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Abstract. RC4 cipher is the most widely used stream cipher in software applications. It was
designed by R. Rivest in 1987. In this paper we find the number of keys of the RC4 cipher
generating initial permutations with the same cycle structure. We obtain that the distribution
of initial permutations is not uniform.

1. Introduction

RC4 cipher is the most widely used stream cipher in software applications. It was designed
by R. Rivest in 1987. There are several papers by analysis of RC4, where several attacks and
vulnerabilities were described. Most of these attacks revolve around the concept of a distinguisher.
The first distinguisher was Golic [1] that exploited correlation between z; and z;;,. The results due
to [2, 3] and their generalization [8] are of most practical importance.

In [9] is introduced the idealized model of RC4 and considered the cipher as a random walk
on a symmetric group. Mironov proved a necessary condition for existence of strong distinguishers
in the idealized model.

In this paper we find the number of keys of the RC4 cipher generating initial permutations

with the same cycle structure. We obtain that the distribution of initial permutations is not uniform.
(m+1)/2

Thus, we show that the probability of generating the identical permutation is in /7T ey Yy
e m—ym+

more what you would expect.

2. Description of the RC4 cipher

The RC4 stream cipher is modeled by a finite automaton Ag= (F, f', ZnXZmXSm, Zm), Where
F: 73 X230 XSt - ZinXZi XSy 18 @ next-state function, fi Z;,,XZyXSy —Zn 1s an output function. The
RC4 stream cipher depends on m=2", n(IN .

The state of the RC4 cipher at time ¢ is (i, j;, §;)[1ZnXZn*XSm and the initial state is (0, 0, s,).
Key schedule algorithm p
so 1s the identical permutation, i;=7,=0.
For =1,m do:
i=t1,
o Jo = Jer T Scalid+ Keigmoa ) ( mod m),
sdid]= se1[Jdds sdjedd= se1[1d];
sr]=sei[r], = 0,m —1\{i, j¢}.

AW =

Consider the RC4 cipher at time ¢ (t=1,2....).
The next-state function F




=1 1+t1 (mod m);

Jt=Jert sea[i] (mod m);
silic]= scilje, silid= sealid;
si{r]= sei[r], = 0,m —1\{iy, j:}.

Eal o e

The output function [
Output: z= s ( se[je]+ sii¢] )(mod m)].

Encryption x;: ¢=xJ z;. Decryption ¢;: x=cl] z.

3. Thenumber of stateswith the same cycle structure

In this section we prove our main result, i.e. we find the number of keys of RC4 generating
initial permutations with the same cycle structure. We begin with definitions.

By B(ay,...,0,) denote the set of all permutations from S with the cycle structure

(192%2 m Y, where  1[0+2[@,+... +m@,=m. It is known that [B(Q,...,0m)=
m!

122 m ™ (o V@, [ !

B(ay,..., 0n)}=
1

. Let a permutation s[IS;, are chosen randomly from S, then P{s[]

1
W% @) )

Note that if the distribution of initial permutations p(k) of the RC4 cipher is uniform, then
P{p(k)LIB(Qy,...,0m,)}=Q(ay,...,0m) lm = m ! , where Q(ay,...,0)={k0]
1272 mm Lo, d,!...Lar, !
Zyn" @ p (kO B(ay,..., 0y)}|. The average of keys generating initial permutations with the same
m"™ Uin! _ m"
mll 2% o 1@, L 172%™ )

Note that multiplication to the left transposition (i, j;) by s; is swapped elements s[i;] and
silji], 1.€. sg1=(iy, ji) st. Therefore, the initial permutation of RC4 can be represented as s,=(m—1,
Jm)-..(1,72) (0,j)) &, where E is the identical permutation.

Thus, we’ll consider the multiset 9,={(m—1,jn)...(1,/2) (01) | Gms-.., j1))OZy" }, which
elements are permutations that can be represented as (m—1,)...(1,/2) (0,;), where k=1,m,

cyclic structure is Ny (0, ...,00n)=

JjxJ0,m —1. Note also that the permutation s can be represented as (m—1,jy,)...(1,/2) (0,/;) different
ways.

Let Aq={i\,...,in}, | AnJ=N, be a directed set and ;< i»<...<iy. Let the set J,={jn,..., j1},
where [Jy|<n and either Jyn 4,=0 or Jyn 4x#0. Denote =| 4,1 Jy|.

Let us consider the product of transpositions (i, jn)...(i2, j2) (i1, j1) that is generated by the
key-schedule algorithm of RC4.The product of transpositions (in, jn)...(i2, j2) (i1, j1) corresponds to
the @ vertices graph =g that vertices are the elements of the set 4,[1J, and that edges are the pairs
(ir, jr) labeled by i, r=1,77 . Note that the transposition (a, @) is a loop of =g; the labels’ set of = is
Ay and the number of edges is .

The order relation on the set 4y, is induced on the set of labels, i.e. i1< i,<...<iy on the labels’
set. For 4,={0,1,...,m—1}, J,UA4,, n=m and ii=k—1, the product of transpositions (0,71), (1,/2),...,(m—
1, jm) corresponding to some key of RC4 uniquely defines the graph =,.

The =,, graph may have several components. Let Ax on k vertices labeled by elements of
Xx={x1, X2,...,xx}, Where Xy [1{0,1,...,m—1}, be a component of =,.



We say that the connected graph A, disintegrates into two cycles of length i and j, if the
product of transpositions corresponding to /A, can be represented as products of two independent
cycles of length i and j. By I';; denote a connected graph on i+j vertices labeled by elements of
X={x1, x2,...,xi+j} that disintegrates into two cycles of length i and ;.

To prove the main theorem we need the following proposition.

Proposition 1
1. The number N;j(n) of graphs [;; on i+j vertices, which are labeled by elements of the set
{X1,x2, ... xi+j}, and having a length n cycle is

Nyfn)= E K %Z E SR - T E (1)

2. The number N;j(n) of graphs [;; on i+j vertices, which are labeled by elements of the set
{XI;XZ, -"in+J}
a) for i>0andj>0 is

- i+ + ] -1 + ] -n _ i—k=1 s j—n+k-1
M= E . %ZE i~k Elmn VR e

b) for i>0, j=0 or j>0, i=0 is '
]Vi,ozj]_la

k +1 -
where 4,, = z(—l)tE’t %k—t+l)”, k=0,n—1.
t=0

The proof is by direct calculations.

By A(ki;) denote a graph with k;; components that disintegrate into cycles of length i and ;.
Let the graph /\:U/\(kij) . The m-dimensional vector k ;=(kojs, k1, - ., ki) that the i-th coordinate is
Ky

the number of components A(k;;) of A.
Our main result is the following.

Theorem 2. The number of different products of transpositions (m—1,j,)...(1,j2)(0,j1), where

Jll{0,m—=1}, k= L,m, generating permutations with the same cyclic structure {1712°2..m"" },

lld,+2d>+...+mld,=m, is
e )
Q0,....0m)=m! 17" " O S VA
1]

k..
PR B L
(kl.,.“jkm),o;kojsaj, i<j kij !@ + ])_
0<1£],k4./.Sm1n(aj a; ),
m
kt4+k L=d k=
7 A

., (2
k ..
Ji

where summation is carried out by the first j+1 coordinates (ky, ki, ..., kj) of the vector k ; =(ky;,

kijpooor k) OZ, j=1,m , and

i+tj + 7 i + 7 -
Cij= Z / , S Qn-k)G ™" G*"4,.,,., Hfor 0<i<j,
= n =] ik

C()J:l .

k +1
A, = Z(—l)’gt %k—t+l)”, k=0,n-1.




Proof. We stress that A(kij) consists of ki; graphs [';;, which vertices are labeled by
elements of the set {xi, x2,...,x; (., }. The number of ways to distribute of labels between k;;
ij

i+ i+ g+jg G+ )

components is

k! kij!@‘kj)!kij .
Therefore, by proposition 1 the number of various graphs A(k; ;) having & ; components is
(ky (i + )))!
M=, o G)
kNG + )
Let the graph /\:U/\(ki/') which vertices labeled by elements of the set {x;, x2,..., xn} have

ki
V= Z k; components.
<7

The number ways of distributing labels between v components of A is

%{ %V‘ 01 %” 2k02%”_k01 _2k02 _2k11E _kOI"'_ﬁ&i,ﬁ—iE E”_kor--_mko,m E:
2k, 2k, ks B D‘i,ﬁ—i mkl,m—l

4
M, (l+J)§ @

<)

From (3), (4) we obtain that the number of products transpositions (m—1,jm)...(1,j2) (0,j1)

. . . a a a . g
generating permutations with the same cycle structure {1'2°2..m ™} and with the {%,..., m}

vectors 1S
~ . m! (ke (i + ! )
Q(aly-.-,am; kl’-.-,km): (k 7 ) . k.. Nlj)klj )
L y Q . )
D ij(l ]) i< klj'lﬂ +])' y
m
where zk"f +k,=a,, j=Lm.
i=0
Therefore,
o ()
Q(ay,...,0n)= Z Q(ay,...,.0m; k, ...k, )=m!0 Z —— (5
(. JEm):()skojsaj, (ko JEm):()skojgaj, i<j kij !@'+ ])' Y
0<i<ik <min(a a.), 0<i<ik <min(a a.),
Zk,] i a" i kji Zk,] Vi a" i kji

To compute (5) we note that o A
N;=Cj @ 'F, M=,

+ M+ -
E / %E .J i HEI Qn-k)G "G4, Efor 0<i<j,
n et i-

C()J:l .

where

We also note that

H H
m (r= I)Dzk}j+kr)‘ﬁ

0 wr-g-

l<j <] r=1 <]

Thus, we rewrite (5) as



L.
m ij
e c,)
Q(al,...,am)zm!tﬂ P O —
= (Ko Em):()skojs«;j, i< kij NG + ! v

0<i<j, k <min(0{ ,,a.),

Zkt =a; =k
yooJj oI

The theorem is proved.

4. The asymptotic distribution of the number initial states with some cycle
structure

In this section we describe distributions of the number keys of RC4 generating permutations

with the following cycle structure {1°2°...m'}, {1™2°%..m°}, {1™92°...d"...m"}.
First we compute the number of RC4 keys generating the cycle structure {1° 2°...m'}. By

(2) we have Q(0,...,0,1)=m™". Therefore, P{p(k)DB(O,...,O,l)}zi. Note that if s is randomly
m

chosen from Sy, then P{s[1B(0,...,0,1)= 1 .
m
Let us now compute the number of keys of RC4 generating identical permutations. By (2)

we get
m/2

m! m!
Q(m,0,...,0)= _ .
k01+22k11—’” kmmuu ; k\On -2 k)102*
/2
It is known [10] that Q(m,0,...,0) = — Bsz+O%f%as m - 00,
l“\/_DeD
Let P{sUB(ay,...,0m)}=—— " 1 > Nm(0p,...,0m)=——
11272 m o Loy, \a, ! ..., ! 191272 % mllﬁzl...mm!

P{p(k)UB(ay,...,am)}=Q(ay,.. .,O(m)Lm, i.e. if suppose that s is uniformly random.
m

Proposition 3. Let A.(ay,....a,)=| Qj,....d,) — Nu(Qi...0)|, Ou(Qy....0,)=Q(ay,...,ay)/
Nu(ay,...,Qy) , m>4. Then for m — co

n/2
A p(m,0,....0) D;Z@H - (6)
e

(m+1)/2

8(m,0,...,0) OWm ————

3/2m—ﬁ+1/4 )

Proof. The following are true.

m/2 m! e”
A (m,0,...,0 Bﬁg S :
( )= ; KOn -2 ml ”4\/_D€D \2mmn
r \/— (/2
(@), .., ty) O 1/4\/_%H F: EI— Jm————— Y =rrry

This completes the proof.
For some values of m numeric dates are resulted in tab. 1.



Table 1
The number of keys of RC4 generating identical permutations for different values of m

m | Qm,0,...,0) | Nu(m,0,...,0) | P{p(k)0 B(m,0,...,0))} | P{s0 B(m,0,...,0)}
1024 | 3,6000'%? 6,400%* 1,000"7% 1,810 26%
512 9,210°"! 4,000%° 6,600 ¢ 2,900
256 | 2,3000%° 3,76 10'° 7,12007>°* 1,16007°"
128 | 53000 1,3 10> 1,000 1% 2,607

64 1,400% 1,30010°%° 3,400°% 7,900°

32 2,2010" 5,600 1,500% 3,8007°

16 4,610’ 8,8(10° 2,500 4,800

From table 1 we see that the distribution of initial permutations is not uniform.
Remark. It is known [10] that the number of 7,,%’ solutions of the equation s’=FE, where p is a
prime number, in the symmetric group Sy, is
m/p

z kGm — p@)'@k’

1
7,0= @f +0
1/4\/_D€D

(1-1/p)

T,7= gfg p? @‘W(Ho(l)) for p>2.
e

It is easy to see that Q(m,0,.. .,0)=Tm(2) .

(p)_

and as m — o

Proposition 4. Let Q(m—d,0,...,1,0...0) be the number of keys of RC4 generating the set of
permutations with the cycle structure {Im*d 2°..d"..m"). Then

(m=d) d

1.  Q@m-d,0,...,1,0...00=m!@'[Q i ,
d!(m—d) - kKOn—d -2k)2%  (d+1)(m-d-1)!

[m=-d-1]
i (m—-d-1)! )
- KlOn—-d-1-2k)02*”
2. for (m—d) - oo, d<c, where c is a constant
J(m=d) m+d)/2
Did \/_ |}Iqal/4 @H

Q(m-d,0,...,1,0...0)

3. for (m—d) - oo, d - 0o, d=0O(m)

em“j m+d)/2
Q(m—d,0,...,1,0...0) —— ,
Jdd @' Oe O
4. for (m—d) - oo, d=o(m), (m—d)/m — c<lI,
cla+1)/2 m(2—c)/2—3/2 1

Q(m—d,0,...,1,0.. ODBI'H )
( ) o™/ 241/ 4= \/E(I_C)WZ

5. for (m—d) -0,
Q(m-d,0,...,1,0...0)0m™".
The proof is by direct calculation.



Proposition 5. Let A,(ay,....a,)=| Q(ay,...,d,) — Nu(Qy,...,0n)|, On(Qy,...,0n)= Q(ay,...,ay)/
Nu(ay,...,ay), m24. Then

1. for (m—d) — oo, d<c, where c is a constant

J(m=d) m+d)/2 d —m-d
A, (m=d,0,...,1,0...0) EH"‘IE—I\/M# 9 me
d@"  Qed J2mnd

m—d)/2

d
8,(m=d,0,...,1,0...0)/7am onp™_ 2dt
De [I d!em— m—d+1/4

b

2. for (m—d) - 0o, d - 00, d=0(m)

e«/(m—d)+d m+d)/2 md @m—d
Ay(m—d,0,...,1,0...0) ————— == (7)
Jrdd V" Oe O N2rnd

(m-d+1)/2

2 m
dn(m—d,O,...,l,O...O)DW/g oS
3. for (m—d) — oo, d=o(m), (m—d)/m —c<I,

c+1)/2 20—y /2-3/2 1 m(1=¢) 3, clh
A0, 1000 — e
man em/2+l/4— mld \/E(l —c) /27771111(1 —c)
clm+1)/2 P mm/2—m(1—c)/2

dn(m—d,o,...,l,o...O)DBI—H
e

1-c em/2+c|._zh+l/4—\/mlﬂ )

The proof is by direct calculation.

Let Qp=Q(m—d,0,...,1,0...0), Npg =Nm(m—d,0....,1,0...0), Pp"=P{p(k)IB(m—d,0,..., 1,
0...0)}, Pma®=P{s0 B(m-d,0.,...,1,0...0)}.

Table 2
The number of keys of RC4 generating the set of permutations with the cyclic structure {
2°...d"...m" for different m

1 m—d

m d Qmd Nimd P P q”
2048 1024 2’3[1]()5028 7’2[1]()4138 5,7[1]0—1754 1’8[1]0—2643
1024 | 512 | 2,600% | 2,000"" | 7400 5,600
512 1256 | 2300 |6,400%" | 1,600°% 4,6007"
256 | 128 | 1,500™° 6,500°® | 4,7007'%° 2,00072"
128 | 64 | 1,800*" 6,500'% | 3,100 1,2000°%°
2048 64 1,8@03097 1,2@01097 4,5[]]0_3685 2,9[[]0_5685
1024 | 32 [ 1,300 2,700%7 | 3,800 1% 7,600 2%
512 | 16 |3300° 4,400 | 2,3007% 32001
256 8 | 5,700 7,800 | 1,7007°% 2,400
128 | 4 1,900 8,810° 3,500 1,70072%
2048 | 2 1,900%7 5,000%° | 4700782 1,3007°%8

Obtained results are presented in Fig. 1.



5. Conclusion

In this paper we computed the number of keys of RC4 generating initial permutations with

the same cyclic structure. We find that the distribution is not uniformly random and prove that the
(m+1)/2
m

probability of generating the identical permutation is in N more what you would

e3/2m—\/;+1/4

expect. Therefore, to determine an initial permutation of RC4 we can do the following.
Let ad=(ay,...,0,) be a m-dimensional vector that coordinates are a solution of the equation
la+205+. . . +m0y,=m.
L. Preliminary step.
a) Compute Q(4), Nw(0), 0,(0 )= Q(A )/ N,(d ) for all solutions of the equation.
log+200+. . . +m0Oy=m.
b) On the set of vectors @ we define the order relation. We’ll suppose that a=a"' if
On(@ )2 0,(0') and @120 20 52... if. & ,2d ( for r<t.
II.
Suppose AY=00, r=1.
j-step of testing.
Randomly from the set B(a )\ AL choose a permutation s;
Suppose so=sr0);
/\r(iﬂ): /\r(j)D Sr(i);
For the state (0, 0, sp) compute L=3/2m keystreams Z1*,. o ZL*;
If zi=z for all k=1,L , then we find true the initial state. If there exist k(I I,_L} such that

Zk#Zk*, then for AU"D= B(d:) suppose r=r+1, AYY= 0 and go to step II; for B(d )\
AT V20 go to step 1.

0

b
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Fig.1. P{p(k)l B(m-d,0,...0,1,0,...0)}= Q(m—d,O,...0,1,0,...0)%(the solid line) and
m
P{slJB(m—d,0,...0, 1,0, ...0)} (the dashed line) if s is uniformly random for m=64.
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