
Secure Multi-Party Computation from any
Linear Secret Sharing Scheme

Ventzislav Nikov1, Svetla Nikova2, and Bart Preneel2

1 Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
vnikov@mail.com

2 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
svetla.nikova, bart.preneel@esat.kuleuven.ac.be

Abstract. We present a general treatment of non-cryptographic (i.e.
information-theoretically secure) multi-party computation, based on un-
derlying linear secret sharing scheme. This general approach gives pure
linear-algebra conditions on the linear mappings describing the scheme.
The approach establishing the minimal conditions for security, can lead
to design of more efficient Multi-Party Computation (MPC) schemes
for general adversary structures. Our first goal is to study the Mono-
tone Span Programs (MSP), which is the result of local multiplication of
shares distributed by two given MSPs as well as the access structure that
this result MSP computes. Second, we expand the definition for multi-
plicative MSP from [4] and prove that when we use dual MSPs only all
players together can compute the product. The knowledge of the result
MSP and the access structure it computes allows us to build an analog
of the Genaro et al. algebraic simplification protocol [9]. Using this fact
and the homomorphic commitments an efficient general MPC protocol in
the computational model for general adversary structures can be build,
as described in [9, 4].

Keywords: general multi-party computation, verifiable secret sharing, linear
secret sharing, monotone span programs, information-theoretic security, general
adversaries.

1 Introduction

The concept of secret sharing was introduced by Shamir [17] as a tool to protect
a secret simultaneously from exposure and from being lost. It allows a so called
dealer to share the secret among a set of entities, usually called players, in such
a way that only certain specified subsets of the players are able to reconstruct
the secret while smaller subsets have no information about it.

2

We call the groups who are allowed to reconstruct the secret qualified, and the
groups who should not be able to obtain any information about the secret for-
bidden. The collection of all qualified groups is denoted by Γ , and the collection
of all forbidden groups is denoted by ∆. In fact Γ is monotone increasing and ∆
is monotone decreasing. The tuple (Γ,∆) is called access structure if Γ ∩∆ = ∅.
Denote by P the set of participants in the scheme. If Γ ∪∆ = 2P , i.e. Γ = ∆c is
complement of ∆, then we say that (Γ,∆) is complete and we denote it only by
Γ . Otherwise we say that (Γ,∆) is incomplete. By Γ− we denote the collection
of minimal sets of Γ and by ∆+ we denote the collection of maximal sets of ∆.
It is obvious that (Γ−,∆+) generates (Γ,∆). We will consider general monotone
access structure (Γ,∆), which describes subsets of participants that are qualified
to recover the secret s ∈ F (F - finite field) in the set of possible secret values.
It is common to model cheating by considering an adversary who may corrupt
some subset of the players. One can distinguish between passive and active cor-
ruption, see [8, 14] for recent results. Passive corruption means that the adversary
obtains the complete information held by the corrupted players, but the players
execute the protocol correctly. Active corruption means that the adversary takes
full control of the corrupted players. Active corruption is strictly stronger than
passive corruption. The adversary is characterized by a privacy structure ∆ and
an adversary structure ∆A ⊆ ∆. Denote the complement ΓA = ∆c

A. In [8, 16]
this set is called honest (or good) players structure, which in fact appears to be
wrong notation. Actually its dual access structure Γ⊥A should be called honest
(or good) players structure.
Both passive and active adversary may be static, meaning that the set of cor-
rupted players is chosen once and for all before the protocol starts, or adaptive
meaning that the adversary can at any time during the protocol choose to cor-
rupt a new player based on all the information he has at the time, as long as the
total set is in ∆A.
Most proposed SSS are linear, but the concept of an LSSS was first considered
in its full generality by Karchmer and Wigderson in [12], who introduced the
equivalent notion of Monotone Span Program (MSP), which we describe later.
Each linear SSS can be viewed as derived from a monotone span program M
computing its access structure. On the other hand, each monotone span program
gives rise to an LSSS. Hence, one can identify an LSSS with its underlying mono-
tone span program. Such an MSP always exists, because MSPs can compute any
monotone function. Note that the size of M is also the size of the corresponding
LSSS. Now we will consider any access structure, as long as it admits a linear
secret sharing scheme.
Since an LSSS neither guarantees reconstructability when some shares are false,
nor verifiability of a shared value a stronger primitive were introduced verifiable
secret sharing (VSS) [6, 1]. Secure multi-party computation (MPC) can be defined
as the problem of n players to compute an agreed function of their inputs in a
secure way, where security means guaranteeing the correctness of the output as
well as the privacy of the players’ inputs, even when some players cheat. A key
tool for secure MPC, interesting in its own right, is VSS: a dealer distributes

3

a secret value among the players, where the dealer and/or some of the players
may be cheating. It is guaranteed that if the dealer is honest, then the cheaters
obtain no information about the secret, and all honest players will later be able to
reconstruct it, without the help of the dealer. Even if the dealer cheats, a unique
value will be determined and is reconstructible without the cheaters’ help. We
will consider the standard synchronous model with a broadcast channel.

2 Preliminaries

2.1 Notations

For an arbitrary matrix M over F, with m rows labeled by 1, . . . ,m let MA

denotes the matrix obtained by keeping only those rows i with i ∈ A, where
A is an arbitrary non-empty subset of {1, . . . ,m}. If {i} = A we write Mi.
Consider the set of row-vectors vi1 , . . . ,vik

and let A = {i1, . . . , ik} be the set of
indices, then we denote by vA the matrix consisting of rows vi1 , . . . ,vik

. Instead
of 〈ε,vi〉 for i ∈ A we will write 〈ε,vA〉. Let MT

A denote the transpose of MA,
and let Im(MT

A) denote the F-linear span of the rows of MA. We use Ker(MA)
to denote the kernel of MA, i.e. all linear combinations of the columns of MA,
leading to 0.
Let us define the standard inner product 〈x, y〉 and x ⊥ y, when 〈x, y〉 = 0.
For a F-linear subspace V of Ft, V ⊥ denotes the collection of elements of Ft,
that are orthogonal to all of V (the orthogonal complement), which is again a
F-linear subspace. For all subspaces V of Ft we have V = (V ⊥)⊥, (Im(MT

N))⊥ =
Ker(MN) or Im(MT

N) = (Ker(MN))⊥, 〈x,MT
Ny〉 = 〈MNx, y〉.

Let v = (v1, . . . , vt1) ∈ Ft1 and w = (w1, . . . , wt2) ∈ Ft2 are two vectors. The
tensor vector product v ⊗ w is defined as a vector in Ft1t2 such that the j-
coordinate in v (denoted by vj) is replaced by vjw, i.e. v⊗w = (v1w, . . . , vt1w) ∈
Ft1t2 ; The tensor matrix product v⊗̄w is defined as a matrix M ∈ Ft1×t2 with
rows v1w, . . . , vt1w or equivalent with columns w1v, . . . , wt2v.
Denote by Mi the i-th row of M ; by M(i) the i-th column of M ; by M(i,j) the
element in the i-th row and in the j-th column of M .
Let M(k) ∈ Fm1 , for k = 1, . . . , d, are columns in m1 × d matrix M , sometimes
we will denote the matrix M by (M(1), . . . ,M(d)) as well. Also let v ∈ Fm2 be an
arbitrary column vector. Define v⊗M to be the matrix with columns v⊗M(k), for
k = 1, . . . , d. Analogously define M ⊗ v to be the matrix with columns M(k)⊗ v,
for k = 1, . . . , d.

2.2 Related Work

Definition 1. [5] The dual Γ⊥ of a monotone access structure Γ defined on P
is the collection of sets A ⊆ P such that Ac /∈ Γ .

Definition 2. [7] For an access structure (Γ,∆) coreΓ is defined to be the set
of players which are in some minimal authorized set, that is

coreΓ = ∪A∈[Γ]−A.

4

Definition 3. [7] We will say that an access structure is connected if coreΓ =
P , recall that P is the set of all players.

The following operation (called element-wise union) for monotone decreasing
sets was introduced in [16, 8].

Definition 4. [16, 8] We define the operation] for any monotone decreasing
sets ∆1,∆2 as follows: ∆1]∆2 = {A = A1 ∪A2;A1 ∈ ∆1, A2 ∈ ∆2}.

Definition 5. [16] We define the operation] for any monotone increasing
sets Γ1, Γ2 as follows: Γ1] Γ2 = {A = A1 ∪A2;A1 /∈ Γ1, A2 /∈ Γ2}c.

Definition 6. [4, 2] A Monotone Span Program (MSP) M is a quadruple
(F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m
columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε is a
fixed vector, called target vector, e.g. column vector (1, 0, ..., 0) ∈ Fd. The size of
M is the number of rows (m).

Thus, ψ labels each row with a number from [1, . . . ,m] corresponding to a fixed
player, hence we can think of each player as being the “owner” of one or more
rows. For every player we consider a function ϕ which gives the set of rows owned
by the player, i.e. ϕ is (in some sense) inverse of ψ.
MSP is said to compute an access structure Γ when ε ∈ Im(MT

G) if and only
if ψ(G) is a member of Γ . So, the players can reconstruct the secret precisely
if the rows they own contain in their linear span the target vector of M, and
otherwise they get no information about the secret, i.e. there exists a so called
recombination vector r such that 〈r,MG(s, ρ)〉 = s and MT

Gr = ε for any secret
s and any ρ.

Lemma 1. The vector ε /∈ Im(MT
N) if and only if there exists k ∈ Fd such that

MNk = 0 and k1 = 1.

The main goal in our paper is to provide an efficient construction which builds
MPC from any LSSS. It is well known that because of the linearity LSSS provide
it is easy to add secrets securely. It is enough only for each player to add up the
shares he holds.
Therefore, to do general MPC, it will suffice to implement multiplication of
shared secrets. That is, we need a protocol where each player initially holds
shared secrets s and s′, and ends up holding a share of the product ss′. Several
such protocols are known for the threshold case [10, 1, 3, 9] and for general access
structure [4, 2].
We follow the approach proposed by Cramer et al. in [4, 2] to build an MPC
for any LSSS, provided that the LSSS is what they call multiplicative. Loosely
speaking, an LSSS is multiplicative if each player i can, from his shares of secrets
s and s′, compute a value ci, such that the product ss′ can be obtained using
only values from honest players.
One possible construction for MSP, introduced by Cramer [2], isM⊗, i.e. a matrix
obtained from matrix M by replacing each row v of M with v ⊗ v. Denote the

5

new MSP by M⊗ = (F,M⊗, ε ⊗ ε, ψ). Hence M = (F,M, ε, ψ) is a MSP with
multiplication if and only if

ε⊗ ε ∈ Im(MT
⊗).

It is shown also in [2] that for any MSP M, and for all b and b′, the following
equality holds

s ∗ s′ = (Mb) ∗ (Mb′) = M⊗(b⊗ b′),

where s ∗ s′ is the so-called star product, i.e. s ∗ s′ = (s1, . . . , sn) ∗ (s′1, . . . , s
′
n) =

(s1s′1, . . . , sns
′
n).

Let Γ be an access structure, computed by MSP M = (F,M, ε, ψ) Given two
m-vectors x and y, Cramer et. al. in [4, 2] denote x�y to be the vector containing
all entries of form xiyj , where ψ(i) = ψ(j). Thus, if mi = |ϕ(i)| is the number of
rows owned by a player i, then x � y has m =

∑
im

2
i entries. So, if x, y contain

shares resulting from sharing two secrets using M, then the vector x � y can be
computed using only local computations by the players, i.e. each component of
the vector can be computed by one player. So when each player owns exactly
one row in M the operations � and ∗ coincide.
Denote by MA the MSP obtained from M by keeping only the rows owned by
players in A, for any players subset A.

Definition 7. [4, 2] A multiplicative MSP is an MSP M for which there ex-
ists an m-vector r called a recombination vector, such that for any two secrets
s′ and s′′ and any ρ′ and ρ′′, it holds that

s′s′′ = 〈r,M(s′, ρ′) �M(s′′, ρ′′)〉

It is said that M is strongly multiplicative if for any players subset A that
is qualified by M, MA is multiplicative.

2.3 Our Results

We focus on general treatment of non-cryptographic (i.e. information-theoretically
secure) multi-party computation, based on underlying linear secret sharing scheme.
Our research is based mainly on the definitions and results by Cramer et. al. in
[4] about General Secure Multi-Party Computation.
First we slightly expand the construction proposed by Cramer et al. in [2, 4]. Let
Γ1 and Γ2 are access structures, computed by MSPs M1 = (F,M1, ε1, ψ1) and
M2 = (F,M2, ε2, ψ2). Let also M1 be m1 × d1 matrix, M2 be m2 × d2 matrix
and ϕ1, ϕ2 are the “inverse” functions of ψ1 and ψ2. Given a m1-vector x and
a m2-vector y, we denote x � y to be the vector containing all entries of form
xiyj , where ψ1(i) = ψ2(j). Thus x � y has m =

∑
i |ϕ1(i)||ϕ2(i)| entries, notice

that m < m1m2. So, if x, y contain shares resulting from sharing two secrets
using M1 and M2, then the vector x � y can be computed using only local
computation by the players, i.e. each component of the vector can be computed
by one player. Correspondingly to this new model we expand the definition for
the multiplicative MSP.

6

Definition 8. Given two MSPs M1 and M2, the MSP M is called their mul-
tiplicative result MSP if there exists an m-vector r called a recombination
vector, such that for any two secrets s′ and s′′ and any ρ′ and ρ′′, it holds that

s′s′′ = 〈r,M1(s′, ρ′) �M2(s′′, ρ′′)〉

It means that one can construct a multiplicative result MSP computing the
product of the secrets shared by MSPs M1 and M2.
Recall that by MA we denote the MSP obtained from M by keeping only the
rows owned by players in A for any players subset A.

Definition 9. Given two MSPs M1 and M2, the MSP M is called their strongly
multiplicative result MSP if there exists an access structure Γ computed by M
such that for any players subset A ∈ Γ , (MA is the multiplicative result MSP of
(M1)A and (M2)A.

The last definition means that one can construct a strongly multiplicative result
MSP, computing the product of the secrets shared by MSPs M1 and M2, with
some access structure Γ . The difference between multiplicative result MSP and
strongly multiplicative result MSP is that in the first one Γ = {P} whereas in
the second {P} 6= Γ .
Now let us consider the access structure Γ computed by the MSP M = (F,M =
M1 �M2, ε = ε1 � ε2, ψ), where ψ(i, j) = r if and only if ψ1(i) = ψ2(j) = r.
Our first goal will be to investigate the properties that the access structure Γ and
the MSP M posses. We will prove that the MSP M is strongly multiplicative
result of MSPs M1 and M2.

Theorem 1. Let Γ1 and Γ2 are the access structures computed by the MSPs
M1 and M2. Let the MSP M is the strongly multiplicative result of MSPs
M1 and M2, and let the access structure Γ is computed by the MSP M. Then
Γ ⊆ Γ1] Γ2. (Notice also that it is possible Γ to be ∅.)

Now let us consider again the Definition 7, and for A ∈ Γ1 consider the MSP
(M1)A. Let M1 = M2 are MSPs computing the access structure Γ1. Applying
Theorem 1 for M1 it follows that not for any set A ∈ Γ1 the MSP (M1)A is
multiplicative, in fact only the sets in (Γ1]Γ1) ⊂ Γ1 satisfy the definition. Hence
the strongly multiplicative property as defined in Definition 7 never holds. That
is why it is necessary to give the Definitions 8 and 9.
Our second main theorem shows that the access structure Γ , computed by the
strongly multiplicative result MSP M of MSPs M1 and M⊥

1 , is in fact the whole
set of players P .

Theorem 2. Let Γ1 and Γ⊥1 are the connected access structures computed by
the MSPs M1 and M⊥

1 . Let the MSP M is the strongly multiplicative result of
MSPs M1 and M⊥

1 , and let the access structure Γ is computed by the MSP M.
Then Γ = Γ1] Γ⊥1 = {P}.

7

Theorem 2 imply that only all players together can compute the product of the
secrets, henceM is the multiplicative result MSP, but not strongly multiplicative
result MSP.
The use of strongly multiplicative LSSS allows us to think about the MPC as a
kind of VSS, since no interactions between the players is needed to compute the
product of two secrets. Unfortunately in the general case the picture coincide
with the threshold case. As Ben-Or et al. note in their seminal paper [1] the
new shares computed after local multiplication correspond to a higher (double)
degree polynomial which is not random. To overcome this problem they intro-
duced a degree reduction and randomization protocols. Later Genaro et al. [9]
achieve both tasks in a single step, which they call an algebraic simplification for
multiplication protocol. As we will prove in case of general access structure we
have the same problem as described by Ben-Or et al. The new shares computed
after local multiplication correspond to a much “smaller” access structure Γ
and the shares are computed not using a random vector. On the other hand the
knowledge of the access structure Γ allows us to build an analog of the algebraic
simplification protocol of Genaro et al.
Until now the adversary was static, from now on let us consider the adaptive
adversary. We will say that the adversary is (∆1,∆A)-adversary if ∆1 is his
privacy structure and ∆A ⊆ ∆1 is his adversary structure.
In our adaptive adversary model we have adversary with two privacy structures
∆1, ∆2 and with one adversary structure ∆A ⊆ ∆1, ∆A ⊆ ∆2.
In the considered model of MPC we take into account that it is sufficient to exist
a VSS with an access structure Γ such that: Γ tolerate an adversary structure∆A

and Γ is strongly multiplicative result of MSPs computing Γ1 and Γ2. Combining
Theorem 1 and Corollary 3 our third main result follows.

Theorem 3. The sufficient condition for existence of general perfect information-
theoretically secure MPC secure against (∆1,∆2,∆A)-adversary is (ΓA ∗ΓA)⊥ ⊆
Γ ⊆ Γ1] Γ2, where Γ is the access structure computed by the strongly multi-
plicative result MSP M from MSPs M1 and M2.

The paper is organized as follows: In the next section we investigate one natu-
ral construction ⊗ for the MSP. Then we propose our main construction �. In
Section 5 an algebraic simplification for multiplication is described. In the last
section conditions for existence of MPC secure against adaptive adversary are
considered.

3 Construction for ⊗

In this section we will study the properties of one natural construction for the
MSP.
First we prove some useful technical lemmas.

Lemma 2. Let w ∈ Fd and v ∈ Fm2 be arbitrary column vectors and M be a
m1 × d matrix. Then the following equations hold

(M ⊗ v)w = (Mw)⊗ v, (v ⊗M)w = v ⊗ (Mw).

8

Lemma 3. Let x, a ∈ Fm and y, b ∈ Fn are arbitrary vectors, then the following
equality holds

〈x⊗ y, a⊗ b〉 = 〈x, a〉〈y, b〉.

Now we construct a new matrix M as follows, and denote it by M = M1 ⊗M2.
Construction for ⊗: For each row (M1)i of M1, and for each row (M2)j of
M2, compute a new row (M1)i ⊗ (M2)j of M .
The construction above, says that the first row of M1 is ⊗ multiplied to each
row of M2, next the second row of M1 is ⊗ multiplied to each row of M2, and
so on. But the construction is symmetric, hence we have the same operation
for the columns as we applied to the rows. If (M1)(s), for s = 1, . . . , d1 are
columns in M1 then we can represent the above construction as M = ((M1)(1)⊗
M2| . . . |(M1)(d1) ⊗M2) using the notations from Lemma 2.
We will give some properties of the matrix M = M1 ⊗M2.

Lemma 4. The construction for ⊗ is symmetric regarding the rows and columns,
i.e.

(M1 ⊗M2)T = MT
1 ⊗MT

2 .

We can generalize the statement in Lemma 2 as follows:

Lemma 5. Let M1 be m1 × d1 matrix, and M2 be m2 × d2 matrix. And let
M = M1 ⊗ M2 (i.e. M is m1m2 × d1d2 matrix), then for arbitrary column
vectors λ1 ∈ Fd1 and λ2 ∈ Fd2 the following equality holds

M(λ1 ⊗ λ2) = (M1 ⊗M2)(λ1 ⊗ λ2) = (M1λ1)⊗ (M2λ2).

Now using the previous lemma it is easy to prove that ε = ε1 ⊗ ε2 belongs to
the linear span of the rows of M .

Corollary 1. Let λ1 ∈ Fm1 and λ2 ∈ Fm2 be recombination vectors for M1

and M2 (i.e. MT
1 λ1 = ε1 and MT

2 λ2 = ε2). Then λ = λ1 ⊗ λ2 ∈ Fm1m2 is the
recombination vector for M = M1 ⊗M2, i.e. the following equality holds

MTλ = ε

Note that the construction ⊗ appears to be well the known Kronecker product
of matrices see [15]. The problem with this construction is that we do not know
whom each row belongs to.

4 Construction for �

To avoid the inherent problem of the construction ⊗, in this section we consider
the � construction.
Let us denote for arbitrary vector x = (x̄1, . . . , x̄n), where x̄t is the sub-vector
corresponding to player t (i.e. the coordinates in x which belong to the player t

9

are collected in a sub-vector denoted by x̄t). Hence x̄t ∈ F|ϕ(t)|. Thus we have
obviously

〈x, y〉 = 〈(x̄1, . . . , x̄n), (ȳ1, . . . , ȳn)〉 =
∑

t

〈x̄t, ȳt〉

Also notice that
x � y = (x̄1 ⊗ ȳ1, . . . , x̄n ⊗ ȳn)

We are now in position to state a property analogous to that in Lemma 3 for
the operation �.

Lemma 6. Let x, a ∈ Fd1 and y, b ∈ Fd2 are arbitrary vectors, then the following
equality holds.

〈x � y, a � b〉 =
∑

t

〈x̄t, āt〉〈ȳt, b̄t〉.

Now we construct a new matrix M as it is described bellow. We will denote it
by M = M1 �M2.
Construction for � (the main construction): For each participant t consider
the rows he owns in both matrices. Then for each row (M1)i of M1, such that
ψ1(i) = t and for each row (M2)j of M2, such that ψ2(j) = t, calculate new
row (M1)i ⊗ (M2)j of M , also denote ψ(i, j) = t in this case. Thus define m =∑

t∈P |ϕ1(t)||ϕ2(t)|, and M is m× d1d2 matrix.
Remarks on the Construction: We assume, without restriction for the MSP,
that its rows are ordered as follows: first we have ϕ(1) rows that belong to the
player 1, next ϕ(2) rows belong to the player 2 etc. Then the construction above
shows that each row (M1)i of M1, such that ψ1(i) = t is tensor multiplied to
each row (M2)j of M2, such that ψ2(j) = t. In other words for any sub-matrix,
which belongs to a fixed player we apply the construction ⊗ .
On the other hand for the columns in M we have the following result: The first
column of M1 is � multiplied to each column of M2, next the second column
of M1 is � multiplied to each column of M2, and so on. Thus the process is
analogous to the case of ⊗ construction, with the difference that the operation
⊗ is replaced by �.
To make the things clearer let us denote by (M1)t the matrix formed by rows
of M1 owned by player t and correspondingly by (M2)t the matrix formed by
rows of M2 owned by player t. Then (M1)t is |ϕ1(t)| × d1 matrix and (M2)t is
|ϕ2(t)|×d2 matrix. Hence we can present M1 as a concatenation of the matrices
(M1)t for t = 1, . . . , n and analogously we can present M2 as concatenation of
the matrices (M2)t for t = 1, . . . , n. Now from the construction � follows that the
matrix M = M1�M2 is concatenation of matrices (M1)t⊗(M2)t for t = 1, . . . , n.
i.e.

M1 =

 (M1)1
. . .

(M1)n

 , M2 =

 (M2)1
. . .

(M2)n

 , and M =

 (M1)1 ⊗ (M2)1
. . .

(M1)n ⊗ (M2)n

 .

First we will show that the construction is symmetric regarding to the MSPs
M1 and M2.

10

Lemma 7. The MSPs M = M1 � M2 and M̃ = M2 � M1 actually compute
the same access structure Γ .

A lemma analogous to Lemma 2 immediately follows from the construction
above.

Lemma 8. Let w ∈ Fd and v ∈ Fm be arbitrary column vectors and M be an
m× d matrix. Then the following equations hold

(M � v)w = (Mw) � v, (v �M)w = v � (Mw).

We will present also some useful properties of the new construction.

Lemma 9. Let M1 be m1×d1 matrix, and M2 be m2×d2 matrix. Construct the
matrix M following the construction � (i.e. M = M1 �M2 is m× d1d2 matrix),
then for arbitrary column vectors λ1 ∈ Fd1 , λ2 ∈ Fd2 the following equality holds

M(λ1 ⊗ λ2) = (M1 �M2)(λ1 ⊗ λ2) = (M1λ1) � (M2λ2).

Lemma 10. Let M1 be m1 × d1 matrix, and M2 be m2 × d2 matrix. Construct
the matrix M as explained above (i.e. M = M1 �M2 is m× d1d2 matrix), then
for arbitrary column vectors λ1 ∈ Fm1 , λ2 ∈ Fm2 the following equality holds

MT (λ1 � λ2) = (M1 �M2)T (λ1 � λ2) =
n∑

t=1

((M1)T
t (λ̄1)t)⊗ ((M2)T

t (λ̄2)t).

In fact the construction � and Lemma 9 confirm our intuitive expectations, as
it is shown in the following lemma.

Lemma 11. Let us denote by Share1 = M1(s1, a) and Share2 = M2(s2, b) the
shares distributed by MSPs M1 and M2, for the secrets s1 and s2 correspond-
ingly. Thus MSP M actually distributes shares Share = Share1 � Share2 for
secret s1s2.

Note that we have Share = (M1 � M2)((s1, a) ⊗ (s2, b)) and that the vector
(s1, a)⊗ (s2, b) is not a random any more.
Now we are in position to prove our main theorem.
Proof of Theorem 1: LetA1 /∈ Γ1. Hence there exists a vector k ∈ Ker((M1)A1),
such that k1 = 1. Analogously, let A2 /∈ Γ2. Hence there exists a vector r ∈
Ker((M2)A2), such that r1 = 1. Notice that k ∈ Fd1 and r ∈ Fd2 . Let A =
A1 ∪ A2, so we have A /∈ Γ1] Γ2. Form a new vector k ⊗ r ∈ Fd1d2 . Now using
Lemma 3 it follows that the vector k ⊗ r ∈ Ker(MA) and (k ⊗ r)1 = 1. Hence
A /∈ Γ , thus Γ ⊆ Γ1] Γ2. 2

Interesting question is when the “equality” holds. One can see from the examples
given in the appendix that “equality” does not always hold.
Note that λ = λ1 � λ2 may not be the recombination vector for M = M1 �M2.
For each B ∈ Γ1] Γ2 we have that B ∈ Γ1 and B ∈ Γ2, hence there exist
recombination vectors λ1 and λ2 such that (M1)T

Bλ1 = ε1 and (M2)T
Bλ2 = ε2.

On the other hand we have ε1 � ε2 = ε and each column in M is equal to column

11

of M1 � column of M2. Unfortunately λ may not satisfy the condition MT
Bλ = ε.

Applying Lemma 10 for λ1 and λ2 such that

MT
1 λ1 =

n∑
t=1

(M1)T
t (λ̄1)t = ε1 and MT

2 λ2 =
n∑

t=1

(M2)T
t (λ̄2)t = ε2

we have

MTλ = MT (λ1 � λ2) =
n∑

t=1

((M1)T
t (λ̄1)t)⊗ ((M2)T

t (λ̄2)t)

Let us consider as example the threshold case. Denote by Ts,n the s-out-of-n
threshold access structure, then it is easy to verify that Tl,n] Ts,n = Tl+s−1,n.
On the other hand each player t holds vectors w = (1, αt, . . . , α

s−1
t) and v =

(1, αt, . . . , α
l−1
t) from MSPs computing Ts,n and Tl,n correspondingly. Thus the

construction proposed above gives

v ⊗ w = (1, αt, . . . , α
s−1
t , αt, α

2
t , . . . , α

s
t , , α

l−1
t , . . . , αs+l−2

t).

In [5] the authors prove that the number of columns (here d = sl − 1) can be
increased without changing the access structure computed by a MSP. The space
generated by the 2-nd up to the d-th column of M does not contain even a non-
zero multiple of the first column. Without changing the access structure that is
computed, we can always replace the 2-nd up to the d-th column of M by any
set of vectors that generates the same space.
Hence v⊗w is equivalent to (1, αt, . . . , α

s+l−2
t), which is exactly the row owned

by player t in MSP computing Tl+s−1,n. This means that in the threshold case we
have equality in Theorem 1. This example shows something more, how important
is to choose correctly the MSPs M1 and M2.
Let the player t holds vectors w = (1, αt, . . . , α

s−1
t) and v = (1, βt, . . . , β

l−1
t) from

MSPs computing Ts,n and Tl,n, and αt 6= βt. Let also the MSP M = M1 �M2

computes Γ . Since αt 6= βt it is easy to check that Γ is not Tl+s−1,n as it should
be expected from the example above.
Actually the importance of the choice of the MSPs M1 and M2 could be illus-
trated also with the addition of shared secrets. Recall that in the case of addition
each player adds up the shares he holds. It means that we use the same MSP
(i.e. M1 = M2) to share two secrets which sum we want to calculate. Now if we
take M1 6= M2 and share two secrets by M1 and M2 simple additions of the
shares each player holds are not enough.
This observation leads us to the conclusion that may be for an MSP M1 there
exists another MSP M2 such that for their strongly multiplicative result MSP
M, computing the access structure Γ , we have Γ = Γ1] Γ2.
In fact, the first step in this direction is [4, Theorem 7], where M1 and M2

are dual i.e. Γ⊥2 = Γ1. Notice that in this case we have ψ1 = ψ2, ε1 = ε2 and
ϕ1 = ϕ2.

12

Cramer et al. proved in [4, Theorem 7] that ε = ε1 � ε1 belongs to the linear
span of the rows of M = M1 �M⊥

1 , when the matrices M1 and M⊥
1 satisfy the

condition MT
1 M

⊥
1 = E. Here E is the matrix that is zero everywhere, except

in its upper-left corner where the entry is 1. Recently in [5] a way of deriving
the matrix M⊥

1 from matrix M1 were proposed (see Lemma 2) such that they
satisfy the equation above.

Definition 10. We will say that an access structure has star topology for
forbidden sets, if there exists a player i such that for any set A ∈ [∆]+, i ∈ A.

We are ready to prove our second main result.
Proof of Theorem 2: It is known that {P} ∈ Γ [4]. On the other hand from
Theorem 1 we have Γ ⊆ Γ1]Γ⊥1 , thus it is enough to prove that Γ1]Γ⊥1 ⊆ {P}.
For any set A ∈ ∆+

1 and any player i ∈ P , i /∈ A we have (A ∪ i) ∈ Γ1. Set
Bc = A∪ i and hence B = P \Bc ∈ ∆⊥

1 . Therefore A∪B = (P \ i) ∈ (∆1]∆⊥
1).

Let us assume that there exists a player j such that (P \ j) /∈ (∆1] ∆⊥
1).

So, j ∈ A for every set A ∈ ∆+
1 , because otherwise using the construction given

above we arrive at contradiction. Hence the access structure Γ1 has star topology
for the forbidden sets, i.e. Γ1 is not connected - contradiction which proves the
statement of the theorem. 2

As example let us consider again the threshold case. Taking into account that
(Tl,n)⊥ = Tn−l+1,n, we have Tl,n] (Tl,n)⊥ = Tn,n = {P}, which is in accordance
with Theorem 2.

5 Algebraic Simplification for Multiplication Protocol on
General Access Structure

Now it is easy to describe an analog of the algebraic simplification protocol
by Genaro et al. in [9]. From Lemma 11 we have Share1 = M1(s1, a) and
Share2 = M2(s2, b) so Share = Share1�Share2 = (M1�M2)((s1, a)⊗(s2, b)) =
M(s1s2, ρ). For any set A ∈ Γ there exists a recombination vector λ such that
MT

A λ = ε or in other words 〈λ, ShareA〉 = s1s2, where as usual ShareA =
MA(s1s2, ρ).
Let us choose new access structure Γ3 with MSP M3 (it is possible for example
Γ1 = Γ2 = Γ3) and vectors h(i) for i = 1, . . . ,m such that the first coordinate
of h(i) is the Sharei, i.e. 〈h(i), ε̃〉 = Sharei. We will use vectors h(i) to re-share
the shares Sharei. Denote by H the matrix consisting of columns h(i). It is easy
to see that 〈HAλ, ε̃〉 = s1s2, since

〈HAλ, ε̃〉 =
∑
i∈A

λi 〈h(i), ε̃〉 =
∑
i∈A

λi Sharei = 〈λ, ShareA〉 = s1s2.

Re-sharing the vectors h(i) with M3 we have M3h(i) = TShare(i) which are
temporary shares for the secret Sharei. Note that for any B ∈ Γ3 there exists a
recombination vector λ̃ such that (M3)T

Bλ̃ = ε̃ or in other words 〈λ̃, TShare(i)B〉 =
Sharei, where as usual TShare(i)B = (M3)Bh(i). Set the matrix G to consist

13

of columns TShare(i), hence G = M3H. Notice that this matrix corresponds
to the temporary shares of all h(i). And finally denote by NShare = G λ =∑
λj TShare(j).

Note that NSharej = Gj λ = Gj,A λA is the new share of the player j to the
secret s1s2 distributed by MSP M3 and it is obtained using only the temporary
shares of the players from A ∈ Γ . Indeed for j ∈ B we have NShareB = GB,AλA

and

〈NShareB , λ̃〉 = 〈GB,A λA, λ̃〉 =
∑
i∈A

〈TShare(i)B λi, λ̃〉 =
∑
i∈A

λi〈(M3)Bh(i), λ̃〉

=
∑
i∈A

λi〈h(i), (M3)T
B λ̃〉 =

∑
i∈A

λi〈h(i), ε̃〉 = 〈HA λ, ε̃〉 = s1s2

Thus if the Player i distribute his shares using h(ϕ(i)) andM3 as described above
to TShare(ϕ(i)). Then each Player k could combine the temporary shares he
receives TShare(ϕ(A))k from some “good” set of players A with recombination
vector λϕ(A) to calculate his new-share NSharek

as NSharek =
∑

i∈ϕ(A) TShare(i)k λi. Now any qualified group B ∈ Γ3 could
restore the secret s1s2.

Lemma 12. This protocol is a secure multiplication protocol in the presence of
passive adversary computationally unbounded.

6 Adaptive Adversary

Until now we have considered schemes only with passive adversary. In this section
we will consider presence of adaptive adversary. Since the adversary we can
tolerate is at leastQ2 adversary (see [11]) and since the conditionQ2 is equivalent
to ∆A ∩ Γ⊥A = ∅ (and to Γ⊥A ⊆ ΓA), we have that the honest players structure
has no intersection with the adversary structure.
Recently Maurer [14] proved the following theorem.

Theorem 4. [14] General perfect information-theoretically secure MPC secure
against a (∆1,∆A)-adversary is possible if and only if P /∈ ∆1]∆1]∆A.

It is easy to rewrite the above theorem into the following form.

Corollary 2. General perfect information-theoretically secure MPC secure against
a (∆1,∆A)-adversary is possible if and only if Γ⊥A ⊆ Γ1] Γ1.

Notice that thanks to the model we use for MPC we reduce the interaction
between players, and in this way we may think for the MPC as kind of VSS.
A recent result, which gives necessary and sufficient conditions for existence of
VSS was proved in [8].

Theorem 5. [8] The robustness, strong robustness and very strong robustness
conditions for VSS are fulfilled if and only if P /∈ ∆]∆A]∆A.

14

It is easy to rewrite the Fehr and Maurer’s result as follows.

Corollary 3. The robustness, strong robustness and very strong robustness con-
ditions for VSS are fulfilled if and only if (ΓA] ΓA)⊥ ⊆ Γ .

Recall that in our adaptive adversary model we have adversary with two privacy
structures ∆1, ∆2 and with one adversary structure ∆A ⊆ ∆1, ∆A ⊆ ∆2.
In order to build a MPC protocol secure against active adversary it is sufficient
the MSPs M1, M2, M3 to satisfy the VSS conditions and to exist a VSS with
an access structure Γ such that: Γ tolerate an adversary structure ∆A and
Γ is strongly multiplicative result of MSPs computing Γ1 and Γ2. Combining
Theorem 1 and Corollary 3 our third main result follows (Theorem 3). Again
the statement in the Theorem 3 can be easily rewritten into the following form.

Corollary 4. General perfect information-theoretically secure MPC secure against
(∆1,∆2,∆A)-adversary is possible if and only if P /∈ ∆1]∆2]∆A]∆A.

References

1. M. Ben-Or, S. Goldwasser and A. Wigderson, Completeness theorems for
Non- Cryptographic Fault-Tolerant Distributed Computation, ACM STOC 1988,
1988, pp. 1-10.

2. R. Cramer, Introduction to Secure Computation, Lectures on Data Security -
Modern Cryptology in Theory and Practice, LNCS 1561, 1999, pp. 16-62.

3. D. Chaum, C. Crepeau and I. Damgard, Multi-Party Unconditionally Secure
Protocols, Proc. ACM STOC 1988, 1988, pp. 11-19.

4. R. Cramer, I. Damgard and U. Maurer, General Secure Multi-Party Compu-
tation from any linear secret sharing scheme, EUROCRYPT 2000, LNCS, Springer-
Verlag, vol. 1807, pp. 316-334.

5. R. Cramer, S. Fehr, Optimal Black-Box Secret Sharing over Arbitrary Abelian
Groups, Proc. CRYPTO 2002, Springer Verlag LNCS 2442, pp. 272-287.

6. B. Chor, S. Goldwasser, S. Micali and B. Awerbuch, Verifiable secret shar-
ing and achieving simultaneity in the presence of faults, Proc. of the IEEE 26th
Annual Symp. on Foundations of Computer Science, 1985, pp. 383-395.

7. M. van Dijk, Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, 1997,
TU Eindhoven.

8. S. Fehr, U. Maurer, Linear VSS and Distributed Commitments Based on Secret
Sharing and Pairwise Checks, Proc. CRYPTO 2002, Springer Verlag LNCS 2442,
pp. 565-580.

9. R. Gennaro, M. Rabin, T. Rabin, Simplified VSS and Fast-Track Multi-party
Computations with Applications to Threshold Cryptography, ACM PODC’98,
1998.

10. O. Goldreich, S. Micali and A. Wigderson, How to Play Any Mental Game
or a Completeness Theorem for Protocols with Honest Majority, ACM STOC’87,
1987, pp. 218-229.

11. M. Hirt, U. Maurer, Player Simulation and General Adversary Structures in
Perfect Multi-party Computation, J. of Cryptology 13, 2000, pp. 31-60.

15

12. M. Karchmer, A. Wigderson, On Span Programs, Proc. of 8-th Annual Struc-
ture in Complexity Theory Conference, San Diego, California, 18-21 May 1993.
IEEE Computer Society Press, pp. 102-111.

13. K. Martin New secret sharing schemes from old, J. of Comb. Math. and Combin.
Comput., 14, 1993, pp. 65-77.

14. U. Maurer, Secure Multi-Party Computation Made Simple, 3rd Conference on
Security in Communication Networks, September 12-13, 2002, Amalfi, Italy, to
appear in LNCS, Springer-Verlag, 2002.

15. F. J. Mac Williams, N. J. A. Sloane, The Theory of Error-Correcting Codes,
Elsevier Science, Amsterdam, 1988.

16. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, Applying General Access
Structure to Proactive Secret Sharing Schemes, Proc. of the 23rd Symposium on
Information Theory in the Benelux, May 29-31, 2002, Universite Catolique de Lo-
vain (UCL), Lovain-la-Neuve, Belgium, pp. 197-206, Cryptology ePrint Archive:
Report 2002/141.

17. A. Shamir, How to share a secret, Commun. ACM 22, 1979, pp. 612-613.

16

7 Appendix

Example 1
Let Γ−1 = {13, 14, 23, 24, 34} and F = GF (2). It is easy to check that (Γ1]Γ1)− =
{234, 134}. On the other hand for the access structure Γ computed by the MSP
M1 �M1 we have Γ = Γ1] Γ1. (sum 3th, 5th, 8th and 9th row with the first or
the second row)

M1 =

0 1 1

0 1 1

1 1 0
0 0 1

1 1 1
0 1 0

 M1�M1 =

0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1

1 1 0 1 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0

1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

Example 2
Let Γ−2 = {12, 14, 23, 24, 34} and F = GF (2). It is easy to check that (Γ1]Γ2)− =
{234}. On the other hand for the access structure Γ computed by the MSP
M1 �M2 we have Γ = {P} ⊂ Γ1]Γ2 (sum all rows except last three ones, for the
set {P}). For the set {234} there is a vector k = (110|101|011) ∈ Ker(M1 �M2),
i.e. the set {234} /∈ Γ .

M2 =

0 1 1

1 1 0
0 0 1

0 1 1

1 1 1
0 1 0

 M1�M2 =

0 0 0 0 1 1 0 1 1

0 0 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 1

0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

