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Abstract
In 1986, Fiat and Shamir suggested a general method for transforming secure 3-roundpublic-coin identi�cation schemes into digital signature schemes. The signi�cant contri-bution of this method is a means for designing e�cient digital signatures, while hopefullyachieving security against chosen message attacks. All other known constructions whichachieve such security are substantially more ine�cient and complicated in design.In 1996, Pointcheval and Stern proved that the signature schemes obtained by theFiat-Shamir transformation are secure in the so called `Random Oracle Model'. Thequestion is: does the proof of the security of the Fiat-Shamir transformation in theRandom Oracle Model, imply that the transformation yields secure signature schemesin the \real-world"?In this paper we answer this question negatively. We show that there exist secure3-round public-coin identi�cation schemes for which the Fiat-Shamir methodology pro-duces insecure digital signature schemes for any implementation of the `Random OracleModel' in the `real-world' by a function ensemble.
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1 Introdcution
In their famous paper laying the foundations for modern cryptography, Di�e and Hellman[DH76] proposed the goal of designing secure digital signatures. They also proposed a generalmethod for designing digital signatures. Their method uses trapdoor functions as its basicprimitive and is known as the trapdoor function signature method.Several drawbacks of the trapdoor function approach have surfaced. In terms of security,by its very de�nition, it is proned to existential forgery as de�ned in [GMR88]. In terms ofe�ciency, the time to sign and verify are proportional to the time to invert and compute theunderlying trapdoor function { a cost which for some trapdoor functions is prohibitive forcertain applications. Since the eighties, several signature schemes were proposed which wereproved existentially unforgeable against chosen message attacks under a variety of complexityassumptions [GMR88, NY89, GHR99, CS99].An entirely di�erent method for designing digital signature schemes was proposed by Fiatand Shamir in 1986. They proposed a two step approach.
� First, design a \secure" 3-round public-coin identi�cation scheme. That is, design a\secure" 3-round identi�cation scheme (�; �; 
) where �; 
 are prover's moves and � isa random string chosen by the veri�er.
� Second, design a signature scheme as follows: let M be the message to be signed, thenthe signing algorithm consists of outputting an accepting transcript of the interactiveidenti�cation protocol (�; �; 
), where � = h(�;M) and h a public function which ispart of the signer's public-key. The intuition behind why such a signature scheme maybe secure is that it would be hard for a forger to �nd a message M and a transcript(�; �; 
) for which it is true both that � = h(�;M) and that (�; �; 
) is an acceptingtranscript with respect to a public-key chosen by the real signer.

The resulting signature scheme is as e�cient as the original identi�cation scheme (which aregenerally more e�cient than known signature schemes) and the cost of evaluating the publicfunction h. Current proposals for a public (keyless) function h are very e�cient [MD5].Due to the e�ciency and the ease of design, the Fiat-Shamir method shortly gained muchpopularity both in theory and in practice. Several digital signature schemes, of which the bestknown ones are [Sch91, GQ88, Ok92], were designed following this paradigm. The paradigmhas also been applied in other domains such as to achieve forward secure digital signatureschemes in [AABN02] and to achieve better exact security in [MR02]. Both of the aboveapplications ([AABN02, MR02]) actually use a variation of the Fiat-Shamir paradigm. Still,they all share the same basic structure: start with some secure 3-round identi�cation schemeand transform it into a digital signature scheme, eliminating the random move of the veri�er
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by an application of a �xed function h to di�erent quantities determined by the protocol andthe public key.The main question regarding any of these proposals is what can be proven about thesecurity of the resulting signature schemes.In 1996 Pointcheval and Stern [PS96] made a signi�cant step toward answering this ques-tion. They proved that for every 3-round public-coin identi�cation protocol, which is zero-knowledge with respect to an honest veri�er, the signature scheme obtained by applying theFiat-Shamir transformation is secure in the Random Oracle Model. This work was extendedby Abdalla et al. [AABN02] to show necessary and su�cient conditions on 3-round iden-ti�cation protocols for which the signature scheme, obtained by applying the Fiat-shamirtransformation, is secure in the Random Oracle Model.1The Random Oracle Model is an ideal model which assumes that all parties (includingthe adversary) have oracle access to a truly random function. The so called random oraclemethodology is a popular methodology that uses the Random Oracle Model for designingcryptographic schemes. It consists of the two steps. First, design a secure scheme in theRandom Oracle Model. Then, replace the random oracle with a function, chosen at randomfrom some function ensemble and provide all parties (including the adversary) with a succinctdescription of this function. Thus, obtain an implementation of the ideal scheme in the realworld. This methodology introduced implicitly by [FS86], was formalized by Bellare andRogaway [BR93].As attractive as the methodology is for obtaining security \proofs", the obvious questionwas whether it is indeed always possible to replace the random oracle with a `real world'implementation. This question was answered negatively by Canetti, Goldreich and Halevi[CGH98]. They showed that there exists a signature scheme and an encryption scheme whichare secure in the Random Oracle Model but are insecure with respect to any implementation ofthe random oracle by a function ensemble. Thus, showing that the random oracle methodologyfails `in principle'.The work of [CGH98] left open the possibility that for particular \natural" cryptographicpractices, such as the Fiat-Shamir transformation, the random oracle methodolgy does work.In this paper we show that this is not the case.1The conditions are for the identi�cation scheme to be secure against impersonation under passive attacks,and that the �rst message sent by the sender is drawn at random from a large space. [AABN02] show thatthe latter can be removed for a randomized version of the Fiat-Shamir transformation. For more details, seesection 7.2.
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1.1 Our Results
We prove that the Fiat-Shamir general paradigm for designing digital signatures can leadto universally forgeable digital signatures. We do so by demonstrating the existence of asecure 3-round public-coin identi�cation scheme for which the corresponding signature scheme,obtained by applying the Fiat-Shamir transformation, is insecure with respect to any functionensemble implementing the public function.Our result is unconditional, and does not depend on any intractability assumptions. More-over, the problems we demonstrate for the Fiat-Shamir transformation apply to all othervariations of the Fiat-Shamir transformation proposed in the literature [MR02, AABN02].The central technique we employ is a new usage of Barak [Bar01]'s idea of taking advantageof non black-box access to the program of the veri�er.Intuitively, the idea is to take any secure 3-round public-coin identi�cation scheme (which isnot necessarily zero-knowledge) and extend its verdict function so that the receiver (veri�er)also accepts views which convince him that the sender (prover) knows the receiver's nextmessage. Since the receiver chooses the next message at random, there is no way that thesender can guess the receiver's next message during a real interaction, except with negligibleprobability, and therefore the scheme remains secure. However, when the identi�cation schemeis converted into a signature scheme by applying the Fiat-Shamir transform, the receiver isreplaced with a public function chosen at random from some function ensemble, which isknown in advance to everyone. A forger who will now know in advance the receiver's nextmessage on any input, will be able to generate an accepting view for the receiver. This makesthe signature scheme insecure regardless of which function ensemble is used to replace thereceiver in the identi�cation scheme.The main technical challenge with implementing this approach is the following: How canthe sender convince the receiver that he knows the receiver's `next message' using a 3-roundprotocol?We make strong use of the non-interactive CS-proofs of Micali [Mi94] to overcome thischallenge. However, non-interactive CS-proofs themselves are only known to hold in the Ran-dom Oracle Model and thus we �rst get the (somewhat odd-looking) conditional result thatif CS-proofs are realizable in the `real world' by some function ensemble, then there exist se-cure identi�cation schemes for which the Fiat-Shamir transformation always fails in the `realworld' for all function ensembles. Next, we show that even if CS-proofs are not realized inthe `real world' by any function ensemble, the Fiat-Shamir paradigm is not secure. Perhaps,surprisingly, this part of the proof contains the bulk of di�culty and technical complication.This part again entails, showing di�erent transformations on 3-round public-coin identi�ca-tion schemes which preserve their security when used as interactive identi�cation schemesbut make them completely insecure as signature schemes obtained by the the Fiat-Shamir
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transformation.
1.2 Related Work
Following the work of [CGH98], Dwork, Naor, Reingold and Stockmeyer [DNRS99] inves-tigated the security of the Fiat-Shamir Paradigm and showed that it is closely related topreviously studied problems: the the selective decommitment problem2, and the existence of3-round public-coin weak zero-knowledge arguments for non BPP languages. We note that thenegative results presented in Section 1.1 regarding the insecurity of the Fiat-Shamir transfor-mation have implications for these related problems.In particular, the result of [DNRS99], that the existence of 3-round public-coin zero-knowledge protocols for non BPP languages implies the insecurity of the Fiat-Shamirparadigm, is worth elaborating on. It follows from the following simple observation. Sup-pose there exists a 3-round public-coin zero-knowledge argument for some hard language.View this zero-knowledge argument as a secure identi�cation protocol3. The fact that theidenti�cation protocol is zero-knowledge (and not only honest veri�er zero-knowledge) meansthat for every veri�er there exists a simulator that can generate identical views to the onesproduced during the run of the identi�cation protocol. As the Fiat-Shamir transformationapplied to this identi�cation protocol, essentially �xes a public program for the veri�er of thezero-knowledge argument, any forger can now simply run the simulator for this �xed veri�erto produce a view of the identi�cation protocol (i.e a valid digital signature).This simple argument extends to any k-round public-coin zero-knowledge argument.Namely, if such a k-round public-coin zero-knowledge argument exists, it can be viewed as anidenti�cation protocol. Now, extend the original Fiat-Shamir transformation to an Extended-Fiat-Shamir transformation which replaces each message of the veri�er (round at a time)by applying a �xed public function to previous messages in the protocol. Then the sameargument as above says, that the simulator for the k-round zero-knowledge protocol can beused to produce forgeries in the signature scheme resulting from the Extended-Fiat-Shamirtransformation and thus the Extended-Fiat-Shamir transformation fails.When [DNRS99] pointed the above connection, no constant-round zero-knowledge public-coin protocol for non trivial languages was known. Since, Barak [Bar01] showed that underthe assumption that collision resistant function ensembles exist, every language in NP has2In the selective decommitment problem, an adversary is given commitments to a collection of messages,and the adversary can ask for some subset of the commitments to be opened. The question is whether seeingthe decommitments to these open plaintexts allows the adversary to learn something unexpected about theplaintexts that are still hidden.3It is not necessarily a proof of knowledge but it is certainly a proof of ability of proving membership in Lwhich is hard for polynomial time impersonating algorithms
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a constant-round (for some constant k > 3) public-coin zero-knowledge argument. Thus, itfollows from [DNRS99] and [Bar01] (as above) that the Extended-Fiat-Shamir Paradigm isinsecure.The Fiat-Shamir paradigm was de�ned however, and has always been used only for 3-round identi�cation schemes. Barak's work does not apply to this case. Moreover, his workimplies that the Fiat-Shamir Paradigm (extended and otherwise) fails on zero-knowledgeidenti�cation schemes (indeed it is the simulator for the zero-knowledge system which willproduce forgeries), and left open the possibility that the (extended and ordinary) Fiat-Shamirparadigm works when the starting identi�cation schemes are secure with respect to a lessstrict security requirement and are not zero-knowledge.
2 Preliminaries
Notations: We use [GMR88]'s notations and conventions for probabilistic algorithms.If A is a probabilistic algorithm then for any input x we let A(x) refer to the probability spacewhich assigns to any string � the probability that A(x) outputs �. If S is a probability spacethen x S denotes the algorithm which assigns to x an element randomly selected accordingto S. For any probabilistic interactive Turing machines A and B, we let (A;B)(x) refer to thetranscript of their interaction on input x. At the end of the interaction B will always eitheraccept or reject. We refer to this decision function of B as the verdict function of B. Weabuse notion by saying that (A;B)(x) = 1 if B accepts. we denote by V IEW (B(x)) the setof all transcripts that B(x) accepts. We denote by Aj�, machine A, restricted to sending � asits �rst message. More generally, we denote by Aj�1;:::;�t , machine A, restricted to sending �ias its i'th message, for i = 1; : : : ; t.
De�nition 1. (Negligible): We say that a function g(�) is negligible if for every polynomialp(�) there exists n0 2 N such that for every n � n0

g(n) < 1p(n) :
For any function g(�), we let g(n) = negl(n) denote that g(�) is a negligible function.

De�nition 2. (Non-negligible): We say that a function g(�) is non-negligible if it is notnegligible. That is, we say that g(�) is non-negligible if there exists a polynomial p(�) such thatfor in�nitely many n's
g(n) � 1p(n) :
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For any function g(�), we let g(n) = non-negl(n) denote that g(�) is a non-negligiblefunction.
De�nition 3. (One-Way): We say that a function ensemble F = fFngn2N is one-way if givena uniformly chosen f 2R Fn and a uniformly chosen y in the image of f , it is hard to �nd xsuch that f(x) = y. That is, F is one-way if for every polynomial-size circuit C = fCngn2N,

Pr[Cn(f; y) = x : f(x) = y] = negl(n)
(where the probability is over uniformly chosen f 2R Fn and y  f(Un)).

Throughout this paper we assume that one-way function ensembles exist. We stress thatif one-way function ensembles do not exist then secure identi�cation schemes and securesignature schemes do not exist, and thus the Fiat-Shamir Transform is trivially satis�ed. Theexistence of one-way function ensembles implies the existence of secure identi�cation schemesand secure signature schemes [NY89].
De�nition 4. (Collision Resistence): We say that a function ensemble F = fFngn2N iscollision resistant if given a uniformly chosen f 2R Fn it is hard to �nd x1; x2 such thatf(x1) = f(x2). That is, F is collision resistant if for every polynomial-size circuit C =fCngn2N, Pr[Cn(f) = (x1; x2) : f(x1) = f(x2)] = negl(n)
(where the probability is over a uniformly chosen f 2R Fn).

Hypothesis (Collision Resistance Hypothesis): There exists a collision resistancefunction ensemble F = fFngn2N for which for every n 2 N,
fn : f0; 1g2n ! f0; 1gn:

We refer to this hypothesis as the CR hypothesis. Throughout the paper (excluding Section3), we assume the CR hypothesis holds and we denote by F a collision resistance functionensemble given by this hypothesis.
De�nition 5. (Commitment Scheme): A commitment scheme is a function ensemble

COMMIT = fCOMMITngn2N;
where COMMITn = fcommitkgk2KEYn ;
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and there exist functions l(n) and t(n), which are polynomially-related to n, such that forevery n 2 N and every k 2 KEYn
commitk : f0; 1gn � f0; 1gl(n) ! f0; 1gt(n);

and the following properties are satis�ed.
� (Computationally-hiding): For every n 2 N, given any k 2 KEYn and any x 2 f0; 1gn,

commitk(x; r) �= Ut(n);
assuming r �= Ul(n)
(where �= denotes computational-indistinguishability).
� (Computationally-binding): For every n 2 N, given a random key k 2R KEYn it is hardto �nd (x1; r1) 6= (x2; r2) such that

commitk(x1; r1) = commitk(x2; r2):
That is, for every polynomial-size circuit C = fCngn2N

Pr[Cn(k) = ((x1; r1); (x2; r2)) : commitk(x1; r1) = commitk(x2; r2)] = negl(n)
(where the probability is over a uniformly chosen k 2R KEYn).

It was proven by Naor in [Na91] that commitment schemes exist, assuming the existenceof one-way function ensembles.For the purposes of this paper, we need a special commitment scheme, which we denoteby COMM = fCOMMngn2N. For any polynomial m(�), COMM is a commitment schemethat for every n 2 N and for every k 2 KEYn,
COMMk : f0; 1gm(n) � f0; 1gn ! f0; 1gn:4

In Appendix A we show that such a commitment scheme exists (for any polynomial m(�)),under the CR hypothesis.4Note that COMM has the propety that the size of the randomness equals the size of the commitment.We need this property since in the sequel we use one commitment as randomness for another commitment.
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2.1 Identi�cation Schemes
De�nition 6. (Identi�cation Scheme): An identi�cation scheme (or ID scheme, for short)consists of a triplet (G;S;R), where G is a key generation algorithm and S is the sender whowishes to prove his identity to the Receiver R. More formally,
� G is a probabilistic-polynomial-time Turing machine that, on input 1n, outputs a pair(SK;PK), such that the sizes of SK and PK are polynomially related to n. (SK isreferred to as the secret-key and PK is referred to as the public-key).
� S and R are probabilistic-polynomial-time interactive Turing machines that are given apublic-key PK as input. The sender S is also given a corresponding secret-key SK. Itis required that for any pair (SK;PK) in the range of G(1n),

Pr[(S(SK); R)(PK) = 1] = 1
(where the probability is over the random coin tosses of S and R).

In this paper we are interested in a special type of ID scheme, which we refer to as acanonical ID scheme.
De�nition 7. (Canonical ID Scheme): A canonical ID scheme is a 3-round ID scheme, inwhich the �rst message � is sent by the sender S, the second message � is sent by the receiverR and consists of R's random coins, and the third message 
 is sent by the sender S.

For a sender S, with keys (SK;PK) and randomness r, we denote
� � = S(SK;PK)(r)
� 
 = S(SK;PK)(�; �; r).

2.1.1 Security of ID Schemes
As with any cryptographic primitive, the notion of security considers adversary goals (whatit has to do to win) and adversary capability (what attacks it is allowed). Naturally, for anID scheme, the adversary's goal is impersonation: it wins if it can interact with the receiver(in the role of a sender), and convince the latter to accept. There are two natural attacksto consider: passive and active. Passive attacks correspond to eavesdropping, meaning theadversary is in possession of transcripts of conversations between the real sender and thereceiver. Active attacks means that it gets to play the role of a receiver, interacting withthe real sender in an e�ort to extract information. We note that assuming the existence of
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one-way function ensembles, there exist ID schemes which are secure against active attacks.5Throughout this paper, security of an ID scheme should be interpreted as security againstactive attacks.
2.2 Signature Schemes
De�nition 8. (Signature Scheme): A signature scheme consists of a triplet

(GEN;SIGN; V ERIFY )
of probabilistic-polynomial-time Turing machines, where
� GEN , on input 1n, outputs a pair (SK; V K), such that the sizes of SK; V K are poly-nomially related to n. (SK is referred to as the signing-key and V K is referred to asthe veri�cation-key).
� SIGN gets as input a pair (SK; V K) and a message M , and outputs a signature of Mwith respect to (SK; V K).
� V ERIFY gets as input a veri�cation-key V K, a message M and a string S (which issupposedly a signature of M with respect to V K), and outputs 0 or 1.

It is required that for any pair (SK; V K) in the range of GEN(1n) and for any message M ,
Pr[V ERIFY (V K;M; SIGN((SK; V K);M)) = 1] = 1

(where the probability is over the random coin tosses of SIGN and V ERIFY ).
2.2.1 Security of Signature Schemes
Several types of security requirements were considered in the literature. In this paper we saythat a signature scheme is secure if it is existentially secure against adaptive chosen messageattacks.
De�nition 9. (Security against adaptive chosen message attacks): We say that a signaturescheme SS = (GEN;SIGN; V ERIFY ) is secure if for every polynomial-size circuit family5This is the case since the existence of one-way function ensembles imply the existence of secure signatureschemes [NY89], which in turn imply the existence of ID schemes which are secure against active attacks (seeSection 3).

11



F = fFngn2N, with oracle access to SIGN , the probability that, on input a uniformly chosenveri�cation-key V K  GEN(1n), Fn outputs a pair (M0; SIGM0) such that
V ERIFY (V K;M0; SIGM0) = 1

and such that M0 was not sent by Fn as an oracle query to SIGN , is negligible (where theprobability is over V K and over the randomness of the oracle SIGN).
2.3 The Fiat-Shamir Transform
De�nition 10. (The Fiat-Shamir Transform): Given any canonical ID scheme (G;S;R) andany function ensemble H = fHngn2N, the Fiat-Shamir transform transforms (G;S;R) and Hinto a signature scheme (GENH; SIGNH; V ERIFYH);
de�ned as follows.
� The key generation algorithm GENH, on input 1n:

1. Emulates algorithm G on input 1n to generate (SK;PK) G(1n).
2. Chooses at random a function hFS 2 Hn.

Outputs SK as the signing-key and V K = (PK; hFS) as the veri�cation-key.
� The signing algorithm SIGNH, on input a signing-key SK, a corresponding veri�cation-key V K = (PK; hFS), and a message M :

1. Tosses coins r (for S).
2. Computes � = S(SK;PK)(r).
3. Computes � = hFS(�;M).
4. Computes 
 = S(SK;PK)(�; �; r).
5. Outputs (�; �; 
) as a signature of M .

� The veri�cation algorithm V ERIFYH, on input a veri�cation-key V K = (PK; hFS), amessage M and a triplet (�; �; 
) (which is supposedly a signature of M), accepts if andonly if both of the following conditions hold.
1. hFS(�;M) = �.
2. (�; �; 
) 2 V IEW (R(PK)).
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We denote by `FS' the case that for every secure canonical ID scheme, there exists afunction ensemble H such that the corresponding signature scheme (obtained by the Fiat-Shamir transform) is secure. We say that the Fiat-Shamir paradigm is secure if FS is true.Otherwise, we say that the Fiat-Shamir paradigm is insecure. We note that the Fiat-Shamirparadigm, of eliminating interaction by replacing the veri�er with a function ensemble, hasalso been applied in other contexts, such as in the context of CS proofs [Mi94].We begin by proving the insecurity of the Fiat-Shamir paradigm under the assumptionthat the CR hypothesis does not hold.
3 Proving the Insecurity of the Fiat-Shamir Paradigm,

Assuming :(CR)
This section is dedicated for proving the following Lemma.
Lemma 3.1. :(CR) =) :(FS).

We will establish :(FS) by transforming any secure signature scheme SS into a canonicalID scheme, denoted by ID.6 Intuitively, the sender will identify himself by signing a ran-dom message sent by the receiver. The security of ID will follow from the security of SS.The insecurity of the corresponding signature scheme, obtained by applying the Fiat-Shamirtransform to ID, will follow from the :(CR) assumption.
Proof. Let SS = (GEN;SIGN; V ERIFY ) be any secure signature scheme.7 Consider thefollowing ID scheme, ID = (G;S;R).
� G: On input 1n, emulate GEN(1n) to obtain a pair (SK; V K), and output SK as thesecret-key and V K as the public-key.
� S and R are interactive Turing machines, that for any (SK; V K) G(1n), the interac-6We note that in some sense this transformation is the inversion of the Fiat-Shamir transform, whichconverts any secure canonical ID scheme into a signature scheme.7Recall that there exist secure signature schemes assuming the existence of one-way function ensembles[NY89].
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tion of (S(SK); R)(V K) is as follows.
S(SK) V K R

���������!;
 ���������x

���������������!SIGN((SK; V K)(x))
R(V K) accepts a transcript (�; �; 
) if and only if the following two conditions aresatis�ed.
{ � = ;
{ V ERIFY (V K; �; 
) = 1(i.e., 
 is a valid signature of �, with respect to the veri�cation-key V K).

Claim 3.1.1. (G;S;R) is secure, assuming the signature scheme (GEN;SIGN; V ERIFY )is secure.
Proof. Trivial!
We denote the corresponding signature scheme, with respect to the function ensemble H, by

(GENH; SIGNH; V ERIFYH):
Claim 3.1.2. Assuming :(CR), for any function ensemble H the signature scheme

(GENH; SIGNH; V ERIFYH)
is insecure.
Proof. A forger, given a veri�cation-key (V K; hFS) and a signing oracle, will forge a signatureto some new message M , as follows.

1. Find M1 6= M2 such that hFS(M1) = hFS(M2). From our assumption :(CR), this canbe done in probabilistic-polynomial-time8.8To be precise, we need to require that � is of size n and that the message to be signed is of size 2n.
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2. Query the signing oracle with the message M1. The signature of M1, obtained from thesigning oracle, is of the form (�; �; 
) where
� � = ;
� � = hFS(M1)
� 
 = SIGN((SK; V K); �).

3. Output (�; �; 
) as a signature to M2.
(�; �; 
) is also a valid signature of M2, assuming that both (�; �; 
) is a valid signature ofM1 and hFS(M1) = hFS(M2). Since both of these conditions are satis�ed with non-negligibleprobability, the forger succeeds in forging a signature ofM2 with non-negligible probability.

We thus established :(CR) =) :(FS):
The rest of the paper is dedicated to proving

(CR) =) :(FS):
Henceforth, we assume that the CR hypothesis holds.
4 Central Relation
In this section we de�ne a relation that will be useful for the rest of the paper. Recall thatour goal is to establish :(FS) under the CR hypothesis. Our basic idea towards establishingthis goal is the following: Start with any secure canonical ID scheme. Construct a newcanonical ID scheme in which the receiver accepts either views that would have been acceptedby the original receiver or views in which the sender convinces the receiver that he knows thereceiver's `next message'. That is, we extend the original verdict function so as to also acceptviews of the following form: In the �rst round the sender sends a which is a commitment to acircuit C (which is supposedly the `next message' function of the receiver). Upon receiving arandom message b from the receiver, the sender proves that the circuit C, which he committedto, predicts b. For various technical reasons to be elaborated on later, the type of commitmentwe use is tree-commitment. The notion of tree-commitment was introduces by [Mer90] and isde�ned as follows.
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De�nition 11. (Tree-Commitment): A tree-commitment to x with respect to f is computedas follows. Consider a binary tree of depth lg(jxj=n), and label its leaves with the coordinatesof x (each leaf is labeled with n coordinates). Label each non-leaf node by applying f to thelabel of its children. The tree-commitment to x with respect to f , is denoted by TCf (x), andconsists of the label of the root and the depth of the tree.
More speci�cally, we take any secure canonical ID scheme and extend its the verdictfunction so as to also accept views in which the sender, having sent a message a, whichis supposedly a tree-commitment to a circuit C, and upon receiving a message b from thereceiver, will prove that he knows a circuit C, such that both TCf (C) = a (for some givenfunction f) and C(a) = b. That is, we extend the verdict function so as to also accept views inwhich the sender, having sent a message a and upon receiving a message b from the receiver,will send a proof that he knows a witness to the triplet (f; a; b) in the following relation, whichwas de�ned in [BG01].

De�nition 12. (Central Relation):
RF = f((f; a; b); Ĉ) : C(a) = b ^ TCf (Ĉ) = a ^ jĈj < nlgng

where C ! Ĉ is a special circuit-encoding which satis�es the following properties.
1. It is an e�cient encoding. That is, there is a polynomial-time algorithm that given anycircuit C, outputs Ĉ.
2. Given y, it is easy to check whether y is a codeword. That is, there is a polynomial-timealgorithm that given y, outputs 1 if and only if there exists a circuit C such that y = Ĉ.
3. There exists a polynomial-time algorithm that given any circuit-encoding Ĉ (where C isde�ned on inputs of size n) and given any x 2 f0; 1gn, computes C(x).
4. The circuit-encoding C ! Ĉ has high minimum distance. More precisely, for everyC1 6= C2, Ĉ1 and Ĉ2 di�er in a polynomial fraction of their coordinates.
Remarks:
1. We assume that the receiver's `next message' function is of polynomial-size. We cannotbound this size by any �xed polynomial, and therefore we bound this size by somesuper-polynomial, such as nlgn.
2. We de�ned RF using a tree-commitment, as opposed to a regular commitment, for thefollowing technical reason. In our proof we get a contradiction to the security of the Fiat-Shamir paradigm, by claiming knowledge of Ĉ1 6= Ĉ2 which commit to the same value.
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However, the size of these circuits is not a-priori bounded by some polynomial, andhence we will not be able to extract this knowledge using a polynomial-time algorithm.We get around this technical problem by using a tree-commitment, which allows one todecommit to individual bits.
Proposition 1. [BG01]: LRF 2 NTIME(nlgn):
Proof. Follows immediately from the de�nition of RF and from properties 2 and 3 of thecircuit-encoding C ! Ĉ.

From the theory on Probabilistic-Checkable-Proofs it follows that there exists apolynomial-time Turing machine PPCP and a probabilistic-polynomial-time oracle machineVPCP with the following properties.
1. (Relatively-e�cient oracle construction): for every ((f; a; b); Ĉ) 2 RF ,

PPCP ((f; a; b); Ĉ) = �
such that Pr[V �PCP (f; a; b) = 1] = 1:

2. (Non-adaptive veri�er:) The veri�er's queries are determined based only on its inputand on its internal coin tosses. That is, there exists a probabilistic-polynomial-timealgorithm QPCP such that on input (f; a; b) and random coins r, the veri�er makes thequery sequence fqig, where for every i,
qi = QPCP ((f; a; b); r; i):

3. (E�cient reverse-sampling): There exists a probabilistic-polynomial-time oracle machineS such that, on input any string (f; a; b) and integers i and q, outputs a uniformlydistributed r that satis�es QPCP ((f; a; b); r; i) = q:
4. (Proof-of-knowledge): There exists a probabilistic-polynomial-time oracle machine Eand a negligible function �(�) such that, for every (f; a; b) and for every �, if

Pr[V �PCP (f; a; b) = 1] > �(j(f; a; b)j);
then there exists Ĉ such that ((f; a; b); Ĉ) 2 RF and for every i,

Pr[E�((f; a; b); i) = Ĉi] � 2=3:
17



5 Interactive Arguments for RF
In order to carry out the above idea towards establishing :(FS), we need a proof-of-knowledgesystem for RF . Moreover, since canonical ID schemes are con�ned to 3-rounds, we need aproof-of-knowledge system for RF which consists either of one round or of two rounds inwhich the veri�er goes �rst. We begin by presenting a 4-round interactive argument for RFpresented by Barak and Goldreich in [BG01]. We then do a series of modi�cations and obtaina reduced interaction version of their construction.
5.1 First Interactive Argument: (P 0; V 0)
We begin by reviewing the interactive argument for RF , presented by Barak and Goldreichin [BG01]. The idea of such an argument goes back to [Ki92] and [Mi94]. We denote thisinteractive argument by (P 0; V 0):
� Common input: (f; a; b) (where f 2 Fn and a; b 2 f0; 1gn).
� Auxiliary input to the prover: Ĉ such that supposedly ((f; a; b); Ĉ) 2 RF .
1. V 0: Uniformly select fUA 2R Fn and send it to the prover.
2. P 0:

(a) Construction of a PCP -proof: Invoke PPCP on ((f; a; b); Ĉ) to obtain
� = PPCP ((f; a; b); Ĉ):

(b) Tree-commitment to the PCP -proof: Compute
� = TCfUA(�); 9

which is the tree-commitment to � with respect to fUA.
(c) Send � to the prover.

9Note that there are two levels of use of the tree-commitment.� In the de�nition of RF : TCf (Ĉ) = a.� In the interactive argument for RF : TCfUA(�) = �.In both cases we use a tree-commitment since the size of both Ĉ and � may be to large to extract. Usinga tree-commitment we can extract only a few coordinates, with the ability to verify that these values werecommitted to.
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3. V 0: Uniformly select a random-tape 
 for VPCP , and send 
 to the prover.
4. P 0: Provide the answers to the (PCP) queries of VPCP ((f; a; b); 
) augmented by proofsof consistency to these answers.

(a) Determining the queries: Invoke QPCP ((f; a; b); 
), in order to determine the se-quence of queries that VPCP makes on input (f; a; b), given a random string 
.
(b) For every query qi of QPCP ((f; a; b); 
), send the label of the leaf that contains �qiand send the labels of the path corresponding to this leaf, which consists of thelabel of its sibling, the labels of its ancestors and the labels of its ancestors siblings,which are needed in order to verify consistency with �.
We denote this response by � = (label(
); auth(
)).

V 0 accepts if and only if the following two conditions hold.
1. The answers provided by the prover would have been accepted by VPCP .
2. All the proofs of consistency are valid.

(P 0; V 0), on input (f; a; b), can be schematically viewed as follows.
P 0(Ĉ) V 0

 �������������fUA 2 Fn
� = PPCP ((f; a; b); Ĉ)� = TCfUA(�)

����������!�
 ����������


����������������!� = (label(
); auth(
))

Lemma 5.1. [Mi94],[BG01]: (P 0; V 0) satis�es the following properties.
� (Completeness): For every ((f; a; b); Ĉ) 2 RF ,

Pr[(P 0(Ĉ); V 0)(f; a; b) = 1] = 1
(where the probability is over the random coin tosses of V 0).
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� (CS-proof-of-knowledge): For every polynomial p(�), there exists a polynomial p0(�) anda probabilistic-polynomial-time oracle machine E such that for every polynomial-sizecircuit family P � = fP �ng, for every su�ciently large n, and for every input (f; a; b), if
Pr[(P �n ; V 0)(f; a; b) = 1] � 1=p(n)

(where the probability is over the random coin tosses of V 0), then
Pr[9Ĉ s.t. ((f; a; b); Ĉ) 2 RF and 8i EP �n ((f; a; b); i) = Ĉi] � 1=p0(n)

(where the probability is over the random coin tosses of E).
We will not prove this Lemma since it was proved in [BG01] (using the four properties of(PPCP ; VPCP )). Moreover, following the proof in [BG01], it can be easily seen that the aboveproof-of-knowledge property holds even if P �n chooses (f; a; b) after receiving the veri�er's �rstmessage fUA.

5.2 Modi�ed Interactive Argument: (P 1; V 1)
For reasons to be clari�ed later, we modify slightly the above interactive argument, by modi-fying the prover's �rst message from � to a commitment of �. Formally, we de�ne a modi�edinteractive argument, which we denote by (P 1; V 1), as follows.
� Common input: (f; a; b) (where f 2 Fn and a; b 2 f0; 1gn).
� Auxiliary input to the prover: Ĉ such that supposedly ((f; a; b); Ĉ) 2 RF .
1. V 1: Uniformly select

� fUA 2 Fn (a function for the tree-commitment)
� k 2 KEYn (a seed for COMM)
� r 2 f0; 1gn (randomness for COMM)

Send (fUA; (k; r)) to the prover.
2. P 1:

(a) Construction of a PCP -proof: Invoke PPCP on ((f; a; b); Ĉ) to obtain
� = PPCP ((f; a; b); Ĉ):

20



(b) Tree-commitment to the PCP -proof: Compute
� = TCfUA(�);

(c) Send �̂ = commk(�; r):
3. V 1: Uniformly select a random-tape 
 for VPCP , and send 
 to the prover.
4. P 1: Send �, along with � = (label(
); auth(
)), which consists of the answers to the(PCP) queries of VPCP ((f; a; b); 
) augmented by proofs of consistency to these answers.

V 1 accepts if and only if the following two conditions hold.
1. �̂ = commk(�; r).
2. (fUA; �; 
; �) 2 V IEW (V 0(f; a; b)).

(P 1; V 1), on input (f; a; b), can be schematically viewed as follows.
P 1(Ĉ) V 1

 ��������������fUA; (k; r)
� = PPCP ((f; a; b); Ĉ)� = TCfUA(�)

������������!�̂ = commk(�; r))
 ���������


� = (label(
); auth(
)) ������������!�; �

Lemma 5.2. (P 1; V 1) satis�es the following properties.
� (Completeness): For every ((f; a; b); Ĉ) 2 RF ,

Pr[(P 1(Ĉ); V 1)(f; a; b) = 1] = 1
(where the probability is over the random coin tosses of V 1).
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� (CS-proof-of-knowledge): For every polynomial p(�), there exists a polynomial p0(�) anda probabilistic-polynomial-time oracle machine E such that for every polynomial-sizecircuit family P � = fP �ng, for every su�ciently large n, and for every input (f; a; b), if
Pr[(P �n ; V 1)(f; a; b) = 1] � 1=p(n)

(where the probability is over the random coin tosses of V 1), then
Pr[9Ĉ s.t. ((f; a; b); Ĉ) 2 RF and 8i EP �n ((f; a; b); i) = Ĉi] � 1=p0(n)

(where the probability is over the random coin tosses of E).
As before, the above proof-of-knowledge property holds even if P �n chooses (f; a; b) afterreceiving the veri�er's �rst message (fUA; (k; r)).

5.3 Reduced-Interaction Argument: (PH; V H)
As mentioned earlier, we would like to use an interactive argument for RF , to construct asecure canonical ID scheme such that the corresponding signature scheme (obtained from theFiat-Shamir transform) will be insecure with respect to any function ensemble. However,canonical ID schemes are con�ned to three rounds, and using the above interactive argumentswe end up with an ID scheme with too many rounds. Thus, we would like to reduce thenumber of rounds in (P 1; V 1). We reduce the number of rounds by applying the Fiat-Shamirtransform itself to (P 1; V 1) (i.e., by replacing V 1's second message with some function appliedto P 1's �rst message).

For any function ensemble H, we de�ne a reduced-interaction argument (PH; V H) for RF ,with respect to H, as follows.
� Common input: (f; a; b).
� Auxiliary input to the prover: Ĉ such that supposedly ((f; a; b); Ĉ) 2 RF .
1. V H: Uniformly select

� fUA 2 Fn (a function for the tree-commitment)
� k 2 KEYn (a seed for COMM)
� r 2 f0; 1gn (randomness for COMM)
� h1; : : : ; hn 2 Hn
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Send (fUA; (k; r); (h1; : : : ; hn)) to the prover.
2. PH:

(a) Invoke PPCP on ((f; a; b); Ĉ) to obtain � = PPCP ((f; a; b); Ĉ).
(b) Compute � = TCfUA(�).
(c) Compute �̂ = commk(�; r).
(d) For i = 1; : : : ; n,

� compute 
i = hi(�̂).� Let �i be the (PCP) answers corresponding to the queries QPCP ((f; a; b); 
i)augmented by proofs of consistency to these answers.
(e) send (�̂; f
igni=1; �; f�igni=1).

V H accept if and only if the following two conditions hold.
1. �̂ = commk(�; r).
2. For i = 1; : : : ; n

� 
i = hi(�̂).
� (fUA; �; 
i; �i) 2 V IEW (V 0(f; a; b)).

(PH; V H), on input (f; a; b), can be schematically viewed as follows.
PH(Ĉ) V H

 ����������������fUA; (k; r); (h1; : : : ; hn)
� = PPCP ((f; a; b); Ĉ)� = TCfUA(�)�̂ = commk(�; r)
i = hi(�̂)�i = (label(
i); auth(
i))

���������������!�̂; f
ig; �; f�ig

Remarks on (PH; V H):
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1. The reason that we require the prover to convince the veri�er with n functions (ratherthan just one function) is to achieve error reduction.
2. We introduce some notation which will be useful later. Let q denote the message sent byV H, and let ans denote the response to q sent by PH. Recall that if V H(f; a; b) acceptsthe view (q; ans), then we say that (q; ans) 2 V IEW (V H(f; a; b)).

5.3.1 (PH; V H) and CS-Proofs
The proof system (PH; V H) is closely related to CS-proofs, de�ned by Micali [Mi94]. Looselyspeaking, CS-proofs are non-interactive proof systems for languages in NEXP . In CS proofs,Micali eliminated interaction from an interactive proof system for NEXP (which is essen-tially (P 0; V 0)) by replacing the veri�er with a random oracle. Micali proved that, in theRandom Oracle Model, CS proofs satisfy both the completeness property and the CS-proof-of-knowledge property.10 One can make the following hypothesis.
Hypothesis (CSP):There exists a function ensemble H such that if the random oracle isreplaced with a function uniformly chosen from H, then CS-proofs still satisfy both the com-pleteness property and the CS-proof-of-knowledge property.

For every function ensembleH, (PH; V H) satis�es the completeness requirement. However,we do not know if (PH; V H) satis�es the CS-proof-of-knowledge property. Looking carefullyinto the de�nition of CS-Proofs one can easily verify the following.
Proposition 2. The CSP hypothesis implies that there exists a function ensemble H for which(PH; V H) satis�es both the completeness property and the CS-proof-of-knowledge property.

Namely, if CS-proofs can be realized in the real world by some function ensemble H, thenso can (PH; V H).
6 Proving The Insecurity of the Fiat-Shamir Paradigm,

Assuming (CR)
Our goal is to construct a secure canonical ID scheme such that the corresponding signaturescheme, obtained from the Fiat-Shamir transform with respect to any function ensemble,will be insecure. Our �rst idea is the following. Take any secure canonical ID scheme and10The de�nitions of completeness and of CS-proof-of-knowledge were given in Lemma 5.1 and Lemma 5.2.
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extend its verdict function so as to also accept transcripts which convince the receiver thatthe sender knows the receiver's `next message'. Since the receiver chooses the next message atrandom (follows from the de�nition of a canonical ID scheme), there is no way that a sendercan guess the receiver's `next message', except with negligible probability, and therefore thescheme remains secure. However, when the ID scheme is converted into a signature schemeby the Fiat-Shamir transform, the receiver is replaced with a public function from a functionensemble, and then everyone knows in advance the receiver's `next message' on any input, andso can generate an accepting transcript, which corresponds to a legitimate signature. Hence,the corresponding signature scheme, with respect to any function ensemble, will be insecure.The main problem with this approach is the following: How can the sender convince thereceiver that he knows the receiver's `next message'? One idea is to send the receiver apolynomial-size encoding of a circuit which computes the receiver's `next message' function.However, the size of the interaction is bounded by an explicit polynomial, whereas the re-ceiver's `next message' circuit may be of any polynomial size. Therefore, we need to �nd aprotocol of a-priori bounded size, in which the sender will be able to convince the receiver ofknowledge of any polynomial-size circuit.To achieve this goal, the sender, instead of sending an encoding to his circuit in hand (whichmay be too big), will send a commitment to his encoding. The type of commitment we useis a tree-commitment, which allows a �xed polynomial-size commitment for any polynomial-size circuit. Then, upon receiving a message from the receiver, the sender will convince thereceiver that the circuit which he had committed to predicts this message. Recall that RFwas designed exactly for this purpose. The sender will convince the receiver that he knows acircuit-encoding Ĉ which is a witness to the triplet (f; a; b), where a is the tree-commitment(with respect to f) sent by the sender and b is the message sent by the receiver. This will bedone using the reduced-interaction argument (PH; V H) for RF .

The FS Transform and CS Proofs
As we shall see shortly (in 6.1), if there exists a function ensemble H such that (PH; V H)satis�es the CS-proof-of-knowledge property, then the above approach works, and the insecu-rity of the Fiat-Shamir paradigm is easily established. Thus, from Proposition 2, we concludethat the CSP hypothesis implies :(FS). This is quite surprising, since it essentially impliesthat if the FS transform applied to CS-proofs is secure, then the FS transform applied tocanonical ID-schemes is not secure.It turns out that the bulk of complication is in showing that if the CSP hypothesis isfalse then still :(FS) is established. In other words, the bulk of complication is in provingthat if the FS transform, applied to CS-proofs, is not secure then the FS transform, applied
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to canonical ID-schemes, is also not secure. This is also surprising since we expected thisdirection to be the easy one.
6.1 Construction of ID1
We begin by carrying out the above idea. Let F be a collision resistance function ensemble.Let H be some a-priori �xed function ensemble. Let ID = (G;S;R) be any secure canonicalID scheme. We extend the public-key and the verdict function of ID to obtain a new IDscheme ID1H = (G1; S1; R1), de�ned as follows.
� G1: on input 1n,

1. Run G(1n), to obtain a pair (SK;PK) G(1n).
2. Choose f 2R Fn.

Output SK as the secret-key and PK 0 = (PK; f) as the public-key.
� R1: On input a public-key PK 0 = (PK; f), R1 will accept either views that R(PK)accepts or views of the form

S1 R1
��������!a
 ������b; q
�������!ans

such that (q; ans) 2 V IEW (V H(f; a; b)).
To establish :(FS), we need to show that ID1H is a secure ID scheme whereas the correspond-ing signature scheme (obtained from the Fiat-Shamir transform) is insecure with respect toany function ensemble. We begin by proving the insecurity of the corresponding signaturescheme.Let us denote the signature scheme, obtained by applying the Fiat-Shamir transform toID1H and to HFS, by

SS1HFS = (GEN1HFS ; SIGN1HFS ; V ERIFY 1HFS):
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6.1.1 On the Insecurity of SS1HFS
Lemma 6.1. For any function ensemble HFS, the signature scheme SS1HFS is insecure.
Proof. We construct a forger that, on input any message M and any veri�cation-key V K =(PK 0; hFS) (where PK 0 = (PK; f) and hFS 2 HFSn ) , generates a signature of M with respectto V K, as follows.

1. Let C be a circuit computing the hash function hFS. Let CM be a circuit such that forevery x, CM(x) = n most-signi�cant-bits of C(x;M).
2. Compute ĈM .
3. Compute the tree-commitment a = TCf (ĈM).
4. Compute (b; q) = C(a;M).
5. Emulate the interaction (PH(ĈM); V Hjq)(f; a; b), to produce a transcript

(q; ans) (PH(ĈM); V Hjq)(f; a; b):11
6. Output (a; (b; q); ans).

It is trivial to verify that all forger steps are polynomial-time computable, and by completenessof (PH; V H), the forger will always be successful.
6.1.2 On the Security of ID1
To establish :(FS) it remains to show that there exists a function ensemble H, such thatID1H is secure. It is easy to prove the security of ID1H under the CSP hypothesis.
Lemma 6.2. Under the CSP hypothesis, there exists a function ensemble H such that ID1His secure.
Proof. The CSP hypothesis implies that there exists a function ensemble H for which(PH; V H) satis�es both the completeness property and the CS-proof-of-knowledge property(follows from Proposition 2). It is easy to verify that ID1H is secure, with respect to thisfunction ensemble H.11Note that ((f; a; b); ĈM ) 2 RF .
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Thus, we proved (CSP ) =) :(FS).
Unfortunately, we do not know how to prove (directly) :(CSP ) =) :(FS). Insteadwe proceed as follows. Consider the following two cases.
� (Case 1): There exists a function ensemble H such that ID1H, is secure.
� (Case 2): For every function ensemble H, ID1H is not secure.

If we are in Case 1 we are done, since then there exists a function ensemble H such thatID1H is secure, whereas the corresponding signature scheme is insecure with respect to anyfunction ensemble, and :(FS) is established. Hence, we assume that we are in Case 2. Thatis, we assume that for every function ensemble H, there exists polynomial-size circuit familyF1 = fF n1 g (which we call a FINDER), a polynomial-size circuit family ~P1 = f ~P n1 g (whichcorresponds to a cheating prover) and a polynomial p(�), such that for in�nitely many n's,
Pr[( ~P n1 ; V H)(f; a; b) = 1 : a = F n1 (f)] � 1p(n)

(where the probability is over f 2R Fn, over b 2R f0; 1gn and over the random coin tosses ofV H). We refer to this case by 08H 9 FINDER0:
We distinguish between two subcases.
� (Case 2a): For every function ensemble H, ID1H is `extremely insecure'.
� (Case 2b): For every function ensemble H, ID1H is insecure and there exists a functionensemble H1 such that ID1H1 is not `extremely insecure'.

We de�ne Case 2a to be the case that for every function ensemble H there exists a polynomial-size circuit family F2 = fF n2 g (called a SUPER-FINDER), a polynomial-size circuit family~P2 = f ~P n2 g (which corresponds to a cheating prover) and a polynomial p(�) such that forin�nitely many n's,
Pr[( ~P n2 ; V 0)(f; a; b1) = 1 ^ ( ~P n2 ; V H)(f; a; b2) = 1 : (a; b1) = F n2 (f)] � 1p(n)

(where the probability is over f 2R Fn, over b2 2R f0; 1gn and over the random coin tosses ofV H and V 0). We refer to sub-case 2(a) by
8H 9 SUPER-FINDER

and we refer to sub-case 2(b) by
:(8H 9 SUPER-FINDER):
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6.2 Construnction of ID2
Throughout this subsection we assume

(8H 9 SUPER-FINDER)) :(FS):
Fix a collision resistant function ensemble F . We establish :(FS) by extending anysecure canonical ID scheme into a new ID scheme ID2 = (G2; S2; R2). The security of ID2

will follow from the fact that F is collision resistant. The insecurity of the correspondingsignature scheme (obtained by the Fiat-Shamir transform applied to ID2) will follow from thefact that for every function ensemble H, ID1H is `extremely insecure'.Take a secure ID scheme ID = (G;S;R), and de�ne ID2 as follows.
� G2: On input 1n,

1. Run G(1n), to obtain a pair (SK;PK) G(1n).
2. Choose uniformly

{ f; fUA1 ; fUA2 2 Fn{ k 2 KEYn (a seed for COMM){ r 2 f0; 1gn (randomness for COMM){ 
01 (randomness for VPCP ).
Output SK as the secret-key and PK 0 = (PK; f; (fUA1 ; fUA2 ); (k; r); 
01) as the public-key.
� R2: On input a public-key PK 0 = (PK; f; (fUA1 ; fUA2 ); (k; r); 
01), R2 will accept eitherviews that R(PK) will accept or views of the form

S2 R2
������������!�̂2
 ��������������
001 ; 
2
��������������!a; b1; b2; �1; �2; �1; �2

where
{ (fUA1 ; �1; 
01 � 
001 ; �1) 2 V IEW (V 0(f; a; b1)).
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{ (fUA2 ; �2; 
2; �2) 2 V IEW (V 0(f; a; b2)).{ �̂2 commits to a; b1; b2; �1; �2, as follows
�̂2 = commk(�2; commk(a; b1; b2; �1; r)):

Intuitively, the above view can be thought of as an interleaved execution of the following twoviews: P 0 (f; a; b1) V 0
 ��������fUA1
������!�1
 ��������
001 � 
01
��������!�1

P 0 (f; a; b2) V 0
 ��������fUA2
������!�2
 �������
2
�������!�2

Remark: It is necessary to append 
01 to the public-key in order to later establish the in-security of the corresponding signature scheme. More speci�cally, when ID2 will be convertedinto a signature scheme (by applying the Fiat-Shamir transform), the veri�er will be replacedwith a hash function, and thus 
001 will no longer necessarily be chosen at random. Yet, weonly know how to establish the insecurity of the signature scheme assuming that 
001 is chosenat random. We get around this problem by XORing 
001 with a uniformly distributed string
01, from the public-key.
6.2.1 The Security of ID2
Lemma 6.3. Assuming F is collision resistant, ID2 is secure.
Proof. Assume for contradiction that ID2 is not secure. That is, assume that there exists acheating sender ~S = f ~Sng and a polynomial p(�) such that for in�nitely many n's,

Pr[( ~Sn; R2)(PK 0) = 1] � 1p(n)
(where the probability is over PK 0  G2(1n) and over the random coin tosses of R2).
Proof Plan: We will prove that the existence of ~S implies the existence of a circuit that�nds collisions in F . This will be done in two parts, as follows.
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� (Part 1): We will �rst show that there exist non-uniform probabilistic-polynomial-timeTuring machines F = fFng and ~P = f ~Png, such for in�nitely many n's the followingholds.
For (a; b1; b2; aux1; aux2) = Fn(f; fUA1 ; fUA2 ),
Pr h( ~Pn(aux1); V 0jfUA1 )(f; a; b1) = 1 ^ ( ~Pn(aux2); V 0jfUA2 )(f; a; b2) = 1i � 1=p(n)3

(where the probability is over a uniformly chosen f; fUA1 ; fUA2 2 Fn, and over the randomcoin tosses of Fn, ~Pn, V 0jfUA1 and V 0jfUA2 ).12The proof-of-knowledge property of (P 0; V 0) will imply that there exists a probabilistic-polynomial-time oracle machine E and a polynomial p0(�) such that for any(a; b1; b2; aux1; aux2) which satisfy the above inequality,

Pr
2
64
8i E ~Pn(aux1)((f; a; b1); i) = Ĉ1i s.t. ((f; a; b1); Ĉ1) 2 RFand8i E ~Pn(aux2)((f; a; b2); i) = Ĉ2i s.t. ((f; a; b2); Ĉ2) 2 RF

3
75 � 1p0(n)

(where the probability is over the random coin tosses of E ~Pn(aux1) and E ~Pn(aux2)).
� (Part 2): We will then show that there exists a probabilistic-polynomial-time oraclemachine, with oracle access to E, Fn and ~Pn, such that, on input a uniformly chosenf 2R Fn, outputs a collision in f , with non-negligible probability.

Note that since non-uniform probabilistic-polynomial-time Turing machines can be modeledas polynomial-size circuits, Part 1 together with Part 2 imply the existence of a polynomial-size circuit such that, on input a uniformly chosen f 2R Fn, outputs a collision in f , withnon-negligible probability. This will contradict the assumption that F is collision resistant.
We proceed to carry out the proof plan.
Part 1:
� Fn(f; fUA1 ; fUA2 ) operates as follows.

1. Choose uniformly
{ PK  G(1n)12recall that V 0jfUA is V 0, restricted to sending fUA as the �rst message.
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{ k 2 KEYn (a key for COMMn){ r 2 f0; 1gn (randomness for COMMn){ 
01 (randomness for VPCP )and set PK 0 = (PK; f; (fUA1 ; fUA2 ); (k; r); 
01).2. Emulate an interaction of ( ~Sn; R2)(PK 0) to obtain a transcript
(�̂2; (
001 ; 
2); (a; b1; b2; �1; �2; �1; �2)) ( ~Sn; R2)(PK 0):

3. Set aux1 = (�1; PK 0) and aux2 = (�2; PK 0).
Output (a; b1; b2; aux1; aux2).
� ~Pn(aux1), where aux1 = (�1; PK 0), interacts with V 0jfUA1 (f; a; b1) as follows.

{ V 0 sends fUA1 to ~Pn.{ ~Pn sends �1 to V 0.
{ V 0 chooses 
11 at random, and sends 
11 to ~Pn.{ ~Pn chooses 
12 at random and emulates the interaction of

( ~Snj�1 ; R2j
11�
01;
12 )(PK 0);
to obtain a transcript

(�1; (
11 � 
01; 
12); (a0; b01; b02; �01; �02; �01; �02)) ( ~Snj�1 ; R2j
11�
01;
12 )(PK 0):
~Pn sends �01 to V 0.

� ~Pn(aux2), where aux2 = (�2; PK 0), interacts with V 0jfUA2 (f; a; b2) as follows.
{ V 0 sends fUA2 to ~Pn.{ ~Pn sends �2 to V 0.
{ V 0 chooses 
22 at random and sends 
22 to ~Pn.{ ~Pn chooses 
21 at random and emulates the interaction of

( ~Snj�2 ; R2j
21 ;
22 )(PK 0)
to obtain a transcript

(�2; (
21 ; 
22); (a00; b001; b002; �001 ; �002 ; �001 ; �002)) ( ~Snj�2 ; R2j
21 ;
22 )(PK 0):
~Pn sends �001 to V 0.
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Claim 6.3.1. Let Fn(f; fUA1 ; fUA2 ) = (a; b1; b2; aux1; aux2). Then, for in�nitely many n's
Pr h( ~Pn(aux1); V 0jfUA1 )(f; a; b1) = 1 ^ ( ~Pn(aux2); V 0jfUA2 )(f; a; b2) = 1i � 1=p(n)3

(where the probability is over f; fUA1 ; fUA2 2R Fn, and over the random coin tosses of V 0jfUA1and V 0jfUA2 ).
Proof. By the assumption made for contradiction, for in�nitely many n's

Pr[( ~Sn; R2)(PK 0) = 1] � 1=p(n)
(where the probability is over PK 0 and over the random coin tosses of R2).The fact that 
001 ; 
2; 
11 � 
01; 
12 ; 
21 ; 
22 are all uniformly distributed and independent of PK 0,implies that for in�nitely many n's, the following three conditions hold with probability atleast 1=p(n)3.
� ( ~Sn; R2j
001 ;
2)(PK 0) = 1
� ( ~Sn; R2j
11�
01;
12 )(PK 0) = 1
� ( ~Sn; R2j
21 ;
22 )(PK 0) = 1

In other words,
� (�̂2; (
001 ; 
2); (a; b1; b2; �1; �2; �1; �2)) 2 V IEW (R2j
001 ;
2)(PK 0)
� (�̂2; (
11 � 
01; 
12); (a0; b01; b02; �01; �02; �01; �02)) 2 V IEW (R2j
11�
01;
12 )(PK 0)
� (�̂2; (
21 ; 
22); (a00; b001; b002; �001 ; �002 ; �001 ; �002)) 2 V IEW (R2j
21 ;
22 )(PK 0).

Equivalently, all the following conditions hold.
� 1. �̂2 = commk(�2; commk(a; b1; b2; �1; r))

2. (fUA1 ; �1; 
001 � 
01; �1) 2 V IEW (V 0(f; a; b1))
3. (fUA2 ; �; 
2; �2) 2 V IEW (V 0(f; a; b2)).

� 1. �̂2 = commk(�02; commk(a0; b01; b02; �01; r))2. (fUA1 ; �01; (
11 � 
01)� 
01; �01) 2 V IEW (V 0(f; a; b1))
3. (fUA2 ; �02; 
12 ; �02) 2 V IEW (V 0(f; a; b2)).
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� 1. �̂2 = commk(�002 ; commk(a00; b001; b002; �001 ; r)2. (fUA1 ; �001 ; 
21 � 
01; �001) 2 V IEW (V 0(f; a; b1))
3. (fUA2 ; �002 ; 
22 ; �002) 2 V IEW (V 0(f; a; b2)).

Since commk is computationally-binding and ~Sn is of polynomial-size, conditions (1) implythat (a; b1; b2; �1; �2) = (a0; b01; b02; �01; �02) = (a00; b001; b002; �001 ; �002 ):
The above equality combined with conditions (2) and (3) imply that

1. (fUA1 ; �1; 
11 ; �01) 2 V IEW (V 0(f; a; b1))
2. (fUA2 ; �2; 
22 ; �002) 2 V IEW (V 0(f; a; b2)).

The proof-of-knowledge property of (P 0; V 0) implies that there exists a probabilistic-polynomial-time oracle machine E and a polynomial p0(�) such that for in�nitely many n's,for (a; b1; b2; aux1; aux2) = Fn(f; fUA1 ; fUA2 ),

Pr
2
64
8i E ~Pn(aux1)((f; a; b1); i) = Ĉ1i s.t. ((f; a; b1); Ĉ1) 2 RFand8i E ~Pn(aux2)((f; a; b2); i) = Ĉ2i s.t. ((f; a; b2); Ĉ2) 2 RF

3
75 � 1p0(n)

(where the probability is over uniformly chosen f; fUA1 ; fUA2 2 Fn and over the random cointosses of Fn, E ~Pn(aux1) and E ~Pn(aux2)).
Part 2: We next show how one can use E and Fn and ~Pn to �nd a collision in F . Wede�ne a probabilistic-polynomial-time oracle machine M, which is given oracle access to E,Fn and ~Pn, and such that on input a random function f 2 Fn outputs a collision in f , withnon-negligible probability.
ME;Fn; ~Pn , on input f 2 Fn, operates as follows.
1. Choose fUA1 ; fUA2 2R Fn and run Fn(f; fUA1 ; fUA2 ) to obtain

(a; b1; b2; aux1; aux2) Fn(f; fUA1 ; fUA2 ):
2. Choose a random i, and compute

(a) Ĉ1i = E ~Pn(aux1)((f; a; b1); i)
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(b) Ĉ2i = E ~Pn(aux2)((f; a; b2); i).
3. Use the e�cient reverse-sampling property of (PPCP ; VPCP ), to �nd random 
1 and 
2such that i belongs to the set of queries of QPCP ((f; a; b1); 
1), and to the set of queriesof QPCP ((f; a; b2); 
2).
4. Emulate the interaction of ( ~Pn(aux1); V 0jfUA1 ;
1)(f; a; b1) to get the labels of the path of

Ĉ1i , and emulate the interaction of ( ~Pn(aux2); V 0jfUA2 ;
2)(f; a; b2) to get the labels of thepath of Ĉ2i .
Claim 6.3.2. With non-negligible probability (over f 2R Fn and over the random coin tossesofM, E, Fn, and ~Pn) somewhere along these paths there will be a collision in f .
Proof. With non-negligible probability (over the random coin tosses of M, E, Fn, and ~Pn),Ĉ1i is the i'th bit of Ĉ1 and Ĉ2i is the i'th bit of Ĉ2, where

((f; a; b1); Ĉ1); ((f; a; b2); Ĉ2) 2 RF :
Since Ĉ1 6= Ĉ2 and since the circuit-encoding C ! Ĉ has large minimum distance, it followsthat with probability 1poly the following inequality holds

Ĉ1i 6= Ĉ2i
(where poly is a polynomial and the probability is over a random chosen i).This implies that somewhere along these paths there will be a collision to f , since

Ĉ1i 6= Ĉ2i
and yet a = TCf (Ĉ1) = TCf (Ĉ2):

This Contradicts our assumption that F is a collision resistance function ensemble.
We thus established the security of ID2. We denote the signature scheme, obtained byapplying the Fiat-Shamir transform to ID2 and the function ensemble H, by

SS2H = (GEN1H; SIGN2H; V ERIFY 2H):
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6.2.2 The Insecurity of SS2H
Lemma 6.4. Assuming 08H 9 SUPER-FINDER0, for any function ensemble H, the signaturescheme SS2H is insecure.
Proof. Fix a function ensemble H. We show that for every message M there exists a forgerFORGM which, on input a random veri�cation-key V K, outputs a signature of M , withnon-negligible probability.Fix any message M . For any h 2 H, de�ne

hM(x) = n least-signi�cant-bits of h(x;M);
and let HM = fhMgh2H. Let F2 = fF n2 gn2N be a SUPER-FINDER for HM and let ~P2 = f ~P n2 gbe the corresponding cheating prover such that for (a; b1) = F n2 (f),

Pr[( ~P n2 ; V 0)(f; a; b1) = 1 ^ ( ~P n2 ; V HM )(f; a; b2) = 1] = non-negl(n)
(where the probability is over f 2R Fn, b2 2R f0; 1gn and the random coin tosses of V 0 andV HM ).On input a random veri�cation-key V K = (PK 0; h), where h 2 Hn and

PK 0 = (PK; f; (fUA1 ; fUA2 ); (k; r); 
01);
the forger FORGM generates a signature of M as follows.

1. Compute (a; b1) = F n2 (f).
2. Emulate the interaction of ( ~P n2 ; V 0jfUA1 )(f; a; b1), to obtain a transcript

(fUA1 ; �1; �; �) ( ~P n2 ; V 0jfUA1 )(f; a; b1):
3. Choose randomly b2 2 f0; 1gn, and let r0 = commk(a; b1; b2; �1; r).
4. Choose randomly h2 : : : ; hn 2 Hn, and let

qM = (fUA2 ; (k; r0); (hM ; hM2 : : : ; hMn )):
5. Emulate the interaction of ( ~P n2 ; V HM jqM )(f; a; b2), to obtain a transcript

(qM ; ans) ( ~P n2 ; V HM jqM )(f; a; b2):
Denote ans = (�̂2; (
2; 
22 ; : : : 
n2 ); �2; (�2; �22; : : : ; �n2 )).
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6. Compute (
001 ; �) = h(�̂2;M).
7. Emulate the interaction ( ~P n2 ; V 0jfUA1 ;
01�
001 )(f; a; b1)to obtain a transcript

(fUA1 ; �1; 
01 � 
001 ; �1) ( ~P n2 ; V 0jfUA1 ;
01�
001 )(f; a; b1):
8. Output (�̂2; (
001 ; 
2); (a; b1; b2; �1; �2; �1; �2))

as a signature of M .
We claim that the forger will be successful with non-negligible probability.
Claim 6.4.1.

Pr[V ERIFY 2H(V K;M;FORGM(V K)) = 1] = non-negl(n)
(where the probability is over V K and over the random coin tosses of FORGM).
Proof. Denote the output of FORGM(V K) by (�̂2; (
001 ; 
2); (a; b1; b2; �1; �2; �1; �2)).By the de�nition of ~P n2 , for (a; b1) = F n2 ,

Pr[( ~P n2 ; V 0)(f; a; b1) = 1 ^ ( ~P n2 ; V HM )(f; a; b2) = 1] = non-negl(n) (1)
(where the probability is over f 2R Fn, b2 2R f0; 1gn and the random coin tosses of V 0 andV HM ).We claim that similarly, for (a; b1) = F n2 ,

Pr[( ~P n2 ; V 0jfUA1 ;
001�
01)(f; a; b1) = 1 ^ ( ~P n2 ; V HM jqM )(f; a; b2) = 1] = non-negl(n) (2)
(where the probability is over f 2R Fn, b2 2R f0; 1gn, and over fUA1 , 
001 � 
01 and qM).This is so for the following reasons

1. fUA1 was chosen uniformly in Fn
2. 
001 � 
01 was chosen uniformly (follows from the fact that 
01 was chosen uniformly and
001 was chosen independently of 
01).
3. ~P n2 (in step 7) cannot distinguish between the distribution of qM and the distribution ofa random query of V HM .
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For all of the above reasons, ~P 2n in (2) should succeed with essentially the same probability asin (1).
The fact that ( ~P n2 ; V 0jfUA1 ;
001�
01)(f; a; b1) = 1 implies that
� (fUA1 ; �1; 
001 � 
01; �1) 2 V IEW (V 0(f; a; b1)).

The fact that ( ~P n2 ; V HM jqM )(f; a; b2) = 1 implies that (qM ; ans) 2 V IEW (V HM (f; a; b2)),which in turn implies that both of the following conditions hold.
� (fUA2 ; �2; 
2; �2) 2 V IEW (V 0(f; a; b2))
� (
001 ; 
2) = h(�̂2;M)).

The satisfaction of above three conditions imply that the forgery was successful.

6.3 Construction of ID3
Throughout this subsection we assume

(8H 9 FINDER) ^ :(8H 9 SUPER-FINDER) ) :(FS)
We assume that for every function ensemble H, ID1H is insecure, and that there exists afunction ensemble H1 such that ID1H1 is not `extremely insecure'. We establish :(FS) byextending any secure ID scheme into a new ID scheme ID3 = (G3; S3; R3). The securityof ID3 follows from the fact that ID1H1 is not `extremely insecure'. The insecurity of thecorresponding signature scheme (obtained by applying the Fiat-Shamir transform to ID3)follows from the fact that for every function ensemble H, ID1H is insecure.Take any secure canonical ID scheme ID = (G;S;R) and the function ensemble H1, andde�ne ID3 as follows.
� G3: On input 1n,

1. Run G(1n), to obtain a pair (SK;PK) G(1n).
2. Choose uniformly

{ f; fUA 2 Fn{ k 2 KEYn (a key for COMM){ r 2 f0; 1gn (randomness for COMM)
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{ b02 2 f0; 1gn{ q01 (a �rst message sent by V H1).
Output SK as the secret-key and

PK 0 = (PK; f; fUA; (k; r); (b02; q01))
as the public-key.
� R3: On input a public-key PK 0 = (PK; f; fUA; (k; r); (b02; q0)), R3 accepts either viewsthat R(PK) accepts or views of the form

S3 R3
��������������!�̂1
 ���������
1; (b002; q00)
����������!a; b1; �1; �1; ans

where
{ (fUA; �1; 
1; �1) 2 V IEW (V 0(f; a; b1)){ (q0 � q00; ans) 2 V IEW (V H1(f; a; b02 � b002)){ �̂1 commits to a; b1; �1, as follows

�̂1 = commk(�1; commk(a; b1; r)):
Intuitively, the above view can be thought of as an interleaved execution of the followingtwo views: P 0 (f; a; b1) V 0

 ������fUA
�����!�1
 ����
1
�����!�1

PH1 (f; a; b02 � b002) V H1
 ��������q0 � q00
��������!ans
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Remark: It is necessary to append b02; q0 to the public-key in order to later establishthe insecurity of the corresponding signature scheme. More speci�cally, when ID3 will beconverted into a signature scheme (by applying the Fiat-Shamir transform), the veri�er willbe replaced with a hash function, and thus b002 and q00 will no longer necessarily be chosen atrandom. Yet, we only know how to establish the insecurity of the signature scheme assumingthat b002 and q00 are chosen at random. We get around this problem by XORing b002 with auniformly distributed string b01 and XORing q00 with a uniformly distributed string q0.
Lemma 6.5. Assuming H1 does not have a SUPER-FINDER, ID3 is secure.
Proof. Follows easily from the de�nition of a SUPER-FINDER.

We denote the signature scheme, obtained by applying the Fiat-Shamir transform to ID3
and the function ensemble H, by

SS3H = (GEN3H; SIGN3H; V ERIFY 3H):
Lemma 6.6. Assuming 08H 9 FINDER0, for any function ensemble H, the signature schemeSS3H is insecure.
Proof. Fix a function ensemble HFS. We exhibit a forger for SS3HFS . More speci�cally, weshow that for every message M there exists a forger FORGM which, on input a randomveri�cation key V K, outputs a signature of M , with non-negligible probability.Fix any message M . For any h 2 HFSn , de�ne

hM(x) = n most-signi�cant-bits of h(x;M):
Let HM = fhMgh2HFS , and let H = H1 [ HM . By our assumption 08H 9FINDER0, thereexist F1 = fF n1 gn2N and ~P1 = f ~P n1 g, such that for a = F n1 (f),

Pr[( ~P n1 ; V H)(f; a; b) = 1] = non-negl(n)
(where the probability is over f 2R Fn, b 2R f0; 1gn and the random coin tosses of V H).
It is easy to see that the existence of ~P n1 implies the existence of a polynomial-size circuit~~P n1 such that for a = F n1 (f),

Pr[( ~~P n1 ; V H1)(f; a; b1) = 1 ^ ( ~~P n1 ; V HM )(f; a; b2) = 1] = non-negl(n)
(where the probability is over f 2R Fn, b1; b2 2R f0; 1gn and the random coin tosses of V H1
and V HM ).
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We are now ready to exhibit the forger FORGM .On input a veri�cation-key V K = (PK 0; h), where h 2 HFSn and
PK 0 = (PK; f; fUA; (k; r); (b02; q0));

The forger FORGM generates a signature of M , with respect to V K, as follows.
1. Compute a = F n1 (f).
2. (a) Choose b1 2R f0; 1gn, and compute r0 = commk(a; b1; r).

(b) Choose h2; : : : ; hn 2R HFSn , and let
qM = (fUA; (k; r0); (hM ; hM2 ; : : : ; hMn )):

(c) Emulate the interaction of ( ~P n1 ; V HM jqM )(f; a; b1) to obtain a transcript
(qM ; ansM) ( ~P n1 ; V HM jqM )(f; a; b1):

Denote ansM = (�̂1; (
1; : : : ; 
n); �1; (�1; : : : ; �n)).
3. Compute (�; (b002; q00)) = h(�̂1;M).
4. Emulate the interaction of ( ~P 1n ; V H1jq0�q00)(f; a; b02 � b002), to obtain a transcript

(q0 � q00; ans) ( ~P 1n ; V H1jq0�q00)(f; a; b02 � b002):
5. Output (�̂1; (
1; (b002; q00)); (a; b1; �1; �1; ans))

as a signature of M .
We claim that the forger will be successful with non-negligible probability.
Claim 6.6.1.

Pr[V ERIFY 3H(V K;M;FORGM(V K)) = 1] = non-negl(n)
(where the probability is over V K and over the random coin tosses of FORGM).
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Proof. Denote the output of the forger FORGM(V K) by (�̂1; (
1; (b002; q00)); (a; b1; �1; �1; ans)).By de�nition of ~~P n1 , for a = F n1 (f),
Pr[( ~~P n1 ; V H1)(f; a; b1) = 1 ^ ( ~~P n1 ; V HM )(f; a; b2) = 1] = non-negl(n) (3)

(where the probability is over f 2R Fn, b1; b2 2R f0; 1gn and the random coin tosses of V H1
and V HM ).
We claim that similarly, for a = F n1 (f),

Pr[( ~~P n1 ; V H1jq0�q00)(f; a; b1) = 1 ^ ( ~~P n1 ; V HM jqM )(f; a; b02 � b002) = 1] = non-negl(n) (4)
(where the probability is over f 2R Fn, b1; b02 � b002 2R f0; 1gn, q0 � q00, qM).This is so for the following reasons

1. b02 � b002 is uniformly distributed in f0; 1gn.
2. q0 � q00 is uniformly distributed among the set of all queries of V H1 .
3. ~~P n1 (in step 2(c)) cannot distinguish between the distribution of qM and the distributionof a uniform query of V HM .

For all of the above reasons, ~~P 1n in (4) should succeed with essentially the same probability asin (3).
Thus, with non-negligible probability both of the following conditions hold.

1. (q0 � q00; ans) 2 V IEW (V H1(f; a; b02 � b002)).
2. (qM ; ansM) 2 V IEW ((V HM (f; a; b1)), which in turn implies that the following condi-tions hold.

(a) 
1 = hM(�̂1), which implies that (
1; (b002; q00)) = h(�̂1;M)
(b) (fUA; �1; 
1; �1) 2 V IEW (V 0(f; a; b1))
(c) �̂1 = commk(�1; commk(a; b1; r).

Recall that V ERIFY 3H(V K) accepts if conditions (1) and (2) hold, and thus FORGM(V K)is successful with non-negligible probability.
Thus, we have established the insecurity of SS3.
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7 On the Insecurity of FS Modi�cations
The FS method was designed for constructing signature schemes by eliminating interactionfrom canonical ID schemes. We proved that this method is insecure, in the sense that thereexist secure canonical ID schemes for which the corresponding signature scheme (obtained bythe FS method) is insecure with respect to any function ensemble. A question that remainsis: Do there exist other secure methods for eliminating interaction?We present two modi�cations of the FS method considered in the literature. Using similarideas to the ones presented in this paper, we show the insecurity of these FS modi�cationsas well.
7.1 First Modi�cation
We �rst present the FS modi�cation introduced by Micali and Reyzin. In their paper, `Im-proving The Exact Security of Digital Signature Schemes' [MR02], they presented a methodfor constructing FS-like signature schemes that yields better \exact security" than the orig-inal FS method (�; �; 
). In their method, the signer �rst chooses � (originally sent by thereceiver R) and then produces � (the �rst message of the sender S), by applying H to � andto the message to be signed, i.e., � = H(�;M).13 This method can be applied only to IDschemes in which the sender, given public-key PK and a pair (�; �), can e�ciently compute
 for which (�; �; 
) 2 V IEW (R(PK)). This method does not apply to ID schemes in whichthe information used during the generation of � is necessary to compute 
.We argue that this FS-like method proposed by [MR02] is insecure, as follows. Take anysecure ID scheme and modify it by appending f 2R F to the public key, and extending itsverdict function so as to also accept views of the following form

S (PK; f) R
������!a
 ������b; q
������!ans

where (q; ans) 2 V IEW (V H(f; (b; q); a)):13They called this method the Swap method since they swapped the roles of � and � in the original FSmethod.
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We denote this extended ID scheme by IDH. It is relatively easy to show that the signaturescheme, obtained by applying the above FS-like method to IDH, is insecure with respect toany function ensemble. Thus, if there exists a function ensemble H such that IDH is secure,then the aove FS-like method is insecure. Namely, under the CSP hypothesis, the above FS-like method is insecure. To complete the proof one needs to assume that for every functionensemble H, IDH is insecure. The rest of the proof is quite technical and follows the lines ofSections 6.2 and 6.3.
7.2 Second Modi�cation
We next present the FS modi�cation introduced by Abdalla, An, Bellare and Namprempre.In their paper, `From Identi�cation to Signatures via the Fiat-Shamir Transform: Minimizingassumptions for Security and Forward-Security' [AABN02], they de�ne a randomized gener-alization of the Fiat-Shamir transform, and prove that a necessary and su�cient conditionfor the security (resp. forward-secure) of signature schemes obtained from the generalized FStransform in the Random Oracle Model, is that the underlying ID scheme is secure (resp.forward-secure) against impersonation under passive attacks.The randomized generalization of the FS transform transforms any canonical ID scheme(�; �; 
) into a signature scheme by replacing � with the value of H applied to �, M (themessage to be signed) and R (randomness chosen by the Signer). That is, a valid signatureof a message M , with respect to a public-key PK, is a triplet (�; (�;R); 
)) such that

1. � = H(�;M;R)
2. (�; �; 
) 2 V IEW (R(PK)).

The insecurity of the above generalized FS paradigm, follows trivially from the fact that it isa generalization of the original FS paradigm with R = ;, and from the fact that the originalFS paradigm is insecure.
8 Open Problems
Do there exist other \natural" cryptographic schemes which are secure in the Random OracleModel, and become insecure when the random oracle is replaced with any public function? Anexample of a \natural" cryptographic scheme that we are interested in is CS-proofs, de�nedby Micali [Mi94]. The question is whether or not there exists a function ensemble H, such thatCS-proofs remain sound (or remain a proof-of-knowledge) when the random oracle is replacedwith a public function chosen at random from H?

44



Perhaps most interestingly, one would like to prove that either every \natural" task whichis realizable in the Random Oracle Model is also realizable in the \real world," or that thereexists a \natural" task which is realizable in the Random Oracle Model and is not realizablein the \real world." For example, we know that there exists an identity based encryptionscheme which is secure in the Random Oracle Model [BF01]. But, does there exist an identitybased encryption scheme which are secure in the \real world."?
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A Commitment Schemes
Naor [Na91] proved that commitment schemes exist assuming the existence of one-way func-tion ensembles. Namely, assuming the existence of one-way function ensembles, there existsfunctions l(n) and t(n), which are polynomially related to n, and there exists a commitmentscheme COMMIT such that for every n 2 N and for every k 2 KEYn,

commitk : f0; 1gn � f0; 1gl(n) ! f0; 1gt(n):
Proposition 3. Under the CR hypothesis, For any function m(n), which is polynomially-related to n, there exists a commitment scheme COMM , with a corresponding set of keysKEY 0, such that for every n 2 N and for every k0 2 KEY 0n,

commk0 : f0; 1gm(n) � f0; 1gn ! f0; 1gn:
Proof. Let Fm be a collision resistant function ensemble such that for every n 2 N and forevery fmn 2 Fmn , fmn : f0; 1gm(n) ! f0; 1gn:
(the existence of such a function ensemble follows from the CR hypothesis).
Let F t be a collision resistant function ensemble such that

1. for every n 2 N and for every f tn 2 F tn,
f tn : f0; 1gt(n) ! f0; 1gn

2. for every n 2 N, f tn(Ut(n)) �= Un:
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(It is quite easy to see that such a function ensemble exists under the CR hypothesis).
The set of keys for COMM is de�ned as follows: For every n 2 N,

KEY 0n = f(k; fmn ; f tn) : k 2 KEYn; fmn 2 Fmn ; ; f tn 2 F tng:
For every n 2 N, every (k; fmn ; f tn) 2 KEY 0n and every (x; r) 2 f0; 1gm(n) � f0; 1gn, de�ne

comm(k;fmn ;f tn)(x; r) = f tn(commitk(fm(x); g(r));
where g : f0; 1gn ! f0; 1gl(n) is a one-way pseudorandom generator.14

COMM is computationally-hiding since
1. g is a pseudorandom generator
2. COMMIT is computationally-hiding
3. f tn(Ut(n)) �= Un.

COMM is computationally-binding since
1. F t is a collision-resistance function ensemble
2. COMMIT is computationally-binding
3. Fm is a collision-resistance function ensemble.
4. g is one-way.

14It was proven in [GGM86] that one-way pseudorandom generators exist assuming the existence of one-wayfunction ensembles.
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