
1

Hyperelliptic Curve Cryptosystems: Closing the

Performance Gap to Elliptic Curves

Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

Department of Electrical Engineering and Information Sciences
Communication Security Group (COSY)

Ruhr-Universitaet Bochum, Germany
Universitaetsstrasse 150
44780 Bochum, Germany

{pelzl, wollinger, guajardo, cpaar}@crypto.rub.de

Abstract. For most of the time since they were proposed, it was widely believed that hyperelliptic curve
cryptosystems (HECC) carry a substantial performance penalty compared to elliptic curve cryptosystems
(ECC) and are, thus, not too attractive for practical applications. Only quite recently improvements
have been made, mainly restricted to curves of genus 2. The work at hand advances the state-of-the-
art considerably in several aspects. First, we generalize and improve the closed formulae for the group
operation of genus 3 for HEC defined over fields of characteristic two. For specific curves we achieve a
50% complexity improvement compared to the best previously published results. Second, we introduce a
new complexity metric for ECC and HECC defined over characteristic two fields which allow performance
comparisons of practical relevance. It can be shown that the HECC performance is within a factor two of
the performance of an ECC; for specific parameters HECC can even possess a lower complexity than an
ECC at the same security level. Third, we describe the first implementation of a HEC cryptosystem on an
embedded (ARM7) processor. Since HEC are particularly attractive for constrained environments, such a
case study should be of relevance.

Keywords: hyperelliptic curves, explicit formulae, comparison HECC vs. ECC, efficient
implementation

1 Introduction

In 1976 Diffie and Hellman [DH76] revolutionized the field of cryptography by introducing the
concept of public-key cryptography. Their key exchange protocol is based on the difficulty of
solving the discrete logarithm (DL) problem over a finite field. Years later, [Kob87,Mil86] intro-
duced a variant of the Diffie-Hellman key exchange, based on the difficulty of the DL problem in
the group of points of an elliptic curve (EC) over a finite field. Since their introduction, elliptic
curve cryptosystems (ECC) have been extensively studied not only by the research community
but also in industry. In particular, there are several standards involving EC, such as the IEEE
P1363 [P1399] standardization effort and the bank industry standards [ANS99]. It is impor-
tant to point out that ECC benefit from shorter operand sizes when compared to RSA or DL
based systems. This fact makes ECC particularly well suited for small processors and memory
constrained environments.

In 1988 Koblitz suggested for the first time the generalization of EC to curves of higher genus,
namely hyperelliptic curves (HEC) [Kob88]. In contrast to the EC case, it has only been until
recently that Koblitz’s idea to use HEC for cryptographic applications, has been analyzed and
implemented both in software [SS00,Eng99b,SSI98,SS98,Kri97] and in more hardware-oriented
platforms such as FPGAs [Wol01,BCLW02]. In 1999, [Sma99] concluded that there seems to be

2 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

little practical benefit in using HEC, because of the difficulty of finding hyperelliptic curves and
their relatively poor performance when compared to EC. However, quite recently efficiency of
the HEC group operation has been improved [Har00,MDM+02,Tak02,Lan02a]. It is well known
that the best algorithm to compute the discrete logarithm in generic groups such as the Jacobian
of a HEC is Pollard’s rho method or one of its parallel variants [Pol78,vOW99]. For curves of
genus higher than four, [Gau00a] showed that there exists an algorithm with complexity O(q2)
where Fq is the field over which the HEC is defined. Thus, in this work, we only consider HEC
of genus less than four, as curves of higher genus are potentially insecure from a cryptographic
point of view.

It is widely accepted that for most cryptographic applications based on EC or HEC one
needs a group order of size at least ≈ 2160. Thus, for HECC over Fq we will need a least
g · log2 q ≈ 2160, where g is the genus of the curve. In particular, for a curve of genus two, we
will need a field Fq with |Fq| ≈ 280, i.e., 80-bit long operands. Similarly, for curves of genus
three, our discussion above implies 54-bit long operands. These field sizes make HEC specially
promising for use in embedded environments where memory and speed are constrained, and
where the above operand sizes seem well suited to their small processor architectures.

Our Main Contributions

Genus 3 group operations: The work at hand presents for the first time generalized (i.e.,
not restricted to odd characteristic) explicit formulae for genus-3 curves including fields of
characteristic 2. We optimized the formulae presented in [KGM+02] and we decreased the
number of field operations required for adding and doubling two divisors. In particular, for
certain curves our group doubling formula saves more than 60% of the field multiplications
compared to [KGM+02]. Given the dominance of the doubling operation over the addition
operation, the computational complexity for a divisor multiplication is reduced by 50% for
such curves.

New complexity metric for HECC and ECC: Previously, a fair comparison between HECC
and ECC was difficult to achieve due the different field sizes, type of operations, and the
non-deterministic nature of the HEC operations1, in particular, the computation of polyno-
mial gcds. In addition, most of the published ECC results contain many platform specific
optimizations which vary greatly between different implementations. We introduce a new
metric for HECC and ECC over characteristic two fields which is based on an atomic op-
eration count rather than on the (theoretical) bit complexity or specific timings. The most
interesting results are that for a special type of genus-3 curves (a) in some cases HECC is
faster than ECC at the same level of security and that (b) special genus-3 curves are faster
than genus-2 curves. Our new metric is validated by a mere 10% difference between our
theoretical and practical results.

HECC implementation on an embedded platform: With the predicted advent of ubiq-
uitous computing, embedded processors will play an increasingly important role for provid-
ing security functions. Due to their relatively short operand lengths, HEC are particularly
well suited for embedded processors which are typically computationally constrained. We
support our theoretical findings with a HECC implementation on an ARM7TDMI, which
is one of the most popular embedded processors. Our implementation uses the best explicit

1 E.g. [Eng99b] considers the average complexity of the gcd computation of polynomial defined over a finite field.

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 3

formulae for genus-2 and genus-3 curves. The timings are compared to the best known ECC
implementations on the same platform and we conclude that for our implementation genus-2
curves are about a factor of 2 slower than ECC, while genus-3 curves with h(x) = 1 are
approximately a factor of 1.5 slower.

The remainder of the paper is organized as follows. Section 2 summarizes contributions
dealing with previous implementations and comparisons of HECC and ECC. Section 3 gives
a brief overview of the mathematical background related to HECC. Section 4 and 5 present
our new explicit formulae for genus-3 curves and a theoretical comparison between ECC and
HECC. Finally, we end this contribution with a discussion of our results and some conclusions.

2 Previous Work

In this section, we summarize previous improvements to the group operation of genus-2 and
genus-3 curves, earlier theoretical comparisons between ECC and HECC, and other HECC
implementations.

Improvements to HECC Group Operations
Spallek was the first who attempted to find explicit formulae for the group operations of a
HECC [Spa94]. Six years later a major breakthrough for the speed of the group operations
in the Jacobian of genus-2 hyperelliptic curves was published in [GH00], in the context of
algorithms which determine the group order of Jacobians of HEC. [GH00] noticed that one can
derive different explicit formulae for the group operations depending on the weights of the input
divisors (input to the group operation, doubling or addition). In addition, we know that over Fq

two random polynomials are co-prime with probability 1−O(1/q), where the polynomials are
defined over Fq. Thus, in practice it is only necessary to consider the most frequent occurring
case. In the same year Nagao [Nag00] proposed a polynomial division algorithm without field
inversions and an algorithm to calculate the extended gcd algorithm while only using one field
inversion, both geared to improve Cantor’s algorithm. Both algorithms proposed by [Nag00]
are used to improve polynomial arithmetic and thus, not applicable to the derivation of explicit
formulae.

Very recently further improvements were made by [MDM+02,Tak02]. In [MDM+02], the
authors were able to replace the two field inversions by only one, with the help of Mont-
gomery’s trick for simultaneous inversions [Coh93]. In [Tak02] one multiplication was saved
through a displacement of one operation. All these improvements are for genus-2 curves and
odd characteristic. The generalization to even characteristic was done in [Lan02a] where im-
proved formulae for characteristic 2 curves are also given. There was also some effort to find
explicit formulae to perform the group operation for HECC without using inversions for genus-2
curves [Lan02b,Lan02c].

Table 1 summarizes the efforts made to date to speed up genus-2 curves. In Table 1, I refers
to inversion, M to multiplication, S to squaring, and M/S to multiplications or squarings, since
squarings are assumed to be of the same complexity as a multiplication in these publications.

For genus-3 hyperelliptic curves of odd characteristic the only improvement over Cantor’s al-
gorithm was presented in [KGM+02]. The authors adopted the methods from [MDM+02,Har00]
to obtain the speed-up. The operation complexity for genus-3 curves is summarized in Table 3.

4 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

Table 1. Speeding up group operations on hyperelliptic curves of genus two.

field curve cost
characteristic properties addition doubling

Cantor [Nag00] general 3I + 70M/S 3I + 76M/S

Nagao [Nag00] odd h(x) = 0, fi ∈ F2 1I + 55M/S 1I + 55M/S

Harley [Har00] odd h(x) = 0 2I + 27M/S 2I + 30M/S

Matsuo et al.[MCT01] odd h(x) = 0 2I + 25M/S 2I + 27M/S

Miyamoto et al. [MDM+02] odd h(x) = 0, f4 = 0 I + 26M/S I + 27M/S

Takahashi [Tak02] odd h(x) = 0 I + 25M/S I + 29M/S

Lange [Lan02a] general hi ∈ F2, f4 = 0 I + 22M + 3S I + 22M + 5S
two hi ∈ F2, f4 = 0 I + 22M + 2S I + 20M + 4S

Lange [Lan02b] general hi ∈ F2, f4 = 0 47M + 4S(40M + 3S)2 40M + 6S
two hi ∈ F2, f4 = 0 46M + 2S 33M + 6S

Lange [Lan02c] odd hi ∈ F2, f4 = 0 47M + 7S(36M + 5S)2 34M + 7S
even h2 6= 0, hi ∈ F2, f4 = 0 46M + 4S(35M + 5S)2 35M + 6S
even h2 = 0, hi ∈ F2, f4 = 0 44M + 6S(34M + 6S)2 29M + 6S

Theoretical Comparisons
In [SSI98], the authors clarified practical advantages of hyperelliptic cryptosystems when com-
pared to ECC and to RSA. To our knowledge this is the first and only contribution that
investigates in detail the theoretical complexity of ECC and HECC. They estimated the cost of
different cryptosystems based on the number of bit operations. In their work they used Cantor’s
formula and the cost of one multiplication in F2n was assumed to take n2 bit operations. One
of the estimated theoretical results shows that genus-3 curves needed three times as many bit
operations as elliptic curves. We want to point out that this publication used supersingular
curves3 and curves of genus higher than 4 which today are believed to be insecure due to the
attacks presented in [FR94,Gau00a,Gal01].

In the following years further analyses of the complexity of HECC were published. A the-
oretical analysis of the computational efficiency of the arithmetic on hyperelliptic curves is
derived in [Eng99b]. In [SS00], the authors implemented hyperelliptic curve cryptosystems and
analyzed the complexity of the group law on Jacobians JC(Fp) and JC(F2n). Moreover, they
verified their theoretical complexity estimates with a HECC implementation and with the the-
oretical analysis done by Enge in [Eng99b]. Some newer papers presented timings for HECC
using explicit formulae and compared HECC to ECC [Lan02a]. However, these comparisons
were based on the implementation timings.

To our knowledge there is no theoretical complexity comparison between ECC and HECC
published that uses the explicit formulae for HECC and compares HECC and ECC in terms of
processor instructions, such as shift and XOR operations. Hence, this comparison is processor
independent and can be adapted to any platform.

HECC Implementations
Since HEC cryptosystems were proposed, there have been several software implementations on
general purpose machines and, only recently, publications dealing with hardware implementa-

2 mixed addition
3 [Gal01] gives some arguments against using supersingular hyperelliptic curves in cryptographic applications.

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 5

tions of HECC. To our knowledge there has not been any work dealing with the implementation
of HEC on embedded systems.

The results of previous HECC software implementations are summarized in Table 2. The
table entries are sorted in chronological order. All implementations up to [SS00] use Cantor’s
algorithm with polynomial arithmetic. Starting with [MCT01], the implementations make use
of explicit formulae. The table includes only implementations that are considered to be secure,
namely curves of genus smaller than five, and shows only the fastest numbers given in each
publication. For example, the implementation presented in [Sma99] is not included in Table 2,
because it focused only on HECC with genus larger than four.

The first implementation based on Harley’s algorithm was presented in [MCT01]. Com-
pared to Harley’s algorithm, they were able to save two multiplications/squarings and three
multiplications/squarings in the group addition and doubling operations, respectively. This
implementation was followed by [MDM+02], [Tak02] and [Lan02a] described above. The only
genus-3 curve implementation based on the explicit formulae was presented in [KGM+02].

Table 2. Execution times of recent HEC implementations in software.

reference processor genus field tscalarmult. in ms

[Kri97] Pentium@100MHz 2 F264 520
3 F242 1200
4 F231 1100

[SS98] Alpha@467MHz 3 F259 83.3
3 F289 25700
3 F2113 37900
4 F241 96.6

Pentium-II@300MHz 3 F259 11700
4 F241 10900

[SS00] Alpha21164A@600MHz 3 Fp(log2 p = 60) 98
3 F259 40
4 F241 43

[MCT01] PentiumIII@866MHz 2 186-bit OEF 1.98
[MDM+02] PentiumIII@866MHz 2 186-bit OEF 1.69
[KGM+02] Alpha21264@667MHz 3 F261−1 0.932

[Lan02a] Pentium-IV@1.5GHz 2 F2160 18.875
2 F2180 25.215
2 Fp(log2 p = 160) 5.663
2 Fp(log2 p = 180) 8.162

The first HECC hardware architectures were proposed in [Wol01]. In [BCLW02], perfor-
mance results of a hardware-based genus two hyperelliptic curve coprocessor over F2113 were
presented. The FPGA was clocked at 45 MHz and required 4750 clock cycles for a group
addition and 4050 clock cycles for a group doubling operation.

3 Mathematical Background

In this section we present an elementary introduction to some of the theory of hyperelliptic
curves over finite fields of arbitrary characteristic, restricting attention to material that is
relevant for this work. For more details the reader is referred to [Kob89,Kob98].

6 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

3.1 HECC and the Jacobian

Let F be a finite field, and let F be the algebraic closure of F. A hyperelliptic curve C of genus
g ≥ 1 over F is the set of solutions (u, v) ∈ F× F to the equation

C : v2 + h(u)v = f(u)

Such a curve is said to be non-singular if there are no pairs (u, v) ∈ F×F which simultaneously
satisfy the equation of the curve C and the partial differential equations 2v + h(u) = 0 and
h′(u)v − f ′(u) = 0. The polynomial h(u) ∈ F[u] is of degree at most g and f(u) ∈ F[u] is a
monic polynomial of degree 2g +1. For odd characteristic it suffices to let h(u) = 0 and to have
f(u) squarefree.

A divisor D =
∑

miPi, mi ∈ Z, is a finite formal sum of F-points. Its degree is the sum of
the coefficients

∑
mi. The set of all divisors form an Abelian group denoted by D(C). The set

of divisors of degree zero will be denoted by D0 ⊂ D(C).
Every rational function on the curve gives rise to a divisor of degree zero, consisting of the

formal sum of the poles and zeros of the function. Such divisors are called principal and the set
of all principal divisors is denoted by P. If D1, D2 ∈ D0 then we write D1 ∼ D2 if D1−D2 ∈ P;
D1 and D2 are said to be equivalent divisors. Now, we can define the Jacobian of C as the
quotient group D0/P. If we want to define the Jacobian over F, denoted by JC(F), we say that
a divisor D =

∑
miPi is defined over F (sometimes also called a F-divisor or rational divisor)

if Dσ =
∑

miP
σ
i is equal to D for all automorphisms σ of F over F. Notice that this does not

mean that each P σ
i is equal to Pi, σ may permute the points.

In [Can87], Cantor shows that each element of the Jacobian can be represented in the form
D =

∑r
i=1 Pi−r ·∞ such that for all i 6= j, Pi and Pj are not symmetric points. Such a divisor is

called a semi-reduced divisor. Cantor concludes that from the Riemann-Roch Theorem [Ful69]
follows that each element of the Jacobian can be represented uniquely by such a divisor, subject
to the additional constraint r ≤ g. Such divisors are referred to as reduced divisors. Finally,
[Can87] shows that the divisors of the Jacobian can be represented as a pair of polynomials
a(u) and b(u) with deg b(u) < deg a(u) ≤ g, with a(u) dividing v2 +h(u)v−f(u) and where the
coefficients of a(u) and b(u) are elements of F [Mum84] (notice that in our particular application
F is a finite field). In the remainder of this paper, a divisor D represented by polynomials will
be denoted by div(a, b).

3.2 Group Operations on a Jacobian

This section gives a brief description of the algorithms used for adding and doubling two divisors
on JC(F). These group operations will be performed in two steps. First we have to find a semi-
reduced divisor D′ = div(a′, b′), such that D′ ∼ D1 + D2 = div(a1, b1) + div(a2, b2) in the
group J. In the second step we have to reduce the semi-reduced divisor D′ = div (a′, b′) to an
equivalent divisor D = (a, b). Algorithm 1 describes the group addition.

Doubling a divisor is easier than general addition and therefore, Steps 1,2, and 3 of Algo-
rithm 1 can be simplified as follows:

1: d = gcd(a, 2b + h) = s1a + s3(2b + h)
2: a′0 = a2/d2

3: b′0 = [s1ab + s3(b
2 + f)]d−1(moda′0)

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 7

Algorithm 1 Group addition
Require: D1 = div(a1, b1), D2 = div(a2, b2)
Ensure: D = div(a, b) = D1 + D2

1: d = gcd(a1, a2, b1 + b2 + h) = s1a1 + s2a2 + s3(b1 + b2 + h)
2: a′0 = a1a2/d2

3: b′0 = [s1a1b2 + s2a2b1 + s3(b1b2 + f)]d−1(moda′0)
4: while deg a′k > g do

5: a′k =
f−b′k−1h−(b′k−1)2

a′
k−1

6: b′k = (−h− b′k−1) mod a′k
7: end while
8: Output (a = a′k, b = b′k)

The formulae given for the group operation of HECC can be written explicitly as previously
mentioned. In Section 4 we develop explicit formulae of Cantor’s Algorithm for genus-3 curves.

3.3 Security of HECC

The DLP on J(F) can be stated as follows: given two divisors D1, D2 ∈ J(F), determine the
smallest integer m such that D2 = mD1, if such an m exists. The binary algorithm and its
variants [MvOV96,Gor98] can be used to efficiently compute mD. The main operations in the
algorithm are group addition and group doubling.

The Pollard rho method and its variants [GLV98,Pol78,Wie86] are the most important
examples of algorithms for solving the DLP in generic groups with complexity O(

√
n) in groups

of order n. However, some special cases of HEC were discovered in [FR94,Rüc99], which can be
attacked with complexity better than O(

√
n). The first algorithm which computes the DL in

subexponential time for sufficient large genera was published in [ADH94]. The algorithm was
improved and implemented e.g. in [FS97,Eng99a,Gau00b,EG02]. This algorithm has a better
complexity than Pollard’s rho method for g > 4.

In [FR94], the authors described the mapping of the Tate pairing on the divisor class group
of a curve C over a finite field Fq into the multiplicative group F∗

qk . Hence, for small k the DLP

in the divisor class group can be solved with the index-calculus algorithms. In [Gau00a] it is
shown that index-calculus algorithms in the Jacobian of HEC have a lower complexity than
the Pollard rho method for curves of genus greater than 4. In order to find secure HECC one
also has to consider criteria to ensure that a curve is not supersingular [Gal01]. However, there
are no hyperelliptic supersingular curves of genus 2n − 1 and characteristic 2 for any integer
≥ 2 [SZ02]. Thus, to our knowledge the best attacks against HEC of the form suggested in this
contribution have complexity O(

√
n).

4 Speed-up for Genus-3 Curves

In this section we briefly outline the ideas of [GH00] and [KGM+02] which are the starting
point for our improvements. In [GH00], the authors noticed that one can reduce the number of
operations required to add/double divisors by distinguishing between possible cases according to
the properties of the input divisors. This technique is combined with the use of the Karatsuba
multiplication algorithm [KO63] and the Chinese remainder theorem to further reduce the
complexity of the overall group operations. The work of [GH00] was generalized by [KGM+02]

8 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

to genus-3 curves defined over odd characteristic fields. In particular, they notice that for genus-
3 curves there are 6 possible choices for the degree of the input polynomials to Algorithm 1
and that further classification according to the common factors of the polynomials would lead
to about 70 sub-cases. However, they only consider the most frequent cases4 which occur with
overwhelming probability of 1−O(1/q) ≈ 1−2−60 for genus-3 curves over F260 . For the remaining
cases, they use Cantor’s algorithm.

In this work, we further optimize the formulae of [KGM+02] and generalize them to arbitrary
characteristic. Table 9 presents the explicit formulae for a group addition and Table 10 those
for a group doubling. The formulae shown in the tables are based on the assumption that
hi ∈ {0, 1}, where i = 0, 1, 2, 3, and that f6 is equal to zero. The latter can be achieved by
substituting x′ = x + f6

7
. The coefficient is still included in the algorithm for completeness.

Our improvements are based on the following techniques:

1. Montgomery’s trick of simultaneous inversions [Coh93, Algorithm 10.3.4]
2. Reordering of normalization step [Tak02]
3. Karatsuba multiplication
4. Calculation of the resultant using Bezout’s matrix
5. Choice of special HEC

In [Har00] one can easily see that two inversions are needed to perform the group operation;
one for the calculation of the s polynomial and one to compute a monic u. Simultaneous
inversions based on the idea of Montgomery was first used in [MDM+02] to reduce the number
of inversions by one. Step 4 in Table 9 and Step 5 in Table 10 apply this method.

The composition step in Cantor’s algorithm requires a monic output polynomial u. Instead
of normalizing the polynomial u, the second improvement considers a monic polynomial s which
saves one multiplication and leads to a monic u [Tak02].

Applying the Karatsuba method in Step 3 in Table 9, one can compute s′ ≡ (v2−v1)inv mod
u2 with 11 field multiplications. The same holds for Step 4 in Table 10.

One of the standard matrix representations for the resultant of two univariate polynomials
is the Bezout resultant [GSA84,MT84]. In the first step of the HEC group operations one
has to calculate the resultant of u1, u2 and u1, h + 2v1 for addition and doubling, respectively.
Without loss of generality, let the two input polynomials be a(x) = x3 + ax2 + bx + c and
b(x) = x3 + dx2 + ex + f . Hence, the determinant of Bezout’s matrix yields the resultant:

r(a(x), b(x)) = (f + ea− c− bd)[(−c + f)2 − (−a + d)(fb− ce)]

+ (fa− cd)[(fa− cd)(−a + d)− 2(−b + e)(−c + f)]

+ (fb− ce)(−b + e)2

Therefore, the resultant for a group addition on a genus-3 HEC can be computed using 12
field multiplications and 2 field squarings. The resultant in the case of the group doubling re-
quires 6 multiplications and 2 squarings. Bezout’s resultant can also be applied for genus-2 HEC
group operations but results in no further improvement compared to [MDM+02,Tak02,KGM+02].

In order to find the best genus-3 curve in terms of performance, we analyzed the explicit for-
mulae. The ideal types of curves seem to be of the form y2+y = f(x) over fields of characteristic

4 For addition the inputs are two co-prime polynomials of degree 3, for doubling the input is a square free polynomial
of degree 3

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 9

two. To our knowledge these genus-3 curves have no security limitations [Gau00a,Gal01,SZ02].
The cost of the group addition requires 5 field multiplications less than for regular curves. Sim-
ilarly, doubling a divisor requires 39 field multiplications less than regular curves. This leads to
a major speed-up in an efficient scalar multiplication algorithm where doubling occurs far more
frequently than addition. For the explicit formulae of this special case the reader is referred to
Table 11.

As a summary we include the computational cost of all the published results for genus-3
curves in Table 3. Compared to [KGM+02], we save 5 multiplications in the adding algorithm
and the 3 multiplications in the doubling algorithm even though our formulae are more general.

Table 3. Comparing the complexity of the group operations on HEC of genus three.

field curve cost
characteristic properties addition doubling

Cantor [Nag00] general h(x) = 0, fi ∈ F2 4I + 200M/S 4I + 207M/S

Nagao [Nag00] odd 2I + 154M/S 2I + 146M/S

Kuroki et al.[KGM+02] odd h(x) = 0, f6 = 0 I + 81M/S I + 74M/S

This work (Tables 9, 10) general hi ∈ F2, f6 = 0 I + 70M + 6S I + 61M + 10S
two hi ∈ F2, f6 = 0 I + 65M + 6S I + 53M + 10S

This work with h(x) = 1 (Table 11) two hi ∈ F2, f6 = 0 I + 65M + 6S I + 22M + 7S

5 Comparing ECC and HECC

In the past, providing complexity measures and, thus, comparisons between ECC and HECC
was a difficult undertaking. The operations involved in both systems were very different (differ-
ent field orders, field operations vs. operations with polynomials, etc.). Furthermore, measures
such as the bit complexity often provide very little information about the de facto complexity
in actual implementations. The underlying motivation for the work described in the following
was the development of a more accurate metric for practical purposes. All operations which
are computationally expensive will be expressed in terms of atomic operations (AOPS), such
as processor word-SHIFTs and XORs. In particular, we will decompose field multiplications
into AOPS. This provides a metric which allows a comparison of fields of different sizes which
is crucial for comparing ECC and HECC with equal level of security. The approach possesses
the advantage that it accurately counts the actual elementary processor operations (as op-
posed to the more theoretical bit complexity), while at the same time avoiding processor and
implementation-dependent “tricks” which can skew comparisons that are merely based on tim-
ings. In summary, we believe we developed a method which allows accurate predictions of the
performance on a given processor without the laborious task of actually implementing the cryp-
tosystem. The accuracy of the new metric is demonstrated by a mere 10% difference between
our theoretical and practical results.

The number of atomic operations is denoted as AOPS. In our comparison we make the
following assumptions:

1. We only consider fields of characteristic two and thus neglect the cost of squaring.

10 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

2. We perform the field multiplications with Algorithm 5 published5 in [LD00]. This algorithm
requires 3 + 2(w/4 − 1) word-SHIFTs and s(11 + n/4) + 8(2s − 1) word-XORs, where w
is the word size of processor and s = d n

w
e is the number of words needed to represent an

element of the underlying field F2n .

3. We express the cost of one field inversion as k field multiplications and denote the ratio of
multiplications to inversions as MI-ratio.

Based on the assumptions stated above, the complexity of the group operations of HEC
and EC are summarized. Referring to Tables 9 and 10, a divisor addition for a genus-3 curve
requires 1I + 65M and doubling needs 1I + 53M (using a special curve with h = 1, doubling
needs only 1I + 22M). Assuming that the cost of one field inversion is equivalent to k field
multiplications, leads to (65+k)M and (53+k)M for addition and doubling, respectively. Due
to the higher extension of the underlying field used for genus-2 curves, a different MI-ratio m is
used. This leads to (22+m)M for a divisor addition and (20+m)M for a divisor doubling. The
number of inversions and multiplications for a group operation on EC heavily depends on the
chosen coordinate system. For completeness we summarize the number of required operations
given the MI-ratio n in Table 4.

Table 4. Field operations required in each coordinate system [HHM00]

Coordinate system EC Addition EC Doubling
general mixed coord.

Affine coordinates 1I + 2M 1I + 2M
(2 + n)M (2 + n)M

Standard projective coordinates [CC87,CMO98] 13M 12M 7M
Jacobian projective coordinates [CC87,CMO98] 14M 10M 5M
New projective coordinates [LD99] 14M 9M 4M

Table 5 and Table 6 state the total number of AOPS for the group operations of the cryp-
tosystems with different MI-ratios. In terms of ECC, Table 5 considers only affine coordinates
and new projective coordinates [LD99], which are the most effective way to perform an EC
group operation for characteristic two fields. For a given processor, Table 5 and Table 6 allow
an immediate, fairly accurate prediction of the ECC and HEC performance on that processor.

Figure 1 illustrates the number of operations for a scalar multiplication on a 32-bit processor
depending on the MI-ratios. The scalar multiplication with an n-bit scalar is realized by the
sliding window method with an approximated cost of n · doublings + 0.2 · n · additions for a
4-bit window size [BSS99]. Figure 1 allows to estimate the efficiency of an ECC or a HECC
built on top of a given field library by comparing the different MI-ratios.

In general we can draw the following conclusions from this comparison:

1. ECC with the projective coordinates is in almost all cases the most efficient cryptosystem

2. Genus-2 curves need less atomic operations than general genus-3 curves

3. Most efficient genus-3 HEC with h(x) = 1 always outperform genus-2 HEC

5 To our knowledge this is the fastest published multiplication algorithm for finite fields of characteristic two. The
algorithm is reprinted in the Appendix as Algorithm 2

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 11

Table 5. Total number of atomic operations for ECC

ECC
affine new projective [LD99]

Addition (2 + n)· 9·
[2w

4
+ (m

4
+ 27)dm

w
e − 7] [2w

4
+ (m

4
+ 27)dm

w
e − 7]

Doubling (2 + n)· 4·
[2w

4
+ (m

4
+ 27)dm

w
e − 7] [2w

4
+ (m

4
+ 27)dm

w
e − 7]

Table 6. Total number of atomic operations for HECC

HECC
genus-2 genus-3 genus-3 / h(x)=1

Addition (22 + m)· (65 + k)· (65 + k)·
[2w

4
+ (m

4
+ 27)dm

w
e − 7] [2w

4
+ (m

4
+ 27)dm

w
e − 7] [2w

4
+ (m

4
+ 27)dm

w
e − 7]

Doubling (20 + m)· (53 + k)· (22 + k)·
[2w

4
+ (m

4
+ 27)dm

w
e − 7] [2w

4
+ (m

4
+ 27)dm

w
e − 7] [2w

4
+ (m

4
+ 27)dm

w
e − 7]

2 4 6 8 10 12 14

3

4

5

6

7

8

9

10

11

12

13

x 10
5

MI−ratio k

A
to

m
ic

 O
pe

ra
tio

ns
 p

er
 S

ca
la

r
M

ul
tip

lic
at

io
n

EC (affine)
EC (new projective)
HEC (genus 2)
HEC (genus 3)
HEC with h=1 (genus 3)

Fig. 1. Cost of a scalar multiplication for different MI-ratios and cryptosystems in atomic operations

4. For field libraries with a low MI-ratio, ECC with affine coordinates are more efficient than
HECC. However, with an increasing MI-ratio the scalar multiplication of HECC can be less
expensive than in the case of ECC.

12 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

6 HECC on Embedded Systems

With the predicted advent of ubiquitous computing, embedded processors will play an increas-
ingly important role for providing security functions. Due to their relatively short operand
lengths, HECC are particularly well suited for embedded processors which are typically com-
putationally constrained. We chose a representative of the popular ARM processor family for
our implementation. The purpose was twofold. First, we wanted to provide actual timings of a
highly optimized HEC implementation. Secondly, we wanted to validate our complexity metric.

The ARM7TDMI processor environment was chosen to implement genus-2 and genus-3
hyperelliptic curves with h(x) = 1. The MI-ratios of our field library can be found in Table 7.

Table 7. Timings of the field library and corresponding MI-ratios. All timings in µsec assuming a 80MHz clock rate.

Field Multiplication Inversion MI-ratio

F254 7.19 65.64 9.1

F281 13.86 134.10 9.6

F2162 49.29 197.234 4.0

To theoretically determine the most efficient cryptosystem based on the timings given,
one can either draw the MI-ratios into Figure 1 or calculate the needed number of AOPS.
Considering a finite field F254 for a genus-3 HEC (h(x) = 1), 667, 359 AOPS are needed to
calculate one scalar multiplication. HECC of genus 2 with the underlying field F281 will take
878, 973 AOPS, and ECC over F2162 using new projective coordinates requires 387, 504 AOPS.
Thus, we expect HECC of genus-2 to be a factor 2.26 and the special genus-3 curves a factor 1.72
slower than the EC cryptosystem. HECC of genus-2 should be a factor 1.32 slower compared
to genus-3 HECC with h(x) = 1. In Appendix B an alternative graphical representation is
introduced, which also allows a comparison of the different cryptosystems.

Table 8 presents timings for divisor addition, divisor doubling and scalar multiplication
on the ARMulator – ARM7TDMI@80MHz6. To our knowledge these are the first published
timings for HECC on an embedded processor.

The timings for a scalar multiplication of certain genus-3 curves over F254 and of genus-2
curves over F281 is compared with the performance of the ECC scalar multiplication taken from
[AYK01] 7. Using the same platform and sliding window method, the scalar multiplication for
ECC with a 160 bit key size takes 44.8ms over a prime field. Hence, a divisor scalar multi-
plication (162-bit) on a HEC of genus 2 is a factor of 2.22 and genus-3 HEC with h(x) = 1
are a factor of 1.54 slower than a point scalar multiplication (160-bit) on a EC with modified
Jacobian coordinates. In addition, the specific genus-3 curve is 1.43 faster than the HEC of
genus 2. Therefore, we can conclude that our theoretical estimates were quite accurate.

7 Conclusions

In this contribution, we were able to close the gap between the performance of HECC and ECC.
In particular, an improvement of the explicit formulae for arbitrary characteristic for the case

6 Depending on the features of processor board, the performance numbers can differ.
7 Because of time constraints we used the published results from [AYK01] for our comparison.

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 13

Table 8. Timings of group operations with ARMulator ARM7TDMI@80MHz (explicit formulae)

Genus Field Group order Group addition Group doubling Scalar. mult.
in µs in µs in ms

F254 2162 613 263 69
F255 2165 616 264 71

3 F259 2177 631 273 78
F260 2180 619 269 78
F261 2183 633 276 81
F263 2189 615 270 82

F281 2162 486 479 99
F283 2166 493 487 103

2 F288 2176 506 495 111
F291 2182 505 503 116
F295 2190 509 503 121

of genus-3 hyperelliptic curves was presented. For special curves over fields of characteristic
2, the efficiency of the doubling algorithm could be enhanced drastically. This increased the
performance of a scalar multiplication by about 50 % compared to [KGM+02].

A theoretical comparison of ECC to HECC with coefficients in F2m assuming the currently
fastest algorithms for field operations was also presented. An important finding is that special
genus-3 HECC are always faster than genus-2 HECCL. However, the properties of the field
libraries are the key to determine overall performance of ECC and HECC.

The theoretical results are confirmed by the first implementation of genus-2 and genus-3
curves on an embedded processor.

References

[ADH94] L.M. Adlemann, J. DeMarrais, and M.-D. Huang. A subexponential algorithm for discrete logarithms over
the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields. In L. Adleman
AND M.-D.Huang, editor, Lecture Notes in Computer Science, volume 877 of ANTS-I, pages 28 – 40, Berlin,
May 1994. Springer-Verlag.

[ANS99] ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm. Technical report, ANSI, 1999.
[AYK01] M. Aydos, T. Yanik, and C.K. Koç. High-Speed Implementation of an ECC-based Wireless Authentication

Protocol on an ARM Microprocessor. In IEE Proceedings - Communications, volume 148(5), pages 273 –
279, October 2001.

[BCLW02] N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus Two Hyperelliptic Curve Coprocessor. In CHES,
LNCS, New York, 2002. Springer Verlag.

[BSS99] I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. London Mathematical Society
Lecture Notes Series 265. Cambridge University Press, Reading, Massachusetts, 1999.

[Can87] D.G. Cantor. Computing in Jacobian of a Hyperelliptic Curve. In Mathematics of Computation, volume
48(177), pages 95 – 101, January 1987.

[CC87] D.V. Chudnovsky and G.V. Chudnovsky. Sequences of numbers generated by addition in formal groups and
new primality and factorization tests. In Advances in Applied Mathematics, volume 7, pages 385 – 434, 1987.

[CMO98] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed coordinates. In K. Ohta
and D. Pei, editors, LNCS 1514, Advances in Cryptology, ASIACRYPT 98, pages 51 – 65. Springer Verlag,
1998.

[Coh93] H. Cohen. A course in computational number theory. Graduate Texts in Math. 138. Springer-Verlag, Berlin,
1993. Third corrected printing 1996.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
IT-22:644–654, 1976.

[EG02] A. Enge and P. Gaudry. A general framework for subexponential discrete logarithm algorithms. Acta Arith.,
102:83 – 103, 2002.

14 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

[Eng99a] A. Enge. Computing discrete logarithms in high-genus hyperelliptic jacobians in provably subexponential
time. Preprint; Available at http://www.math.waterloo.ca/Cond0 Dept/CORR/corr99.html, 1999.

[Eng99b] A. Enge. The extended Euclidean algorithm on polynomials, and the computational efficiency of hyperelliptic
cryptosystems, November 1999. Preprint.

[FR94] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor class
group of curves. Mathematics of Computation, 62(206):865–874, April 1994.

[FS97] R. Flassenberg and S.Paulus. Sieving in fuction fields. Preprint; Available at ftp://ftp.informatik.tu-
darmstadt.de/pub/TI/TR/TI-97-13.rafla.ps.gz, 1997.

[Ful69] W. Fulton. Algebraic Curves - An Introduction to Algebraic Geometry. W. A. Benjamin, Inc., Reading,
Massachusetts, 1969.

[Gal01] S.D. Galbraith. Supersingular curves in cryptography. Lecture Notes in Computer Science, 2248:495–517,
2001.

[Gau00a] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. In Bart Preneel, editor,
Advances in Cryptology — EUROCRYPT 2000, volume LNCS 1807, pages 19–34, Berlin, Germany, 2000.
Springer-Verlag.

[Gau00b] P. Gaudry. Algorithmique des Courbes Hyperelliptiques et Applications à la Cryptologie, PhD Thesis, 2000.
[GH00] P. Gaudry and R. Harley. Counting Points on Hyperelliptic Curves over Finite Fields. In W. Bosma, editor,

ANTS IV, volume 1838 of Lecture Notes in Computer Science, pages 297 – 312, Berlin, 2000. Springer Verlag.
[GLV98] R. Gallant, R. Lambert, and S. Vanstone. Improving the parallelized Pollard lambda search on binary

anomalous curves. Available at http://www.certicom.com/chal/download/paper.ps , 1998.
[Gor98] D.M. Gordon. A Survey of Fast Exponentiation Methods. In , volume 27 of Journal of Algorithms, 1998.
[GSA84] R.N. Goldmann, T. Sederberg, and D. Anderson. Vector Elimination: A Technique for the Implicitization,

Inversion, and Intersection of Planar Parametric Ratioal Polynomial Curves. Comptuer Aided Geometric
Design, (1):327 – 356, 1984.

[Har00] R. Harley. Fast Arithmetic on Genus Two Curves. Available at http://cristal.inria.fr/∼harley/hyper/, 2000.
adding.txt and doubling.c.

[HHM00] D. Hankerson, J. López Hernandez, and A. Menezes. Software Implementation of Elliptic Curve Cryptography
Over Binary Fields. In Çetin K. Koç and Christof Paar, editors, Workshop on Cryptographic Hardware and
Embedded Systems (CHES ’00), volume 1717 of Lecture Notes in Computer Science, pages 1 – 24. Springer
Verlag, August 2000.

[KGM+02] J. Kuroki, M. Gonda, K. Matsuo, Jinhui Chao, and Shigeo Tsujii. Fast Genus Three Hyperelliptic Curve
Cryptosystems. In The 2002 Symposium on Cryptography and Information Security, Japan - SCIS 2002,
Jan.29-Feb.1 2002.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Sov. Phys. Dokl. (English
translation), 7(7):595–596, 1963.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209, 1987.
[Kob88] N. Koblitz. A Family of Jacobians Suitable for Discrete Log Cryptosystems. In Shafi Goldwasser, editor,

Advances in Cryptology - Crypto ’88, volume 403 of Lecture Notes in Computer Science, pages 94 – 99, Berlin,
1988. Springer-Verlag.

[Kob89] N. Koblitz. Hyperelliptic Cryptosystems. In Ernest F. Brickell, editor, Journal of Cryptology, pages 139 –
150, 1989.

[Kob98] N. Koblitz. Algebraic Aspects of Cryptography. Algorithms and Computation in Mathematics. Springer-
Verlag, 1998.

[Kri97] Uwe Krieger. signature.c, February 1997. Diplomarbeit, Universität Essen, Fachbereich 6 (Mathematik und
Informatik).

[Lan02a] T. Lange. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae.
Cryptology ePrint Archive, Report 2002/121, 2002. http://eprint.iacr.org/.

[Lan02b] T. Lange. Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves. Cryptology ePrint Archive, Report
2002/147, 2002. http://eprint.iacr.org/.

[Lan02c] T. Lange. Weighted Coordinates on Genus 2 Hyperelliptic Curves. Cryptology ePrint Archive, Report
2002/153, 2002. http://eprint.iacr.org/.

[LD99] J. Lopéz and R. Dahab. Improved algorithms for elliptic curve arithmetic in GF(2n). In Selected Areas in
Cryptography - SAC ’98, volume 1556 of Lecture Notes in Computer Science, pages 201 – 212, 1999.

[LD00] J. Lopez and R. Dahab. High-speed software multiplication in F2m . In INDOCRYPT, pages 203 – 212, 2000.
[MCT01] K. Matsuo, J. Chao, and S. Tsujii. Fast Genus Two Hyperelliptic Curve Cryptosystems. In ISEC2001-31,

IEICE, 2001.
[MDM+02] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsuji. A Fast Addition Algorithm of Genus Two Hyper-

elliptic Curve. In SCIS, IEICE Japan, pages 497 – 502, 2002. in Japanese.
[Mil86] V. Miller. Uses of elliptic curves in cryptography. In H. C. WIlliams, editor, Advances in Cryptology —

CRYPTO ’85, volume LNCS 218, pages 417–426, Berlin, Germany, 1986. Springer-Verlag.

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 15

[MT84] Y. De Montaudouin and W. Tiller. The Cayley Method in Computer Aided Geometric Design. Comptuer
Aided Geometric Design, (1):309 – 326, 1984.

[Mum84] D. Mumford. Tata lectures on theta II. In Prog. Math., volume 43. Birkhäuser, 1984.
[MvOV96] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC Press, New

York, 1996.
[Nag00] K. Nagao. Improving group law algorithms for Jacobians of hyperelliptic curves. In W. Bosma, editor, ANTS

IV, volume 1838 of Lecture Notes in Computer Science, pages 439 – 448, Berlin, 2000. Springer Verlag.
[P1399] IEEE P1363 Standard Specifications for Public Key Cryptography, November 1999. Last Preliminary Draft.
[Pol78] J. M. Pollard. Monte carlo methods for index computation mod p. Mathematics of Computation, 32(143):918–

924, July 1978.
[Rüc99] H.-G. Rück. On the discrete logarithm in the divisor class group of curves. Mathematics of Computation,

68(226):805–806, 1999.
[Sma99] N.P. Smart. On the Performance of Hyperelliptic Cryptosystems. In Advances in Cryptology - EUROCRYPT

‘99, volume 1592 of Lecture Notes in Computer Science, pages 165 – 175, Berlin, 1999. Springer-Verlag.
[Spa94] A. M. Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, 1994. PhD

Thesis. Universität Gesamthochschule Essen.
[SS98] Y. Sakai and K. Sakurai. Design of Hyperelliptic Cryptosystems in small Characteristic and a Software

Implementation over F2n . In Advances in Cryptology - ASIACRYPT ’98, volume 1514 of Lecture Notes in
Computer Science, pages 80 – 94, Berlin, 1998. Springer Verlag.

[SS00] Y. Sakai and K. Sakurai. On the Practical Performance of Hyperelliptic Curve Cryptosystems in Software
Implementation. In IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, volume E83-A NO.4, pages 692 – 703, April 2000. IEICE Trans.

[SSI98] Y. Sakai, K. Sakurai, and H. Ishizuka. Secure Hyperelliptic Cryptosystems and their Performance. In
Public Key Cryptography, volume 1431 of Lecture Notes in Computer Science, pages 164 – 181, Berlin, 1998.
Springer-Verlag.

[SZ02] J. Scholten and J. Zhu. Hyperelliptic curves in characteristic 2. International Mathematics Research Notices,
2002(17):905 – 917, 2002.

[Tak02] M. Takahashi. Improving Harley Algorithms for Jacobians of Genus 2 Hyperelliptic Curves. In SCIS, IEICE
Japan, 2002. in Japanese.

[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. Journal of
Cryptology, 12(1):1–28, Winter 1999.

[Wie86] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information
Theory, IT-32(1):54–62, January 1986.

[Wol01] T. Wollinger. Computer Architectures for Cryptosystems Based on Hyperelliptic Curves, 2001. Master
Thesis, Worcester Polytechnic Institute.

16 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

A Field Multiplication

The theoretical comparison is based on Algorithm 2 for the field multiplication. To our knowl-
edge, this is the fastest software algorithm published for fields F2n . This Algorithm requires
3 + 2(w/4− 1) SHIFTs and s(11 + n/4) + 8(2s− 1) XORs, where w is the word size and s is
the number of words needed to represent one number.

Algorithm 2 Field multiplication [LD00]
Require: A = (As−1...A0), B = (Bs−1...B0), and F = (Fs−1...F0).
Ensure: C = (Cs−1...C0) = A ·B mod F .
1: for j = 0 to 15 do
2: Set P16[j] ← (j3x

3 + · · ·+ j0)B(x); j = (j3j2j1j0)2
3: end for
4: Set Ti ← 0; i = 0, ..., 2s− 1
5: for j = w/4− 1 downto 0 do
6: for i = 0 to s− 1 do
7: Set ui,j ← Ai/24j mod 16
8: for k = 0 to s− 1 do
9: Set Tk+i ← Tk+i ⊕ P16[ui,j][k]

10: end for
11: end for
12: If j 6= 0 then T ← x4T
13: end for
14: Set C ← T mod F
15: Return C.

B Graphical Comparison

The Figures 2, 3, and 4 offer an alternative approach to compare ECC and HECC of genera 2 and
3 for 32-bit processors (considering only the most efficient genus-3 curves with h(x) = 1). The
break-even lines between the different cryptosystems are shown and allow an easy comparison.
In the figures, the MI − ratios of the implemented field library are marked.

HEC (genus 2) faster

X

EC (affine) faster

E
C

 M
I−

ra
tio

 n

HEC MI−ratio m

Fig. 2. Comparison of HEC genus 2
and EC (affine)

X
EC (affine) faster

HEC (genus 3) faster

HEC MI−ratio k

E
C

 M
I−

ra
tio

 n

Fig. 3. Comparison of HEC genus 3
and EC (affine)

X

HEC (genus 2) faster

HEC MI−ratio k

HEC (genus 3) faster

H
E

C
 M

I−
ra

tio
 m

Fig. 4. Comparison of HEC genus 3
and HEC genus 2

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 17

C Explicit Formulae for Genus Three HEC

The explicit formulae for the group operations on HEC of genus and arbitrary characteristic
as well as the most efficient formulae for doubling on a special HEC for characteristic two is
presented in Tables 9, 10 and 11.

Table 9. Explicit formulae for adding on a HEC of genus three

Input Weight three reduced divisors D1 = (u1, v1) and D2 = (u2, v2) with

u1 = x3 + ax2 + bx + c;
u2 = x3 + dx2 + ex + f ;
v1 = kx2 + lx + m;
v2 = nx2 + ox + p;
furthermore:
h = x3 + h2x2 + h1x + h0, where hi ∈ F2;

f = x7 + f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0, where f6 = 0;
Output A weight three reduced divisor D3 = (u3, v3) = D1 + D2 with

u3 = x3 + a3x2 + b3x + c3;
v3 = k3x2 + l3x + m3;

Step Procedure Cost
1 Compute resultant r of u1 and u2 (Bezout): 12M + 2SQ

t1 = ae; t2 = bd; t3 = bf ; t4 = ce; t5 = af ; t6 = cd;
t7 = (f − c)2; t8 = (e− b)2;
t9 = (d− a)(t3 − t4);
t10 = (d− a)(t5 − t6);
t11 = (e− b)(f − c);
r = (f − c + t1 − t2)(t7 − t9) + (t5 − t6)(t10 − 2t11) + t8(t3 + t4);

2 Compute almost inverse inv = r/u1 mod u2: 4M

inv2 = (t1 − t2 − c + f)(d− a)− t8;
inv1 = inv2a− t10 + t11;
inv0 = inv2b + a(t10 − t11) + t9 − t7

3 Compute s′ = rs ≡ (v2 − v1)inv mod u2 (Karatsuba): 11M

t12 = (inv1 + inv2)(k − n + l− o); t13 = (l− o)inv1;
t14 = (inv0 + inv2)(k − n + m− p); t15 = (m− p)inv0;
t16 = (inv0 + inv1)(l− o + m− p); t17 = (k − n)inv2;
r′0 = t15; r′1 = t13 + t15 + t16; r′2 = t13 + t14 + t15 + t17;

r′3 = t12 + t13 + t17; r′4 = t17; t18 = dr′4 − r′3;

s′0 = r′0 + ft18; s′1 = r′1 − (e + f)(r′4 − t18) + er′4 − ft18; s′2 = r′2 − er′4 + dt18;

If s′2 = 0 perform Cantor

4 Compute s = (s′/r) and make s monic: I + 6M + 2S

w1 = (rs′2)−1; w2 = rw1; w3 = w1s′2
2; w4 = rw2; w5 = w2

4 ;

s0 = w2s′0; s1 = w2s′1;
5 Compute z = su1: 6M

z0 = s0c; z1 = s1c + s0b; z2 = s0a + s1b + c; z3 = s1a + s0 + b;
z4 = a + s1;

6 Compute u′ = [s(z + w4(h + 2v1))− w5((f − v1h− v2
1)/u1)]/u2: 15M

t1 = w4h2; u′3 = z4 + s1 − d; u′2 = −du′3 − e + z3 + s0 + w4 + s1z4;

u′1 = w4(h2 + 2k + s1) + s1t3 + s0t4 + t2 − w5 − du′2 − eu′3 − f ;

u′0 = w4(s1h2 + h1 + 2l + 2s1k + s0) + s1t2 + t1 + s0t3 + w5(a− f6)− du′1 − eu′2 − fu′3
7 Compute v′ = −(w3z + h + v1) mod u′: 8M

t1 = u′3 − z4; v′0 = w3(u′0t1 + z0) + h0 + m;

v′1 = w3(u′1t1 − u′0 + z1) + h1 + l;

v′2 = w3(u′2t1 − u′1 + z2) + h2 + k;

v′3 = w3(u′3t1 − u′2 + z3) + 1;

8 Reduce u′, i.e. u3 = (f − v′h− v′2)/u′: 5M + 2SQ

a3 = f6 − u′3 − v′3
2 + v′3;

b3 = −u′2 − a3u′3 + f5 − 2v′2v′3 − v′3h2 − v′2;

c3 = −u′1 − a3u′2 − b3u′3 + f4 − 2v′1v′3 − v′2
2 + v′2h2 − v′3h1 − v′1;

9 Compute v3 = −(v′ + h) mod u3: 3M

k3 = v′2 − (v′3 + 1)a3 + h2;

l3 = v′1 − (v′3 + 1)b3 + h1;

m3 = v′0 − (v′3 + 1)c3 + h0;

Total in fields of arbitrary characteristic I + 70M + 6S
in fields of characteristic 2 I + 65M + 6S

18 Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar

Table 10. Explicit formulae for doubling on HEC of genus three

Input A weight three reduced divisors D1 = (u1, v1) with

u1 = x3 + ax2 + bx + c;
v1 = kx2 + lx + m;
furthermore:
h = x3 + h2x2 + h1x + h0, where hi ∈ F2;

f = x7 + f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0, where f6 = 0;
Output A weight three reduced divisor D2 = (u2, v2) = [2]D1 with

u2 = x3 + a2x2 + b2x + c2;
v2 = k2x2 + l2x + m2;

Step Procedure Cost
1 Compute resultant r of u1 and h + 2v1 (Bezout): 6M + 2SQ

let h̃ = h + 2v1:
t1 = ah̃1; t2 = bh̃2; t3 = bh̃0; t4 = ch̃1; t5 = ah̃0; t6 = ch̃2;
t7 = (h̃0 − c)2; t8 = (h̃1 − b)2;

t9 = (h̃2 − a)(t3 − t4);

t10 = (h̃2 − a)(t5 − t6);

t11 = (h̃1 − b)(h̃0 − c);

r = (h̃0 − c + t1 − t2)(t7 − t9) + (t5 − t6)[(t5 − t6)(h̃2 − a)− 2(h̃1 − b)] + t8(t3 − t4);
2 Compute almost inverse inv = r/(h + 2v1) mod u1: 4M

inv2 = −(t1 − t2 − c + h̃0)(h̃2 − a)− t8;
inv1 = inv2a− t10 + t11;
inv0 = inv2b + a(t10 − t11) + t9 − t7

3 Compute z = ((f − hv1 − v2
1)/u1) mod u1: 7M + 2SQ

t12 = k2; z′3 = f6 − a; t13 = z′3b; z′2 = f5 − k− b− az′3; z′1 = f4 − h2k− l− t12 − c− t13 − z′2a;

z2 = f5 − k − 2b + a(a− 2z′3);

z1 = z′1 − t13 + ab− c;

z0 = f3 − h2l− h1k − 2kl−m− z′3c− z′2b− z′1a;

4 Compute s′ = z ? inv mod u1 (Karatsuba): 11M

t12 = (inv1 + inv2)(z1 + z2); t13 = z1inv1;
t14 = (inv0 + inv2)(z0 + z2); t15 = z0inv0;
t16 = (inv0 + inv1)(z0 + z1); t17 = z2inv2;
r′0 = t15; r′1 = t13 + t15 + t16; r′2 = t13 + t14 + t15 + t17;

r′3 = t12 + t13 + t17; r′4 = t17; t18 = ar′4 − r′3;

s′0 = r′0 + ct18; s′1 = r′1 − (b + c)(r′4 − t18) + br′4 − ct18; s′2 = r′2 − br′4 + at18;

If s′2 = 0 perform Cantor

5 Compute s = (s′/r) and make s monic: I + 6M + 2S

w1 = (rs′2)−1; w2 = w1r; w3 = w1(s′2)2; w4 = w2r; (= r/s′2); w5 = w2
4

s0 = w2s′0; s1 = w2s′1;
6 Compute G = su1: 6M

g0 = s0c; g1 = s1c + s0b; g2 = s0a + s1b + c; g3 = s1a + s0 + b; g4 = a + s1;

7 Compute u′ = u−2
1 [(G + w4v1)2 + w4hG + w5(hv1 − f)]: 5M + 2SQ

u′3 = 2s1;

u′2 = s2
1 + 2s0 + w4;

u′1 = 2s0s1 + w4(2k + s1 + h2 − a)− w5;

u′0 = w4[2l + h1 + s0 − b + a(a− 2k − h2 − s1) + h2s1] + w5(f6 + 2a) + s2
0;

8 Compute v′ = −(Gw3 + h + v1) mod u′: 8M

t1 = u′3 − g4;

v′3 = (t1u′3 − u′2 + g3)w3 + 1;

v′2 = (t1u′2 − u′1 + g2)w3 + h2 + k;

v′1 = (t1u′1 − u′0 + g1)w3 + h1 + l;

v′0 = (t1u′0 − g0 + h0)w3 + m;

9 Reduce u′, i.e. u2 = (f − v′h− v′2)/u′: 5M + 2SQ

a2 = f6 − u′3 − v′3
2 + v′3;

b2 = −u′2 − a2u′3 + f5 − 2v′2v′3 − v′3h2 − v′2;

c2 = −u′1 − a2u′2 − b2u′3 + f4 − 2v′1v′3 − v′2
2 + v′2h2 − v′3h1 − v′1;

10 Compute v2 = −(v′ + h) mod u2: 3M

k2 = v′2 − (v′3 + 1)a2 + h2;

l2 = v′1 − (v′3 + 1)b2 + h1;

m2 = v′0 − (v′3 + 1)c2 + h0;

Total in fields of arbitrary characteristic I + 61M + 10S
in fields of characteristic 2 I + 53M + 10S
in fields of characteristic 2 and with h(x) = 1 (see Table 11) I + 22M + 7S

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves 19

Table 11. Explicit formulae for doubling on HEC of genus three with special curves of characteristic 2 where h(x) = 1

Input A weight three reduced divisors D1 = (u1, v1) with

u1 = x3 + ax2 + bx + c;
v1 = kx2 + lx + m;
furthermore:
h = 1;
f = x7 + f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0, where f6 = 0;

Output A weight three reduced divisor D2 = (u2, v2) = [2]D1 with

u2 = x3 + a2x2 + b2x + c2;
v2 = k2x2 + l2x + m2;

Step Procedure Cost
1 Compute resultant r of u1 and h + 2v1: −

r = 1;
2 Compute almost inverse inv = r/(h + 2v1) mod u1: −

inv2 = inv1 = 0; inv0 = r

3 Compute z = ((f − hv1 − v2
1)/u1) mod u1 = z2x2 + z1x + z0: 3M + 2SQ

z2 = f5 + a2;
z1 = f4 + k2 + z2a;
z0 = f3 + b(z2 + b) + z1a;

4 Compute s′ = z ? inv mod u1 = s′2x2 + s′1x + s′0: −
inv = r = 1 and deg(z) < deg(u1), thus s′ = z;

5 Compute s = (s′/r) and make s monic: I + 2M + 1S

w4 = (s′2)−1; w5 = w2
4

s0 = w4s′0; s1 = w4s′1;

6 Compute G = su1 = x5 + g4x4 + g3x3 + g2x2 + g1x + g0: 6M

g0 = s0c; g1 = s1c + s0b; g2 = s0a + s1b + c; g3 = s1a + s0 + b; g4 = a + s1;

7 Compute u′ = u−2
1 [(G + w4v1)2 + w4hG + w5(hv1 − f)] = x4 + u′2x2 + u′1x + u′0: 2SQ

u′2 = s2
1;

u′1 = w5;

u′0 = s2
0;

8 Compute v′ = −(Gs′2 + h + v1) mod u′ = v′3x3 + v′2x2 + v′1x + v′0: 7M

v′3 = (u′2 + g3 + g4)s′2;

v′2 = (g4u′2 + u′1 + g2)s′2 + k;

v′1 = (g4u′1 + u′0 + g1)s′2 + l;

v′0 = (g4u′0 + g0)s′2 + m + 1;

9 Reduce u′, i.e. u2 = (f − v′h− v′2)/u′: 1M + 2SQ

a2 = (v′3)2;

b2 = u′2 + f5;

c2 = a2u′2 + f4 + (v′2)2 + u′1;

10 Compute v2 = −(v′ + h) mod u2: 3M

k2 = v′2 + v′3a2;

l2 = v′1 + v′3b2;

m2 = v′0 + v′3c2 + 1;

Total I + 22M + 7S

