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Abstract. We prove that three OAEP-inspired randomised padding
schemes (i.e., OAEP, OAEP+ and SAEP), when used with the RSA func-
tion in the trapdoor direction, form provably secure signature schemes
with message recovery. Two of our three reductionist proofs are tight and
hence provide exact security. Because of the exact security and OAEP’s
optimally high bandwidth for message recovery, our results form a desir-
able improvement from a previous universal RSA padding scheme good
for both encryption and signature.

1 Introduction

Coron et al [5, 6] show that a minor variation of an RSA randomised padding
scheme named “Probabilistic Signature Scheme with message Recovery” (RSA-
PSS-R) of Bellare and Rogaway [3], in addition to being a provably secure sig-
nature scheme against adaptive chosen-message attack, can also be a provably
IND-CCA2 secure encryption scheme if the padding scheme is used with the
RSA function in the one-way direction. This result is very useful; it means that
one key can be securely used for both signature and encryption thus reducing the
key management burden. Because of the usability for both encryption and sig-
nature, Coron et al name their minor variation of the PSS-R Universal Padding
Scheme (UPS).

However, UPS has a limitation. Let us describe it now.

1.1 Low Bandwidth for Message Recovery

The original PSS-R padding scheme of Bellare and Rogaway and the UPS vari-
ation of Coron et al are illustrated in Figure 1. In these padding algorithms, G
and H are two hash functions, M is a message either being encrypted or being
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signed, r is a random nonce for making the padding scheme a probabilistic al-
gorithm and the concatenation of w and s is the output of the padding scheme
to which the RSA function is applied.
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Fig. 1. The PSS-R Padding

The security proofs for the UPS encryption and signature schemes provided
by Coron et al [5] are in the random oracle model (ROM) [1]. In the ROM, the
hash functions G and H are are assumed to be perfect random functions or “ran-
dom oracles” (ROs). The proofs are in a “reduction to contradiction” manner.
In the case of UPS, a successful attacker, upon correctly submitting an educated
guess (encryption case) or forgery (signature case) with a non-negligible proba-
bility Adv, must have made a certain RO query to H with another non-negligible
probability Adv′. Using this piece of information (in the position of w in Fig-
ure 1), the reduction algorithm can achieve an inversion of the RSA function
at a random point. If the inversion performed by the reduction is significantly
faster, or has a far better advantage, than any known algorithm, we reach a
contradiction.

Since a successful attack only causes a partial inversion (in the position of w
in Figure 1), one run of the attacker does not lead to any evident contradiction.
By a clever shift method discovered by Fujisaki et al [8], repeated running of the
attacker will eventually allow the reduction algorithm to fully invert the RSA
function. In order to produce a meaningful contradiction (namely solving the
RSA problem far faster than is believed possible), the size of w (i.e., the input
size of the RO G) must not be too small. Otherwise the reduction algorithm
has to run the attacker many times. In fact, the minimum number of times for
the reduction algorithm to run the attacker is 2 when |w| > |N |/2. Even in
this minimal case, the reduction does not produce a meaningful contradiction
for the currently widely adopted RSA key size of |N | = 1024. Consider that an



attacker with advantage Adv = 2−40 being a valid one (i.e., consider the attacker
being a dedicated one who is affordable to perform 240 modulo exponentiations).
The need to run the attacker at least twice makes Adv′ ≈ Adv2. Thus, the
reduction solves the RSA problem in time 280 for a modulus of 1024 bits. The
contradiction from this reduction can hardly be a meaningful one given the state
of the factorisation art! A larger size modulus, e.g., |N | = 2048, is necessary to
lead to a meaningful contradiction.

Now consider the case |w| > |N |/2 (see Figure 1), we have consequently,
|s| < |N |/2, that is, |M ‖ r | = |s| < |N |/2. Further consider that the random
source r must not be too small, so that sufficient entropy is obtained for the
probabilistic encryption. All this leads to a very poor bandwidth for message
recovery in UPS Encryption: the message M is significantly smaller than half
the size of the modulus. Consider this situation when we have |N | = 2048,
|w| = 1025 and |r| = 160, we reach |M | = 1023− 160 = 863, that is, |M | is only
42% of |N |.

This low bandwidth for message recovery is too wasteful. It has a bad con-
sequence on a useful application of UPS which we shall describe in §1.2.

We should mention that our critique on the low bandwidth of UPS is on
the encryption usage only. For the signature usage, due to a tight security proof
originally obtained by Bellare and Rogaway [3], message recovery can have a
desirably high bandwidth. Moreover, Coron has shown that the PSS-R signature
scheme can achieve a very high bandwidth for message recovery [7] while security
proof remaining tight.

1.2 Our Contributions

We are motivated to look for alternative padding schemes which have a desirably
high bandwidth for message recovery and are provably secure for encryption as
well as signatures, ideally with a tight security proof for the latter (tight security
proof for the former is a non-trivial open question).

Such alternatives have a very useful application in RSA-based signcryption
with provable security. In such an application, a signcrypt-text is created by
“double wrappings”: signing with message recovery as a “inner wrapping” using
a sender’s RSA trapdoor function, followed by an “outer wrapping” for encryp-
tion using a receiver’s RSA one-way function. In the standard setting of one-size
moduli for all users, the “double wrappings” is always possible because the re-
ceiver’s verification procedure permits to fix back one possible missing bit in the
case of the “inner wrapping” modulus being larger than that for the “outer wrap-
ping”. Malone-Lee and Mao achieve such a signcryption scheme with probable
security by applying UPS [10].

From now on, when we say that an RSA padding scheme is good, we mean
that it not only is provably secure for both encryption and signature uses, but
also has a high bandwidth for message recovery; when we say that an RSA
padding scheme is optimal, we mean that it is good, but also has a tight security
proof for the signature case.



For this purpose, we have found that almost all provably secure (encryption
case) RSA-OAEP like padding schemes are good, and two of them are optimal.
We will provide ROM-based reductionist proofs for these schemes.

In Section 2 we show that RSA-OAEP of Bellare and Rogaway [2] is optimal.
In Section 3 we show that Shoup’s RSA-OAEP+ [11] is optimal. In Section 4 we
show that a simplified OAEP named SAEP of Boneh [4] is good.

2 OAEP is Optimal

Optimal Asymmetric Encryption Padding (OAEP) is a randomised padding
scheme proposed by Bellare and Rogaway [2] for encryption. When the padding
scheme is used with the RSA function (RSA-OAEP), the encryption scheme has
been proven by Fujisaki et al [8] to be IND-CCA2 secure. Figure 2 describes the
padding scheme. The RSA-OAEP Signature scheme is very similar to that for
encryption. We specify it in Figure 3.
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Fig. 2. The OAEP Padding

First, using Figure 2 we can argue that the OAEP padding scheme for encryp-
tion can have a bandwidth for message recovery far better than that of the PSS-R
scheme used for encryption. From the picture we see |M | = k − k0 − k1 where
k = |N |. Thus, for the required setting of |N | = 2048 (in order to reach a mean-
ingful contradiction for security proof for encryption), we can use k0 = k1 = 160.
In this reasonable setting, we achieve |M | = 2048 − 320 = 1728, that is, |M | is
84% of |N |. That is why OAEP has been widely regarded as an efficient encryp-
tion scheme (though, as in the case of PSS-R for encryption, the reduction proof
of security for encryption is not ideally tight).

Having shown the desirable bandwidth for message recovery, we now turn to
investigate the issue of applying OAEP to create a secure signature scheme.



Key Parameters

Let (N, e, d, G, H,n, k0, k1)← GEN(1k) satisfy the following: (N, e, d) are RSA key
material; k = |N | = n + k0 + k1 with 2−k0 and 2−k1 being negligible quantities; G,
H are hash functions satisfying

G : {0, 1}k0 7→ {0, 1}k−k0 , H : {0, 1}k−k0 7→ {0, 1}k0 ;

n is the length for the plaintext message.
Let (N, e) be Alice’s RSA public and d = e−1 (mod φ(N)) be her private exponent.

Signature Generation

To sign a message M ∈ {0, 1}n, Alice performs the following steps:

1. r←U {0, 1}k0 ; s← (M ‖ 0k1 )⊕G(r); t← r ⊕H(s);
2. if ( s ‖ t ≥ N ) go to 1; (∗ Probability for looping i times is 2−i ∗)
3. σ ← (s ‖ t)d (mod N).

The signature is σ.

Signature Verification

To verify a signature σ, Bob performs the following steps:

1. s ‖ t← σe (mod N) satisfying |s| = n + k1 = k − k0, |t| = k0;
2. u← t⊕H(s); v ← s⊕G(u);

3. output

{

M ‖ “True” if v = M ‖ 0k1

“False” otherwise
(∗ when “True” is in the trailing part of the output, the prefix string is the
recovered message. ∗)

Fig. 3. The RSA-OAEP Signature Scheme

2.1 Unforgeability

Adaptive chosen-message attack on digital signature schemes is defined in [9].
We consider that a successful forgery of a message-signature pair for a signature
scheme under this attacking mode as breaking the signature scheme.

Theorem 1. Let GEN(1k) be an RSA-OAEP Signature Scheme specified in
Figure 3. If an adaptive chosen-message forger can break the scheme in time t
with advantage Adv, then the RSA problem under (N, e) can be solved in time
t′ with advantage Adv′ where

t′ ≤ t + (qs + qG + qH) · k3,

Adv′ ≥ Adv − 2−n−k1 ,

where qs, qG, qH are the numbers of signing, G and H oracle queries, respectively.

Proof Our approach follows essentially that of [3].
Under an adaptive chosen-message attack, a forger F is allowed to make qs

signing queries and adaptively use them in its forgery. However, in the ROM,



the hash functions are ROs owned by a simulator S, and therefore whenever
F wants to evaluate G and H , it must make RO queries to S. It can make qG

and qH RO queries to G and H respectively. Since F is bounded, we assume
qs + qG + gH is bounded by a polynomial in k = |N |. We assume that after
these queries, F will be able to output a valid forgery which is a new message
signature pair, with a significant probability Adv.

S will run F by inputting the latter with the public key (N, e, G, H, n, k0, k1)
and by answering all the queries of the latter. S will pick a random point η ∈ Z

∗

N

and use F to find the e-th root of η, with probability Adv′.
Because S does not have the RSA private exponent d = e−1 (mod φ(N)),

it can only simulate the signing algorithm. It will also simulate the ROs. These
simulations are carried out as follows. Before simulation, S initialises three lists:
a G-list for storing G-query results, an H-list for H query results and an R-list
for storing possible RSA roots. Initially, these lists are empty.

Simulation of signing query For M queried by F , S picks at random r ∈
{0, 1}k0 and x ∈ {0, 1}k with x < N , and responds to F with x. Let y =
xe (mod N) where y is parsed as

y = s ‖ t

with |s| = k − k0 and |t| = k0. S further sets

G(r) = (M ‖ 0k1) ⊕ s

and
H(s) = r ⊕ t.

S stores (r, G(r)) in G-list, and (s, H(s)) in H-list.

Simulation of G query Let ri be an RO query to G. If ri has already been
queried (i.e., it is in G-list) then S answers with G(ri) picked from G-list (stored
together with ri). Otherwise, S performs the following steps.

S picks at random xi ∈ {0, 1}k with xi < N . S sets yi = ηxe
i (mod N) where

yi is parsed as
yi = si ‖ ti

with |si| = k − k0 and |ti| = k0. S further sets at random G(ri) ∈ {0, 1}k−k0 ,
and

H(si) = ri ⊕ ti.

Now S answers F with G(ri). It also stores (ri, G(ri), xi) in G-list, (si, H(si), xi)
in H-list, and xi in R-list. The storage in these lists is indexed by integer i.

Simulation of H query Let sj be an RO query to H . If sj is already in
H-list, then S answers with H(si) picked from H-list. Otherwise, S performs
the following steps.

S picks at random a string H(sj) ∈ {0, 1}k0 and answers F with H(sj). S
also stores (sj , H(sj)) in the H list. The storage is indexed by integer j.



In the ROM, all these simulations are from perfectly correct distributions,
except when an event named AskH occurs. This event is when an RO query is
made to H where the query is related to a successful forgery (see Remark 2).

The precision of the simulations is very important since F can release its full
capacity for forging only after having been correctly trained.

Analysis After F has completed the training course (i.e, after qs + qG + qH

queries having been answered), it outputs a valid message-signature pair (M̂, z)
with probability Adv. We denote this event by FWin.

The event AskH mentioned earlier is as follows: for

ze (mod N) = ŝ ‖ t̂ (1)

with |ŝ| = k − k0 and |t̂| = k0, ŝ is in H-list. When this event occurs, an
imperfection in the simulation is exposed. However, it is too late for F to discover
the imperfection now (reason see Remark 2). We have

Adv = Pr [FWin ]

= Pr [FWin | AskH ] Pr [AskH ] + Pr [FWin | ¬AskH ] Pr [¬AskH ] . (2)

In the ROM, the information inside the “wrapping” of the RSA trapdoor
function in the event ¬AskH is uniformly random. Therefore, the second term in
the right-hand side of (2) is a negligible quantity neg < 2−n−k1 . So we have

Pr [AskH ] = (Adv − neg)/Pr [FWin | AskH ] > Adv − 2−n−k1 . (3)

That is, in the event FWin, ŝ defined in (1) is in S’s H-list with probability at
least Adv−2−n−k1 . Thus, S can search through H-list and find the correct index
`, allowing it to find x` from R-list. From the simulations, we know

ze = ηxe
` (mod N).

So ηd = z/x` (mod N) is discovered as desired.
Clearly, t′ ≤ t + (qs + qG + qH) · k3 and Adv′ = Pr [AskH ] which relates to

Adv as in (3). ut

Remark 1. Our security proof for the RSA-OAEP Signature scheme achieves
a tight reduction thanks to the fact that a successful forgery z enables S to
obtain ze (mod N) by simply applying the RSA one-way function. The security
proof for the RSA-OAEP Encryption [8] is not so fortunate, because there S
does not have the RSA trapdoor function to apply; instead, a shift technique
is employed and the attacker is re-run in order to derive the full inversion from
partial inversions, and the resulting reduction is not tight. ut

Remark 2. Recall that we have mentioned that occurrence of the event AskH

reveals an imperfection of the simulations. Observe that the successful forgery z
satisfying (1) and the H-query ŝ permit F to derive r̂ = t̂ ⊕ H(ŝ) and so it can



query r̂ to G to obtain a random G(r̂). Then with an overwhelming probability
G(r̂) ⊕ ŝ 6= M̂ ‖ 0k1 due to the randomness of G(r̂). However, it is now too late
for F to find this imperfection since it has already helped S to invert the RSA
function. Of course, one may argue that if F is a conscious forger, e.g., a human
being, then it should withhold the forgery without sending it S. However, we
should not consider F being conscious. It is a probabilistic algorithm and should
forge successfully whenever it is properly trained, i.e., after having been fed with
perfect simulations. We notice that this “imperfection discovered too late” by
an attacker applies to all ROM security proofs for RSA-padding encryption or
signature schemes. ut

3 OAEP+ is Optimal

Shoup proposes the RSA-OAEP+ Encryption scheme which is a slight modifi-
cation of RSA-OAEP [11] and provides an ROM based proof of the IND-CCA2
security. His proof achieves a tighter reduction than that for the RSA-OAEP
Encryption scheme because Adv′ is linearly related to Adv, although the run-
ning time of the reduction is still a quadratic function on the number of RO
queries, and hence the reduction remains inefficient (see [11]). For a picture of
the OAEP+ padding, see Figure 4.
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Fig. 4. The OAEP+ Padding



Key Parameters

Let (N, e, d, G, H,n, k0, k1)← GEN(1k) satisfy the following: (N, e, d) are RSA key
material; k = |N | = n + k0 + k1 with 2−k0 and 2−k1 being negligible quantities; G,
H ′, H are hash functions satisfying

G : {0, 1}k0 7→ {0, 1}n, H
′ : {0, 1}n+k0 7→ {0, 1}k1 , H : {0, 1}n+k1 7→ {0, 1}k0 .

n is the length for the plaintext message.
Let (N, e) be Alice’s RSA public and d = e−1 (mod φ(N)) be her private exponent.

Signature Generation

To sign a message M ∈ {0, 1}n, Alice performs the following steps:

1. r←U {0, 1}k0 ; s← (G(r)⊕M) ‖ H ′(r ‖M); t← H(s)⊕ r;
2. if ( s ‖ t ≥ N ) go to 1; (∗ Probability for looping i times is 2−i ∗)
3. σ ← (s ‖ t)d (mod N).

The signature is σ.

Signature Verification

To verify a signature σ, Bob performs the following steps:

1. u ‖ v ‖ t← σe (mod N) satisfying |u| = n, |v| = k1, |t| = k0;
2. r← H(u ‖ v)⊕ t; M ← G(r)⊕ u;

3. output

{

M ‖ “True” if v = H ′(r ‖M)
“False” otherwise

(∗ when “True” is in the trailing part

of the output, the prefix string is the recovered message. ∗)

Fig. 5. The RSA-OAEP+ Signature Scheme

The RSA-OAEP+ Signature scheme is specified in Figure 5. From the scheme
we can see that the bandwidth for message recovery is the same as that of the
RSA-OAEP Signature. Hence, OAEP+ is also a very efficient padding scheme.

Theorem 2. Let GEN(1k) be an RSA-OAEP+ Signature Scheme specified in
Figure 5. If an adaptive chosen-message forger can break the scheme in time t
with advantage Adv, then the RSA problem under (N, e) can be solved in time
t′ with advantage Adv′ where

t′ ≤ t + (qs + qG + gH + qH′) · k3,

Adv′ ≥ Adv − 2−n−k1 ,

where qs, qG, qH , qH′ are the numbers of signing, G, H and H ′ oracle queries,
respectively.

The technique for proving this theorem is similar to that for proving Theo-
rem 1 and is given in Appendix A.



4 SAEP is Good

Simple-OAEP (SAEP) is a randomised padding scheme proposed by Boneh [4]
with a proof that it creates a IND-CCA2 secure encryption scheme when used
with the RSA or Rabin function. The padding scheme is illustrated in Figure 6.
From the Figure we can see that the bandwidth for message recovery is the same
as that for the OAEP.

We specify the SAEP Signature in Figure 7 and analyse its security.

k 0
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Fig. 6. The SAEP Padding

4.1 Unforgeability

Theorem 3. Let GEN(1k) be an RSA-SAEP Signature Scheme specified in
Figure 7. If an adaptive chosen-message forger can break the scheme in time t
with advantage Adv, then the RSA problem under (N, e) can be solved in time
t′ with advantage Adv′ where

t′ ≤ t + (qs + qH) · k3,

Adv′ ≥
1

qs

(Adv − 2−n−k0 − (qH + qs)
2 · 2−n−k0),

where qs, gH are the numbers of signing, and H oracle queries, respectively.

From the expression on Adv′ relating to Adv we can already see that our
reduction proof for the SAEP signature scheme is no longer tight. That’s why
SAEP is not optimal.

Our proof technique is a variation to that of Coron et al for proving their
UPS for the signature case [5]. In our reduction, we essentially simulate the RSA
function into a random oracle.



Key Parameters

Let (N, e, d, H, n, k0, k1) ← GEN(1k) satisfy the following: (N, e, d) are RSA key
material; k = |N | = n + k0 + k1 with 2−k0 and 2−k1 being negligible quantities; H

is a hash function satisfying

H : {0, 1}k1 7→ {0, 1}n+k0

n is the length for the plaintext message.
Let (N, e) be Alice’s RSA public and d = e−1 (mod φ(N)) be her private exponent.

Signature Generation

To sign a message M ∈ {0, 1}n, Alice performs the following steps:

1. r←U {0, 1}k1 ; s← H(r)⊕ (M ‖ 0k0 );
2. if ( s ‖ r ≥ N ) go to 1; (∗ Probability for looping i times is 2−i ∗)
3. σ ← (s ‖ r)d (mod N).

The signature is σ.

Signature Verification

To verify a signature σ, Bob performs the following steps:

1. s ‖ r← σe (mod N) satisfying |s| = n + k0, |r| = k1;

2. output

{

M ‖ “True” if s⊕H(r) = M ‖ 0k0

“False” otherwise
(∗ when “True” is in the trailing part of the output, the prefix string is the
recovered message. ∗)

Fig. 7. The RSA-SAEP Signature Scheme

Proof Again, we assume that after qs + qH queries, F will be able to output a
valid forgery which is a new message signature pair, with a significant probability
Adv.

Let SAEP (M, r) denote a signature of message M output from the SAEP
Signature scheme.

Top-level Description of the Reduction

1. A simulator S will run a forger F by inputting the latter with the public
key (N, e, H, n, k0, k1) and by answering all the queries from the latter. It
simulates the signing algorithm and RO H as to be described below.

2. S is given a random η ∈ Z
∗

N to find ηd.

3. S selects uniformly at random an integer j ∈ [1, qs].

4. In the simulation of the signing algorithm, S maintains a counter i (1 ≤
i ≤ qs) for the ith signing query Mi. The simulation is perfect when i 6= j.
The simulation is maintained in such a way that when i = j, it holds η =
SAEP (Mi, r)

e (mod N) for some random number r which is not known to
S. Therefore, for this case of i = j, S will respond with a random value



x < N as a valid signature, since there exists an unknown random nonce r
satisfying x = SAEP (Mj , r).

5. In the simulation of RO H (which is simulated perfectly all the time), S will
maintain an H-list of query-response pairs to H . This list is initially empty.

6. Finally, S receives from F a forgery message-signature pair (M̂, z). If M̂ =
Mj then according to the ways of both simulations, η = SAEP (M̂, r)e (mod N)
and S outputs z.

Simulation of signing query For Mi queried by F , there are two cases: (i)
i 6= j, (ii) i = j. For (i), S generates random xi < N and sets yi = xe. For (ii), S
sets yi = η. In both cases S parses yi = si ‖ ri, computes H(ri) = (Mi ‖ 0k0)⊕si,
record (ri, H(ri)) in H-list. Now S answers F with xi for case (i), and answers
a random x < N for case (ii).

Simulation of H query Let rj be an RO query to H . If rj is already in
H-list, then S answers with H(rj) picked from H-list. Otherwise, S performs
the following steps.

S picks at random a string H(rj) ∈ {0, 1}n+k0 and answers F with H(rj). S
also stores (rj , H(rj)) in H-list. The storage is indexed by integer j.

Analysis Let (M̂, z) be the forgery sent by F . Let ze (mod N) = ŝ ‖ r̂ with
|ŝ| = n + k0 and |r̂| = k1. If M̂ was never queried for signature, then probability
for M̂ ‖ 0k0 = H(r)⊕ ŝ to hold for each r in H-list is 2−n−k0 . Otherwise, let M̂ =
Mi such that Mi was a signing query. If i = j, then η = SAEP (Mj , r̂)

e (mod N),
and S succeeds in rooting η.

Now let us examine the probability for S to succeed. We have seen that for
any message which was not signing queried, the probability for F to output a
valid forgery using any random nonce (whether H-queried or not) is 2−n−k0 .
Thus, in order to have a non-negligible advantage to forge a signature, F must
forge a signature for one of M1, M2, . . . , Mqs

(i.e., for one of the messages which
was signing-queried). We notice that for these old messages, as long as F can
output a new signature value σ which has never been output from any previous
run of the signing algorithm (simulated or real), the (Mi, σ) will be regarded as
a valid forgery.

Now we condition on i = j (i.e., Mj is the only message for F to forge a
signature). In order for the forgery z to be new, F is not allowed to use S’s
random answer x. Because the both simulations are perfect until F succeeds its
forgery task (see Remark 2), unless some s appears twice. The probability for
some s appearing twice is less than (qH + qs)

2 · 2−n−k0 . Consequently we have

Adv′(i = j) ≥ Adv − 2−n−k0 − (qH + qs)
2 · 2−n−k0 .

Finally, removing the condition i = j, we have

Adv′ ≥
1

qs

(Adv − 2−n−k0 − (qH + qs)
2 · 2−n−k0).



The time complexity is obvious from our analysis. ut

Discussions

– We notice that in this security proof for the SAEP signature scheme we have
to use the following more general notion of forgery: σ = SAEP (M, r) is re-
garded as a valid forgery as long as σ is new even though M can be an old
message. This notion of forgery is a reasonable one for a probabilistic signa-
ture algorithm, although in our security proofs for our other two signature
schemes we do not need to use this notion of forgery.

– Same as our discussion in Remark 2, F can only detect an imperfection of
the signature simulation, i.e., detect that the simulated signature reply on
M̂ = Mj (which was a random value x < N) was a not a correct one, when
it succeeds its forgery z (again, too late!). Before F succeeds, x can indeed
be an existentially valid signature on Mj for some unknown random nonce
r.

– In order to root η with an advantage similar to Adv, S has to run F qs times.
So the overall time for rooting η with advantage Adv will be

qst
′ ≤ qst + (qs + qH)qs · k

3 ≈ q2
s · k3.

Consider qs ≈ 240, i.e., consider that 240 · k3 is reasonably affordable by a
dedicated forger. Then S can only solve the RSA problem in time 280 · k3

for a k-bit modulus. This does not form a nice contradiction for the case of
k = 1024. That is why we say the this reduction is not an efficient one.

5 Conclusion

We have shown that OAEP and two of its inspired encryption padding schemes
can be used to create RSA signature schemes with desirably high bandwidth
for message recovery. We have seen that OAEP is actually a very good padding
scheme. All three schemes have the same and desirably high bandwidth for mes-
sage recovery: message bits are 84% of the modulus bits for the usual size of key
setting, with OAEP and OAEP+ being optimal, meaning that they have tight
security proofs for the signature case. SAEP is good and simple, however, we
have not been able to provide a tight security proof for it. We have not been
successful to provide a security proof for SAEP+ in the signature usage.

Our work shows that UPS schemes from the OAEP-family padding schemes
are considerably better than that from the PSS-R padding scheme.
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A Proof of Theorem 2

The proof is very similar to that given in §2.1.
Again, we assume that after qs + qG + qH + qH′ queries, F will be able to

output a valid forgery which is a new message signature pair, with a significant
probability Adv.

The simulator S will run F by inputting the latter with the public key
(N, e, G, H, H ′) and by answering all the queries from the latter. S will pick a
random point η ∈ Z

∗

N and use F to find the e-th root of η, also with a significant
probability Adv′. The value of Adv′ will be given later. Similar to the case of
simulations in §2.1, S will maintain respective RO lists and an R-list.

Remark 3. We follow Shoup’s reasonable stipulation by assuming without loss
of generality that whenever F makes a query of the form H ′(r ‖ M) for any
r ∈ {0, 1}k0 , M ∈ {0, 1}n, then F has previously made the query G(r).



Simulation of signing query For M queried by F for a signature, S picks at
random r ∈ {0, 1}k0 and x ∈ {0, 1}k with x < N . It responds to F with x. Let
y = xe (mod N) where y is parsed as

y = u ‖ v ‖ t

with |u| = n, |v| = k1 and |t| = k0. S further sets

G(r) = M ⊕ u,

H(u ‖ v) = r ⊕ t,

H ′(r ‖ M) = v.

S stores (r, G(r)) in G-list, (u ‖ v, H(u ‖ v)) in H-list, and (r ‖ M, H ′(r ‖ M))
in H ′-list.

Simulation of H ′ query Let ri ‖ Mi be an RO query to H ′. From Remark 3
we know that ri must have been RO queried to G. So S has in its possession ri.

If ri ‖ Mi has already been H ′-queried (i.e., the concatenated string is in H ′-
list) then S answers with H(ri ‖ Mi) picked from H ′-list. Otherwise, S performs
the following steps.

S picks at random xi ∈ {0, 1}k with xi < N . S sets yi = ηxe
i (mod N) where

yi is parsed as
yi = si ‖ ti = ui ‖ vi ‖ ti

with |ui| = n, |vi| = k1 and |ti| = k0. S further sets

H ′(ri ‖ Mi) = ri ⊕ ti,

H(si) = ri ⊕ ti.

Now S answers F with H ′(ri ‖ Mi). It stores the pair (ri ‖ Mi, H
′(ri ‖ Mi)) in

H ′-list, the pair (si, H(si)) in H-list, and xi in R-list. The storage in these lists
is indexed by integer i.

Simulation of G query Let rj be a RO query to G. If rj has already been
queried (i.e., it is in the G-list) then S answers with G(rj) picked from G-list.
Otherwise, S performs the following steps.

S picks at random a string G(rj) ∈ {0, 1}n and answers F with G(rj). S also
stores (rj , G(rj)) in the G list. The storage is indexed by the integer j.

Simulation of H query Let sk be an RO query to H . If sk is already in
H-list, then S answers with H(sk) picked from H-list. Otherwise, S performs
the following steps.

S picks at random a string H(sk) ∈ {0, 1}k0 and answers F with H(sk). S
also stores (sk, H(sk)) in the H list. The storage is indexed by integer k.



One may verify that in the ROM, all the above simulations are perfect, except
when an event AskH’ occurs. This event is when an RO query is made to H ′

where the query is related to a successful forgery. We shall see more details about
this event in a moment.

Analysis

After F has completed its training (i.e, after qs + qG + qH + qH′ queries), it
outputs a valid message-signature pair (M̂, z) with probability Adv. We denote
by FWin this event.

The event AskH’ mentioned earlier is as follows: for

ze (mod N) = ŝ ‖ t̂ = û ‖ v̂ ‖ t̂ (4)

with |û| = n, |v̂| = k1, and |t̂| = k0, v̂ is in H ′-list. When this event occurs,
an imperfection in the simulation is exposed. However, as we have discussed in
Remark 2, now it’s too late for F to discover the imperfection. We have

Adv = Pr [FWin ]

= Pr [FWin | AskH
′ ] Pr [AskH

′ ] + Pr [FWin | ¬AskH
′ ] Pr [¬AskH

′ ] . (5)

In the ROM, the information inside the “wrapping” of the RSA trapdoor func-
tion in the event ¬AskH

′ is random. Therefore, the second term in the right-hand
side of (5) is a negligible quantity neg < 2−n−k1 . So we have

Pr [AskH
′ ] = (Adv − neg)/Pr [FWin | AskH

′ ] > Adv − 2−n−k1 . (6)

That is, in the event FWin, v̂ defined in (4) is in S’s H ′-list with probability
at least Adv − 2−n−k1 . Thus, F can search through H ′-list and find the correct
index `, and then find x` from R-list. From the simulations, we know

ze = ηxe
` (mod N).

So ηd = z/x` (mod N) is discovered as desired.
Clearly, we have t′ ≤ t + (qs + qG + qH + qH′) · k3 and Adv′ = Pr [AskH

′ ]
shown in (6). ut


