution. Let A be an adversary against

6

the AKE security of P within a time bound t, with less than qs interactions with the parties and qp
passive eavesdroppings, and, asking qh hash-queries and qe encryption/decryption queries. Then we
have

Advake
P (A) ≤ 3×

qs
N

+ 8qh × Succcdh
G (t′) +

(2qe + 3qs + 3qp)
2

q − 1
+

q2
h + 4qs
2`1

.

where t′ ≤ t + (qs + qp + qe + 1) · τG, with τG denoting the computational time for an exponentiation
in G. (Recall that q is the order of G.)

This theorem shows that the protocol is secure against dictionary attacks since the advantage of
the adversary essentially grows with the ratio of interactions (number of Send-queries) to the number
of passwords. This is particularly significant in practice since a password may expire once a number
of failed interactions has been achieved, whereas the adversary’s capability to enumerate passwords
off-line is only limited by its computational power. Of course, this security result only holds provided
that the adversary does not solve the computational Diffie-Hellman problem.

Proof (of Theorem 1). In this section we incrementally define a sequence of games starting at the real
game G0 and ending up at G8.

Game G0: This is the real protocol, in the random-oracle and ideal-cipher models. Several oracles
are thus available to the adversary: two hash oracles (H0 and H1), the encryption/decryption oracles
(E and D), and all the instances U i and Sj (in order to cover concurrent executions). We define several
events in any game Gk:

– event Sk occurs if b = b′, where b is the bit involved in the Test-query, and b′ is the output of the
AKE-adversary;

– event Encryptk occurs if A submits a data it has encrypted by itself using the password;

– event Authk occurs if A submits an authenticator Auth that will be accepted by the server and
that has been built by the adversary itself.

By definition,

Advake
P (A) = 2Pr[S0]− 1. (1)

In the games below, we furthermore assume that when the game aborts or stops with no answer b′

outputted by the adversary A, we choose this bit b′ at random, which in turn defines the actual value
of the event Sk. Moreover, if the adversary has not finished playing the game after qs Send-queries
or lasts for more than time t, we stop the game (and choose a random bit b′), where qs and t are
predetermined upper-bounds.

Game G1: In this game, we simulate the hash oracles (H0 and H1, but also two additional hash
functions H2 : {0, 1}? → {0, 1}`2 and H3 : {0, 1}? → {0, 1}`3 , with `2 = `0 and `3 = `1, that will
appear in Game G7) and the encryption/decryption oracles, as usual by maintaining a hash list ΛH
(and another list ΛA containing the hash-queries asked by the adversary itself) and an encryption list
ΛE (see Figure 2). We also simulate all the instances, as the real players would do, for the Send-queries
(see Figure 3) and for the Execute, Reveal and Test-queries (see Figure 4),

From this simulation, we easily see that the game is perfectly indistinguishable from the real attack,
unless the permutation property of E or D does not hold. One could have avoided collisions but this
happens with probability at most q2

E/2(q − 1) since |Ḡ| = (q − 1), where qE is the size of ΛE :

|Pr[S1]− Pr[S0] | ≤
q2
E

2(q − 1)
. (2)

7

For a hash-query Hi(q) (with i ∈ {0, 1, 2, 3}), such that a record (i, q, r) appears in ΛH, the answer is r.
Otherwise the answer r is defined according to the following rule:

IRule H(1) – Choose a random element r ∈ {0, 1}`i .

The record (i, q, r) is added to ΛH. If the query is directly asked by the adversary, one adds (i, q, r) to ΛA.

For an encryption-query Ek(Z), such that a record (k, Z, ∗, ∗, Z?) appears in ΛE , the answer is Z
?. Otherwise

the answer Z? is defined according to the following rule:

IRule E(1) – Choose a random element Z? ∈ Ḡ.

Then one adds the record (k, Z,⊥, E , Z?) to ΛE .

For a decryption-query Dk(Z
?), such that a record (k, Z, ∗, ∗, Z?) appears in ΛE , the answer is Z. Otherwise,

one applies the following rule to obtain the answer Z:

IRule D(1) – Choose a random element ϕ ∈ Z?
q , compute the answer Z = gϕ and add the record

(k, Z, ϕ,D, Z?) to ΛE .

Fig. 2. Simulation of the random oracles, and the encryption/decryption oracles

We answer to the Send-queries to the client as follows:

– A Send(U i, Start)-query is processed according to the following rule:
IRule U1(1) – Choose a random exponent θ ∈ Z?

q and compute X = gθ.
Then the query is answered with U,X, and the client instance goes to an expecting state.

– If the client instance U i is in an expecting state, a query Send(U i, (S, Y ?)) is processed by computing
the session key and producing an authenticator. We apply the following rules:

IRule U2(1) – Compute Y = Dpw (Y
?) and KU = Y θ.

IRule U3(1) – Compute the authenticator Auth = H1(U‖S‖X‖Y ‖KU) and the session key
skU = H0(U‖S‖X‖Y ‖KU).

Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds ((U,X), (S, Y ?),Auth) to ΛΨ . The variable ΛΨ keeps track of the exchanged messages.

We answer to the Send-queries to the server as follows:

– A Send(Sj , (U,X))-query is processed according to the following rule:
IRule S1(1) – Choose a random exponent ϕ ∈ Z?

q , compute Y = gϕ, Y ? = Epw (Y) and
KS = Xϕ.

Finally, the query is answered with S, Y ? and the server instance goes to an expecting state.
– If the server instance Sj is in an expecting state, a query Send(Sj , H) is processed according to the

following rules:
IRule S2(1) – Compute H ′ = H1(U‖S‖X‖Y ‖KS), and check whether H = H ′. If the equality
does not hold, the server instance terminates without accepting.

If equality holds, the server instance accepts and goes on, applying the following rule:
IRule S3(1) – Compute the session key skS = H0(U‖S‖X‖Y ‖KS).

Finally, the server instance terminates.

Fig. 3. Simulation of the Send-queries

An Execute(U i, Sj)-query is processed using successively the simulations of the Send-queries: (U,X) ←
Send(U i, Start), (S, Y ?) ← Send(Sj , (U,X)) and Auth ← Send(U i, (S, Y ?)), and outputting the transcript
((U,X), (S, Y ?),Auth).

A Reveal(I)-query returns the session key (skU or skS) computed by the instance I (if the latter has accepted).

A Test(I)-query first gets sk from Reveal(I), and flips a coin b. If b = 1, we return the value of the session
key sk, otherwise we return a random value drawn from {0, 1}`0 .

Fig. 4. Simulation of the Execute, Reveal and Test-queries

8

Game G2: We define game G2 by modifying the way the server processes the Send-queries so that
the adversary will be the only one to encrypt data. We use the following rule:

IRule S1(2) – Choose a random Y ? ∈ Ḡ, compute Y = Dpw (Y
?), look for the record

(pw , Y, ϕ, ∗, Y ?) in the list ΛE to define ϕ (we thus have Y = gϕ), and finally compute
KS = Xϕ.

The two games G2 and G1 are perfectly indistinguishable unless ϕ = ⊥. This happens when
Y ? has been previously obtained as the ciphertext returned by an encryption-query. Note that this
may happen when processing a Send-query, but also during a passive simulation when processing an
Execute-query:

|Pr[S2]− Pr[S1] | ≤
qSqE
q − 1

, (3)

where qS is the number of involved server instances: qS ≤ qs + qp. Furthermore note that from now,
only the adversary may ask encryption queries, since the server is simulated using the decryption
oracle.

Game G3: In this game, we avoid collisions amongst the hash queries asked by the adversary to H1,
amongst the passwords and the ciphertexts, and amongst the Send-queries’ output. We play the game
in a way that: no collision has been found by the adversary for H1; no encrypted data corresponds
to multiple identical plaintext; at most one password corresponds to each plaintext-ciphertext pair;
abort if two instances of the server have used the same random values. This will help us later on to
prove Lemma 2, the key step in proving Theorem 1. We use the following rules:

IRule H(3) – Choose a random element r ∈ {0, 1}`i . If i = 1, this query is directly asked by
the adversary, and (1, ∗, r) ∈ ΛA, then we abort the game.

Then, for any H, #{(1, ∗, H) ∈ ΛA} ≤ 1. But this rule may make the game to abort with probability
bounded by q2

h/2
`1+1

IRule E (3) – Choose a random element Z? ∈ Ḡ. If (∗, ∗,⊥, E , Z?) ∈ ΛE , we abort the game.

Then, for any Z?, #{(∗, ∗,⊥, E , Z?) ∈ ΛE} ≤ 1. But this rule may make the game to abort with
probability bounded by q2

E/2(q − 1).

IRule D(3) – Choose a random element ϕ ∈ Z?
q and compute the answer Z = gϕ. If

(∗, Z, ∗, ∗, Z?) ∈ ΛE , we abort the game. Otherwise, we add the record (k, Z, ϕ,D, Z?) to
ΛE .

Then, for any pair (Z,Z?), #{(∗, Z, ∗, ∗, Z?) ∈ ΛE} ≤ 1. But this rule may make the game to abort
with probability bounded by q2

E/2(q − 1).

IRule S1(3) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise adds
the record (j, Y ?) to ΛS . Then, compute Y = Dpw (Y

?), look for the record (pw , Y, ϕ, ∗, Y ?) in
ΛE to define ϕ (we thus have Y = gϕ), and compute KS = Xϕ. The variable ΛS keeps track
of the messages sent out by the server S.

Then, there is no collision among the Y ? outputted by the server instances (and thus the used Y).
But this rule may make the game to abort with probability bounded by q2

S/2(q−1), where qS is again
the number of involved server instances.

The two games G3 and G2 are perfectly indistinguishable unless one of the above rules make the
game to abort:

|Pr[S3]− Pr[S2] | ≤
2q2
E + q2

S

2(q − 1)
+

q2
h

2`1+1
. (4)

9

Game G4: We define game G4 by aborting the executions wherein the adversary may have guessed
the password and used it to send an encrypted data to the client. We achieve this aim by modifying
the way the client processes the queries. We use the following rule:

IRule U2(4) – Look for (pw , ∗,⊥, E , Y ?) ∈ ΛE . If the record is found, define Encrypt4 as true
and abort the game. Otherwise, compute Y = Dpw (Y

?) and KU = Y θ.

The two games G4 and G3 are perfectly indistinguishable unless event Encrypt4 occurs:

|Pr[S4]− Pr[S3] | ≤ Pr[Encrypt4]. (5)

Game G5: We define game G5 by aborting the executions wherein the adversary may have been
lucky in guessing the authenticator (that is, without asking the corresponding hash query). We reach
this aim by modifying the way the server processes the queries:

IRule S2(5) – Compute H ′ = H1(U‖S‖X‖Y ‖KS), and check whether H = H ′. If the
equality does hold, check if (1, U‖S‖X‖Y ‖KS , H) ∈ ΛA or ((U,X), (S, Y ?), H) ∈ ΛΨ . If these
two latter tests fail, then reject the authenticator: terminate, without accepting. If this rule
does not make the server to terminate, the server accepts and moves on.

This rule ensures that all accepted authenticators will come from either the simulator, or an adversary
that has correctly decrypted Y ? into Y , (computed KS) and asked the query to the oracle H1. The two
games G5 and G4 are perfectly indistinguishable unless the server rejects a valid authenticator. Since
Y did not appear in a previous session (since the Game G3), this happens only if the authenticator
had been correctly guessed by the adversary without asking H1(U‖S‖X‖Y ‖KS):

|Pr[Encrypt5]− Pr[Encrypt4] | ≤
qs
2`1

|Pr[S5]− Pr[S4] | ≤
qs
2`1

. (6)

Game G6: We define game G6 by aborting the executions wherein the adversary may have guessed
the password (that is the adversary has correctly decrypted Y ? into Y) and then used it to build and
send a valid authenticator to the server. We reach this aim by modifying the way the server processes
the queries:

IRule S2(6) – Check if ((U,X), (S, Y ?), H) ∈ ΛΨ . If this is not the case, then reject the
authenticator: terminate, without accepting. Check if (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA. If this is the
case, we define the event Auth′6 to be true, and abort the game.

This rule ensures that all accepted authenticators come from the simulator. The two games G6 and
G5 are perfectly indistinguishable unless (1, U‖S‖X‖Y ‖KS , H) ∈ ΛA or (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA,
which both lead to Auth′6 to be true:

|Pr[Encrypt6]− Pr[Encrypt5] | ≤ Pr[Auth′6] |Pr[S6]− Pr[S5] | ≤ Pr[Auth′6]. (7)

Game G7: In this game, we do no compute the authenticator Auth and the session key sk using
the oracles H0 and H1, but using the private oracles H2 and H3 so that the values Auth and sk are
completely independent from H0 and H1, but also Y , pw and any of KU or KS . We reach this aim by
using the following rules:

IRule U3(7) – Compute the session key skU = H2(U‖S‖X‖Y
?) and the authenticator

Auth = H3(U‖S‖X‖Y
?).

IRule S3(7) – Compute the session key skS = H2(U‖S‖X‖Y
?).

10

Since we do no longer need to compute the values KU and KS , we can also simplify the way client
and server process the queries:

IRule U2(7) – Look for the record (pw , ∗,⊥, E , Y ?) in ΛE . If the record is found, we define
Encrypt7 as true and abort the game.

IRule S1(7) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise
adds the record (j, Y ?) to ΛS . Then, compute Y = Dpw (Y

?).

The games G7 and G6 are indistinguishable unless the following event AskH occurs: A queries the
hash functions H0 or H1 on U‖S‖X‖Y ‖KU or on U‖S‖X‖Y ‖KS , that is on U‖S‖X‖Y ‖CDH(X,Y):

|Pr[Encrypt7]− Pr[Encrypt6] | ≤ Pr[AskH7] |Pr[S7]− Pr[S6] | ≤ Pr[AskH7]
∣

∣Pr[Auth′7]− Pr[Auth′6]
∣

∣ ≤ Pr[AskH7]. (8)

Lemma 2. The probabilities of the events S7, Encrypt7, and Auth′7 in game G7 can be upper-bounded
by the following values:

Pr[S7] =
1

2
Pr[Encrypt7] ≤

qs
2N

Pr[Auth′7] ≤
qs
2N

. (9)

Proof. The formal proof of this lemma is omitted due to a lack of space and can be found in the
Appendix A.1. The main idea in simulating this game is to choose the password pw at the end of the
game. The password pw is in fact only needed to determine whether the events Encrypt7 or Auth′7 have
occurred, and it turns out that determining whether these events have occurred can be postponed until
the time limit has been reached or the adversary has asked qs queries. The probabilities of Encrypt7
or Auth′7 can then be easily upper-bounded since no information, in the information theoretical sense,
about the password pw is known by the adversary along this simulation. ut

Game G8: In this game, we simulate the executions using the random self-reducibility of the Diffie-
Hellman problem, given one CDH instance (A,B). We do not need to known the values of θ and ϕ,
since the values KU or KS are no longer needed to compute the authenticator and the session keys:

IRule U1(8) – Choose a random element α ∈ Z?
q , and compute X = Aα. Also add the record

(α,X) to ΛA.

IRule D(8) – Choose a random element β ∈ Z?
q , and compute the answer Z = Bβ . Also add

the record (β, Z) to ΛB. If (∗, Z, ∗, ∗, Z?) ∈ ΛE then we abort the game; otherwise we add the
record (k, Z,⊥,D, Z?) to ΛE .

Pr[AskH8] = Pr[AskH7]. (10)

Remember that AskH8 means that the adversary A had queried the random oracles H0 or H1 on
U‖S‖X‖Y ‖CDH(X,Y). By picking randomly in the ΛA-list we can get the Diffie-Hellman secret value
with probability 1/qh. This is a triple (X,Y,CDH(X,Y)). We can then simply look in the lists ΛA and
ΛB to find the values α and β such that X = Aα and Y = Bβ :

CDH(X,Y) = CDH(Aα, Bβ) = CDH(A,B)αβ .

Thus:
Pr[AskH8] ≤ qhSucccdh

G (t′). (11)

This concludes the proofs (the details of the computations can be found in the Appendix A.2). Simply
note that qE is the size of ΛE , which contains all the encryption/decryption queries directly asked by
the adversary, but also all the decryption queries made by our simulation: at most one per Send-query
(direct or through Execute-queries), which makes qE ≤ qe + qs + qp. Similarly, qS is the number of
involved server instances, and thus qS ≤ qs + qp. Furthermore, one can easily see that in this last
game, t′ ≤ t+ (qs + qp + qe + 1) · τG. ut

11

3.3 Unilateral Authentication

The following theorem shows that the OEKE protocol furthermore ensures authentication from client
to server, in the sense that a server instance will never accept an authenticator that has not been
actually sent by the related client instance with probability significantly greater than qs/N .

Theorem 3 (Unilateral Authentication). Let P be the above protocol, SK be the session-key
space and Password be a finite dictionary of size N equipped with the uniform distribution. Let A be
an adversary against the AKE security of P within a time bound t, with less than qs interactions with
the parties and qp passive eavesdroppings, and, asking qh hash-queries and qe encryption/decryption
queries. Then we have

Advc−auth
P (A) ≤

3

2
×

qs
N

+ 3qh × Succcdh
G (t′) +

(2qe + 3qs + 3qp)
2

2(q − 1)
+

q2
h + 4qs
2`1+1

.

where t′ ≤ t+ (qs + qp + qe + 1)τG, with τG denoting the computational time for an exponentiation in
G. (Recall that q is the order of G.)

Proof. The proof is similar to the previous one. But one can find more details in the Appendix B. ut

4 Applications

We describe some applications of our security results. We first show that some of the AuthA modes of
operations [3] adopted by the IEEE P1363 Standard working group include particular cases of OEKE.
Then, we exhibit an application for low-power computing devices.

4.1 Verifier-based Key Exchange

The AuthA protocol standardized by the IEEE organization is slightly different from our protocol
since client and server do not share a password pw . The AuthA has an added mechanism preventing
an adversary corrupting the password table of a server from impersonating a client at once. The AuthA

protocol takes advantage of the asymmetric cryptography principles when generating the passwords
hold by the client and the server. The client holds a derived password pwU = H′(U‖S‖PW) (where
PW is the actual password, and pwU has the same entropy but in Z?

q) and the server holds a value
pwS derived from the latter password as follows pwS = gpwU . It has the same entropy as PW too. It
is then straightforward to modify our protocol to make use of these values pwU and pwS rather than
just the shared password pw (see Figure 5): pwS plays the role of the common password, and

H0(U‖S‖X‖Y ‖Z)← H(H(U‖S‖X‖Y ‖Z)‖0) H1(U‖S‖X‖Y ‖Z)← H(H(U‖S‖X‖Y ‖Z)‖Y pwU).

As a consequence, one can claim exactly the same security results about this scheme as the ones
stated in the Theorems 1 and 3. More details can be found in the Appendix C.

4.2 The AuthA Modes of Operation

When engineers choose a password-based key exchange scheme, they take into account its security,
computation and communication efficiency, and easiness of integration. Since they do not all face the
same computing environment, they may want to operate the AuthA protocol in different ways: encrypt
both flows of the basic Diffie-Hellman key exchange; achieve mutual-authentication; the server sends
out the first protocol flow. These different ways have already been described in [3] and do not seem to
alter the security of the AuthA protocol. But more precise security analyses similar to the above ones
should be performed before actually using the other modes.

12

Client Server

pwU pwS = gpwU

accept← false accept← false

terminate← false terminate← false

x
R
← [1, q − 1] y

R
← [1, q − 1]

X ← gx, X? ← X Y ← gy, Y ? ← EpwS
(Y)

U,X
?

−−−−−−−−−−−→· · ·
U,X

?

−−−−−−−−−−−→

S, Y
?

←−−−−−−−−−−−· · ·
S, Y

?

←−−−−−−−−−−−
Y ← DpwS

(Y ?), KU ← Y x X ← X?, KS ← Xy

PWU ← Y pwU PWS ← pwS
y

MKU ← H(U‖S‖X‖Y ‖KU)
Auth← H(MKU‖PWU)

skU ← H(MKU‖0)
accept← true

Auth
−−−−−−−−−−−→· · ·

Auth
−−−−−−−−−−−→

MKS ← H(U‖S‖X‖Y ‖KS)

Auth
?
= H(MKS‖PWS)
if true, accept← true

skS ← H(MKS‖0)

terminate← true terminate← true

Fig. 5. The AuthA protocol run by the client U and the server S. The session key for U is skU = H(H(U‖S‖X‖Y ‖Y x)‖0).
The session key for S is skS = H(H(U‖S‖X‖Y ‖Xy)‖0).

4.3 Low-Power Computing Devices

The AuthA protocol can be easily adapted to run on low-power computing devices, since almost
everything can be pre-computed off-line for the clients, while retaining the initial strong level of
security (see Figure 6). The client simply chooses a random value y and pre-computes the value
Y = gy before hand, as well as any other useful values. With a 160-bit elliptic-curve group G, the
storage and computation cost of this protocol is very low: only one on-line equality check.

5 Conclusion

The reductions presented in this paper are not optimal, but our intend was to present easy to read,
understand and meaningful proofs rather than very efficient ones. We think that the terms 3qs/2N
or 3qs/N can be improved to qs/N , but the proof would then in turn becomes very intricate. For
technical reasons the hash function H1 used to build the authenticator has to be collision-resistant in
our proofs, but the authors of AuthA [3] suggest to use a 64-bit authenticator. This may turn out
to be enough in practice, but the proof presented in the paper would then need to be modified. It,
however, seems a bad idea to use the same hash function H everywhere in AuthA.

Acknowledgments

The second author was supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, Mathematical Information and Computing Sciences Division, of the U.S. De-
partment of Energy under Contract No. DE-AC03-76SF00098. This document is report LBNL-51868.
Disclaimer available at http://www-library.lbl.gov/disclaimer.

13

Server Mobile

pwS pwU , pwS = gpwU

SKS = x, PKS = X = gx

y
R
← [1, q − 1], Y = gy, Y ? = Epw (Y)

K ← Xy, KS = XpwU

MK = H(S‖M‖X‖Y ‖K)
AuthM ← H(MK‖2‖KS)
Auth′

S ← H(MK‖1‖KS)
skM ← H(MK‖0)

U,X
−−−−−−−−−−−→

S, Y
?
,AuthM

←−−−−−−−−−−−
Y ← Dpw (Y

?), K ← Y x, KS = pwS
x

MK = H(S‖M‖X‖Y ‖K)
Auth′

M ← H(MK‖2‖KS)

AuthM
?
= Auth′

M , if true accept← true

AuthS ← H(MK‖1‖KS)
AuthS−−−−−−−−−−−→

AuthS
?
= Auth′

S , if true accept← true

skS ← H(MK‖0)

Fig. 6. The AuthA protocol for a low-power computing device. The protocol is run by a server S and a low-power client
device M . The session key is sk = H(H(S‖M‖X‖Y ‖CDH(X,Y))‖0).

References

1. M. Bellare and T. Kohno and C. Namprempre. Authenticated Encryption in SSH: Provably Fixing the SSH Binary
Packet Protocol. In Proc. of the 9th CCS. ACM Press, New York, 2002.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In
Eurocrypt ’00, LNCS 1807, pages 139–155. Springer-Verlag, Berlin, 2000.

3. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenticated Key Exchange. Contribution
to IEEE P1363. March 2000, Available at http://grouper.ieee.org/groups/1363/.

4. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols. In Proc.
of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

5. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure against Dictionary
Attacks. In Proc. of the Symposium on Security and Privacy, pages 72–84. IEEE, 1992.

6. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based Protocol Secure against
Dictionary Attacks and Password File Compromise. In Proc. of the 1st CCS, pages 244–250. ACM Press, New York,
1993.

7. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated Key Exchange Using Diffie-Hellman.
In Eurocrypt ’00, LNCS 1807, pages 156–171. Springer-Verlag, Berlin, 2000.

8. N. Borisov, I. Goldberg, and D. Wagner. Intercepting Mobile Communications: The Insecurity of 802.11. In Proc.
of ACM International Conference on Mobile Computing and Networking (MobiCom’01), 2001.

9. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange Secure against Dictionary
Attacks. In Asiacrypt ’02, LNCS 2501, pages 497–514. Springer-Verlag, Berlin, 2002.

10. T. Dierks and C. Allen. The TLS protocol version 1.0, January 1999. Internet Request for Comment RFC 2246,
Internet Engineering Task Force.

11. M. Girault. Self-Certified Public Keys. In Eurocrypt ’91, LNCS 547, pages 490–497. Springer-Verlag, Berlin, 1992.
12. V. Gupta, S. Blake-Wilson, B. Moeller and C. Hawk. ECC Cipher Suites for TLS, TLS Working Group, Internet

Draft draft-ietf-tls-ecc-02.txt, August 2002.
13. IEEE Standard 1363–2000. Standard Specifications for Public Key Cryptography. IEEE.

Available from http://grouper.ieee.org/groups/1363, August 2000.
14. IEEE Standard 1363 Study Group. Password-Based Authenticated-Key-Exchange Methods.

Available from http://grouper.ieee.org/groups/1363/StudyGroup/Passwd.html.
15. M. Jakobsson and D. Pointcheval. Mutual Authentication for Low-Power Mobile Devices. In Financial Cryptography

’01, LNCS 2339, pages 178–195. Springer-Verlag, Berlin, 2001.

14

16. P. MacKenzie and R. Swaminathan. Secure Network Authentication with Password Identification. Submission to
IEEE P1363a. August 1999. Available from http://grouper.ieee.org/groups/1363/.

17. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology,
13(3):361–396, 2000.

18. Wireless Application Protocol. Wireless Transport Layer Security Specification, February 2000. WAP TLS, WAP-
199 WTLS.

19. A. Shamir and Y. Tauman. Improved On-line/Off-line Signature Schemes. In Crypto ’01, LNCS 2139, pages 355–367.
Springer-Verlag, Berlin, 2001.

20. M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher Suite for TLS. ACM Transactions
on Information and System Security (TISSEC), 4(2):134–157, 2001.

21. D. S. Wong and A. H. Chan. Efficient and Mutually Authenticated Key Exchange for Low Power Computing Devices.
In Asiacrypt ’01, LNCS 2248, pages 272–289. Springer-Verlag, Berlin, 2001.

22. F. Zhu, A. H. Chan, D. S. Wong, and R. Ye. Password Authenticated Key Exchange based on RSA for Imbalanced
Wireless Network. In Proc. of ISC ’02, LNCS 2433, pages 150–161. Springer-Verlag, Berlin, 2002.

A Complements for the Proof of Theorem 1

A.1 Proof of Lemma 2

Game G7: In this game, we compute the authenticator skU and the session key skS using the private
oracles H2 and H3 as depicted on Figure 7. Generating these values by querying the private oracles
only X and Y ? enable us to no longer need to compute the values Y , KU , and KS for the simulation,
but just to compute them at the end with the actual value of pw for defining the events Encrypt7 and
Auth′7.

The Rule U2(7), Rule S1(7) and Rule S2(7) can indeed be rewritten as rules that do not need
the password along the simulation, but only make use of it at the end of the simulation. One can
easily see on Figure 8 that the Rule U2+(7) and Rule S2+(7) are not useful for the simulation, but
that they are only useful to determine whether events Encrypt7 or Auth′7 occurred. They can thus be
postponed until the adversary has asked qs queries, or time limit expired. But then, one can note that
the password pw is not used anymore, until these last rules are proceeded: one can run the simulation,
without any password, and just choose it before processing these two rules.

Let us denote by R(U) the set of Y ? received by a client instance, and by R(S) the set of (H,Y ?)
used by a server instance. From an information theoretical point of view, since we have avoided
collisions in the Game G3,

Pr[Encrypt7] = Pr
pw

[∃Y ? ∈ R(U), (pw , ∗,⊥, E , Y ?) ∈ ΛE] ≤
#R(U)

N

Pr[Auth′7] = Pr
pw

[∃(H,Y ?) ∈ R(S), Y ← Dpw (Y
?), (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA] ≤

#R(S)

N
.

By definition of the sets R(U) and R(S), since Y ? is received in the second query to the user, and H
in the second query to the server, the cardinalities are both upper-bounded by qs/2.

Moreover, the session keys are random, independent from any other data (from an information
theoretical point of view, since H2 and H3 are private random oracles). Then, Pr[S7] = 1/2. ut

A.2 Conclusion of the Proof of Theorem 1

By summing up all the relations, one completes the proof. From Equations (1), (2), (3), (4) and (5),

|Pr[S4]− Pr[S0] | ≤
q2
E

2(q − 1)
+

qSqE
q − 1

+
2q2
E + q2

S

2(q − 1)
+

q2
h

2`1+1
+ Pr[Encrypt4]

≤
(2qE + qS)

2

2(q − 1)
+

q2
h

2`1+1
+ Pr[Encrypt4]

15

We answer to the Send-queries to the client as follows:

– A Send(U i, Start)-query is processed according to the following rule:
IRule U1(7) – Choose a random exponent θ ∈ Z?

q and compute X = gθ.
Then the query is answered with U,X, and the client instance goes to an expecting state.

– If the client instance U i is in an expecting state, a query Send(U i, (S, Y ?)) is processed by computing
the session key and producing an authenticator. We apply the following rules:

IRule U2(7) – Lookup (pw , ∗,⊥, E , Y ?) ∈ ΛE . If found, define Encrypt7 as true and abort the
game.

IRule U3(7) – Compute the session key skU = H2(U‖S‖X‖Y
?) and the authenticator

Auth = H3(U‖S‖X‖Y
?).

Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds ((U,X), (S, Y ?),Auth) to ΛΨ .

We answer to the Send-queries to the server as follows:

– A Send(Sj , (U,X))-query is processed according to the following rule:
IRule S1(7) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise
adds the record (j, Y ?) to ΛS . Then, compute Y = Dpw (Y

?).
Finally, the query is answered with S, Y ? and the server instance goes to an expecting state.

– If the server instance Sj is in an expecting state, a query Send(Sj , H) is processed according to the
following rules:

IRule S2(7) – Check if (X,Y ?, H) ∈ ΛΨ . If this is not the case, then reject the authenticator:
terminate, without accepting. Check if (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA. If this is the case, we define
the event Auth′

7 to be true, and abort the game.
If the server instance has not terminated, it accepts and moves on to apply the following rule:

IRule S3(7) – Compute the session key skS = H2(U‖S‖X‖Y
?).

Finally, the server instance terminates.

Fig. 7. Simulation of the Send-queries in G7

We first rewrite the Rule U2:

IRule U2-(7) – Does nothing.

IRule U2+(7) – Lookup (pw , ∗,⊥, E , Y ?) ∈ ΛE . If found, define Encrypt7 as true (and abort the
game).

We then modify the organization of the Rule S1 and the Rule S2:

IRule S1-(7) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise adds
the record (j, Y ?) to ΛS .

IRule S2-(7) – Check if ((U,X), (S, Y ?), H) ∈ ΛΨ . If this is not the case, then reject the authen-
ticator: terminate, without accepting.

IRule S2+(7) – Compute Y = Dpw (Y
?), and lookup (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA. If found, define

Auth′
7 as true (and abort the game).

Fig. 8. Rewriting of some Rules in G7

16

From Equations (6), (7) and (8), |Pr[Encrypt7]− Pr[Encrypt4] | and |Pr[S7]− Pr[S4] | are both upper-
bounded by

qs
2`1

+ Pr[Auth′6] + Pr[AskH7] ≤
qs
2`1

+ Pr[Auth′7] + 2Pr[AskH7]. (12)

Then,

|Pr[S7]− Pr[S0] | ≤
(2qE + qS)

2

2(q − 1)
+

q2
h

2`1+1
+

2qs
2`1

+Pr[Encrypt7] + 2Pr[Auth′7] + 4Pr[AskH7].

From Equations (9), (10) and (11), one gets

Pr[Encrypt7] ≤
qs
2N

Pr[Auth′7] ≤
qs
2N

Pr[AskH7] ≤ qhSucccdh
G (t′), (13)

which concludes the proof. ut

B Proof of Theorem 3

We can actually use the proof presented in Section 3.2, since

Advc−auth
P (A) = Pr[Auth0],

and see that in game G6, Pr[Auth6] = 0, and Equations (2), (3), (4), (5), (6), and (7) extends to

|Pr[Auth1]− Pr[Auth0] | ≤
q2
E

2(q − 1)
|Pr[Auth2]− Pr[Auth1] | ≤

qSqE
q − 1

|Pr[Auth3]− Pr[Auth2] | ≤
2q2
E + q2

S

2(q − 1)
+

q2
h

2`1+1
|Pr[Auth4]− Pr[Auth3] | ≤ Pr[Encrypt4]

|Pr[Auth5]− Pr[Auth4] | ≤
qs
2`1

|Pr[Auth6]− Pr[Auth5] | ≤ Pr[Auth′6].

Then, using Equations (12) from the conclusion of the previous proof, and Equation (8), one gets,

Advc−auth
P (A) ≤

q2
E

2(q − 1)
+

qSqE
q − 1

+
2q2
E + q2

S

2(q − 1)
+

q2
h

2`1+1
+ Pr[Encrypt4] +

qs
2`1

+ Pr[Auth′6]

≤
(2qE + qS)

2

2(q − 1)
+

q2
h + 2qs
2`1+1

+
(

Pr[Encrypt7] +
qs
2`1

+ Pr[Auth′7] + 2Pr[AskH7]
)

+
(

Pr[Auth′7] + Pr[AskH7]
)

≤
(2qE + qS)

2

2(q − 1)
+

q2
h + 4qs
2`1+1

+ Pr[Encrypt7] + 2Pr[Auth′7] + 3Pr[AskH7],

which concludes the proof, using Equation (13). ut

C Security Proof of AuthA

Proving the security of this new protocol follows the same path as the one in Section 3.2, until the
Game G8:

17

Game G8: In that game, we simulate the executions using the random self-reducibility of the Diffie-
Hellman problem, given one Diffie-Hellman instance (A,B). We first choose a random element γ ∈ Z?

q

and define pwS = Aγ . We also add the record (γ, pwS) to ΛA.

IRule U1(8) – Choose a random element α ∈ Z?
q , and compute X = Aα. Also add the record

(α,X) to ΛA.

IRule D(8) – Choose a random element β ∈ Z?
q , and compute the answer Z = Bβ . Also

add the record (β, Z) to ΛB. If (∗, Z, ∗, ∗, Z?) ∈ ΛE , one aborts the game, otherwise adds the
record (k, Z,⊥,D, Z?) to ΛE .

Pr[AskH8] = Pr[AskH7]. (14)

Remember that AskH8 means that the adversary A queried the random oracles H0 or H1 on
U‖S‖X‖Y ‖CDH(X,Y), and thus H on U‖S‖X‖Y ‖CDH(X,Y) or ∗‖CDH(pwS , Y). By picking ran-
domly in the ΛA-list, with probability 1/qh, we can get the Diffie-Hellman secret value. This is a triple
(X,Y,CDH(X,Y)). One then simply looks up into ΛA and ΛB to get α and β such that X = Aα and
Y = Bβ :

CDH(X,Y) = CDH(Aα, Bβ) = CDH(A,B)αβ .

Thus:

Pr[AskH8] ≤ qhSucccdh
G (t′). (15)

This concludes the proof. ut

D Forward-Secrecy

The previous security results and proofs do not deal with forward-secrecy. Considering forward-secrecy
requires to take into account a new kind of query that we call the Corrupt-query (any other kinds of
queries can still be asked, before but also after this one):

– Corrupt(I): This query models the attacks resulting in the password pw of this party I to be
revealed. A gets back from its query pw but does not get any internal data of I.

Then we define a new flavor of freshness, saying that an instance is Fresh (or holds a Fresh key
sk) if the following conditions hold. First, the instance has computed and accepted a session key.
Second, no Corrupt-query has been made by the adversary since the beginning of the game (before the
session key is accepted). Third, neither it nor its partner have been asked for a Reveal-query.

This security level means that the adversary does not learn any information about previously
established session keys when making a Corrupt-query. We thus denote by Advake−fs

P (A) the advantage
an adversary can get on a fresh key, with the ability to make a Corrupt-query.

Theorem 4 (AKE-FS Security). Let P be the above protocol, SK be the session-key space and
Password be a finite dictionary of size N equipped with the uniform distribution. Let A be an adversary
against the AKE security of P within a time bound t, with less than qs interactions with the parties and
qp passive eavesdroppings, and, asking qh hash-queries and qe encryption/decryption queries. Then we
have

Advake−fs
P (A) ≤ 3×

qs
N

+ 4qh(1 + (qs + qp)
2)× Succcdh

G (t′) +
(2qe + 3qs + 3qp)

2

q − 1
+

q2
h + 4qs
2`1

.

where t′ ≤ t+ (qs + qp + qe) · τG, with τG denoting the computational time for an exponentiation in G.
(Recall that q is the order of G.)

18

Proof. To deal with forward-secrecy, we define event Corrupted as the event thatA asks a Corrupt-query,
and we refine events Encrypt, Auth, Auth′ and AskH respectively into EncryptBC, AuthBC, AuthBC′

and AskHBC respectively:

EncryptBCk := Encryptk ≺ Corrupted AuthBCk := Authk ≺ Corrupted

AuthBC′k := Auth′k ≺ Corrupted AskHBC′k := AskHk ≺ Corrupted

that is EncryptBCk, AuthBCk, AuthBC′k or AskHBCk respectively occur if Encryptk, Authk, Auth′k or
AskHk respectively occur before corrupting a player.

We can base the proof on a similar sequence of games as before, but just modifying some rules
before any corruption:

IRule S2(6) – If (X,Y ?, H) 6∈ ΛΨ , and either (Corrupted = true and (1, U‖S‖X‖Y ‖KS , H) 6∈
ΛA) or Corrupted = false, then reject the authenticator: terminate, without accepting. More-
over, if Corrupted = false and (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA we define the event AuthBC′6 to be
true, and abort the game.

IRule U3(7) – If Corrupted = false, then compute the session key skU = H2(U‖S‖X‖Y
?)

and the authenticator Auth = H3(U‖S‖X‖Y
?). Otherwise, compute the session key skU =

H0(U‖S‖X‖Y ‖KU) and the authenticator Auth = H1(U‖S‖X‖Y ‖KU).

IRule S3(7) – If Corrupted = false, then compute the session key skS = H2(U‖S‖X‖Y
?).

Otherwise, compute the session key skS = H0(U‖S‖X‖Y ‖KS).

IRule U2(7) – Lookup (pw , ∗,⊥, E , Y ?) ∈ ΛE . If found, define Encrypt7 as true and abort the
game. Otherwise, compute Y = Dpw (Y

?). If Corrupted = false, furthermore define KU = Y θ.

IRule S1(7) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise
adds the record (j, Y ?) to ΛS . Then, compute Y = Dpw (Y

?). If Corrupted = false, furthermore
lookup (pw , Y, ϕ, ∗, Y ?) ∈ ΛE to define ϕ (we thus have Y = gϕ), and compute KS = Xϕ.

By evaluating the events Encrypt7 and Auth7 at the corruption time, one gets as before

|Pr[S6]− Pr[S0] | ≤
(2qE + qS)

2

2(q − 1)
+

q2
h

2`1+1
+ Pr[EncryptBC4] +

qs
2`1

+ Pr[AuthBC′6],

Pr[EncryptBC4] ≤
qs
N

+
qs
2`1

+ qhSucccdh
G (t′) Pr[AuthBC′6] ≤

qs
2N

+ qhSucccdh
G (t′).

As a consequence,

|Pr[S6]− Pr[S0] | ≤
3qs
2N

+ 2qh × Succcdh
G (t′) +

(2qE + qS)
2

2(q − 1)
+

q2
h

2`1+1
+

2qs
2`1

. (16)

We now go back the game G6, as presented on Figure 9. We furthermore abort the game where
the events EncryptBC6 or AuthBC′6 happen to be true.

Game G7: We now have to make a different analysis: we need to know the private exponents of
(almost) all the instances of the parties, since the adversary may send the authenticator after making
the Corrupt-query, and thus knowing the password. Otherwise, a later Reveal-query would not be
perfect. Therefore, one first bets on an execution (passive or active) to be tested: one chooses a
random index µ ∈ {1, . . . , qs + qp} and a random index ν ∈ {1, . . . , qs + qp}. If the Test-query does

19

We answer to the Send-queries to the client as follows:

– A Send(U i, Start)-query is processed according to the following rule:
IRule U1(6) – Choose a random exponent θ ∈ Z?

q and compute X = gθ.
Then the query is answered with U,X, and the client instance goes to an expecting state.

– If the client instance U i is in an expecting state, a query Send(U i, (S, Y ?)) is processed by computing
the session key and producing an authenticator. We apply the following rules:

IRule U2(6) – Lookup (pw , ∗,⊥, E , Y ?) ∈ ΛE . If found, define Encrypt6 as true. Otherwise,
compute Y = Dpw (Y

?). Furthermore define KU = Y θ.

IRule U3(6) – Compute the session key skU = H0(U‖S‖X‖Y ‖KU) and the authenticator
Auth = H1(U‖S‖X‖Y ‖KU).

Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds (X,Y ?,Auth) to ΛΨ .

We answer to the Send-queries to the server as follows:

– A Send(Sj , (U,X))-query is processed according to the following rule:
IRule S1(6) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise
adds the record (j, Y ?) to ΛS . Then, compute Y = Dpw (Y

?), lookup (pw , Y, ϕ, ∗, Y ?) ∈ ΛE to
define ϕ (we thus have Y = gϕ), and compute KS = Xϕ.

Finally, the query is answered with S, Y ? and the server instance goes to an expecting state.
– If the server instance Sj is in an expecting state, a query Send(Sj , H) is processed according to the

following rules:
IRule S2(6) – If (X,Y ?, H) 6∈ ΛΨ , and either (Corrupted = true and (1, U‖S‖X‖Y ‖KS , H) 6∈
ΛA) or Corrupted = false, then reject the authenticator: terminate, without accepting. More-
over, if (1, U‖S‖X‖Y ‖∗, H) ∈ ΛA we define the event Auth′

6 to be true.
If the server instance has not terminated, it accepts and goes on, applying the following rule:

IRule S3(6) – Compute the session key skS = H0(U‖S‖X‖Y ‖KS).
Finally, the server instance terminates.

Fig. 9. Simulation of the Send-queries in G6

not correspond to the client involved in the µ-th Send-query, and the server involved in the ν-th Send-
query, then one aborts the game, outputting a random bit b′. Since the Test-query can only be asked
to an instance that has accepted before any corruption and that only simulated keys can be asked,

Pr[S7] =
1

(qs + qp)2
× Pr[S6] +

(

1−
1

(qs + qp)2

)

×
1

2
.

Then,
∣

∣

∣

∣

Pr[S6]−
1

2

∣

∣

∣

∣

= (qs + qp)
2 ×

∣

∣

∣

∣

Pr[S7]−
1

2

∣

∣

∣

∣

. (17)

Game G8: We now inject a CDH instance into this specific execution: we are given (A,B), with the
discrete logarithms a and b

IRule U1(8) – If this corresponds to the µ-th instance of the client, set θ = a, otherwise,
choose a random element θ ∈ Z?

q . Then compute X = gθ.

IRule D(8) – If this corresponds to the ν-th instance of the server, set ϕ = b, otherwise choose
a random element ϕ ∈ Z?

q . Then compute Z = Bϕ. If (∗, Z, ∗, ∗, Z?) ∈ ΛE , one aborts the
game. One finally adds the record (k, Z, ϕ,D, Z?) to ΛE .

The games G8 and G7 are perfectly indistinguishable:

Pr[S7] = Pr[S8]. (18)

20

Game G9: In that game, the session key and the authenticator of this specific execution of the
protocol is defined using private random oracles H2 and H3, independent from H0 and H1. For that,
we modify the following rules:

IRule U2(9) – Lookup (pw , ∗,⊥, E , Y ?) ∈ ΛE . If found, define Encrypt9 as true. If this does
not correspond to the µ-th instance of the client, one computes Y = Dpw (Y

?) and defines
KU = Y θ (otherwise we won’t need it).

IRule U3(9) – If this corresponds to the µ-th instance of the client, one computes the
session key skU = H2(U‖S‖X‖Y

?) and the authenticator Auth = H3(U‖S‖X‖Y
?). Oth-

erwise, compute the session key skU = H0(U‖S‖X‖Y ‖KU) and the authenticator Auth =
H1(U‖S‖X‖Y ‖KU).

IRule S1(9) – Choose a random Y ? ∈ Ḡ. If (∗, Y ?) ∈ ΛS , one aborts the game, otherwise adds
the record (j, Y ?) to ΛS . If this does not correspond to the ν-th instance of the server, one
computes Y = Dpw (Y

?), looks up (pw , Y, ϕ, ∗, Y ?) ∈ ΛE to define ϕ (we thus have Y = gϕ),
and computes KS = Xϕ (otherwise we won’t need it).

IRule S3(9) – If this corresponds to the ν-th instance of the server, one computes the
session key skS = H2(U‖S‖X‖Y

?). and the authenticator Auth = H3(U‖S‖X‖Y
?). Oth-

erwise, compute the session key skU = H0(U‖S‖X‖Y ‖KS) and the authenticator Auth =
H1(U‖S‖X‖Y ‖KS).

The games G9 and G8 are indistinguishable unless the following event AskH9 occurs: A queries the
hash functions H0 or H1 on U‖S‖X‖Y ‖CDH(X,Y):

|Pr[S9]− Pr[S8] | ≤ Pr[AskH9]. (19)

Game G10: Now, we are not given the discrete logarithms a and b anymore:

IRule U1(10) – If this corresponds to the µ-th instance of the client, set X = A, otherwise,
choose a random element θ ∈ Z?

q and compute X = gθ.

IRule D(10) – If this corresponds to the ν-th instance of the server, set Z = B and ϕ = ⊥,
otherwise choose a random element ϕ ∈ Z?

q and compute Z = Bϕ. Finally, if (∗, Z, ∗, ∗, Z?) ∈
ΛE , one aborts the game. One then adds the record (k, Z, ϕ,D, Z?) to ΛE .

Since KU and KS are not required for this execution of the protocol (the session key and the authen-
ticator are defined using independent private random oracles on X and Y ? only), the two games are
indistinguishable:

Pr[S9] = Pr[S10] Pr[AskH9] = Pr[AskH10]. (20)

Furthermore, it is now clear that

Pr[AskH10] = qh × Succcdh
G (t′). (21)

As a conclusion, from the Equations (16), (17), (18), (19), (20) and (21),
∣

∣

∣

∣

Pr[S6]−
1

2

∣

∣

∣

∣

≤ 2(qs + qp)
2 × Pr[AskH9] ≤ 2(qs + qp)

2qh × Succcdh
G (t′).

This security result can definitely be improved using the random self-reducibility of the Diffie-Hellman
problem. Namely, one could remove the factor (qs + qp)

2, but this would make the reduction much
more intricate. ut

