
Pretty-Simple Password-Authenticated
Key-Exchange Under Standard Assumptions

Kazukuni Kobara and Hideki Imai

Institute of Industrial Science, The University of Tokyo
4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505 Japan

Tel: +81-3-5452-6232
FAX: +81-3-5452-6631

E-mail: {kobara,imai}@iis.u-tokyo.ac.jp

Abstract. In this paper, we propose a pretty-simple password-authenticated
key-exchange protocol, which is proven to be secure in the standard
model under the following three assumptions. (1) DDH (Decision Diffie-
Hellman) problem is hard. (2) The entropy of the password is large
enough to avoid on-line exhaustive search (but not necessarily off-line
exhaustive search). (3) MAC is selectively unforgeable against partially
chosen message attacks, (which is weaker than being existentially un-
forgeable against chosen message attacks).

1 Introduction

We consider the following password-authenticated key-exchange protocol, by
which two entities can share a fresh authenticated session-key (being secure
against off-line attacks) by using a pre-shared human-memorable password (or
pass phrases), which may be insecure against off-line attacks but secure against
on-line attacks.

The on-line attack is a serial exhaustive search for a secret performed on-line
using a server that verifies the secret (see Section 2), and the off-line attack is that
performed off-line in parallel using recorded transcripts of a protocol. While the
on-line attacks can be prevented by letting the server take appropriate intervals
between invalid trials, the off-line attacks cannot be prevented by such measures
since the attack is performed off-line and independently of the server. Thus the
off-line attacks are critical to most of the protocols using human-memorable
passwords not having enough entropy to avoid off-line exhaustive search.

While PKI (Public-Key Infrastructures) can realize an authenticated key-
exchange or key-transport (being secure against off-line attacks) like SSH (Se-
cure SHell), SSL/TLS (Secure Socket Layer/Transport Layer Security), Station-
to-Station protocol [6] and the protocols in [8] do, we have to recall that the
receivers of public-keys must verify them using the fingerprints (digests) of them
or the verification keys of digital signatures attached with them. This means the
entities must carry about something, which is hard to remember. On the other
hand, PAKE (Password-Authenticated Key-Exchange) protocols do not require

its entities to carry something hard to remember (except a password) to verify
something.

The studies on the PAKE with formal security proof have appeared in [7, 13,
12, 9, 1, 5, 14, 11]. Unfortunately, they are either by far inefficient or the proofs
are given only in the random oracle model. In the random oracle model, the
mapping of the underlying hash and encryption functions is assumed not to
be fixed in advance, and then gradually determined by the random oracle at
random every after the evaluation of them. And then simulators (for proving the
security reduction) are assumed to know all the evaluated input-output pairs of
the functions by simulating the random oracles [2]. While the proof in the random
oracle model may give one reason to conjecture that the practical version (which
uses conventional fixed functions instead of random oracles) might also be secure,
it does not give any formal validation of the security of the practical version.

On the other hand, [7, 9] give their security proofs in the standard model
where the mapping of the underlying hash and encryption functions is fixed in
advance, and then simulators for showing the security reduction do not need
to know the evaluated input-output pairs of the functions. Unfortunately, the
protocol proposed in [7] is too inefficient to use in practice since it employs
techniques from generic multi-party computations, such as non-malleable com-
mitments, secure polynomial evaluations and zero-knowledge proofs. While [9]
is more efficient than [7], it still requires large communication costs and compu-
tation costs.

In this paper, we propose a more efficient protocol that is also provably
secure in the standard model. Comparative results with the previous schemes [7,
9] are summarized in Table 1. As shown in the table, our protocol is efficient in
both the communication costs and the computation costs. It requires only about
2.34 modular exponentiations of each entity whereas more than 6.5 modular
exponentiations are required in the previous schemes. If pre-computation is used,
ours requires only 1 and 2 modular exponentiations of the server and of the
client respectively, whereas more than 3.2 and 4.2 modular exponentiations are
required of them respectively in the previous schemes. (The difference between
the server and the client in the pre-computation phase is whether passwords are
stored in advance or given every time.)

Ours has an advantage in communication costs too. It requires only 4 data
unit exchange whereas more than 11 data unit exchange is required in the pre-
vious schemes where one data unit denotes either a member of the underlying
field or one hashed value, such as a MAC. In addition, our protocol ends in only
one round in parallel since both y1 and y2 in our protocol can be calculated
independently and then sent independently. The implementation overhead of
our protocol is very small since the clients and the servers use almost the same
algorithm, and it can be obtained with small modification of the widely used
Diffie-Hellman key-exchange protocol.

Our protocol has a formal validation of security in the standard model. The
intuitive explanation of the result is that even if adversaries can abuse entities
as oracles, the possibility for them obtaining some significant information on

Table 1. Comparison of PAKEs proven to be secure in the standard model

Computation Costs∗1 Communication Costs∗2 Core Hard
Schemes Client C Server S C to S S to C Problems∗3

Efficient Construction ∗5 ∗5 ∗5 ∗5 ITP, PR
of [7]∗4 ≥ (m + 1)n, (≥ mn) ≥ 2n, (≥ n) ≥ (m + 1)n ≥ 2m + n and DDH ∗6

KOY [9] ≥ 7.75, (≥ 4.29) ≥ 6.58, (≥ 3.29) ≥ 6 5 DDH

Our Proposal 2.34, (2) 2.34, (1) 2 2 DDH

*1: The number of modular exponentiations where the costs for one simulta-
neous calculation of two bases and five bases are converted into 1.17 and 1.29,
respectively [15]. The figures in the parentheses are the remaining costs after
pre-computation.
*2: The number of data units to be sent where one data unit denotes either a
member of the underlying field or one hashed value, such as a MAC.
*3: In addition to the core hard problems, all the schemes commonly require:
(1) Passwords chosen securely against on-line attacks, (2) Unforgeable MACs
or signatures against chosen-message attacks.
*4: Efficient construction using the polynomial evaluation in [16] and the effi-
cient oblivious transfer in [18].
*5: Only the costs in the pre-key exchange phase are shown. Both n and m
depends on the security parameter. Currently, at least

(
m
n1

)
> 280 must hold

for n ≥ n1 to make the underlying polynomial reconstruction problem hard
(which is required in the efficient polynomial evaluation)[4].
*6: ITP and PR denote Inversion of Trapdoor Permutation and Polynomial
Reconstruction, respectively. Inefficient construction of [7] assumes only trap-
door permutations as its core hard problems.

the session-key of the challenge session can be negligibly small if DDH (Deci-
sion Diffie-Hellman) problem is hard, passwords are unguessable with on-line
exhaustive search and MACs are selectively unforgeable against partially chosen
message attacks, (which is weaker than being existentially unforgeable against
chosen message attacks).

This paper consists as follows: in Section 2, we explain both on-line and off-
line attacks that are crucial to the password-based protocols. Then, in Section
3, we propose a pretty-simple protocol which has an immunity against off-line
attacks. And finally, in Section 4, we show the formal validation of security of
our protocol in the standard model.

2 On-line and Off-line Attacks

Since on-line attacks and off-line attacks are crucial to the password-based pro-
tocols, we explain them in this section using some examples.

At first, we consider the following password-based challenge-response proto-
col where a server gives a random challenge r to a client, and then the client re-
turns the server res := Epass(r), the encryption of r using a pre-shared (hashed)
password pass as its symmetric key. An adversary, in the on-line attack, runs a

protocol with the server impersonating the client, and then tries guessed pass-
words pass′ on-line returning res′ := Epass′(r) to the server. If it is accepted,
pass′ is the target password with high probability.

While almost all of the password-based protocols accept this kind of attack,
it can be prevented by letting the server take appropriate intervals between
invalid trials. On the other hand, off-line attacks, described bellow, are more
powerful since they cannot be prevented by the above measures. Adversaries, in
the off-line attack, firstly obtain valid pairs of r and res by eavesdropping honest
executions of the protocol, and then finds pass′ satisfying res = Epass′(r) off-line
in parallel. Since the attack is performed off-line in parallel and the entropy of
a password is usually not large enough, they can find it in a practical time with
high probability.

The off-line attack is also applicable to DH-EKE (Diffie-Hellman Encrypted
Key-Exchange) [3] if the underlying group size log2 |G| = log2 q is smaller than
the encryption size1. Note that the above condition is usually true when a prime
order subgroup and a conventional stream cipher or a block cipher, such as AES,
are used. DH-EKE is a protocol, in which two entities exchange y1 := Epass(gr1)
and y2 := Epass(gr2) respectively, and then share Dpass(y1)r2 = Dpass(y2)r1 =
gr1·r2 as a fresh secret where g is a generator of a finite cyclic group G =< g >,
Epass() and Dpass() are encryption and decryption functions using a (hashed)
password pass as its symmetric key. The off-line attack on DH-EKE is performed
as follows: adversaries obtain some y1 and y2 eavesdropping the protocol, and
then see off-line whether Dpass′(y1) and Dpass′(y2) (for obtained y1 and y2)
represent right members in G for guessed passwords pass′. If at least one of
them is not a right member, the guessed password is wrong. By continuing the
above process, they can find the correct password.

Our protocol, proposed below, has the immunity against these off-line at-
tacks.

3 Our Proposal: Pretty-Simple PAKE

Our protocol is defined over a finite cyclic group G =< g > where |G| = q and
q is a large prime (or a positive integer divisible by a large prime). While G can
be a group over an elliptic curve, we assume, in this paper, G is a prime order
subgroup over a finite field Fp. That is, G = {gi mod p : 0 ≤ i < q} where p is a
large prime number, q is a large prime divisor of p − 1 and g is an integer such
that 1 < g < p − 1, gq = 1 and gi 6= 1 for 0 < i < q. A generator of G is any
element of G except 1.

Both g and h are two generators of G, chosen so that its DLP (Discrete
Logarithm Problem), i.e. calculating

a = logg h, (1)
1 While DH-EKE is proven to be secure in the random oracle model in [1], the proof

is given under the assumption that the underlying group size is at least the same as
the encryption size. Thus the proof cannot be applied when the group size is smaller
than the encryption size.

Client (Party A) Server (Party B)

r1 ∈ (Z/qZ)∗ y1 := gr1 · hpassc r2 ∈ (Z/qZ)∗

−−−−−−−−−−−−−−−−−−−−−−−−−−→
y2 := gr2 · hpasss

←−−−−−−−−−−−−−−−−−−−−−−−−−−
kmc := (y2 · h−passc)r1 kms := (y1 · h−passs)r2

Fig. 1. Secrecy-amplification phase of our protocol

Client (Party A) Server (Party B)

kmc v2 := MACkms(Tags||y1||y2) kms

←−−−−−−−−−−−−−−−−−−−−−−−−−−
v1 := MACkmc(Tagc||y1||y2)

If v2 = MACkmc(Tags||y1||y2), −−−−−−−−−−−−−−−−−−−−−−−−−−→ If v2 = MACkmc(Tags||y1||y2),
skc := MACkmc(Tagsk||y1||y2). sks := MACkms(Tagsk||y1||y2).

Fig. 2. Verification phase and session-key generation phase of our protocol

should be hard2 for each entity. Both g and h may be given as system parameters
or chosen with the negotiation between entities. For example, g is a random
generator of G and h := Hash(g)(p−1)/q mod p, or one entity A chooses g := gs1

b

for a random s1 ∈ (Z/qZ)∗ and a public generator gb, and then sends the
commitment Hash(g) to the other entity B, B replies h := gs2

b for a random
s2 ∈ (Z/qZ)∗, and finally A reveals g to B.

The protocol consists of the following three phases: a secrecy-amplification
phase, a verification phase and a session-key generation phase. In the secrecy-
amplification phase, the secrecy of the pre-shared weak secret, i.e. a human
memorable password that may be vulnerable against off-line attacks, is amplified
to a strong secret (we call it a keying material) that is secure even against off-
line attacks. In the verification phase, entities confirm whether they can share
the same keying material or not using a challenge-response protocol with the
keying material as its key. In the session-key generation phase, a session-key is
generated using the keying material.

3.1 Secrecy-Amplification Phase

The secrecy-amplification phase is illustrated in Fig. 1. The client chooses a
random number r1 ∈ (Z/qZ)∗ and then calculates y1 := gr1 · hpassc using its
(hashed) password passc, which is shared with the server. It sends y1 to the
server. The server also calculates y2 := gr2 · hpasss using its (hashed) password
passs (shared with the client) and a random number r2 ∈ (Z/qZ)∗, and then
sends it to the client The client’s keying material is kmc = (y2 · h−passc)r1 and
the server’s one is kms = (y1 · h−passs)r2 .
2 It is reasonable to assume that DLP is hard since our protocol is based on the

difficulty of DDH (Decision Diffie-Hellman) problem, and DLP is harder than DDH.

Only when they use the same password, they can share the same keying
material. Otherwise guessing the other’s keying material is hard due to the DLP
between g and h (see also Section 4.1). Adversaries cannot determine the correct
password of the other entity with off-line attacks since they cannot know the
keying material of it, which is required to narrow down the password.

This phase ends in only one pass in parallel since both y1 and y2 can be
calculated and sent independently (where gr1 and y2 are pre-computable). This
speeds up the protocol. The implementation cost of this phase is very low since
it can be obtained with a very small modification of widely used Diffie-Hellman
key exchange protocols.

3.2 Verification Phase

This phase is illustrated in Fig. 2. In this phase, entities verify whether they
share the same keying material or not with a challenge-response protocol using
the keying material calculated in the secrecy-amplification phase.

The client and the server calculate v1 := MACkmc
(Tagc||y1||y2) and v2 :=

MACkms(Tags||y1||y2) respectively using a MAC generation function MACk()
and the keying materials as its key k. Both Tags and Tagc are pre-determined
distinct values, e.g. Tags = (IDc||IDs||00) and Tagc = (IDc||IDs||01) where
IDc and IDs are IDs of the client and the server. The client and the server
exchange v1 and v2 each other, and then they verify v1 = MACkmc

(Tags||y1||y2)
and v2 = MACkms(Tagc||y1||y2) respectively. If at least one of them does not
hold, the corresponding entities wipe off all the temporally data including the
keying materials, and then close the session. Otherwise they proceed to the
session-key generation phase.

Adversaries can try off-line exhaustive search for the keying material using
(Tagc||y1||y2) and v1 or (Tags||y1||y2) and v2. The success probability achieved
within a polynomial time t can be negligible if a strong secret can be shared in
the secrecy-amplification phase and an appropriate MAC generation function,
whose keys are unguessable, is used.

3.3 Session-Key Generation Phase

If the above verification phase succeeds in, the entities generate their session
keys using the verified keying materials as follows:

sks := MACkms
(Tagsk||y1||y2) (2)

skc := MACkmc
(Tagsk||y1||y2) (3)

where Tagsk is a pre-determined distinct value from both Tagv2 and Tagv1 ,
e.g. Tagsk = (IDc||IDs||11). The generated session keys are then used in the
subsequent application.

The requirement for the MAC generation function in this phase and the
previous phase is εmac(k2, t, i) given in Definition 4 can be negligibly small for

practical security parameter k2 and i (that is a polynomial of k2) since if ad-
versaries cannot forge a MAC corresponding to (Tagsk||y1||y2) and kms or kmc

with a significant probability, they cannot obtain any significant information of
the session-key.

This requirement can be satisfied by using a universal one-way hash function
[17] or by using a practical MAC generation function, such as HMAC-SHA-1
[10] (and even KeyedMD5) so far since no effective algorithms are known so far
to make εmac′(k2, t, i) non-negligible where εmac′(k2, t, i) is given in Definition 5
and it is larger than or equal to εmac(k2, t, i).

4 Security of Our Protocol

4.1 Replacement of h with g

Before we show the formal security proof of our protocol, we describe why two
distinct generators, h and g, should be used (instead of one generator). It is
because the following adversary AI can narrow down the candidates for the
keying material to at most N , the number of the possible passwords, with off-
line attacks.

AI runs the protocol with the target entity impersonating its partner. For
simplicity, we assume AI impersonates a client. AI generates y1 using randomly
chosen r1 and passc, and then sends it to the target. The keying material of the
target is kms := (y1 · g−passs)r2 , and AI can narrow down its candidates to at
most N since

kms = (y2 · g−passs)r1+passc−passs (4)

and AI knows passc, r1 and the candidates for passs, which is at most N .
If N is in the range of off-line exhaustive search, AI can determine the correct

one by seeing whether v2 = MACkms
(Tags||y1||y2) holds or not with off-line

search.
On the other hand, in our protocol, adversaries have to find a = logg h to

narrow down the candidates for kms since the following holds

kms = (y2 · h−passs)r1+a(passc−passs). (5)

4.2 Security Model and Formal Validation of Security

In order to consider a more advantageous situation for adversaries, we assume
they have access to the following oracles, which were originally introduced by
Bellare et al in [1], but a little bit modified for our protocol.

Execute oracle: It accepts two IDs of entities sharing the same password. Then
it carries out a honest execution of the protocol between them, and outputs
the corresponding transcript. This oracle ensures that adversaries are able
to observe all the transcripts between any entities including the target ones.

Send oracle: It accepts an entity ID and a message that is a part of a transcript.
It acts as the entity, and then outputs a completed transcript correspond-
ing to them. This oracle ensures that adversaries are able to run a protocol
with any entity impersonating its partner and obtain the corresponding tran-
scripts.

Reveal oracle: It accepts both an entity ID and a session ID, and then reveals
the corresponding session-key. (This oracle does not reveal the session-key of
the challenge transcript.) Note that a session-key might be leaked out since
it is used outside of the protocol in various applications that might deal it
insecurely (e.g. by using it as a key of very weak encryption algorithms).
Reveal oracle simulates such a situation.

Corrupt oracle: This oracle is used to see whether the protocol satisfies the
forward secrecy, i.e. whether the disclosure of a long-lived secret (a password
in our protocol) does not compromise the secrecy of the session-keys from
earlier runs (even though that compromises the authenticity and thus the
secrecy of new runs). It accepts two entity IDs and then reveals the corre-
sponding password shared between them. This oracle can be used after the
transcripts related with the target password are generated.

Testsk oracle: This oracle is used to see whether adversaries can obtain some
information on the challenge session-key by giving a hint on it to them. It
accepts an entity ID in the challenge session, and then flips a coin b ∈ {0, 1}.
If b = 0, it returns the corresponding session-key. Otherwise it returns a
random one except the correct session-key. This oracle can be used only
once per challenge.

Testkm oracle: Since a session-key is generated from a keying material, we pre-
pare this oracle to see whether a strong secret can be generated in the secrecy
amplification phase. This oracle accepts both an entity ID and an session ID,
and then flips a coin b ∈ {0, 1}. If b = 0, it returns the corresponding key-
ing material. Otherwise, it returns a random one except the correct keying
material. Note that adversaries are not allowed to distinguish the obtained
information from this oracle using (Tagc||y1||y2) and v1 or (Tags||y1||y2) and
v2 since it is given to see whether a strong secret can be generated in the
secrecy amplification phase.

Using the above oracles, adversaries suppose to try to distinguish a session-
key given by Testsk oracle.

At first, we define the followings:

Definition 1 (Advantage) Let Pr(Win) denote the probability that an algo-
rithm A can distinguish whether a given key is the correct session-key or not.
Then Advindsk

A , the advantage of A distinguishing the session-key, is given by

Advindsk

A = 2Pr(Win)− 1. (6)

Definition 2 (DDH Problem) Given gb ∈ G and d = (d1, d2, d3) = (gx1
b , gx2

b , gx3
b)

where x3 is either x1 · x2 or not with probability 1/2, then decide whether gx3
b =

gx1·x2
b or not.

Definition 3 (Probability of Solving DDH Problem) Let εddh(k1, t) de-
note the probability that the DDH problem of size k1 = log2 q is solved in a
polynomial time t with the best known algorithm.

The requirement for the MAC generation function in our protocol is εmac(k2, t, i),
given in the following Definition 4, can be negligibly small for practical security
parameter k2 and i (that is a polynomial of k2). εmac(k2, t, i) is upper bounded
by εmac′(k2, t, i), which is given in Definition 4 that is a more general definition.

Definition 4 (Selective UnForgeability of a MAC Against Partially
Chosen Message Attack) Let εmac(k2, t, i) denote the probability that a k2

bit length MAC of a given message can be forged in a polynomial time t with
the best known algorithm that are allowed to ask at most i (which is a polyno-
mial of k2) queries to the following MAC generation oracle (which is available in
our protocol by abusing entities or using Send, Execute and Reveal oracles). The
MAC generation oracle here accepts a message m, entity ∈ {server, client},
target ∈ {v, sk} and a bijective function f() and then returns, for randomly
chosen r1 and r2, MACf(km)(Tags||m||gr2) if entity = server and target = v,
MACf(km)(Tagc||gr1 ||m) if entity = client and target = v, MACf(km)(Tagsk||m||gr2)
if entity = server and target = sk or MACf(km)(Tagsk||gr1 ||m) if entity =
client and taget = sk, respectively. A MAC is said to be SUF-PCMA (Selec-
tively UnForgeable against Partially Chosen Message Attacks) if εmac(k2, t, i) is
negligibly small.

Definition 5 (Existential UnForgeability of a MAC Against Chosen
Message Attack) Let εmac′(k2, t, i) denote the probability that a new MAC-
message pair for a k2 bit length MAC can be generated in a polynomial time
t with the best known algorithm that are allowed to ask at most i (which is a
polynomial of k2) queries to a MAC generation oracle, which accepts a message
m and a bijective function f() and then returns MACf(km)(m). A MAC is said
to be EUF-CMA (Existential UnForgeable against Chosen Message Attacks) if
εmac′(k2, t, i) is negligibly small.

Under the following assumption, Theorem 1 is true3. The intuitive inter-
pretation of Theorem 1 is that if both N and |G| are large enough and both
εmac(k2, t, qse + 2qex + qre + 2) and εddh(k1, t) can be negligibly small for appro-
priate security parameters k1 and k2, the advantage for the active adversaries
can be bounded by a negligibly small value.

Assumption 1 (Password) Users’ passwords are chosen uniformly at random
from a set of cardinality N .

Theorem 1 (Indistinguishability of sk) Suppose the following adversary A,
which accepts a challenge transcript (that may be obtained by eavesdropping a

3 Theorem 1 can be extended easily to the case where passwords are chosen non-
uniformly since the uniformity assumption of the passwords is just for simplicity.

protocol, impersonating a partner or intruding in the middle of the target enti-
ties), and then asks qex, qse and qre queries to the Execute, Send, Reveal oracles
respectively, and finally is given skx by Testsk oracle where skx is either the
target session-key or not with the probability 1/2. Then Advindsk

A , the advantage
of it to distinguish whether skx is the target session key or not in a polynomial
time t is upper bounded by

Advindsk

A ≤ εmac(k2, t, qse + 2qex + qre + 2)
+2(qse + qex + 1) · εddh(k1, t)

+
2qse + 1

N
+

2(qse + qex)
|G|

(7)

where both k1 and k2 are the security parameters.

Proof.
Recall that Win is an event that A distinguishes skx correctly. Win hap-

pens either after an event KmUnknown occurs or after its compliment event
KmUnknown occurs where KmUnknown is an event that A obtains some signif-
icant information on the keying material km in the secrecy amplification phase,
and KmUnknown is an event that A does not obtains any significant information
on the keying material km in the secrecy amplification phase. Thus Pr(Win) is
upper bounded by

Pr(Win)
= Pr(Win|KmUnknown)Pr(KmUnknown)

+Pr(Win|KmUnknown)Pr(KmUnknown)
≤ Pr(Win|KmUnknown) + Pr(KmUnknown). (8)

We evaluate Pr(Win|KmUnknown) first. Even if km is unknown, the follow-
ing two adversaries Areplay and Amac, can distinguish skx. Amac tries to forge a
MAC of (Tagsk||y1||y2), and then distinguish skx. Areplay tries to obtain at least
one transcript coinciding with the challenge transcript using Send or Execure
oracles, and then obtains the corresponding session-key, which is the same as
the challenge session-key, using Reveal oracle.

Let Pr(WinAreplay
) and Pr(WinAmac

) denote the probabilities of Areplay

and Amac being able to distinguish skx, respectively. Pr(WinAreplay
) is upper

bounded by

Pr(WinAreplay
) ≤ (qse + qex)

|G|
(9)

since Areplay cannot control at least either r1 or r2 and can obtain at most
(qse+qex) transcripts. The upper bound of Pr(WinAmac) is given by the following
lemma.

Lemma 1 Suppose the probability that an adversary Amac can forge a k2 bit
length MAC of a given message in a polynomial time t using i message-MAC

pairs without knowing its key is εmac(k2, t, i). Then Pr(WinAmac
), the probability

of Amac distinguishing a given session-key without knowing its keying material
is upper bounded by 1/2 + εmac(k2, t, i)/2.

Proof.
The situation where Amac tries to distinguish a session-key can be divided

into the following four cases according to whether a MAC forged by Amac (of
the given message (Tagsk||y1||y2)) is valid or not, and whether a key given by
Testsk oracle is correct or not, i.e. b = 0 or b = 1.

Let MACValid denote an event that the forged MAC is valid. The best strat-
egy for Amac to maximize the winning probability to distinguish the given key
from Testsk oracle is to return b = 0 (with the probability 1) if the generated
MAC coincides with the given key, and b = 1 (with the probability 1) otherwise
since Amac can only know whether the generated MAC and the given key coin-
cide or not, and then the probabilities they coincide and they do not are given
by

Pr(b = 0,MACValid)

+Pr(b = 1,MACValid) · 1
2k2 − 1

(10)

and

Pr(b = 0,MACValid)
+Pr(b = 1,MACValid)

+Pr(b = 1,ForgeMAC) · 2k2 − 2
2k2 − 1

(11)

respectively where Pr(b = 0,MACValid) > Pr(b = 1,MACValid) · 1
2k2−1

and

Pr(b = 0,MACValid) > Pr(b = 1,MACValid) + Pr(b = 1,ForgeMAC) · 2k2−2
2k2−1

hold as long as εmac(k2, t, i) > 1
2k2

.
This give the following probability

Pr(WinAmac
| b = 0,MACValid) = 1, (12)

Pr(WinAmac
| b = 1,MACValid) = 1, (13)

Pr(WinAmac
| b = 0,MACValid) = 0, (14)

Pr(WinAmac
| b = 1,MACValid)

=
2Len(sk) − 2
2Len(sk) − 1

, (15)

And thus Pr(WinAmac
) is upper bounded by

Pr(WinAmac
)

= Pr(WinAmac
|b = 0,MACValid)

·Pr(b = 0) · Pr(MACValid)

+Pr(WinAmac
|b = 1,MACValid)

·Pr(b = 1) · Pr(MACValid)
+Pr(WinAmac

|b = 0,MACValid)
·Pr(b = 0) · Pr(MACValid)
+Pr(WinAmac

|b = 1,MACValid)
·Pr(b = 1) · Pr(MACValid)

= Pr(MACValid)
+Pr(WinAmac

|b = 1,MACValid)
·Pr(b = 1) · Pr(MACValid)

≤ εmac(k2, t, i) +
2k2 − 2
2k2 − 1

· 1
2
· {1− εmac(k2, t, i)}

≤ 1
2

+
εmac(k2, t, i)

2
(16)

2

Amac can obtain at most qse + 2qex + qre message-MAC pairs using Send,
Execute, Reveal oracles, and at most 2 message-MAC pairs from a challenge
transcript. Thus

i = qse + 2qex + qre + 2. (17)

By substituting (17) for (16) and summing up (9) and (16), we can obtain

Pr(Win|KmUnknown)

≤ (qse + qex)
|G|

+
1
2

+
εmac(k2, t, qse + 2qex + qre + 2)

2
. (18)

Next we evaluate Pr(KmUnknown), the possibility of A being able to obtain
some information on the keying material km in the secrecy amplification phase.
In the secrecy amplification phase, A can obtain g, h, y1, y2 (and pre-images of
either y1 or y2 by impersonating the corresponding entity). The obtained data
can be classified into the following four cases according to whether or not the
passwords of the two entities coincide with each other, and whether or not the
adversary knows the pre-image of either y1 or y2.

Case 1: Passwords of the target entity and its parter are different, i.e. passc 6=
passs, and the adversary knows the pre-image of neither y1 nor y2.

Case 2: Passwords of the target entity and its parter are the same, i.e. passc =
passs, and the adversary knows the pre-image of neither y1 nor y2.

Case 3: Passwords of the target entity and its parter are different, i.e. passc 6=
passs, and the adversary knows the pre-image of either y1 or y2.

Case 4: Passwords of the target entity and its parter are the same, i.e. passc =
passs, and the adversary knows the pre-image of either y1 or y2.

While Case 4 is the most advantageous for A, it happens only when A inputs
the correct password impersonating the parter of the target entity on-line. This
probability is bounded by (qse +1)/N since A can try at most qse +1 passwords
on-line where qse passwords are tried using Send oracle and 1 using the challenge
session. The other cases happen with more high probabilities. For example, Case
1 and 2 happen when an adversary eavesdrops a session, or sends modified values
of ever used y1 or y2, i.e. sends y1 · gj1 · hj2 mod p or y2 · gj1 · hj2 mod p for
j1, j2 ∈ Z/qZ to the target entity. Case 3 happens when an adversary generates
y1 (or y2) from its pre-images and sends it to the target entity.

While Case 1 to 3 happen with high probability, distinguishing the keying
material in these cases is as hard as or harder than solving DDH problem. Lemma
2 shows that distinguishing it in Case 2 is as hard as or harder than solving DDH
problem.

Lemma 2 Suppose there exists an algorithm A1, which accepts a challenge tran-
script g, h, y1 and y2 between the entities sharing the same password, and is given
a hint kmx from Testkm oracle where kmx is either equal to the keying material
of the target entity, i.e. kmc or kms, or not with the probability of 1/2, and fi-
nally distinguishes whether kmx is the correct keying material or not in at most
τ steps and with the advantage of ε. Then one can construct an algorithm B1

which runs in τ ′ steps and solves a given DDH problem with the advantage of ε′

where

ε′ = ε, (19)
τ ′ = τ + Poly(k1) (20)

and Poly(k1) is a polynomial of a security parameter k1 = log2 q.

Proof.
B1 can be constructed as follows. At first B1 receives a DDH set gb and

d = (d1, d2, d3) = (gx1
b , gx2

b , gx3
b). B1 chooses a random password passs = passc

and a random generator h ∈ G, and then gives g := gb, h, y1 := d1 · hpassc ,
y2 := d2 · hpasss and kmx := d3 to A1. If the answer of A1 is kmx = kmc

(which also means kmx = kms), B1 returns d3 = gx1·x2
b . Otherwise it returns

d3 6= gx1·x2
b .

B1 can solve the DDH problem with the same advantage as ε since d3 = gx1·x2
b

holds with probability 1 if kmx = kms = kmc. The number of steps required
for B1 is mainly consumed in the calculation of hpassc and hpasss which ends in
polynomial steps of k1 = log2 q. Thus τ ′ = τ + Poly(k1).

2

Lemma 3 shows that distinguishing the keying material of the server (im-
personating a client) in Case 3 is as hard as or harder than solving DDH prob-
lem. This also means distinguishing the client’s keying material impersonating
a server is as hard as or harder than solving DDH problem. (The corresponding
proof can be obtained by replacing r1 and passc in the following proof with r2

and passs respectively, due to the symmetry of our protocol.)

Lemma 3 Suppose there exists an algorithm A2, which accepts g, h, y2, y1, r1,
passc and kmx where g, h, y2 and y1 are a challenge transcript between entities
that does not share the same password, r1 and passc are the pre-image of y1,
and kmx is a hint given by Testkm oracle, which is either kms or not with the
probability of 1/2, and finally distinguishes whether kmx = kms or not in at
most τ steps and with the advantage of ε. Then one can construct an algorithm
B2 which runs in τ ′ steps and solves a given DDH problem with the advantage
of ε′ where

ε′ = ε, (21)
τ ′ = τ + Poly(k1) (22)

and Poly(k1) is a polynomial of a security parameter k1 = log2 q.

B2 can be constructed as follows. At first B2 receives a DDH set, gb and
d = (d1, d2, d3) = (gx1

b , gx2
b , gx3

b). It chooses a random number r1 ∈ (Z/qZ)∗,
two distinct passwords passc and passs, and then gives A2 g := gb, h := d2,
y2 := d1h

passs , y1 := gr1hpassc , r1, passc and kmx = dr1
1 · d

(passc−passs)
3 . If

the answer of A2 is kmx = kms, B2 returns d3 = gx1·x2
b . Otherwise it returns

d3 6= gx1·x2
b .

B2 can solve the DDH problem with the same advantage as ε since

kmx = dr1
1 · d(passc−passs)

3 , (23)

kms = gx1·r1 · h(passc−passs)x1

= dr1
1 · gx2(passc−passs)x1 , (24)

and d3 = gx1x2
b holds if kms = kmx. The number of steps required for B2 is

mainly consumed in the calculation of y1, y2 and kmx which ends in polynomial
steps of k1 = log2 q. Thus τ ′ = τ + Poly(k1).

2

Distinguishing the target keying material in Case 1 is as hard as or harder
than doing that in Case 3 since the pre-images of y1 and y2 are not given to
the adversaries in Case 1. The corresponding proof can be obtained simply by
removing y1 and passc from the inputs of B2 in the proof of Lemma 3.

From the above discussion and Definition 3, the probability that one can
obtain some information on the keying material from one transcript in Case 1
to 3 is upper bounded by εddh(k1, t). In total, A can obtain at most qse + qex +1
transcripts where qse+qex can be obtained using Send and Execute oracles, and 1
from a challenge transcript. Thus the probability of A being able to obtain some
information on the challenge keying material in Case 1 to 3 is upper bounded by
(qse + qex + 1) · εddh(k1, t). And then the probability of A being able to obtain
it in the secrecy amplification phase is upper bounded by

Pr(KmUnknown)

≤ qse + 1
N

+ (qse + qex + 1) · εddh(k1, t). (25)

By substituting (18) and (25) for (8), the upper bound of Pr(Win) is given
by

Pr(Win) ≤ (qse + qex)
|G|

+
1
2

+
qse + 1

N

+
εmac(k2, t, qse + 2qex + qre + 2)

2
+(qse + qex + 1) · εddh(k1, t). (26)

(7) can be obtained by substituting (26) for (6).
2

5 Extension to Server Compromise

The system is said to be secure against server compromise if the off-line ex-
haustive search for the password is the best attack when an adversary obtains
a signature of the password of a user. Note that the signature of the password
means all the necessary information for the server to verify the user, and it
includes enough information to perform the off-line exhaustive search for the
password.

If one wants to enhance our protocol to the server compromise, the follow-
ing extension is available. The server stores Vs := hpasss as the signature of
the password for the user. In the case of authentication, the server generates a
random number r3 ∈ (Z/qZ)∗ in addition to r2 and sends y3 := gr3 with y2.
Both the client and the server calculate kmc := {(y2 · h−passc)r1 ||ypassc

3 } and
kms := {(y1 · h−passs)r2 ||V r3

s }, respectively, and then include y3 in each MAC
like MACkm(Tag||y1||y2||y3).

6 Conclusion

We proposed a pretty-simple password-authenticated key-exchange protocol that
is proven to be secure in the standard model (instead of the random oracle model)
under the following three assumptions. (1) DDH (Decision Diffie-Hellman) prob-
lem is hard. (2) The entropy of the password is large enough to avoid on-line
exhaustive search (but not necessarily off-line exhaustive searches). (3) MAC is
selectively unforgeable against partially chosen message attacks, (which is weaker
than existentially unforgeable against chosen message attacks).

Our protocol is almost as efficient as Diffie-Hellman key-exchange, and can
be implemented easily with a small modification of it.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. “Authenticated key exchange secure
against dictionary attack”. In Proc. of EUROCRYPT 2000: LNCS 1807, pages
139–155, 2000.

2. M. Bellare and P. Rogaway. “Random oracles are practical: A paradigm for de-
signing efficient protocols”. In Proc. of the First ACM CCCS, pages 62–73, 1993.

3. S. Bellovin and M. Merritt. “Encrypted key exchange: Password-based protocols
secure against dictionary attacks”. In Proc. of IEEE Symposium on Security and
Privacy, pages 72–84, 1992.

4. D. Bleichenbacher and P. Nguyen. “Noisy polynomial interpolation and noisy
chinese remaindering”. In Proc. of EUROCRYPT 2000: LNCS 1807, pages 53–69,
2000.

5. V. Boyko, P. MacKenzie, and S. Patel. “Provably secure password authenticated
key exchange using Diffie-Hellman”. In Proc. of EUROCRYPT 2000: LNCS 1807,
pages 156–171, 2000.

6. W. Diffie, P.C. van Oorschot, and M. Wiener. “Authentication and authenticated
key exchanges”. Designs Codes and Cryptography, 2, 1992.

7. O. Goldreich and Y. Lindell. “Session-key generation using human passwords
only”. In Proc. of CRYPTO 2001, pages 408–432, 2001.

8. S. Halevi and H. Krawczyk. “Public-key cryptography and password protocols”.
In Proc. of ACM Conference on Computer and Commuinication s Security, 1998.

9. J. Katz, R. Ostrovsky, and M. Yung. “Efficient password-authenticated key ex-
change using human-memorable passwords”. In Proc. of EUROCRYPT 2001:
LNCS 2045, pages 475–494, 2001.

10. H. Krawczyk, M. Bellare, and R. Canetti. “HMAC: Keyed-hashing for message
authentication”. RFC 2104, 1997.

11. T. Kwon. “Authentication and key agreement via memorable password”. In Proc.
of NDSS 2001 Symposium Conference, 2001.

12. P. MacKenzie. “More efficient password-authenticated key exchange”. In Proc. of
Topics in Cryptology – CT-RSA 2001 : LNCS 2020, pages 361–377, 2001.

13. P. MacKenzie. “On the security of the SPEKE password-authenticated key ex-
change protocol”. In IACR ePrint archive, http://eprint.iacr.org/2001/057/, 2001.

14. P. MacKenzie, S. Patel, and R. Swaminathan. “Password-authenticated key ex-
change based on RSA”. In Proc. of ASIACRYPT 2000, pages 599–613. Springer–
Verlag, 2000.

15. A. J. Menezes, P. C. Oorschot, and S. A. Vanstone. “Simultaneous multiple expo-
nentiation”. In “Handbook of Applied Cryptography”, pages 617–619. CRC Press,
1997.

16. M. Naor and B. Pinkas. “Oblivious transfer and polynomial evaluation”. In Proc.
30th ACM Symp. on Theory of Computing, pages 245–254, 1999.

17. M. Naor and M. Yung. “Universal one-way hash functions and their cryptographic
applications”. In Proc. of STOC ’98, pages 33–43, 1998.

18. Wen-Guey Tzeng. “Efficient 1-out-n oblivious transfer schemes”. In Proc. of PKC
2002, LNCS 2274, pages 159–171. Springer–Verlag, 2002.

