
Multi-Party Computation from any Linear Secret

Sharing Scheme Secure against Adaptive Adversary:

The Zero-Error Case

Ventzislav Nikov
Department of Mathematics and Computing Science,

Eindhoven University of Technology
P.O. Box 513, 5600 MB, Eindhoven, the Netherlands

v.nikov@tue.nl

Svetla Nikova, Bart Preneel
Department Electrical Engineering, ESAT/COSIC, K. U. Leuven,

Kasteelpark Arenberg 10, B-3001 Heverlee-Leuven, Belgium
svetla.nikova, bart.preneel@esat.kuleuven.ac.be

Abstract

We present a general treatment of both information-theoretic and cryptographic settings
for Multi-Party Computation (MPC), based on the underlying linear secret sharing scheme.
Our approach is generic, establishes the minimal conditions for security and leads to design
of secure MPC schemes for general adversary structures, so called strongly multiplicative
case. Our goal is to study the Monotone Span Program (MSP), which is the result of local
multiplication of shares distributed by two given MSPs as well as the access structure that
this resulting MSP computes. First, we expand the construction proposed by Cramer et al.
multiplying two different general access structures and we prove that the resulting MSP
M is strongly multiplicative result of the two MSPs. Second, we show that, the strongly
multiplicative property as defined by Cramer et al. never holds. To overcome this we expand
their definition of multiplicative MSPs and we prove that when we use dual MSPs only all
players together can compute the product, i.e., the multiplicative MPC is not secure in
presence of adversary. Third, we solve an important open problem proposing a solution for
the strongly multiplicative MPC (in presence of adversary) while the method applied by
Cramer et al. gives solution only in the multiplicative case. The knowledge of the resulting
MSP and the access structure it computes allows us to build an analog of the algebraic
simplification protocol of Gennaro et al. We show how to achieve efficient MPC in the
computational model, through the application of homomorphic commitments.

1 Introduction

The concept of secret sharing was introduced by Shamir as a tool to protect a secret simultane-
ously from exposure and from being lost. It allows a so called dealer to share the secret among
a set of entities, usually called players, in such a way that only certain specified subsets of the
players are able to reconstruct the secret while smaller subsets have no information about it.
We call the groups who are allowed to reconstruct the secret qualified (denoted by Γ), and the
groups who should not be able to obtain any information about the secret forbidden (denoted

1

by ∆). The tuple (Γ,∆) is called an access structure if Γ ∩ ∆ = ∅. Denote by P the set of
participants in the scheme. If Γ = ∆c is the complement of ∆, then we say that (Γ,∆) is
complete and we denote it only by Γ.
It is common to model cheating by considering an adversary who may corrupt some subset of
the players. One can distinguish between passive and active corruption, see Fehr and Maurer
[6] for recent results. The adversary is characterized by a privacy structure ∆ and an adversary
structure ∆A ⊆ ∆. Denote the complement ΓA = ∆c

A. Fehr and Maurer [6] and Nikov et al. [10]
called this set honest (or good) players structure, which in fact appears to be misleading term.
Actually its dual access structure Γ⊥A should be called the honest (or good) players structure,
since for any set G of good players the complement Gc is the set of corrupted players from ∆A.
Both passive and active adversaries may be either static, meaning that the set of corrupted
players is chosen once and for all before the protocol starts, or adaptive meaning that the
adversary can at any time during the protocol choose to corrupt a new player based on all the
information he has at the time, as long as the total set is in ∆A.
Most proposed Secret Sharing Schemes (SSS) are linear, but the concept of a Linear Secret
Sharing Scheme (LSSS) was first considered in its full generality by Karchmer and Wigderson,
who introduced the equivalent notion of Monotone Span Program (MSP), which we describe
later. Each linear SSS can be viewed as derived from a monotone span program M computing
its access structure. On the other hand, each monotone span program gives rise to an LSSS.
Hence, one can identify an LSSS with its underlying monotone span program. Such an MSP
always exists, because MSPs can compute any monotone function. Now we will consider any
complete access structure Γ, which describes subsets of participants that are qualified to recover
the secret s ∈ F (F here is a finite field) in the set of possible secret values, as long as Γ admits
a linear secret sharing scheme.
Since an LSSS neither guarantees reconstructability when some shares are incorrect, nor verifia-
bility of a shared value a stronger primitive verifiable secret sharing (VSS) has been introduced
in [5, 1]. In VSS a dealer distributes a secret value among the players, where the dealer and/or
some of the players may be cheating. It is guaranteed that if the dealer is honest, then the
cheaters obtain no information about the secret, and all honest players will later be able to
reconstruct it, without the help of the dealer. Even if the dealer cheats, a unique value will be
determined and is reconstructible without the cheaters’ help. Secure multi-party computation
(MPC) can be defined as follows: n players compute an agreed function of their inputs in a
“secure” way, where “secure” means guaranteeing the correctness of the output as well as the
privacy of the players’ inputs, even when some players cheat. A key tool for secure MPC, is
VSS. We will consider the standard synchronous model with a broadcast channel.
The paper is organized as follows: In the next Section 3 we propose our main construction
diamond �. Then in Section 4 an algebraic simplification for multiplication is described. In the
last section conditions for existence of MPC secure against adaptive adversary are considered.

2 Preliminaries

2.1 Related Work

The basic notation and linear algebra techniques that we will use from now on are summarized
in the Appendix. The following operation (called element-wise union) for monotone decreasing
sets was introduced in [10, 6].

2

Definition 2.1 [10, 6] We define the operation] for any monotone decreasing sets ∆1,∆2

as follows: ∆1]∆2 = {A = A1 ∪A2;A1 ∈ ∆1, A2 ∈ ∆2} and the operation] for any monotone
increasing sets Γ1,Γ2 as follows: Γ1] Γ2 = {A = A1 ∪A2;A1 /∈ Γ1, A2 /∈ Γ2}c.

Definition 2.2 [2, 4] A Monotone Span Program (MSP) M is a quadruple (F,M, ε, ψ),
where F is a finite field, M is a matrix (with m rows and d ≤ m columns) over F, ψ :
{1, . . . ,m} → {1, . . . , n} is a surjective function and ε is a fixed vector, called target vector,
e.g. , column vector (1, 0, ..., 0) ∈ F

d. The size of M is the number m of rows.

As ψ labels each row with a number from [1, . . . ,m] corresponding to a fixed player, we can
think of each player as being the “owner” of one or more rows. For every player we consider a
function ϕ which gives the set of rows owned by the player, i.e., ϕ is “inverse” of ψ.
An MSP is said to compute a (complete) access structure Γ when ε ∈ Im(MT

ϕ(G)) if and only
if G is a member of Γ. Hence, the players can reconstruct the secret precisely if the rows they
own contain in their linear span the target vector of M, and otherwise they get no information
about the secret, i.e., there exists a so called recombination vector r such that 〈r,MG(s, ρ)〉 = s
and MT

Gr = ε for any secret s and any ρ. It is well known that the vector ε /∈ Im(MT
N) if and

only if there exists a k ∈ F
d such that MNk = 0 and k1 = 1.

The main goal of our paper is to provide an efficient construction which builds MPCs from any
LSSS. Because of the linearity LSSS provide it is easy to add secrets securely – it is sufficient
for each player to add up the shares he holds. Therefore, to achieve general MPC, it suffices
to implement multiplication of shared secrets. That is, we need a protocol where each player
initially holds shared secrets s and s′, and ends up holding a share of the product ss′. Several
such protocols are known for the threshold case [1, 3, 7, 8] and for general access structure [2, 4].
We follow the approach proposed by Cramer et al. in [2, 4] to build an MPC from any LSSS,
provided that the LSSS is what they call (strongly) multiplicative. Loosely speaking, an LSSS is
(strongly) multiplicative if each player i can, from his shares of secrets s and s′, compute a value
ci, such that the product ss′ can be obtained using all values (only values from honest players).
One possible construction for MSP, introduced by Cramer [2], is M⊗, i.e., a matrix obtained
from matrix M by replacing each row v of M with v ⊗ v. Denote the new MSP by M⊗ =
(F,M⊗, ε⊗ ε, ψ). Hence M = (F,M, ε, ψ) is an MSP with multiplication if and only if ε⊗ ε ∈
Im(MT

⊗) . It is shown also in [2] that for any MSP M, and for all b and b′, the following
equality holds s ∗ s′ = (Mb) ∗ (Mb′) = M⊗(b⊗ b′) . where s ∗ s′ is the so-called star product, i.e.,
s ∗ s′ = (s1, . . . , sn) ∗ (s′1, . . . , s

′
n) = (s1s′1, . . . , sns

′
n).

Let Γ be an access structure, computed by the MSP M = (F,M, ε, ψ). Given two m-vectors
x and y, Cramer et al. in [2, 4] denote x � y to be the vector containing all the entries of the
form xiyj , where ψ(i) = ψ(j). Thus, if mi = |ϕ(i)| is the number of rows owned by a player
i, then x � y has m =

∑
im

2
i entries. So, if x and y contain shares resulting from sharing two

secrets using M, then the vector x � y can be computed using only local computations by the
players, i.e., each component of the vector can be computed by one player. Hence when each
player owns exactly one row in M the operations � and ∗ coincide.
Denote by MA the MSP obtained from M by keeping only the rows owned by players in A, for
any players subset A.

Definition 2.3 [2, 4] A multiplicative MSP is an MSP M for which there exists an m-vector
r called a recombination vector, such that for any two secrets s′ and s′′ and any ρ′ and ρ′′,

3

it holds that

s′s′′ = 〈r,M(s′, ρ′) �M(s′′, ρ′′)〉 .

It is said that M is strongly multiplicative if for any subset A of players that is qualified by
M, MA is multiplicative.

Throughout the paper we will consider presence of adaptive adversary. Since the adversary we
can tolerate is at least a Q2 adversary and since the condition Q2 is equivalent to ∆A ∩ Γ⊥A = ∅
(and to Γ⊥A ⊆ ΓA), we have that the honest players structure has no intersection with the
adversary structure.
Recently Maurer [9] has proved that general perfect information-theoretically MPC secure
against a (∆1,∆A)-adversary is possible if and only if P /∈ ∆1] ∆1] ∆A or equivalently if
and only if Γ⊥A ⊆ Γ1] Γ1. Notice that thanks to the local computation model for MPC the
interaction between players is reduced, and in this way we may think of the MPC as a kind of
VSS.
A recent result, which gives necessary and sufficient conditions for the existence of VSS has been
proved by Fehr and Maurer in [6]: the robustness, strong robustness and very strong robustness
conditions for VSS are fulfilled if and only if P /∈ ∆] ∆A] ∆A or equivalently if and only if
(ΓA] ΓA)⊥ ⊆ Γ.

2.2 Our Results

We focus on the general treatment of non-cryptographic (i.e., information-theoretically secure)
multi-party computation, based on an underlying linear secret sharing scheme. Our research
relies mainly on the definitions and results by Cramer et al. in [4] about General Secure Multi-
Party Computation.
First we expand the construction proposed by Cramer et al. in [2, 4]. Let Γ1 and Γ2 be access
structures, computed by MSPs M1 = (F,M1, ε1, ψ1) and M2 = (F,M2, ε2, ψ2). Let also M1 be
an m1 × d1 matrix, M2 be an m2 × d2 matrix and ϕ1, ϕ2 are the “inverse” functions of ψ1 and
ψ2. Given an m1-vector x and an m2-vector y, we denote x � y to be the vector containing all
entries of form xiyj , where ψ1(i) = ψ2(j). Thus x � y has m =

∑
i |ϕ1(i)||ϕ2(i)| entries (notice

that m < m1m2). So, if x and y contain shares resulting from sharing two secrets using M1

and M2, then the vector x � y can be computed using only local computation by the players,
i.e., each component of the vector can be computed by one player. In other words we define
the operation diamond � for vectors (and analogously for matrices) as concatenation of vectors
(matrices), which are tensor (⊗) multiplication of the sub-vectors (sub-matrices) belonging to a
fixed player, see (1) and (2).
Following this new model we expand the definition for a multiplicative MSP.

Definition 2.4 Define MSP M to be (F,M = M1 �M2, ε = ε1 � ε2, ψ), where ψ(i, j) = r if
and only if ψ1(i) = ψ2(j) = r. Given two MSPs M1 and M2, the MSP M is called their
multiplicative resulting MSP if there exists an m-vector r called a recombination vector,
such that for any two secrets s′ and s′′ and any ρ′ and ρ′′, it holds that

s′s′′ = 〈r,M1(s′, ρ′) �M2(s′′, ρ′′)〉 = 〈r,M((s′, ρ′)⊗ (s′′, ρ′′))〉 .

This means that one can construct a multiplicative resulting MSP that computes the product
of the secrets shared by MSPs M1 and M2.

4

Definition 2.5 Given two MSPs M1 and M2, the MSP M is called their strongly multi-
plicative resulting MSP if the access structure Γ computed by M is such that for any players’
subset A ∈ Γ, MA is the multiplicative resulting MSP of (M1)A and (M2)A.

The last definition means that one can construct a strongly multiplicative resulting MSP, com-
puting the product of the secrets shared by MSPs M1 and M2, with some access structure
Γ. The difference between the multiplicative resulting MSP and the strongly multiplicative
resulting MSP is that in the first one Γ = {P}.
Let Γ1 and Γ2 be the access structures computed by the MSPs M1 and M2, and such that
satisfy the VSS conditions given in [6]. Let the MSP M be the strongly multiplicative result
of MSPs M1 and M2, and let the access structure Γ be computed by the MSP M. Our first
goal will be to investigate the properties that the access structure Γ and the MSP M posses.
We will prove in Proposition 3.4 that the MSP M is strongly multiplicative result of MSPs M1

and M2, i.e. Γ ⊆ Γ1] Γ2. (Notice that Γ may be equal to ∅.)
Now let us consider again Definition 2.3, and for A ∈ Γ1 consider the MSP (M1)A. Applying
Proposition 3.4 for M1 = M2 it follows that it does not hold that for any set A ∈ Γ1 the MSP
(M1)A is multiplicative: in fact only the sets in (Γ1] Γ1) ⊂ Γ1 satisfy the definition. Hence
the strongly multiplicative property as defined in Definition 2.3 never holds. That is why it is
necessary to introduce Definitions 2.4 and 2.5.
Our second main result Theorem 3.5 shows that the access structure Γ computed by the strongly
multiplicative resulting MSP M of MSPs M1 and M⊥

1 is in fact the whole set of players P .
Theorem 3.5 implies that only all players together can compute the product of the secrets,
hence M is the multiplicative resulting MSP, but not the strongly multiplicative resulting MSP.
Therefore the approach proposed by Cramer et al. in [4] is not applicable in the strongly
multiplicative case.
The use of strongly multiplicative LSSS allows us to think about the MPC as a kind of VSS,
since no interaction between the players is needed to compute the product of two secrets. Un-
fortunately in the general case the picture coincides with the threshold case. As Ben-Or et al.
note in their seminal paper [1] the new shares computed after local multiplication correspond
to a higher (double) degree polynomial which is not random. To overcome this problem they
introduced a degree reduction and randomization protocols. Later Gennaro et al. [7] achieve
both tasks in a single step, which they call an algebraic simplification for the multiplication
protocol. As we will prove in the case of general access structures we have the same problem as
described by Ben-Or et al. The new shares computed after local multiplication correspond to
a much “smaller” access structure Γ and the shares are computed using a non-random vector.
On the other hand the knowledge of the access structure Γ allows us to build an analog of the
algebraic simplification protocol of Gennaro et al.
The adversary is called (∆1,∆A)-adversary if ∆1 is his privacy structure and ∆A ⊆ ∆1 is
his adversary structure. In our adaptive adversary model we have adversary with two privacy
structures ∆1, ∆2 and with one adversary structure ∆A ⊆ ∆1, ∆A ⊆ ∆2. Finally, we propose
solutions in both information-theoretic and computational models for the strongly multiplicative
MPC, which was a known open problem [4].
In the information-theoretically secure general MPC model it is sufficient Γ to satisfy the VSS
conditions form [6] and Γ to be the strongly multiplicative result of MSPs computing Γ1 (MSP
M1) and Γ2 (MSP M2). Combining these conditions we prove our third main result Theorem
5.1, which gives that sufficient conditions for existence of general perfect information-theoreti-

5

cally secure MPC, secure against (∆1,∆2,∆A)-adversary is (ΓA] ΓA)⊥ ⊆ Γ ⊆ Γ1] Γ2.
In the computational model for secure general MPC we use the algebraic simplification for multi-
plication protocol, presented in Section 4, and the homomorphic commitments [7, 4] to “reduce”
the access structure Γ to any access structure Γ3, provided the VSS conditions for Γ3 holds. As
we will prove in our fourth main result Theorem 5.2 here we need weaker conditions for Γ than
in the information-theoretic model. In other words, if trapdoor one-way permutation exists,
then the sufficient conditions for existence of general perfect secure MPC in the cryptographic
scenario, secure against (∆1,∆2,∆A)-adversary is Γ⊥A ⊆ Γ ⊆ Γ1] Γ2.

3 Main Results

3.1 The Diamond � Construction

A natural construction for the resulting MSP is the well known Kronecker product (construction
⊗) of matrices. The problem with this construction is that we do not know whom each row
belongs to and that the local computation case is not applicable. In the appendix we give some
useful properties of the matrix M = M1⊗M2. To avoid the inherent problem of the construction
⊗, we introduce the diamond � construction.
Consider the vector x. Let us collect the coordinates in x, which belong to the player t in
a sub-vector xt or x = (x̄1, . . . , x̄n). Hence x̄t ∈ F

|ϕ(t)|. Thus we have obviously 〈x, y〉 =
〈(x̄1, . . . , x̄n), (ȳ1, . . . , ȳn)〉 =

∑
t〈x̄t, ȳt〉 . Also notice that the operation diamond � for vectors

could be defined as:

x � y = (x̄1 ⊗ ȳ1, . . . , x̄n ⊗ ȳn) . (1)

We define an operation diamond for the matrices and construct a new matrix M as follows. We
will denote it by M = M1 �M2.
For each participant t consider the rows he owns in both matrices. Then for each row (M1)i of
M1, such that ψ1(i) = t and for each row (M2)j of M2, such that ψ2(j) = t, calculate a new row
(M1)i ⊗ (M2)j of M , and write ψ(i, j) = t. Hence m is defined as m =

∑
t∈P |ϕ1(t)||ϕ2(t)|, and

M is an m× d1d2 matrix.
Remarks on the Construction: We assume, without restriction for the MSP, that its rows
are ordered as follows: first we have |ϕ(1)| rows that belong to the player 1, next |ϕ(2)| rows
belonging to the player 2, etc. Then the construction shows that each row (M1)i of M1, such
that ψ1(i) = t is tensor multiplied to each row (M2)j of M2, such that ψ2(j) = t. In other words
for any sub-matrix, which belongs to a fixed player we apply the construction ⊗.
On the other hand for the columns in M we have the following result: the first column of M1

is � multiplied to each column of M2, next the second column of M1 is � multiplied to each
column of M2, and so on. Thus the process is analogous to the case of ⊗ construction, with the
difference that the operation ⊗ is replaced by �.
To make the explanations clearer let us denote by (M1)t the matrix formed by rows of M1 owned
by player t and correspondingly by (M2)t the matrix formed by rows of M2 owned by player t.
Then (M1)t is a |ϕ1(t)|×d1 matrix and (M2)t is a |ϕ2(t)|×d2 matrix. Hence we can present M1

as a concatenation of the matrices (M1)t for t = 1, . . . , n and analogously we can present M2

as a concatenation of the matrices (M2)t for t = 1, . . . , n. Now from the construction diamond
� follows that the matrix M = M1 �M2 is the concatenation of matrices (M1)t ⊗ (M2)t for

6

t = 1, . . . , n. i.e.,

M1 =

 (M1)1
. . .

(M1)n

 , M2 =

 (M2)1
. . .

(M2)n

 , and M =

 (M1)1 ⊗ (M2)1
. . .

(M1)n ⊗ (M2)n

 . (2)

3.2 Properties of the Diamond � Construction

We present some useful properties of the new construction diamond � as well as some properties
of the Kronecker product in the Appendix. Here, first we show that the construction is symmetric
regarding to the MSPs M1 and M2.

Lemma 3.1 The MSPs M = M1 �M2 and M̃ = M2 �M1 actually compute the same access
structure Γ.

Lemma 3.2 Let M1 be an m1×d1 matrix, and M2 be an m2×d2 matrix. Construct the matrix
M following the construction � (i.e., M = M1 �M2 is m × d1d2 matrix), then for arbitrary
column vectors λ1 ∈ F

d1, λ2 ∈ F
d2 the following equality holds

M(λ1 ⊗ λ2) = (M1 �M2)(λ1 ⊗ λ2) = (M1λ1) � (M2λ2) .

Note that the construction diamond � and Lemma 3.2 confirm our intuitive expectations, as
shown in the following lemma.

Lemma 3.3 Let us denote by S1 = M1(s1, a) and S2 = M2(s2, b) the shares distributed by MSPs
M1 and M2, for the secrets s1 and s2 respectively. Then MSP M actually distributes shares
S = S1 � S2 for the secret s1s2.

Note that we have S = (M1 �M2)((s1, a)⊗ (s2, b)) and that the vector (s1, a)⊗ (s2, b) is not a
random any more.
Now we are in position to prove our first main proposition.

Proposition 3.4 Let Γ1 and Γ2 be the access structures computed by the MSPs M1 and M2.
Let the MSP M be the strongly multiplicative result of MSPs M1 and M2, and let the access
structure Γ be computed by the MSP M. Then Γ ⊆ Γ1] Γ2. (Notice that Γ may be equal to ∅.)

Proof: Let A1 /∈ Γ1. Hence there exists a vector k ∈ Ker((M1)A1) such that k1 = 1. Analo-
gously, let A2 /∈ Γ2. Hence there exists a vector r ∈ Ker((M2)A2) such that r1 = 1. Notice that
k ∈ F

d1 and r ∈ F
d2 . Let A = A1∪A2, so we have A /∈ Γ1]Γ2. Form a new vector k⊗r ∈ F

d1d2 .
Now using Lemma 6.5 it follows that the vector k ⊗ r ∈ Ker(MA) and (k ⊗ r)1 = 1. Hence
A /∈ Γ, thus Γ ⊆ Γ1] Γ2. 2

3.3 Properties of the Resulting MSP

An interesting open question is when the “equality” holds? One can see from the examples given
in the appendix that “equality” does not always hold.
Note that λ = λ1 � λ2 may not be the recombination vector for M = M1 � M2. For each
B ∈ Γ1] Γ2 we have that B ∈ Γ1 and B ∈ Γ2, hence there exist recombination vectors
λ1 and λ2 such that MT

1 λ1 =
∑n

t=1(M1)T
t (λ̄1)t = ε1 and MT

2 λ2 =
∑n

t=1(M2)T
t (λ̄2)t = ε2.

7

On the other hand we have ε1 � ε2 = ε and each column in M is equal to a column of M1

� a column of M2. Unfortunately λ may not satisfy the condition (applying Lemma 6.11)
MTλ = MT (λ1 � λ2) =

∑n
t=1((M1)T

t (λ̄1)t)⊗ ((M2)T
t (λ̄2)t) = ε.

Consider for example the threshold case. Denote by Ts,n the s-out-of-n threshold access struc-
ture, then it is easy to verify that Tl,n] Ts,n = Tl+s−1,n. On the other hand each player t holds
vectors w = (1, αt, . . . , α

s−1
t) and v = (1, αt, . . . , α

l−1
t) from MSPs computing Ts,n and Tl,n

correspondingly. Thus the construction proposed above gives

v ⊗ w = (1, αt, . . . , α
s−1
t , αt, α

2
t , . . . , α

s
t , , α

l−1
t , . . . , αs+l−2

t) .

It is well known that the number of columns (here d = sl−1) can be increased without changing
the access structure computed by an MSP. The space generated by the 2nd up to the d-th
column of M does not contain even a non-zero multiple of the first column. Without changing
the access structure that is computed, we can always replace the 2nd up to the d-th column of
M by any set of vectors that generates the same space.
Hence v⊗w is equivalent to (1, αt, . . . , α

s+l−2
t), which is exactly the row owned by the player t in

MSP computing Tl+s−1,n. This means that in the threshold case we have equality in Proposition
3.4. This example shows something more: it is very important to choose the MSPs M1 and M2

correctly.
Let the player t holds vectors w = (1, αt, . . . , α

s−1
t) and v = (1, βt, . . . , β

l−1
t) from MSPs com-

puting Ts,n and Tl,n, and αt 6= βt. Let also MSP M = M1 �M2 computes Γ. Since αt 6= βt it
is easy to check that Γ is not Tl+s−1,n as should be expected from the example above.
Actually the importance of the choice of the MSPs M1 and M2 could be illustrated also with
the addition of shared secrets. Recall that in the case of addition each player adds up the shares
he holds. It means that we use the same MSP (i.e., M1 = M2) to share two secrets the sum
of which we want to calculate. Now if we take M1 6= M2 and share two secrets by M1 and
M2 simple additions of the shares each player holds are not enough. This observation leads
us to the conclusion that (may be) for an MSP M1 there exists another MSP M2 such that
for their strongly multiplicative resulting MSP M, computing the access structure Γ, we have
Γ = Γ1] Γ2. The first step in this direction is [4, Theorem 7], where M1 and M2 are dual,
i.e., Γ⊥2 = Γ1 and in this case we have ψ1 = ψ2, ε1 = ε2 and ϕ1 = ϕ2. Cramer et al. proved in
[4, Theorem 7] that ε = ε1 � ε1 belongs to the linear span of the rows of M = M1 �M⊥

1 , when
the matrices M1 and M⊥

1 satisfy the condition MT
1 M

⊥
1 = E. Here E is the matrix that is zero

everywhere, except in its upper-left corner where the entry is 1. It is known how to derive the
matrix M⊥

1 from matrix M1 such that they satisfy the equation above.
We are ready to prove our second main result.

Theorem 3.5 Let Γ1 and Γ⊥1 be the connected access structures computed by the MSPs M1

and M⊥
1 . Let the MSP M be the strongly multiplicative result of MSPs M1 and M⊥

1 , and let
the access structure Γ be computed by the MSP M. Then Γ = Γ1] Γ⊥1 = {P}.

Proof: It is known that {P} ∈ Γ. On the other hand from Proposition 3.4 we have Γ ⊆ Γ1]Γ⊥1 ,
thus it is sufficient to prove that Γ1] Γ⊥1 ⊆ {P}.
For any set A ∈ ∆+

1 and any player i ∈ P , i /∈ A we have (A∪ i) ∈ Γ1. Set Bc = A∪ i and hence
B = P \Bc ∈ ∆⊥

1 . Therefore A ∪B = (P \ i) ∈ (∆1]∆⊥
1).

Let us assume that there exists a player j such that (P \ j) /∈ (∆1]∆⊥
1). So, j ∈ A for every

set A ∈ ∆+
1 , because otherwise using the construction given above we arrive at a contradiction.

8

Hence the access structure Γ1 has the star topology for the forbidden sets, i.e., there exists a
player j such that for any set A ∈ [∆]+, j ∈ A. Hence Γ1 is not connected – contradiction which
proves the statement of the theorem. 2

As example let us consider again the threshold case. Taking into account that (Tl,n)⊥ = Tn−l+1,n,
we have Tl,n] (Tl,n)⊥ = Tn,n = {P}, which is in accordance with Theorem 3.5.

4 Algebraic Simplification for the Multiplication Protocol on a
General Access Structure

Now it is easy to describe an analog of the algebraic simplification protocol by Gennaro et al.
in [7]. ¿From Lemma 3.3 we have S1 = M1(s1, a) and S2 = M2(s2, b) so S = S1 � S2 =
(M1 �M2)((s1, a)⊗ (s2, b)) = M(s1s2, ρ). For any set A ∈ Γ there exists a recombination vector
λ such that MT

A λ = ε or in other words 〈λ, SA〉 = s1s2, where as usual SA = MA(s1s2, ρ).
Let us choose a new access structure Γ3 with MSP M3 (it is possible for example Γ1 = Γ2 = Γ3)
and vectors h(i) for i = 1, . . . ,m such that the first coordinate of h(i) is Si, i.e., 〈h(i), ε̃〉 = Si.
We use vectors h(i) to re-share the shares Si. Denote by H the matrix consisting of columns
h(i). It is easy to see that 〈HAλ, ε̃〉 = s1s2, since

〈HAλ, ε̃〉 =
∑
i∈A

λi 〈h(i), ε̃〉 =
∑
i∈A

λi Si = 〈λ, SA〉 = s1s2 .

Re-sharing the vectors h(i) with M3 we have M3h(i) = TS(i) which are temporary shares
for the secret Si. Note that for any B ∈ Γ3 there exists a recombination vector λ̃ such that
(M3)T

Bλ̃ = ε̃ or in other words 〈λ̃, TS(i)B〉 = Si, where as usual TS(i)B = (M3)Bh(i). Let the
matrix G consists of columns TS(i), hence G = M3H. Notice that this matrix corresponds to
the temporary shares of all h(i)’s. And finally denote by NS = G λ =

∑
λj TS(j).

Note that NSj = Gj λ = Gj,A λA is the new share of the player j to the secret s1s2 distributed
by MSP M3 and it is obtained using only the temporary shares of the players from A ∈ Γ.
Indeed for j ∈ B we have NSB = GB,AλA and

〈NSB, λ̃〉 = 〈GB,A λA, λ̃〉 =
∑
i∈A

〈TS(i)B λi, λ̃〉 =
∑
i∈A

λi〈(M3)Bh(i), λ̃〉

=
∑
i∈A

λi〈h(i), (M3)T
B λ̃〉 =

∑
i∈A

λi〈h(i), ε̃〉 = 〈HA λ, ε̃〉 = s1s2 .

Thus the simplified multiplication protocol is as follows:

1) Each player i multiply locally his shares (for simplicity let they own one share from each
of the access structures) (S1)i and (S2)i.

2) The player i chooses a random vector h(i) such that its first coordinate is the product,
(i.e., (S1)i(S2)i = Si.)

3) Using the vector h(i) and M3 he re-shares (using VSS) the product.

4) Every player k receives from player i a temporary share TS(i)k.

5) For some set of “good” players A ∈ Γ with recombination vector λA, each player k calcu-
lates his new-share NSk as NSk =

∑
i∈A TS(i)k λi.

9

6) The new-shares have the property that any set of “good” players B ∈ Γ3 could restore the
secret s1s2.

5 Adaptive Adversary: The Zero-Error Case

Recall that in our adaptive adversary model we have adversary with two privacy structures ∆1,
∆2 and with one adversary structure ∆A ⊆ ∆1, ∆A ⊆ ∆2. For commitments based on MSPs
one can construct error-free commitment protocol, provided that the MSP we have is strongly
multiplicative.
In order to build a MPC protocol secure against active adversary in the non-computational
model it is sufficient for the MSPs M1, M2 and M to satisfy the VSS conditions from [6] and Γ
to be the strongly multiplicative result of MSPs computing Γ1 and Γ2. Combining Proposition
3.4 and the VSS conditions of Fehr and Maurer our third main result follows.

Theorem 5.1 The sufficient conditions for existence of general perfect information-theoretically
secure MPC, secure against (∆1,∆2,∆A)-adversary are

(ΓA] ΓA)⊥ ⊆ Γ ⊆ Γ1] Γ2,

where Γ is the access structure computed by the strongly multiplicative resulting MSP M =
M1 �M2.

Note that from Theorem 5.1 it follows that we have P /∈ ∆1]∆2]∆A]∆A, which is weaker
condition than the condition of Maurer [9].
In order to build a MPC protocol secure against active adversary in the computational model
it is sufficient for the MSPs M1, M2, M3 to satisfy the VSS conditions and that Γ be the
strongly multiplicative result of MSPs computing Γ1 and Γ2. Note that we do not need anymore
M to satisfy the VSS conditions, since the algebraic simplification for multiplication protocol
presented in the previous section and the homomorphic commitments [7, 4] allow us to detect
cheaters and to “reduce” the access structure Γ to any access structure Γ3, which we will call
“reduced”. Hence we obtain our fourth main result.

Theorem 5.2 If trapdoor one-way permutation exists, then the sufficient conditions for exis-
tence of general perfect secure MPC in the cryptographic scenario, secure against (∆1,∆2,∆A)-
adversary are

Γ⊥A ⊆ Γ ⊆ Γ1] Γ2, Γ⊥A ⊆ Γ3,

where Γ is the access structure computed by the strongly multiplicative resulting MSP M =
M1 �M2 and Γ3 is the “reduced” access structure.

References

[1] M. Ben-Or, S. Goldwasser and A. Wigderson, Completeness theorems for Non- Crypto-
graphic Fault-Tolerant Distributed Computation, ACM STOC 1988, 1988, pp. 1-10.

[2] R. Cramer, Introduction to Secure Computation, Lectures on Data Security - Modern Cryp-
tology in Theory and Practice, LNCS 1561, 1999, pp. 16-62.

10

[3] D. Chaum, C. Crepeau and I. Damgard, Multi-Party Unconditionally Secure Protocols,
Proc. ACM STOC 1988, 1988, pp. 11-19.

[4] R. Cramer, I. Damgard and U. Maurer, General Secure Multi-Party Computation from any
linear secret sharing scheme, EUROCRYPT 2000, LNCS, Springer-Verlag, vol. 1807, pp.
316-334.

[5] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch, Verifiable secret sharing and achieving
simultaneity in the presence of faults, Proc. of the IEEE 26th Annual Symp. on Foundations
of Computer Science, 1985, pp. 383-395.

[6] S. Fehr, U. Maurer, Linear VSS and Distributed Commitments Based on Secret Sharing
and Pairwise Checks, Proc. CRYPTO 2002, Springer Verlag LNCS 2442, pp. 565-580.

[7] R. Gennaro, M. Rabin, T. Rabin, Simplified VSS and Fast-Track Multi-party Computations
with Applications to Threshold Cryptography, ACM PODC’98, 1998.

[8] O. Goldreich, S. Micali and A. Wigderson, How to Play Any Mental Game or a Complete-
ness Theorem for Protocols with Honest Majority, ACM STOC’87, 1987, pp. 218-229.

[9] U. Maurer, Secure Multi-Party Computation Made Simple, 3rd Conference on Security
in Communication Networks, September 12-13, 2002, Amalfi, Italy, to appear in LNCS,
Springer-Verlag, 2002.

[10] V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, Applying General Access Structure to
Proactive Secret Sharing Schemes, Proc. of the 23rd Symposium on Information Theory
in the Benelux, May 29-31, 2002, Universite Catolique de Lovain (UCL), Lovain-la-Neuve,
Belgium, pp. 197-206, Cryptology ePrint Archive: Report 2002/141.

6 Appendix

6.1 Notation

For an arbitrary matrix M over F, with m rows labelled by 1, . . . ,m let MA denote the matrix
obtained by keeping only those rows i with i ∈ A, where A is an arbitrary non-empty subset
of {1, . . . ,m}. If {i} = A we write Mi. Let MT

A denote the transpose of MA, and let Im(MT
A)

denote the F-linear span of the rows of MA. We use Ker(MA) to denote the kernel of MA, i.e.,
all linear combinations of the columns of MA, leading to 0.
Let v = (v1, . . . , vt1) ∈ F

t1 and w = (w1, . . . , wt2) ∈ F
t2 be two vectors. The tensor vector

product v ⊗ w is defined as a vector in F
t1t2 such that the j-coordinate in v (denoted by vj)

is replaced by vjw, i.e., v ⊗ w = (v1w, . . . , vt1w) ∈ F
t1t2 . Define v ⊗M to be the matrix with

columns v⊗ k-th column of M , for k = 1, . . . , d. Analogously define M ⊗ v to be the matrix
with columns k-th column of M ⊗v, for k = 1, . . . , d.

Definition 6.1 The dual Γ⊥ of a monotone access structure Γ defined on P is the collection of
sets A ⊆ P such that Ac /∈ Γ.

11

Definition 6.2 For an access structure (Γ,∆) coreΓ is defined to be the set of players which
are in some minimal authorized set, that is

coreΓ = ∪A∈[Γ]−A .

Definition 6.3 An access structure (Γ,∆) is connected if coreΓ = P , when P is the set of all
players.

6.2 Technical Lemmas

Some useful technical lemmas.

Lemma 6.4 Let w ∈ F
d and v ∈ F

m2 be arbitrary column vectors and M be a m1 × d matrix.
Then the following equations hold

(M ⊗ v)w = (Mw)⊗ v, (v ⊗M)w = v ⊗ (Mw).

Lemma 6.5 Let x, a ∈ F
m and y, b ∈ F

n are arbitrary vectors, then the following equality holds

〈x⊗ y, a⊗ b〉 = 〈x, a〉〈y, b〉.

Lemma 6.6 The construction for ⊗ is symmetric with respect to the rows and columns, i.e.,

(M1 ⊗M2)T = MT
1 ⊗MT

2 .

Lemma 6.7 Let M1 be an m1×d1 matrix, and M2 be an m2×d2 matrix. And let M = M1⊗M2

(i.e., M is an m1m2 × d1d2 matrix), then for arbitrary column vectors λ1 ∈ F
d1 and λ2 ∈ F

d2

the following equality holds

M(λ1 ⊗ λ2) = (M1 ⊗M2)(λ1 ⊗ λ2) = (M1λ1)⊗ (M2λ2) .

Using the Lemma 6.7 it is easy to see that ε = ε1 ⊗ ε2 belongs to the linear span of the rows of
M .

Corollary 6.8 Let λ1 ∈ F
m1 and λ2 ∈ F

m2 be recombination vectors for M1 and M2 (i.e.,
MT

1 λ1 = ε1 and MT
2 λ2 = ε2). Then λ = λ1 ⊗ λ2 ∈ F

m1m2 is the recombination vector for
M = M1 ⊗M2, i.e., the following equality holds

MTλ = ε .

A property analogous to that in Lemma 6.5 for the operation diamond � holds.

Lemma 6.9 Let x, a ∈ F
d1 and y, b ∈ F

d2 be arbitrary vectors, then the following equality holds.

〈x � y, a � b〉 =
∑

t

〈x̄t, āt〉〈ȳt, b̄t〉 .

A lemma analogous to Lemma 6.4 immediately follows from the construction diamond �.

Lemma 6.10 Let w ∈ F
d and v ∈ F

m be arbitrary column vectors and M be an m× d matrix.
Then the following equations hold

(M � v)w = (Mw) � v, (v �M)w = v � (Mw).

12

Lemma 6.11 Let M1 be an m1 × d1 matrix, and M2 be an m2 × d2 matrix. Construct the
matrix M as explained above (i.e., M = M1 �M2 is m×d1d2 matrix), then for arbitrary column
vectors λ1 ∈ F

m1, λ2 ∈ F
m2 the following equality holds

MT (λ1 � λ2) = (M1 �M2)T (λ1 � λ2) =
n∑

t=1

((M1)T
t (λ̄1)t)⊗ ((M2)T

t (λ̄2)t) .

6.3 Examples

Example 1
Let Γ−1 = {13, 14, 23, 24, 34} and F = GF (2). It is easy to check that (Γ1] Γ1)− = {234, 134}.
On the other hand for the access structure Γ computed by the MSPM1�M1 we have Γ = Γ1]Γ1.
(sum 3th, 5th, 8th and 9th row with the first or the second row).

M1 =

0 1 1
0 1 1
1 1 0
0 0 1
1 1 1
0 1 0

M1 �M1 =

0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1
1 1 0 1 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

.

Example 2
Let Γ−2 = {12, 14, 23, 24, 34} and F = GF (2). It is easy to check that (Γ1]Γ2)− = {234}. On the
other hand for the access structure Γ computed by the MSP M1�M2 we have Γ = {P} ⊂ Γ1]Γ2

(sum all rows except last three ones, for the set {P}). For the set {234} there is a vector
k = (110|101|011) ∈ Ker(M1 �M2), i.e., the set {234} /∈ Γ.

M2 =

0 1 1
1 1 0
0 0 1
0 1 1
1 1 1
0 1 0

M1 �M2 =

0 0 0 0 1 1 0 1 1
0 0 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 1
0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

.

13

