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Abstract

We propose to studyuniversal two-padding schemeswhich transform a messagem into a pairw‖s
with the property that for any trapdoor permutationf , f(w)‖s is a chosen-ciphertext-secure (IND-CCA2)
encryption ofm, while w‖f−1(s) is an existentially-unforgeable (sUF-CMA) signature ofm. As the main
application, we show that universal two-padding schemes lead to a new elegant composition method forjoint
signature and encryption, also referred to assigncryption. On a high level, to securely send a messagem to
some recipient with keyfrcv, a sender with keyfsnd computesfrcv(w)‖f−1

snd(s). The new method, which
we call Padding-based Parallel Signcryption(PbPS), is inspired by the “commit-then-encrypt-and-sign”
(CtE&S) composition method of An, Dodis and Rabin [2]. LikePbPS, CtE&S first transforms a message
m into a paird‖c, but then applies anIND-CCA2-secure encryption tod and asUF-CMA-secure signature
to c. Two-padding schemes allow one to replace the above “strong” encryption and signature schemes by
a mere trapdoor permutation (resp. its inverse) such as RSA. Additionally,PbPS supports flexible key
management, provides tight security reductions, easily handles long messages and/or associated data, and is
completely compatible with the PKCS#1 infrastructure.

We give an extremely general construction of universal two-padding schemes, which essentially shows
that applying one round of the Feistel Transform to a pair〈d, c〉 sufficient forCtE&S (roughly, a commit-
ment/decommitment pair with few special properties), we get a pair〈w = c, s = H(c)⊕ d〉 sufficient for
PbPS. More surprisingly, we notice that all popular padding schemes with message recovery used for plain
signature or encryption, such asOAEP, OAEP+, PSS-R, and “scramble all, encrypt small” [21], actually
consist oftwo natural componentsw ands. Moreover, the last step of computingw ands always consists
of a Feistel Transform applied to some paird andc. Remarkably, we show thatall these pairs〈d, c〉 satisfy
the general conditions of our universal two-padding construction. As a result, not only do we find a natural
generalization of all conventional padding schemes such asOAEP andPSS-R, but we show that any such
padding scheme defines a secure two-padding scheme for joint signature and encryption.

Of independent interest, we also define a new “hybrid” betweenPSS-R and OAEP, which we call
Probabilistic Signature-Encryption Padding(PSEP). This two-padding allows us to achieve optimal mes-
sage bandwidth for signcryption usingPbPS.

Keywords: Universal padding schemes, signcryption, joint signature and encryption, authenticated encryption,
Feistel Transform,OAEP, PSS-R, extractable commitment.
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1 Introduction
SIGNCRYPTION. Until recently, the two main building-blocks of modern public-key cryptography — encryp-
tion and signature schemes — have been considered asdistinctentities that may becomposedin various ways
to ensure message privacy and authentication. From a design and analysis standpoint, this evolution makes
sense, as encryption and signatures serve fundamentally different purposes. In practice, however, there are
increasingly fewer applications that do not use both primitives, whether one considers secure e-mail or the
key-establishment protocols for SSL or SSH.

In the past few years, research in the symmetric key setting has introducedauthenticated encryption[5, 19,
23] to combine both functionalities in a single primitive. Soon thereafter, a number of authenticated-encryption
schemes were proposed and other related investigations followed [26, 1, 22, 32, 31, 4, 11]. These results
produced a variety of practical and efficient implementations. As importantly, they established authenticated
encryption as a newcryptographic primitivewhich can be used to design simpler higher-level protocols.

More recent research has extended authentication encryption to the public-key setting, which is also the
setting of this paper. We refer to this notion of a “joint signature and encryption” primitive assigncryption,
following the terminology of [38]. While several papers [38, 39, 28, 20] offered security arguments about
various signcryption schemes, the first formal investigations appeared only recently [3, 2]. Both works define
signcryption as a multi-user primitive which simultaneously satisfies chosen ciphertext security for privacy and
existential unforgeability for authenticity.1 In terms of constructions, Baeket al. [3] showed that the original
“discrete log-based” proposal of Zheng [38] indeed can be proven secure in the random oracle model under
the so called Gap Diffie-Hellman assumption. Zheng’s signcryption scheme is quite elegant and efficient, but
has the disadvantage that all parties must agree on the same public parameters, such as the common discrete
log group. Thus, for example, all users must uniformly agree on the security parameter and have some trusted
party perform system initialization. Also, if one party wants to use a different security parameter or a different
signcryption scheme, this party has to convince all other parties to change their public keys, or he will no
longer be able to communicate with them. Finally, the security of [3] is based on a specific, non-standard
assumption. In contrast, An, Dodis, and Rabin [2] formally examined generic composition methods of building
signcryption fromanysecure signature and encryption scheme. In addition to the sequential compositions such
as “encrypt-then-sign” (EtS) and “sign-then-encrypt” (StE), this work also introduced a novel construction
— “commit-then-encrypt-and-sign” (CtE&S) — that allows encryption and authentication to be performed
in parallel. All these composition paradigms are very general and give rise to a large variety of signcryption
schemes. Additionally, users can easily change their public keys or their favorite signature/encryption scheme,
and still be able to seamlessly communicate with other users.2 However, these generic schemes suffer from poor
efficiency. Indeed, they all utilize relatively-expensive encryption and signature schemes which bythemselves
must already beIND-CCA2 andsUF-CMA secure.

OUR GOAL . The main motivation of this work is to design a class of signcryption schemes satisfying the
following desirable properties. (1)Key management is simple and flexible. In particular, each user chooses
its public/secret key on its own and has freedom in the type/length of the key chosen. Also, users can easily
change/create their keys “on the fly” and still be able to communicate with others users, provided that they
circulate the new key. (2)Signcryption/de-signcryption are “close” to current standards for plain signature
and encryption, i.e., PKCS #1 [33]. In particular, the signcryption/de-signcryption procedure should be some-
what similar to popular efficient signature/encryption schemes, such asPSS-R [7] or OAEP [6], as few code
changes would therefore be needed to support signcryption with the existing infrastructure. (3) Related to the
above,users should easily be able to use their signcryption keys for plain signature/encryption functionality.

1We will only use thestrongestvariants of these notions, which we will denoteIND-CCA2 andsUF-CMA.
2That is, userS usesS’s signature scheme andR’s encryption scheme when talking to userR.
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(4) Schemes must be simple and efficient.For example, they must be faster than using a generic composition of
strong signature and encryption. (5) Despite this,schemes should be general enough to allow many instantia-
tions. (6) Last, but certainly not least,schemes should be provably secureunder well-established cryptographic
assumptions.

OUR METHOD. We propose the following high-level method to achieve all of the above properties based on
any familyF of trapdoor permutations. Each playerU independently picks a trapdoor permutationfU ∈ F
(together with its trapdoor, denotedf−1

U ) and publishesfU as its public key. To signcrypt a messagem from
userS to userR, S first preprocessesm into a pair of strings(w, s), using what we call auniversal two-padding
scheme, whose constructions and security properties will be determined later. Then,S transmitsfR(w)‖f−1

S (s)
toR. Upon receiving ciphertextψ‖σ, R computesw = f−1

R (ψ), s = fS(σ), andR recoversm from w ands
(possibly performing some “consistency check” before outputtingm; see later). We call this methodPadding-
based Parallel Signcryption(PbPS).3

We believePbPS naturally satisfies all of the above properties (1)-(6). For example, userU independently
picks his keyfU and uses the samefU for both sending and receiving data. Moreover, the specific two-padding
schemes we construct are extremely fast and very flexible in accommodating arbitrary domains forfS and
fR, which allows users to use different families and change their keys easily. In fact, we show that popular
padding schemes likeOAEP, PSS-R and many others — ordinarily used for plain signature or encryption —
can be used for signcryption purposes too, when viewed astwo-paddings! Furthermore, we provide a simple,
general way to construct and verify the security of universal two-padding schemes. The resulting signcryption
is provably secure in the strongest sense (in the random oracle model), assuming the mere one-wayness of
the underlying trapdoor permutation. Moreover, we show that the security reduction is tight for a large class
of trapdoor permutations, including all the known ones such as RSA, Rabin, and Paillier. Additionally, the
schemes easily achievenon-repudiation, sinceR can extract a regular, publicly verifiable signaturew‖f−1

S (s)
of S from the ciphertext (see below). Finally, the more expensive “encrypting” and “signing” operations (using
fR andf−1

S ) are indeed performedin parallel.
To summarize, we believe thatPbPS is a very efficient, yet general method, for building a robust, flexible,

and provably-secure signcryption infrastructure.

TWO-PADDING SCHEMES: OUR RESULTS. The soundness of our suggestedPbPS paradigm for signcryp-
tion crucially depends on the properties ofuniversal two-padding schemes, a new notion we introduce. Syn-
tactically, such schemes (probabilistically) transform a messagem into apair w‖s, from whichm can be later
recovered. In terms of security, we require that for any trapdoor permutationf , f(w)‖s is a chosen-ciphertext-
secure (IND-CCA2) encryption ofm, while w‖f−1(s) is an existentially-unforgeable (sUF-CMA) signature
of m. Theuniversalityproperty additionally requires that the aboveinducedsignature and encryption schemes
remain secure even when used with thesamekeyf .

First, we formally argue that universal two-paddings — definedentirelyusing plain signature and encryption
properties — are indeed sufficient forPbPS. This result actually requires some work, as signcryption has to be
defined in the multi-user setting to prevent “identity fraud” [2]. In particular, the naive signcryption candidate
fR(w)‖f−1

S (s) (informally stated earlier for simplicity) willnot be secure, unless we ensure thatw ands also
non-trivially depend on the public keys ofS andR. Luckily, we found several simple and efficient ways to
achieve this “binding”at minimal or no extra cost, formally justifying our initial claim.

Second, we give a simple and very general construction of universal two-paddings in the random oracle
model. Our starting point was the observation that all popular padding schemes with message recovery currently
used for ordinary signature or encryption, such asOAEP [6], OAEP+ [36], PSS-R [7], and “scramble all,
encrypt small” [21] (in the future denotedSAP) actually consist oftwo natural componentsw ands, which

3As stated, it applies only to relatively short messagesm. However, we later efficiently extend it to support long messages.
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is consistent with our two-padding syntax. Moreover, the last step of computingw ands always consists of a
Feistel Transform applied to some paird andc (this step uses the random oracleH). This led us to examine
which general properties ond andc suffice to ensure that〈w = c, s = H(c)⊕ d〉 form a universal two-padding
scheme. Quite interestingly, we found that all one needs is that〈d, c〉 form acommitment schemewith a special
property, calledextractability(see [10]). We formally define it later, but observe that extractable commitments
are extremely easy to construct in the random oracle model, which we use anyway in the subsequent Feistel
Transform. Indeed, we give a number of such simple and efficient constructions, which in turn gives many
examples of provably-secure two-padding schemes. Moreover, our security reductions from the corresponding
two-padding schemes to the problem invertingf aretight for a large class of trapdoor permutationsf (defined
later) which includes all currently known examples, such as RSA, Rabin, and Paillier. This makes thePbPS
paradigm very attractive in terms of exact security.

Even more remarkable, however, is that all the aforementioned padding schemes —OAEP, OAEP+, PSS-R,
SAP— becomespecial cases of our general constructionwhen viewed as two-paddings! As a result, not
only do we find a natural generalization of all conventional padding schemes, but we show that any such
padding scheme defines a secure two-padding scheme which can then be used for signcryption. Of indepen-
dent interest, we will also define a new “hybrid” betweenPSS-R and OAEP, which we callProbabilistic
Signature-Encryption Padding(PSEP). This two-padding will allow us to achieve optimal message bandwidth
for signcryption usingPbPS.

RELATION TO PREVIOUS WORK. While padding schemes are very popular in the design of ordinary encryp-
tion and signature schemes (e.g. [6, 7, 36, 15]), the most relevant previous works are those of [9, 2, 27].

COMPARING WITH [9]. Our universal two-padding schemes are similar in spirit to “universal padding”
schemes defined by Coronet al. [9], which we refer to as universalone-paddings. To explain this name,
such one-paddings transformm into a singlestringπ such thatf(π) is a secure encryption andf−1(π) is a
secure signature. Additionally, [9] requires that users can use the same trapdoor permutationf for both signing
and encrypting. We now compare one- and two-paddings. Application-wise, one-paddings are conceptually
used for plain signature and encryptionseparately; i.e., the user can either sign or encrypt with the same key. In
this setting, reusing the key for signing/decrypting is much more important than reusing the padding scheme.
In fact, the latter property is really of marginal importance given the simplicity of current padding schemes.4 In
contrast, our motivation for two-padding scheme comes fromjoint signature and encryption;i.e., the user can
either signcrypt or de-signcrypt, and even with a single key for both. In this setting, reusing the two-padding is
much more crucial: The whole application to parallel signcryption would not evenmake senseunless the same
w ands can be used for encrypting and signingsimultaneously.

On the other hand, from a technical perspective, every non-trivial partition of a one-padding into two partsis
a secure two-padding — by considering trapdoor permutations of the formf ′(w‖s) = f(w)‖s andf ′′(w‖s) =
w‖f(s) — while the converse is easily seen to be false. Of course, prior to this work,nouniversal one-padding
schemes were known, since [9] only constructs one specific to RSA rather thananyf . Subsequent to our work,
several constructions of one-paddings were found [12, 25]. However, the construction of [25] is a special case
of a more general construction of [12], while the latter critically builds upon this current work. Needless to
say, these one-paddings are more complicated than the two-paddings we construct, and we actuallydo not need
these extra complications for our signcryption application. Finally, we remark that a very special case of our
result —PSS-R is a secure two-padding — can be indirectly derived from previous work of [7, 9]: [7] can
be seen to imply the signing part, while the “partial one-wayness” result of [9] is general enough to imply the
encryption part. Of course, our construction is much more general, gives many more two-paddings, and the

4We also remark that reusing the key without reusing the padding already followed from the prior work of Haber and Pinkas [18],
who show thatOAEP+ [36] andPSS-R [7] can reuse the same key.
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whole signcryption application was not previously considered.

COMPARING WITH [2]. The parallel “commit-then-encrypt-and-sign” (CtE&S) paradigm of [2] for building
signcryption first applies any commitment scheme to transformm into a pair〈d, c〉, and then encryptsd and
signsc, using aIND-CCA2-secure encryption andsUF-CMA-secure signature, respectively. Two-paddings can
be viewed as allowing us to replace the above “strong” encryption and signature schemes by a mere trapdoor
permutation (resp. its inverse) such as RSA. In fact, our Feistel-based two-padding construction essentially
says that applying one round of the Feistel Transform to a pair〈d, c〉 sufficient for CtE&S, we get a pair
〈w = c, s = H(c)⊕ d〉 sufficient forPbPS!

Of course, another natural question is to compare the generic composition paradigm of [2] with thePbPS
approach in the random oracle model. For example, we could use a padding-basedIND-CCA2-secure en-
cryption, such asOAEP+ [36], and a padding-basedsUF-CMA-secure signature, such asPSS or PSS-R [7].
While this is indeed a possibility, the resulting signcryption scheme is considerably more awkward and less ef-
ficient (in all respects!) than the optimizedPbPS approach used with any of the simple two-padding schemes
we construct. For example, usingCtE&S with OAEP+, PSS-R, and any random-oracle based commitment
scheme, we essentially have to pad the message twice, which only allows us to signcrypt significantly shorter
messages, and results in a poorer exact security. The sequential approaches have similar disadvantages, while
additionally losing the parallelism.

COMPARING WITH [27]. This recent work suggests to use thePSS-R padding for sequential signcryption
with RSA. Namely, to transmitRSAR(RSA−1

S (π)), whereπ is the result ofPSS-R applied to the message
m, andRSAU is the RSA key of userU . This approach has several disadvantages as compared to thePbPS
approach. (1) While the approach syntactically makes sense for generalf , usingPSS-R effectively restricts its
use to RSA [9]. On the other hand,PbPS works for generalf with a wide variety of padding schemes. (2) The
exact security of encryption is very poor, whilePbPS gives tight security reductions. (3) The scheme can be
proven secure only in the so-called two-user setting [2], and is provably insecure in a more realistic multi-user
setting for signcryption. (4) While the above problem could potentially be fixed by somehow “binding” the
message with the users’ public keys, a more serious problem is that [27] use a relatively weak notion of so-
called Outsider security [2] for privacy. In contrast,PbPS uses a much stronger notion of Insider security [2]
for both privacy and authenticity. We see no obvious way how to overcome this problem in the construction of
[27]. (5) The scheme of [27] is sequential, whilePbPS is parallel. (6) Using a sequential composition with
RSA creates syntactic problems of ensuring that the domain sizes forRSAS andRSAR “match up”, which
requires special ad-hoc care. In particular, the suggested scheme is not flexible to support RSA keys of different
sizes, whilePbPS has no such problem.

On a positive note, if all users in the system have RSA keys of sizek, the scheme of [27] allows a user to
signcrypt (very short) messages with a ciphertext of lengthk. On the other hand, the minimal length of the
ciphertext withPbPS would be2k. We believe that this disadvantage is minor in light of (1)-(6), especially
since it is relevant only for very short messages. Moreover, using the scheme of [27], one can only signcrypt
messages of length significantly less thank/2, whilePbPS with an appropriate two-padding scheme allows a
user to signcrypt messages of length close to2k.

EXTENSIONS. We extend the basicPbPS approach in two important ways. First, it can effortlessly support
associated data[31], allowing one to “bind” a public label to a message when signcrypting it. This capability
has many nice applications, including allowing us to trivially bind the message to the public keys ofS and
R, thus solving the aforementioned “multi-user” problem for signcryption. Second, using the recent work of
Dodis and An [11], we efficiently extend our method to signcrypt arbitrarily long messages; namely, to build a
full-fledged, practical signcryption scheme of arbitrary messages (that also supports associated data).
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2 Definitions

In this section, we start by quickly reviewing some common cryptographic definitions; Appendix A provides
more formal security definitions of such schemes. Second, we introduce the notion of a two-padding. We put
off the discussion of signcryption until Section 5.

2.1 Encryption, Signatures, and Trapdoor and Claw-Free Permutations

ENCRYPTION. A public-key encryption scheme consists of the algorithms(Enc-Gen,Enc,Dec). Enc-Gen(1λ)
generates the public/private key-pair(EK,DK), with a security parameterλ. Syntactically, we write the ran-
domized encryption algorithm asψ ← EncEK(m), wherem is a message chosen from message spaceM
andψ is the associated ciphertext. We express the behavior of the deterministic decryption algorithm as
{m,⊥} ← DecDK(ψ), whereDec outputsm or⊥ if ψ is invalid. In this paper, we only consider the strongest
notion of security:IND-CCA2 security. This property means that the encryption scheme providesindistin-
guishabilityof ciphertexts (IND) [16] underadaptive chosen-ciphertext attacks(CCA2) [30, 14]: No proba-
bilistic poly-time (PPT) adversary can distinguish between the ciphertexts of two chosen messages,m0 and
m1, given the corresponding public keyEK and oracle access toDec, with probability greater thanεCCA2,
whereεCCA2 is negligible inλ.

SIGNATURES. A public-key signature scheme consists of the algorithms(Sig-Gen,Sig,Ver). Sig-Gen(1λ)
generates the key-pair(SK,VK), whereSK is the signing key kept private, andVK is the verification key made
public. We write the randomized signature algorithm asσ ← SigSK(m). As we assume that the signature
scheme has message recovery, the deterministic verification algorithm can be expressed asa ← VerVK(σ),
where the answera ∈ {succeed, invalid}, where invalid is again denoted by⊥. Correctness requires that
Ver(Sig(m)) 6= ⊥ for anym ∈M. We consider the strongest notion of signature security,strong unforgeability
against achosen-message attack(sUF-CMA) [17, 5]: GivenVK and oracle access toSig, no PPT adversary
can forge anewsignatureσ∗ with probability greater thanεCMA, whereεCMA is negligible inλ.

TRAPDOOR PERMUTATIONS. Informally, a family of trapdoor permutations (TDPs) is a family of permuta-
tions such that it is easy to randomly select a permutationf and some “trapdoor” associated withf . Further-
more,f is easy to compute and, given the trapdoor information, so is its inversef−1. However, without the
trapdoor,f is “hard” to invert: NoPPT adversaryA, given somey ← f(x), can findx with probability greater
thanεTDP, which is negligible in the security parameterλ of the generation algorithm.

CLAW-FREE PERMUTATIONS. To improve the exact security of our constructions, we will also talk about a
general class ofTDPs — those induced by a family ofclaw-free permutationpairs [17], following the obser-
vation made by [13]. In this context, the generation algorithm outputs(f, f−1, g), whereg is another efficient
permutation over the same domain asf . The task of thePPT adversaryB now is to find a “claw”(x, z), i.e.,
f(x) = g(z), which it succeeds at with probabilityεclaw, negligible inλ. It is trivial to see that omittingg
from the generation algorithm induces aTDP family with εTDP ≤ εclaw (B callsA on randomg(z)). On the
other hand, all knownTDP families, such as RSA, Rabin, and Paillier, are easily seen to be induced by some
claw-free permutation families withεclaw = εTDP. Thus, a tight reduction to “claw-freeness” of such families
implies a tight reduction to inverting them. See [13] for more details.

2.2 Two-Paddings

SYNTAX . A two-padding scheme consists of the poly-time algorithmsPAD andDePAD. The probabilistic
algorithmPAD accepts input messagesm ∈M and produces a pair of outputs, denoted as(w, s)← PAD(m).
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The deterministic algorithmDePAD accepts input pairs of the same form(w, s) and returns either message
m ∈M or⊥. Correctness requires thatDePAD(PAD(m)) = m for anym ∈M.

For syntactical convenience, we further define a pair of operations, with respect to anyTDPsf andf ′, as the
following: ψ‖s ← PadEncf (m) andw‖σ ← PadSigf ′(m). PadEncf (m) first computes(w, s) ← PAD(m)
and then outputsψ‖s = f(w)‖s. Similarly, PadSigf ′(m) computes(w, s) ← PAD(m) and outputsw‖σ =
w‖f ′−1(s). The corresponding pair of operationsPadDecf (ψ‖s) andPadVerf ′(w‖σ) are defined in the natural
way, both recovering the pair(w, s) and outputtingDePAD(w, s).

SECURITY. We callPS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-securetwo-paddingscheme if, for any
(Tf , εTDP)-secureTDPs f andf ′, the correspondingPadEncf is a (t, εCCA2, qD)-secureIND-CCA2 encryp-
tion andPadSigf ′ is a(t, εCMA, qS)-securesUF-CMA signature.

We callPS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-secureuniversal two-paddingscheme if, for any
TDP f , the correspondingPadEncf andPadSigf are simultaneously(t, εCCA2, qD)- and(t, εCCA2, qD)-secure,
respectively, when a user reuses the samef for both encryption and signature. Formally, the adversary has
access to aPadSigf oracle during theIND-CCA2 attack game played againstPadEncf , and, similarly, the
adversary has access to aPadDecf oracle during thesUF-CMA attack game played againstPadSigf .

2.3 Extractable Commitments

Our constructions for two-paddings will involve a specialized commitment scheme we call an “extractable”
commitment. Extractable commitments have a syntax similar to standard commitment schemes, but with the
additional property that there exists an extraction algorithm which a simulator can use to extract a unique de-
commitment from any valid commitment with high probability. This extraction algorithm immediately follows
for most commitment schemes based on the random oracle model, but requires the existence of a trapdoor for
commitment schemes which do not make use of the random oracle model. Note that this differs from what is
commonly referred to as a “trapdoor commitment” [8] where the goal is to construct alternative decommitments
(with different openings) for a given commitment.

SYNTAX . An extractable commitment schemeC consists of four algorithms(Setup,Commit,Open,Extract).
The optional setup algorithmSetup(1λ) outputs a public commitment keyCK (possibly empty) and possibly
a secret trapdoorTK used by the extraction algorithmExtract. Given a messagem ∈ M and some random
coinsr, CommitCK(m; r) outputs a pair(c, d) wherec is k1-bit string representing the commitment tom andd
is the correspondingk2-bit long decommitment. As a shorthand, we will write(c, d)← Commit(m) andc(m)
to denote a commitment to messagem. OpenCK(c, d) outputsm if (c, d) is a valid commitment/decommitment
pair form, or⊥ otherwise. Correctness requiresOpen(Commit(m)) = m for all m ∈M.

SECURITY. We require this commitment scheme to satisfy two security properties:

HIDING . No PPT adversary can distinguish the commitment of any messages of its choice from ak1-bit
random string:c(m) ≈ R. Formally, for anyPPT A running in two stages,find andguess, in time at mostt,

Pr
[
A(c; α, guess) = 1

∣∣∣ (m,α)← A(1λ, find),
(c, d)← Commit(m)

]
−Pr

[
A(R; α, guess) = 1

∣∣∣ (m,α)← A(1λ, find),
R

R← {0, 1}k1

]
≤ εhide

whereεhide is negligible in the security parameterλ. Note thatSetup(1λ) is implicitly run in both experiments
if necessary, andCK is given toA. This property is a slightly stronger requirement than that of an ordinary
commitment scheme which only requiresc(m0) ≈ c(m1).
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EXTRACTABILITY . There exists a deterministic poly-time algorithmExtract which can extract the “correct”
decommitment from any valid commitment, given access to all random oracle transcripts (and the trapdoorTK
output bySetup if necessary). Formally, for anyPPT A running in time at mostt,

Pr[Extract(c, T ) 6= d ∧ Open(c, d) 6= ⊥ | (c, d)← A(1λ)] ≤ εextract

whereT is either a transcript of all random oracle queries or the trapdoor informationTK, andεextract is
negligible inλ. TheSetup operation is implicit when necessary, andCK is given toA.

We say that a commitment schemeC is a (t, εhide, εextract)-secure extractable commitment if it satisfies
the above properties. The “standard” notion of a commitment requires a binding property, instead of our
extractability property. We now show that a strong form of binding follows from the extractability property.

Lemma 1 (Binding property of extractable commitments) GivenCK, it is computationally hard to produce
(c, d, d′) such that(c, d) and(c, d′) are valid commitment pairs andd 6= d′. Formally, for anyPPT A running
in time at mostt (whereSetup is implicit andCK is given toA),

Pr[Open(c, d) 6= ⊥ ∧ Open(c, d′) 6= ⊥ ∧ d 6= d′ | (c, d, d′)← A(1λ)]
def

≤ εbind ≤ 2εextract

When appropriate, we directly useεbind for conceptual clarity and becauseεbind may in fact be tighter than
2εextract. Note this is slightly stronger than the normal binding property of commitment schemes, where(c, d′)
must not represent a valid commitment for adifferentmessage: We also disallow alternative decommitments of
the same message.

Proof: Consider a reductionB against the extractability property of the commitment scheme as follows.B runs
A and obtains(c, d, d′) if A succeeds.B then randomly outputs(c, d) or (c, d′) with equal probability. Since
Extract(c, T ) is a deterministic value, it matches the output ofB with probability at most1/2. In the event that
it does not match,B has broken the extractability property. Since this must happens with probability at most
εextract, we find thatA succeeds with probability at most2εextract.

We now state an additional useful property of(t, εhide, εextract)-secure extractable commitments:

Lemma 2 ∀ PPT A running in timet, Pr[Open(c, d) 6= ⊥ | c← A(1k); d R← {0, 1}k2 ] ≤ εextract + 2−k2

Proof: Consider a reductionB against the extractability property of the commitment scheme as follows.B
runsA and obtainsc ← A(1k), chooses ad uniformly at random, and returns(c, d). The probability thatB
succeeds is at least the probability thatA succeeds minus the probability thatd = Extract(c, T ). Sinced is
chosen randomly, the probability thatd = Extract(c, T ) is 2−k2 . The lemma follows.

3 Feistel Two-Padding

We now provide a generic construction for a class of provably secure two-padding schemes in the random oracle
model based on a single round of the Feistel Transform.

Definition 1 (Feistel Two-Padding) LetC = (Setup,Commit,Open,Extract) be any(t, εhide, εextract)-secure
extractable commitment scheme andH : {0, 1}k1 → {0, 1}k2 be a random oracle. AFeistel Two-Padding
PADC(m)→ (w, s) induced byC is given by:

(c, d) ← Commit(m)
w ← c
s ← H(w)⊕ d
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Note that(w, s) represents a Feistel Transform on input(d, c) usingH. The correspondingDePADC algorithm
computesd = H(w)⊕ s andc = w, then returnsOpen(c, d).

Theorem 1 Feistel two-padding is a universal two-padding. In terms of exact security: For any(t, εhide, εextract)-
secure extractable commitmentC and any(t, εTDP)-secureTDP f , the Feistel two-padding scheme induced by
C andf is a (t′, εCCA2, εCMA, qD, qS , qH)-secure universal two-padding scheme, with

εCCA2 ≤ εTDP + 2εhide + (qD + 1)(2−k2 + εextract + εbind)
εCMA ≤ qH · εTDP + qS(2−k1 + εhide) + (qD + 2)(2−k2 + εextract + εbind)

t′ = t−O((qH + qS) · (Tf + Textract))

whereqH is the number of queries toH, Tf is the running time off , andTextract is the running time ofExtract.
Furthermore, iff is induced by a(t, εclaw)-secure family claw-free permutations, then the signature reduc-

tion becomes tight:

εCMA ≤ εclaw + qS(2−k1 + εhide) + (qD + 2)(2−k2 + εextract + εbind)

The proof of this theorem is given in Appendix B. We note that by the result of [13], a security loss ofΩ(qH)
for our signature reduction with generalTDPs is inevitable. Thus, the restriction to claw-free permutations is
necessary to obtain a tight security reduction.

4 PSS-R, OAEP, OAEP+, SAP and other Feistel 2-Paddings

We now demonstrate that our Feistel two-padding construction generalizes nearly all common padding schemes
currently used for plain encryption or signature. First, we observe that conventional padding schemes such as
OAEP [6], OAEP+ [36], PSS-R [7], andSAP [21] naturally consist oftwo partsw‖s and indeed utilize a
round of the Feistel Transform on various pairs of〈d, c〉 at their last step:〈w = c, s = H(w)⊕ d〉. Thus, using
Theorem 1 we only need to prove that the corresponding〈d, c〉 satisfy the simple requirements of extractable
commitments.

The basic arguments we present are quite standard in the random oracle model, so we will often only sketch
the proofs in this section, omitting the obvious (but tedious) details for brevity. We start with a short discus-
sion of OAEP andPSS-R, before generalizing both of these padding schemes toPSEP. Exact bounds on
εhide, εextract will be given later.

• OAEP. This padding is defined as
〈
w = (m‖0k̂)⊕G′′(r), s = H(w)⊕ r

〉
, which is syntactically equiv-

alent to〈w = (m⊕G(r))‖G′(r), s = H(w)⊕ r〉. This〈w, s〉 pair is constructed by a one-round Feistel
Transform on〈d = r, c = (m⊕G(r))‖G′(r)〉. We now argue that this〈d, c〉 forms an extractable com-
mitment. Recall|c| = k1 and let|m| = n < k1. (1) Hiding is true asG′′(r) is a perfect one-time-pad
(OTP) unlessr is reused, which occurs with negligible probability. (2) Extractability is easily seen to
be true by noticing that one can “extract”r fromG′(r) (which is part ofc) by simply going through the
random oracle transcripts and seeing which one matches the lastk̂ = (k1 − n) bits of c.

• PSS-R. This padding scheme has the form〈w = G′(m‖r), s = H(w)⊕ (m‖r)〉, which yields the pair
〈d = m‖r, c = G′(m‖r)〉. Here|m| = n < k2. We again argue that this is an extractable commitment.
(1) Hiding is true sincer is random and thusG′(m‖r) hides all information aboutm, unless the adversary
queriesG′ onm‖r, which happens with negligible probability. (2) Extractability is again easily seen by
simply going through the transcripts ofG′ and extracting the correspondingm‖r which matchesc.
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• PSEP. In fact, we observe the surprising fact that the above two padding schemes can be commonly
generalized into the following form. For any parametera ∈ [0, n] (where|m| = n), writem = m1‖m2,
where|m1| = a and|m2| = n− a, and define

w ←
(
m1 ⊕G(r)

)
‖ G′(m2‖r)

s ← H(w)⊕ (m2‖r)

Notice if we seta = 0, this scheme yieldsPSS-R; while if a = n, we exactly haveOAEP. Accordingly,
we call this “hybrid” schemeProbabilistic Signature Encryption Padding. In Appendix D, we argue the
following bounds onPSEP.

Lemma 3 The commitment scheme〈d = m2‖r, c = (m1 ⊕G(r))‖G′(m2‖r)〉 definingPSEP satisfies:

εhide ≤ (qG + qG′) · 2−(k2+a−n); εextract ≤ (q2
G′ + 1) · 2−(k1−a)

whereqG andqG′ are the number of oracle queries toG andG′ made by the adversary.

By playing with the parametera, we now have greater flexibility in choosing the lengths ofw ands, or maxi-
mizing the lengthn of our messagem when|w| = k1 and|s| = k2 are fixed. For example, consider the natural
“balanced case”k1 = k2 = k. With bothOAEP andPSS-R, we had to setn < k, while the total length2k
of our two-padding potentially allowed to maken ≈ 2k. With the more general scheme, we can easily achieve
this goal! Indeed, Lemma 3 implies that it is safe to set|m1| = k − 2k̂, |m2| = k − k̂, |r| = |G′(·)| = k̂,
wherek̂ is just large enough to be a security parameter (i.e., 150 bits is more than enough in practice). For
example, whenk = 1024, we can (conservatively) fit1600-bit message inside our two-padding (of total length
2048), instead of about 700-800 bits allowed by plainPSS-R andOAEP. (Of course, for many applications,
signcrypting short messages is sufficient. For example, Dodis and An [11] recently showed that one can easily
build an arbitrary-length signcryption from one supporting only about300-bit messages.)

• OAEP+. This padding is a similar but slightly more “conservative” form ofOAEP, with d = r and
c = (m⊕G(r)‖G′(m‖r). The proof that above〈c, d〉 form an extractable commitment a simple variation
of the argument forOAEP, and is included in Appendix D. We remark, however, that the “extra” input
m toG′ used inOAEP+ is not actually necessary for our application (although it does provide a slightly
tighter bound forεextract). The original reason for which Shoup [36] proposedOAEP+ in place ofOAEP
was to provide security for encryption when a genericTDP f is applied tobothw‖s, instead of only to
w. In fact, Fujisakiet al. [15] already showed that it is safe to use plainOAEP whenf is only applied to
w. Our much more general framework gives yet another verification of this fact.

• SAP. This padding scheme can be viewed as the following. Writem = m1‖m2, and set

w ← G
(
m1‖r‖G′(m2)

)
⊕m2 // padm2 with 0’s if |m2| < |G(·)|

s ← H(w)⊕
(
m1‖r‖G′(m2)

)
Actually, this is a slight simplification of the “scramble all” padding scheme used in [21]. In the original
version,G′(·) was more conservatively applied tom1‖m2‖r. We show that for our purposes, even
the simpler version suffices, which we also show in Appendix D. (Of course, the original version can
be easily shown secure as well.) Interestingly, if we set|m2| = |G′(·)| = 0 for SAP, we again get
PSS-R! On the other hand, if we set|m1| = 0, we get yet another, new extractable commitment scheme:
〈d = r‖G′(m), c = G(d)⊕m〉.

In short, the approach of Theorem 1 allows us to derive both old and new provably-secure two-padding
constructions, by only showing a few straightforward properties in〈d, c〉!
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5 Two-Padding as a Secure Signcryption

As observed by [3, 2], full-fledged signcryption must be defined in themulti-partysetting, where issues with
users’ identities are addressed. In contrast, authenticated encryption in the symmetric setting only needs to
consider a much simplertwo-partysetting. A similar two-party model could be used for signcryption too [2].
However, as transforming two-user signcryption to the multi-user setting is quite subtle in general (see [2]), we
will right away consider the more challenging and generally required multi-user setting.

5.1 Definition of Signcryption

SYNTAX . A signcryption scheme consists of the algorithms(Gen,SigEnc,VerDec). In the multi-party setting,
the Gen(1λ) algorithm for userU generates the key-pair(SDKU ,VEKU ), whereλ is the security parameter,
SDKU is the signing/decryption key that is kept private, andVEKU is the verification/encryption key made
public. Without loss of generality, we assume thatVEKU is determined fromSDKU .

The randomized signcryption algorithmSigEnc for userU implicitly takes as input the user’s secret key
SDKU , and explicitly takes as input the messagem ∈ M and the identity of the recipient, in order to compute
and output the signcryptionΠ. For simplicity, we consider this identityID to be a public keyVEK, although
ID could be of more complex form, provided that other users can easily obtainVEK from ID. Thus, we write
SigEncSDKU (m, IDR) asSigEncSDKU (m,VEKR), or simplySigEncU (m,VEKR).

Similarly, userU ’s deterministic de-signcryption algorithmVerDec implicitly takes the user’s privateSDKU ,
and explicitly takes as input the signcryptionΠ̃ and the senders’ identity. Again, we assumeIDS = VEKS , and
write VerDecSDKU (Π,VEKS), or simplyVerDecU (Π,VEKS). The algorithm outputs some messagem̃, or⊥
if the signcryption does not verify or decrypt successfully. Correctness ensures that for any usersS andR,
VerDecR(SigEncS(m,VEKR),VEKS) = m, for anym ∈M.

SECURITY. Below we will use the strongest notion ofInsidersecurity for multi-user signcryption [2]. Clearly,
a weaker notion of the so calledOutsidersecurity easily follows as well.

As expected, the security for signcryption consists onIND-CCA2 andsUF-CMA components when attack-
ing some userU . Both games with the adversary, however, share the following common component. After
(SDKU ,VEKU ) ← Gen(1λ) is run andA getsVEKU , A can make up toqSE adaptive signcryption queries
SigEncU (m,VEKR) for arbitrary VEKR, as well as up toqVD de-signcryption queriesVerDecU (Π,VEKS),
again for arbitraryVEKS .

The IND-CCA2 security of signcryption requires that noPPT adversaryA can find some pairm0,m1

for which he can distinguishSigEncS(m0,VEKU ) from SigEncS(m1,VEKU ). Notice, to makesenseof the
statement,A has to output thesecret keySDKS of the sender whose messages toU he can “understand”. While
seemingly restrictive, this is amuch strongerguarantee than ifA tried to do it with some senderS whose key
he did not know. A good way to interpret this requirement is to say that even whencompromisingS, A still
cannot “understand” messagesS sent toU . In fact, we allowA much more, as he cancome upwith the secret
key SDKS without necessarily generating it viaGen! Formally, for anyPPT A running in timet,

Pr

[
b = b̃

∣∣∣∣∣ (m0,m1,SDKS , α)← ASigEncU (·,·),VerDecU (·,·)(VEKU , find), b R← {0, 1},
Π← SigEncS(mb,VEKU ), b̃← ASigEncU (·,·),VerDecU (·,·)(Π; α, guess)

]
≤ 1

2
+ εSC−CCA2

whereεSC−CCA2 is negligible in the security parameterλ, and(SDKU ,VEKU )← Gen(1λ) is implicitly called
at the beginning. In theguess stage,A only has the natural restriction of not queryingVerDecU with (Π,VEKS),
but can still use(Π,VEKS′) for VEKS′ 6= VEKS .

For sUF-CMA security, noPPT A can forge a “valid” signcryptionΠ (of some messagem) fromU to any
userR, provided thatΠ was not previously returned from a query toSigEncU . Again, to make sense of the word

10



“valid”, A has to come up with the presumed secret keySDKR as part of his forgery. Again, this seemingly
restrictive condition makes the definition actuallystronger, similar to theIND-CCA2 case. Formally, for any
PPT A running in timet,

Pr
[
VerDecR(Π,VEKU ) = m ∧m 6= ⊥

∣∣∣ (Π,SDKR)← ASigEncU (·,·),VerDecU (·,·)(VEKU )
]
≤ εSC−CMA

whereεSC−CMA is negligible in the security parameterλ, Gen(1λ) is implicit, andA did not obtainΠ in response
to anySigEncU (m,VEKR) query. We call any scheme satisfying these properties a(t, εSC−CCA2, εSC−CMA, qVD, qSE)-
secure signcryption scheme.

5.2 PbPS Gives Secure Signcryption

Now, we can formally argue that universal two-padding schemes, when used in thePbPS paradigm, are suffi-
cient for secure signcryption. Recall, in our setting each userU generates a trapdoor permutationfU = VEKU ,
of which onlyU knows the trapdoorf−1

U = SDKU .
To signcrypt a message fromS to R, one is first tempted to generate the two-padding(w, s) ← PAD(m),

and then compute the signcryptionψ‖σ ← fR(w)‖f−1
S (s). De-signcryption is done in reverse, by first recov-

eringw = f−1
R (ψ), s = fS(σ), and finallym = DePAD(w, s). We letBasic-PbPS (Basic Padding-based

Signcryption Scheme) denote this natural signcryption scheme. In fact,Basic-PbPS is secure in the simplistic
“two-party” model [2]. Unfortunately, it is trivially insecure according to our definition of multi-party signcryp-
tion. For example, an adversaryA can ask some honestS to send a messagem toA. Upon receivingψ‖σ from
S,A can recoverw = f−1

A (ψ), and then forge a valid signcryptionfR(w)‖σ of m from S to any other userR.
Similar “identity fraud” allowsA to break theIND-CCA2 security as well.

As this demonstrates, in the multi-user setting, the signcryption must non-trivially depend on the identities of
the message’s sender and its intended recipient, in order to protect both the authenticity ofS’s messages and the
privacy ofR’s messages. In this section, we provide one simple way to accomplish this; an optimized version is
presented in Section 6 when we introduce the notion of associated data. We letPbPS be the following scheme,
whereh is a collision-resistant hash function (CRHF) with running timeTh. The senderS simply applies
Basic-PbPS to the messagem′ = m‖h(VEKS ,VEKR). On the receiver’s side,R first recoversm′ = m‖~
just like inBasic-PbPS, but outputsm only if ~ = h(VEKS ,VEKR); otherwise,R outputs⊥.

Theorem 2 PbPS is a
(
t−O((qD+qS) · (Tf +Th)), (εCCA2 +q2

h ·εCRHF), (εCMA +q2
h ·εCRHF), qD, qS , qH

)
-

secure signcryption, providedh is a(t, εCRHF)-secure CRHF and(PAD,DePAD) is any(t, εCCA2, εCMA, qD, qS)-
secure universal two-padding scheme.

We include the proof of this theorem in Appendix E. As an immediate corrolary, however, we get that any
Feistel two-padding schemes, such asPSEP, PSS-R, OAEP, OAEP+, SAP, etc., can be used inPbPS.

6 Signcryption for Long Messages (with Associated Data)

The signcryption scheme described in Section 5 is adequate for short messages or keys; however, we can
construct a signcryption scheme for long messages virtually “for free”, using an approach similar to the one
described in [11]. We first extend our Feistel Two-Padding to support labels, or “associated data” as in [31].
Then, to handle long messages, we apply the previous signcryption scheme to a short one-time key used to
encrypt the long message. The ciphertext of the long message is simply attached to the signcryption in the form
of a label. This provides the required authenticity guarantee.
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6.1 Two-Paddings with Associated Data

SYNTAX . The syntax is similar to the previously-described two-padding scheme, with the addition of a new
“label” parameterL provided to bothPAD and DePAD. That is, we now write(w, s) ← PADL(m) and
m ← DePADL(w, s). PadEnc andPadSig are similarly enhanced as follows:L‖ψ‖s ← PadEncLf (m) and

L‖w‖σ ← PadSigLf (m). Note thatψ andσ are defined exactly as before,i.e., f(w) andf−1(s), respectively.
Naturally,PadDec andPadVer now expectL at the front of their input string as well.

SECURITY. We callLPS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-securelabelled two-paddingscheme
if, for any TDPsf andf ′, the correspondingPadEncLf is a(t, εCCA2, qD)-secureIND-CCA2 encryption on the

message inputm (considering the entire outputL‖ψ‖s as a ciphertext) andPadSigLf ′ is a(t, εCMA, qS)-secure
sUF-CMA signature on(L,m). Note thatA must choose a fixed labelL∗, in addition tom0 andm1, during
the find stage of theIND-CCA2 game. Although theIND-CCA2 security does not require hiding forL—in
fact, it is given in the clear—L is considered part of the ciphertext. For example, given a challenge ciphertext
L∗‖ψ∗‖s∗ during theIND-CCA2 game, the adversary may ask the decryption oracle to decryptL′‖ψ∗‖s∗ for
anyL′ 6= L∗.

We callLPS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-securelabelled universal two-paddingscheme
if it is a (t, εCCA2, εCMA, qD, qS)-secure labelled two-padding even when a user is reusing the sameTDP f for
both encryption and signature. This definition is analogous to that of Section 2.2.

Definition 2 (Labelled Feistel Two-Padding) Let C = (Setup,Commit,Open,Extract) be any extractable
commitment scheme andH : {0, 1}∗ × {0, 1}k1 → {0, 1}k2 be a random oracle. A Labelled Feistel Two-
PaddingPADL(m)→ (w, s) is given by:

(c, d) ← Commit(m)
w ← c
s ← H(L, w)⊕ d

Note that(w, s) represents a Feistel Transform on input〈d, c〉 usingH(L, ·). The correspondingDePAD
computesd = H(L, w)⊕ s andc = w, then returnsOpen(c, d).

Theorem 3 The Labelled Feistel Two-Padding described above is a secure labelled universal two-padding
scheme, with the same exact security as the Feistel Two-Padding in Theorem 1, including the tighter exact
security when a claw-free permutation family is used instead of aTDP.

The proof of this theorem is in Appendix C. Intuitively, the labelL selects a random oracleH(L, ·) from an
infinite family of oracles to be applied in the Feistel transform. Using an incorrect oracle will caused to become
randomly defined; by Lemma2, this will causeOpen to return invalid. Thus, the label is effectively bound to
the rest of the padding. Notice that security for the label is “free” as a consequence of our use of a random
oracle in the padding: (1) there isno loss in security due to the inclusion of the label, and (2) the computational
cost of adding the label is negligible in practice, as it entails merely increasing the size of input toH.

6.2 Signcryption with Associated Data

SYNTAX . The syntax of the labelled signcryption and de-signcryption algorithms differs from normal sign-
cryption only by the inclusion of a “label” parameter`. These algorithms are denotedSigEnc` andVerDec`.

SECURITY. The security notions for these labelled algorithms are similar to those of standard signcryption,
with the added requirement that` is considered part of the ciphertext (for the purposes ofCCA2 decryption
oracle queries), and must be authenticated. However, there is no hiding requirement for`.
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If we replace the universal two-padding in thePbPS construction described in Section 5 with a labelled
universal two-padding, the resulting signcryptionSigEnc` supports associated data by simply settingL = `.
This is a natural extension, and the proof is similar to that of Theorem 2. However, we can do better than this by
taking advantage of the associated data to bind the identities of the participants, rather than wasting part of the
message space to append a hash of their public keys. We defineLabelled Padding-based Parallel Signcryption
(`-PbPS) to beBasic-PbPS using a labelled universal two-padding with labelL = `‖VEKS‖VEKR, where
` is the associated data to be used for signcryption andVEKS , VEKR are the public keys of the sender and
recipient, respectively.

Theorem 4 `-PbPS as described above is a(t−O((qD+qS)·Tf ), εCCA2, εCMA, qD, qS , qH)-secure signcryp-
tion, provided that(PAD,DePAD) is a(t, εCCA2, εCMA, qD, qS)-secure labelled universal two-padding scheme.

The proof is similar to that of Theorem 2 but it provides improved exact security since the CRHF is not
involved. Note that including the public keys in the associated data does not increase the length of a ciphertext
since the keys are already available.

6.3 Signcryption of Long Messages using Associated Data

Using the “concealment” approach described in [11], we can extend any short-message signcryption scheme
with support for associated data to include support for long messages. Although arbitrary concealment schemes
will suffice, for efficiency purposes we will consider concealments utilizing any one-time(t, εOTE)-secure
encryption scheme(E,D),5 as discussed below. As will be obvious from our implementation below, the
construction described in the following theorem is analogous to that of symmetric key authenticated encryption
with support for associated data given in [11].

LetSC = (Gen,SigEnc,VerDec) be any signcryption scheme onn̂-bit messages with support for associated
data, and(E,D) be any one-time encryption scheme with keysizen̂. We define a signcryption schemeSC′ =
(Gen,SigEnc′,VerDec′) on long messages with support for associated data as follows. LetSigEnc′`(M) =
SigEncL(τ), whereL = `‖Eτ (M) andτ is a random̂n-bit string. Similarly,VerDec′`(π,Π) = Dτ (π), where
τ = VerDecL(Π) andL = `‖π.

Theorem 5 If SC is (t, εSC−CCA2, εSC−CMA, qVD, qSE)-secure and(E,D) is (t, εOTE)-secure (with encryp-
tion/decryption timeTOTE), thenSC′ is (t − O((qVD + qSE) · TOTE), εSC−CCA2 + εOTE, εSC−CMA, qVD, qSE)-
secure.

The proof of this theorem is given in Appendix F. The result of this theorem allows us extend`-PbPS to
support long messages by using the padding labelL = L‖VEKS‖VEKR = `‖Eτ (M)‖VEKS‖VEKR.

6.4 Putting the Pieces Together

We now construct a complete signcryption scheme with support for long messages and associated data by
collecting the pieces described in Sections 6.1 through 6.3.

Definition 3 (Feistel-̀ -PbPS) LetC = (Setup,Commit,Open,Extract) be an extractable commitment scheme
and (E,D) be a one-time secure encryption scheme withn̂-bit keys. LetH be a random oracle, and assume
that

〈
fS , f

−1
S

〉
and

〈
fR, f

−1
R

〉
areTDPs known to the senderS and receiverR, respectively. Also, let̀denote

an arbitrary length label andM ∈ {0, 1}poly(n̂) be a (long) message.

5I.e., no distinguisher in timet can tellEτ (M0) fromEτ (M1) for any two messages(M0,M1) with probability greater thanεOTE.
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DefineSigEnc`S(M,VEKR) as the following:

τ
R← {0, 1}n̂

π = Eτ (M)
L = ` ‖ π ‖ VEKS ‖ VEKR

(c, d) ← Commit(τ)
w = c ; s = H(L, c)⊕ d

ψ = fR(w) ; σ = f−1
S (s)

Output Π = `‖π‖ψ‖σ

DefineVerDec`R(Π,VEKS) as the following, parsingΠ as`‖π‖ψ‖σ and settingL = `‖π‖VEKS‖VEKR:

w = f−1
R (ψ) ; s = fS(σ)
c = w ; d = s⊕H(L, c)

τ = Open(c, d)
If τ = ⊥ ⇒ Output⊥

Output M = Dτ (π)

We also note that a userU can utilize the samef−1
U , fU for both sending and receiving the data.

Theorem 6 `-PbPS is a (t−O((qD + qS) · (Tf + TOTE)), εCCA2 + εOTE, εCMA, qD, qS)-secure signcryption
with associated data when instantiated with a(t, εhide, εextract)-secure extractable commitment schemeC and
a one-time(t, εOTE)-secure encryption scheme(E,D), whereεCCA2, εCMA, qD, qS , andTf are defined as in
Theorem 1 andTOTE as in Theorem 5.

The proof of this theorem follows trivially from Theorem 3, Theorem 4, and Theorem 5.

PRACTICAL CONSIDERATIONS. We believe this general Feistel`-PbPS scheme meets nearly all of the
desirable goals for a signcryption scheme we describe in Section 1 using any typical one-time secure encryption
and extractable commitment. We now offer some final recommendations for a specific instantiation of Feistel
`-PbPS that we feel best achieves our goals.

It is our recommendation to useEτ (M) = K(τ)⊕M andDτ (π) = K(τ)⊕ π for the one-time encryption
scheme, whereK : {0, 1}n̂ → {0, 1}poly(n̂) is either a random oracle or a pseudo-random generator. We are
already in the random oracle model, so we can achieve the tightest security by using a random oracle, giving
εOTE ≤ qK ·2−n̂. This allows us to select̂n as small as128-bits in practical schemes. We also recommend using
PSEP for the extractable commitment scheme, with a suitable choice of parameters to match the input sizes
of the TDPs and the desired exact security bound. Appropriate selection of the parametera even allows the
use of existingOAEP or PSS-R padding implementations. For applications where bandwidth is at a premium,
careful selection of the parameters allows over1600 data bits to fit into the padding when using typical1024-
bit RSA moduli. For such applications it is possible to transfer almost1500 message bits from the one-time
encryption into the padding (along withτ ), resulting in less than600 bits of overhead for long messages.

We believe that this instantiation of Feistel`-PbPS is extremely practical and flexible, and provides optimal
exact security. Our scheme is consistent with current PKCS#1 infrastructure, and using low-exponent RSA, the
cost of a signcryption or de-signcryption operation is approximately the cost of a single modular exponentiation.
Thus, our recommended scheme truly satisfiesall the goals for a signcryption scheme.
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A Formal security definitions

ENCRYPTION. This paper only considersIND-CCA2 security for encryption: No probabilistic poly-time
(PPT) adversaryA can distinguish between the ciphertexts of two chosen messages,m0 andm1, given the
corresponding public keyEK and oracle access toDec. Formally, for anyPPTA which runs in two stages,find
andguess, in total timet making at mostqD decryption oracle queries, we say thatEnc is (t, εCCA2, qD)-secure
if

Pr
[
b = b̃

∣∣∣ (EK,DK)← Enc-Gen(1λ), (m0,m1, α)← ADec(·)(EK, find),
b

R← {0, 1}, ψ ← EncEK(mb), b̃← ADec(·)(ψ; α, guess)

]
≤ 1

2
+ εCCA2

whereεCCA2 is negligible in the security parameterλ. Naturally,A cannot queryDec on inputψ in theguess
stage.

SIGNATURES. The strongest notion of signature security,sUF-CMA, is defined as the following: For any
PPT adversaryA, running in timet and making at mostqS signature oracle queries, we say thatSig is
(t, εCMA, qS)-secure if

Pr
[
VerVK(σ∗) 6= ⊥

∣∣∣ (SK,VK)← Sig-Gen(1λ), σ∗ ← ASig(·)(VK)
]
≤ εCMA

whereεCMA is negligible inλ, andσ∗ was not returned toA by Sig(·).
TRAPDOOR PERMUTATIONS. A trapdoor permutation generator consists of the algorithms(TDP-Gen,Eval, Inv).
TDP-Gen(1λ) generates the pair

〈
f, f−1

〉
, such that the algorithmsEvalf (·) and Invf−1(·) define permuta-

tions of{0, 1}k which are inverses of one another. We abuse notation and writef(x) (f−1(y)) for Evalf (x)
(Invf−1(y)).

For anyPPT adversaryA running in timet, we say thatf is a(t, εTDP)-secureTDP if

Pr
[
x = x̃

∣∣∣ (f, f−1)← TDP-Gen(1λ), x← {0, 1}k, y ← f(x), x̃← A(f, y)
]
≤ εTDP

whereεTDP is negligible in the security parameterλ.

CLAW-FREE PERMUTATIONS. Formally, for anyPPT adversaryB running in timet, we say thatf is a
(t, εclaw)-secure claw-free permutation if

Pr
[
f(x) = g(z)

∣∣∣ (f, f−1, g)← CFP-Gen(1λ), (x, z)← B(f, g)
]
≤ εclaw

whereεclaw is negligible in the security parameterλ.

B Proof of Theorem 1 (Feistel Two-Padding)

The following two sub-theorems (of independent interest), which establish regular (“non-universal”) security
of Feistel two-paddings, form the main building blocks of the proof.

Theorem 7 The Feistel Two-Padding described above produces anIND-CCA2 securePadEnc. Specifically,

εCCA2 ≤ εTDP + 2εhide + qD(2−k2 + εextract + εbind)

Proof: Assume there exists an adversaryA who succeeds in theIND-CCA2 attack game with probability
1/2 + εCCA2. We describe a reductionB which inverts aTDP with probability nearlyεCCA2.
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DESCRIPTION OF THE REDUCTION. The reductionB accepts a random challengey∗ and attempts to produce
a pre-imagex∗ = f−1(y∗). B finds the pre-image by runningA and simulating responses to oracle queries
made byA. To initialize the game,B may runSetup(1λ) for the extractable commitment scheme, obtaining
commitment keyCK and possibly a trapdoorT (whichB never uses).B then runsA and simulates responses to
H oracle queries “honestly” by providing truly random responses. However, for each queryw to theH oracle,
B tests to see iff(w) = y∗, and if so, the simulation halts andB returnsx∗ = w. B also simulates responses
to decryption oracle queries of the formψ‖s by examining a transcript of allH oracle queries made byA and
comparingf(w) to ψ for every queryw. If w such thatf(w) = ψ is found,B responds withDePAD(w, s);
otherwise, it rejects. Note,B will always reject decryption oracle queries of the formy∗‖s, as there is never
a transcript containing a queryw such thatf(w) = y∗ (since in this event the simulation halts). WhenA
requests a challenge ciphertext,B randomly selects a bitb and then returnsψ∗‖s∗ as the challenge ciphertext
corresponding tomb, wheres∗ is random andψ∗ = y∗ is the challenge.

ANALYSIS OF THE REDUCTION. To analyze the success ofB, we define a sequence of games (G0, . . . ,G4)
which we play againstA. GameG0 is the original “honest”IND-CCA2 game, and gameG4 is the gameB
runs againstA (as described above). In gameGi let Si denote the event thatA guessedb correctly. By our
assumption,

Pr[S0] = 1/2 + εCCA2 (1)

Let G1 be the same asG0, except we replace the original decryption oracle with the decryption oracle
simulation performed byB as described above. We will also explicitly require the decryption oracle simulation
to reject any ciphertext query of the formψ∗‖s, whereψ∗‖s∗ is the challenge ciphertext presented toA ands
is arbitrary. (The original simulation as run byB would automatically reject these ciphertexts, but since we are
simulating the rest of the game honestly, we explicitly reject queries of this form here.) LetDecBad denote the
event that our decryption oracle simulator differs from the decryption oracle inG0. We note that the simulation
may fail in only two ways:

Case 1.The decryption oracle rejects a valid ciphertextψ‖s becausew = c = f−1(ψ) was not queried toH. We
note that ifH(w) was never queried, it is randomly defined, and thusd = H(w) ⊕ s will be random as
well. However, by Lemma 2, the probability that(c, d) is a valid pair whend is random is bounded by
2−k2 + εextract.

Case 2.The decryption oracle rejects a valid ciphertext of the formψ∗‖s. This differs from the first case because
H(w∗) will be defined by the challenger when it computes the challenge ciphertextψ∗‖s∗. However,
we note that ifs is valid, we have foundd 6= d∗ such that both(c∗, d∗) and(c∗, d) represent valid pairs.
One can imagine some other reduction which playsG1 againstA in order to find these pairs, attacking
the binding property described in Lemma 1. Thus, this event must occur with probability at mostεbind

(≤ 2εextract), or the binding property would be broken by such a reduction.

The decryption oracle is queried at mostqD times, and thus, combining the results for the previous two cases,
we have that:

Pr[DecBad] ≤ qD(2−k2 + εextract + εbind) (2)

SinceG1 plays identically toG0 unlessDecBad occurs, we find that:

Pr[S1] + Pr[DecBad] ≥ Pr[S0] (3)

Let G2 beG1 modified so that it halts in the event thatA queriesH(w∗). We denote this event asHalt2. In
the event thatG2 does not halt, it has played out identically toG1. We have that:

Pr[S2 | ¬Halt2] + Pr[Halt2] ≥ Pr[S1] (4)
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Let G3 beG2 modified so that thes∗ component of the original challenge ciphertext is replaced by a random
string. Denote the event thatG3 halts asHalt3. We note thatA can never obtain a response to a queryH(w∗)
in eitherG2 or G3. Thus,H(w∗) should appear to be perfectly random toA, and therefores∗ = H(w∗)⊕ d∗
should also appear to be perfectly random toA. That is, by replacings∗ with a random string, we have only
made a conceptual change to the game - the probability space remains the same as inG2. Clearly,

Pr[S3 | ¬Halt3] + Pr[Halt3] = Pr[S2 | ¬Halt2] + Pr[Halt2] (5)

Let G4 be G3 modified so that theψ∗ component of the original challenge ciphertext is replaced by a
random string. Clearly, this implies that the value ofw∗ = c∗ which corresponds tof−1(ψ∗) has been replaced
by a random string. Denote the event thatG4 halts asHalt4. We note that neitherG3 or G4 ever use any
information regarding the value ofd∗ (which may be discarded, sinces∗ is now chosen at random), and thatG4

simply replaces the actual commitment ofmb (that is, the original value ofc∗) with a random string. One may
imagine some reduction against the hiding property of the commitment scheme which runsA in eitherG3 or
G4. If the probability of any observable event inG4 is different from the probability of the same event inG3,
it may be used to distinguish the actual commitment of a message (used inG3) from a random string (used in
G4). Thus, the probability of any observable event inG4 must be withinεhide of the probability of the same
event inG3, and we find that:

(Pr[S4 | ¬Halt4] + εhide) + (Pr[Halt4] + εhide) ≥ Pr[S3 | ¬Halt3] + Pr[Halt3] (6)

If G4 does not halt, the entire simulation operates independently of the challenge bitb. In this case,A’s
probability of success is exactly1/2.

Pr[S4 | ¬Halt4] = 1/2 (7)

Combining (1)-(7), and solving forPr[Halt4], we find the following:

Pr[Halt4] ≥ εCCA2 − 2εhide − qD(2−k2 + εextract + εbind) (8)

SinceG4 is exactly the game played by our reductionB (whereB substitutesy∗ as the random string forψ∗),
andHalt4 is the event thatB inverts theTDP f , B succeeds with the probability claimed above. Since this
probability it at mostεTDP, the claimed upper bound ofεCCA2 follows.

Theorem 8 The Feistel Two-Padding described above produces ansUF-CMA securePadSig. Specifically,

εCMA ≤ qH · εTDP + qS(2−k1 + εhide) + 2εbind + 2−k2 + 2εextract

Proof: We describe a reductionB which inverts aTDP f given an algorithmA which outputs a forgery in the
sUF-CMA game.

DESCRIPTION OF THE REDUCTION. The reductionB accepts a random challengey∗ and returns a pre-image
x∗ = f−1(y∗). B begins by selecting a random integeri ∈ {1, . . . , qH}, and runningSetup(1k) for the
commitment scheme if necessary, obtaining the publicCK and possibly a trapdoorT whichB keeps private.
If there is no trapdoor,T will represent the current transcript of all oracle queries made thus far during the
simulation. After this initialization is complete,B runsA and simulates responses toH oracle queries and
signing oracle queries. In response to thej-th H oracle querywj , for j 6= i, B selects a random valuexj
(which is stored for reference) and definesH(wj) = f(xj) ⊕ Extract(wj , T ). Note thatH(wj) is indeed
defined to be a random string, and for allj 6= i, B has a reference containing a pre-image forsj = H(wj)⊕dj ,
where the decommitmentdj has a matchingcj = wj (by the extractability property). In response to thei-th
oracle queryH(wi), B definesH(wi) = s∗ ⊕ Extract(wi, T ), wheres∗ = y∗ is the challenge ofB.
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In order to respond to a signing oracle query onm, B computes(w, s) ← PAD(m). EitherH(w) is
previously defined, orB selects some randomx and definesH(w) as before (although hered is directly known
without callingExtract). SinceH(w) was defined in this fashion,B is able to compute the signaturew‖σ,
whereσ = x = f−1(s). (Note thatH oracle queries generated by the signing oracle simulation are not counted
towardqH .) B successfully inverts theTDP by returningx∗ = σ∗ if A returns a forgery of the formw∗‖σ∗
whereσ∗ = f−1(y∗), which corresponds to forgery derived byA using thei-th oracle query.

ANALYSIS OF THE REDUCTION. The simulation inB is a faithful recreation of the standardsUF-CMA game
unless the signing oracle simulation fails. LetSigFail denote the event that this happens. The only possible
failures occur when the signing oracle on messagem produces a(w, s) ← PAD(m) pair for which either (1)
w = wi (sinceB does not know a pre-image corresponding toH(wi)) or (2)H(w) was previously defined for
a valid pair(w, s′) such thats′ 6= s. Denote the event that the first case occurs asSigFail1 and the event that the
second case occurs asSigFail2.

We compute the probability ofSigFail1 by imagining a reduction against the hiding property of the commit-
ment. The reduction runs thesUF-CMA game with our simulated signing oracle againstA to obtainwi, and
then queries its own “commitment” oracle on the same messagem thatA wants to sign. The reduction then
outputs1 if this challenge is equal towi. If the challenge was a truly random stringR, the probability that
R = wi is exactly2−k1 . By the hiding property of our commitment, we must therefore have that the “honest”
commitmentw = c(m) is equal towi with probability at most2−k1 +εhide. However, sinceSigFail1 can happen
on any ofqS signing queries made byA, we getPr[SigFail1] ≤ qS(2−k1 + εhide).

We compute the probability ofSigFail2 by noting thats′ 6= s implies that(c = w, d = H(w) ⊕ s) and
(c = w, d′ = H(w)⊕ s′) are both valid pairs andd 6= d′. But then we could easily create a reduction against
the binding property described in Lemma 1, which runs thesUF-CMA game with our simulated signing oracle
againstA to obtainw, s, ands′. The reduction would then recoverd andd′ from s ands′, and output(c, d, d′)
breaking the binding property. Therefore, this case must occur with probability at mostεbind, and we have
Pr[SigFail2] ≤ εbind. Combining these bounds, we get:

Pr[SigFail] = Pr[SigFail1] + Pr[SigFail2] ≤ qS(2−k1 + εhide) + εbind (9)

Let us also denoteForgeBad as the event thatA outputs a valid forgeryw‖σ, such that either (1)A “reused”
one of thew’s returned by the signing oracle, but with a differentσ; or (2) the above did not happen andH(w)
was not first queried byA; or (3) f(σ) = s 6= H(w) ⊕ Extract(w, τ). In the first case, we can easily build a
reduction breaking the binding property described in Lemma 1, so it can happen with probability at mostεbind.
In the second case,H(w) remains randomly defined, which implies a randomd, and Lemma 2 implies thatA
would be successful with probability at most2−k2 + εextract. The last case corresponds exactly to breaking the
extractability property. Again, in this case we can easily build a reduction against the extractability property, so
this case must occur with probability at mostεextract. Thus, totaling these probabilities, we have:

Pr[ForgeBad] ≤ (2−k2 + εextract) + εbind + εextract (10)

Now, conditioned on (¬SigFail ∧ ¬ForgeBad), if A successfully forges, the forgery must correspond to one
of theqH queries of theH oracle. In this caseB can invert theTDP provided the forgery corresponds to the
i-th oracle query, since in this case we will haves∗ = H(wi) ⊕ di = y∗. Sincei is chosen randomly and
independently ofA’s operation, using Equations (9) and (10) we get the required bound:

εTDP ≥ Pr[B succeeds] ≥
(
εCMA − Pr[SigFail]− Pr[ForgeBad]

)/
qH

≥
(
εCMA − qS(2−k1 + εhide)− 2εbind − 2−k2 − 2εextract

)/
qH
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To conclude our proof of Theorem 1, we must extend the proofs of the sub-theorems by adding aPadSig
oracle to theIND-CCA2 proof and aPadEnc oracle to thesUF-CMA proof. (Additionally, we also must
consider the extension to claw-free permutations.) For conciseness, we omit the details of these extensions
until Appendix C. In fact, Theorem 1 follows as a special case of Theorem 3 with the labelL replaced by the
empty string.

C Proof of Theorem 3 (Labelled Feistel Two-Padding)

The proof is established by definition, given the following two theorems (which are of independent interest).

Theorem 9 Labelled Feistel Two-Padding produces an(t′, εCCA2, qD, qS , qH)-secureIND-CCA2 encryption
PadEncLf , in the presence of aPadSigLf signing oracle (using the sameTDP f ), where

εCCA2 ≤ εTDP + 2εhide + εbind + qD(2−k2 + εextract + εbind)

andt′ = t−O((qH + qS) · (Tf + Textract)).

Proof: The proof is the same as the proof of Theorem 7, with a few minor alterations to the reduction. In
particular,H oracle queries are now of the form(L, w). This does not in fact alteranyof the probabilities in
the analysis, since a change to any part of the pair(L, w) will now have the same effect as a change tow in the
original proof. This effectively “binds”L tow through the random oracle, preventingA from simply changing
L to obtain a related ciphertext. In particular, recall thatA will select someL∗ to become part of the challenge
ciphertext corresponding tomb. One way to view this is thatL∗ determines the random oracleH(L∗, ·) which
is of interest toA, effectively removing consideration of any other label from our analysis. The only remaining
alteration is the simulation of a signing oracle which must now be provided toA.

The signing oracle simulation is performed as in the proof of Theorem 8, and we note that here it is not
necessary to single out thei-th H oracle query and modify the response. Thus, the signing oracle simulation
can only fail ifSigFail2 (as previously defined) occurs. This failure event is the only impact of the signing oracle
simulation on the new proof, since the modifiedH oracle simulation it employs still satisfies all the properties
we require. Thus, for the purpose of analysis, we may simply introduce the signing oracle simulator along with
the decryption oracle simulator inG1, replacing Equation 3 by:

Pr[S1] + Pr[DecBad] + Pr[SigFail2] ≥ Pr[S0] (11)

Substituting this new equation into the proof, and usingPr[SigFail2] ≤ εbind (as per our earlier conclusion)
gives the new final result:

Pr[Halt4] ≥ εCCA2 − 2εhide − εbind − qD(2−k2 + εextract + εbind) (12)

Here,G4 is the game played by our new reduction, andHalt4 will correspond to the event that our reduction
successfully inverts aTDP, giving us the claimed upper-bound.

Theorem 10 The Labelled Feistel Two-Padding described above produces a(t′, εCMA, qS , qD, qH)-securesUF-
CMA signaturePadSigLf , in the presence of aPadDecLf decryption oracle (using the sameTDP f ), where

εCMA ≤ qH · εTDP + qS(2−k1 + εhide) + 2εbind + qD(2−k2 + εextract + εbind) + 2−k2 + 2εextract

andt′ = t−O((qH + qS) · (Tf + Textract)).
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Proof: The proof is the same as the proof of Theorem 8, with a few minor alterations to the reduction. In
particular, we replace all appropriate instances ofw with the pair(L, w). By a similar argument to the one we
used in the proof of Theorem 9, this alteration will not affect the analysis of the reduction. Most importantly,
we note that the analysis now precludes the forging of a new(L, w) pair corresponding to some validσ, by
the extension of Equation 10. In fact, there is no additional loss of security to obtain this extension, as both
eventsForgeBad andSigFail occur with the same probability as before. Since this is ultimately responsible for
providing the unforgeability property of the label, we can see that security of labels follows for “free”. Finally,
we note that the reduction must now provide a decryption oracle simulation as in the proof of Theorem 9. The
decryption oracle simulation has no impact on the signing oracle simulation, but may cause our reduction to
fail if the eventDecBad occurs (as previously defined). Thus, the new bound we obtain, as claimed, is:

εTDP ≥ Pr[B succeeds]

≥
(
εCMA − Pr[SigFail]− Pr[DecBad]− Pr[ForgeBad]

)/
qH

≥
(
εCMA − qS(2−k1 + εhide)− 2εbind − qD(2−k2 + εextract + εbind)− 2−k2 − 2εextract

)/
qH

TIGHTER SECURITY REDUCTION FOR CLAW-FREE PERMUTATIONS. We begin by noting that, sinceTDPs
are special cases of claw-free permutations, the security bound previously established forIND-CCA2 security
of PadEncLf holds. Since this bound is already tight, we will only tighten the reduction for thesUF-CMA proof,
following the observation made by [13].

Theorem 11 If f is induced by a family of(t, εclaw)-secure claw-free permutations, The Labelled Feistel Two-
Padding described above produces a(t′, εCMA, qS , qD, qH)-securesUF-CMA signaturePadSigLf , in the pres-

ence of aPadDecLf decryption oracle, where

εCMA ≤ εclaw + qS(2−k1 + εhide) + 2εbind + qD(2−k2 + εextract + εbind) + 2−k2 + 2εextract

andt′ = t−O((qH + qS) · (Tf + Textract)).

Proof: We describe a reductionB which, given a claw-free pair(f, g), finds a claw given an algorithmA which
outputs a forgery in thesUF-CMA game.

DESCRIPTION OF THE REDUCTION. The reductionB against the claw-free properties of(f, g) operates in
a similar fashion to the earlier reduction in Theorem 10, but with modified signing andH oracle simulations.
To respond to thej-th H oracle queryH(Lj , wj), B chooses a random valuezj , and definesH(Lj , wj) =
g(zj)⊕Extract(wj , T ). To respond to a signing oracle query for messagem with labelL, B chooses a random
x, computes(w, s)← PADL(m), and definesH(L, w) = f(x)⊕dwhered is the decommitment corresponding
to c = w (whichB may simply record during the computation ofw ands). B then returns a signature of the
form L‖w‖x, since clearlyx = f−1(H(L, w) ⊕ d) = f−1(σ). If A outputs a forgery of the formLj‖wj‖σ∗
where(Lj , wj) correspond to thej-th oracle query,for any j ∈ {1, . . . , qH}, B returns(x∗ = σ∗, z∗ = zj).
We note that, by construction,f(x∗) = sj = g(z∗), andB has successfully output a claw.

ANALYSIS OF THE REDUCTION. The analysis proceeds in an analogous fashion to our earlier analysis in
Theorem 10. LetSigFail denote the event that our signing oracle simulation fails. The only possible failures
occur when the signing oracle on messagem with labelL produces(w, s) ← PADL(m) pair for which either
(1) (L, w) has already been queried to theH oracle byA (sinceB has arranged those usingg rather thanf ) or
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(2) H(L, w) was previously defined by the signing oracle for a triple(L, w, s′) such thats′ 6= s. Denote the
event that the first case occurs asSigFail1 and the event that the second case occurs asSigFail2.

Applying the same reasoning as in Theorem 10, we notice thatSigFail1 should occur with probability at
most (qH2−k1 + εhide) for each of theqS signing oracle queries (since there are now at mostqH different
values for(L, w) to collide with, rather than a single value(Li, wi) as was previously the case). Thus we, we
get Pr[SigFail1] ≤ qS(qH2−k1 + εhide). The probability thatSigFail2 occurs is once again bounded by the
probability of breaking the binding property of the commitment scheme, and we getPr[SigFail2] ≤ εbind. Thus
we have:

Pr[SigFail] = Pr[SigFail1] + Pr[SigFail2] ≤ qS(qH2−k1 + εhide) + εbind (13)

Defining eventsDecBad andForgeBad as in the proof of Theorem 10, we find that their analysis proceeds
identically, and we will not repeat it here. We also note that, conditioned on(¬SigFail∧¬DecBad∧¬ForgeBad),
the reduction nowalwaysoutputs a valid claw ifA produces a valid forgery. Thus, we no longer have a
multiplicative loss of1/qH in our reduction. Using Equations 13, 2, and 10, we obtain the bound:

εclaw ≥ Pr[B succeeds]
≥ εCMA − Pr[SigFail]− Pr[DecBad]− Pr[ForgeBad]
≥ εCMA − qS(qH2−k1 + εhide)− qD(2−k2 + εextract + εbind)− 2−k2 − 2εextract − 2εbind

D Padding Schemes that use Extractable Commitments

In Section 4, we described howPSS-R, OAEP, OAEP+, PSEP, andSAP are all comprised of a Feistel
Transform on an extractable commitment, and thus are universal secure two-paddings. Here, we provide more
in-depth proof sketches supported these lemmas.

PSEP (PROOF OFLEMMA 3). The pair〈d = m2‖r, c = (m1 ⊕G(r))‖G′(m2‖r)〉 resulting fromPSEP
is a secure extractable commitment forany value ofa. Here, we briefly argue the scheme’s exact security
bounds forεhide andεextract.padding scheme. To break hiding, an adversaryA must differentiatec from some
random valueR← {0, 1}k1 , given the fixedm. It is easy to see that this can happen only ifA queriesG(r) or
G′(m2‖r). Sincer was random,

εhide ≤ (qG + qG′) · 2−(k2+a−n)

To break extractability, the adversary finds some〈d′, c〉, whered′ = m′2‖r′, and one of two cases occur. In
the first case,m′2‖r′ was not queried toG′. In the second, the adversary finds somed′ 6= d that represents a
birthday attack onG′, i.e., finds someG′(m′2‖r′) = G′(m2‖r). Upper-bounding the probability of both events
in the obvious way, we get the following:

εextract ≤ 2−(k1−a) + qG′(qG′−1) · 2−(k1−a+1) < (q2
G′ + 1) · 2−(k1−a)

OAEP+. OAEP+ results in the pair〈d = r, c = (m⊕G(r)‖G′(m‖r)〉. We can easily see the following
two results. (1) Hiding is achieved as inOAEP: G(r) is a perfect OTP unlessr is reused andG′(m‖r) also
hidesm for randomr. (2) Extractability is achieved as, givenc, we examine all queries toG′ and look for
the output value matchingc in its final (k1 − n) bits. For any corresponding inputm‖r, extractd = r. To
break extractability, an adversary must either “guess” somed′ without querying the random oracles, or, at the
very least, perform a birthday attack onG′. In fact, the bound forεextract is tighter, as the values〈m, r〉 6=
〈m′, r′〉 returned by the birthday attack must simultaneously satisfy the equationsG′(m‖r) = G′(m′‖r′) and
m⊕G(r) = m′ ⊕G(r′).
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SAP. Now, we briefly argue that the corresponding pair〈d = m1‖r‖G′(m2), c = G(d)⊕m2〉 forms an ex-
tractable commitment. (1) Hiding is true as before: on inputs that include a randomr (such asd), G(·) is
a perfect OTP unlessr is reused. (2) Extractability is achieved as we examine all input queries(m′1‖r′‖γ)
to G and look for the output value which, xor’d withc, yields anm2 for which G′(m2) = γ. Finding
an alternative decommitment byExtract requires one to find some〈m1,m2, r〉 and 〈m′1,m′2, r′〉 such that
G(m1‖r‖G′(m2)) ⊕ G(m′1‖r′‖G′(m′2)) = m2 ⊕m′2. This, however, can be easily seen to imply that either
(1)G′(m2) = G′(m′2) for m2 6= m′2, or (2) one has to find valuesα 6= β such thatG(α)⊕G(β) is equal to a
fixed constant. By birthday bound, both events happen with negligible probability.

E Proof of Theorem 2 (PbPS)

This section proves thatPbPS is a secure signcryption parameterized as follows:(
t−O((qD + qS) · (Tf + Th)), (εCCA2 + q2

h · εCRHF), (εCMA + q2
h · εCRHF), qD, qS , qH , qh

)
Instead of reducingPbPS directly again to the underlyingTDP, we make use of Theorem 1, which has already
established that there exists a(t, εCCA2, εCMA, qD, qS , qH)-secure universal two-padding schemePS, such that
PadEnc is a IND-CCA2 secure encryption andPadSig is asUF-CMA secure signature, even when the same
key pair is used for both encryption and signature.

Note that in the Insider model, the full universal two-paddingf(w)‖f−1(s) reduces to justf(w)‖s for the
CCA2 game andw‖f−1(s) for theCMA game, or exactlyPadEnc andPadSig, respectively. The inclusion of
identities in signcryption adds a few definitional subtleties; otherwise, the reduction would be trivial.
Proof: Our proof ofPbPS uses the following reductions:

• PadEnc is IND-CCA2 secure encryption⇒PbPS is IND-CCA2 secure signcryption

• PadSig is sUF-CMA secure signature⇒PbPS is sUF-CMA secure signcryption

If these reductions hold, any suchPS yields a secure signcryptionPbPS.

PROOF OFIND-CCA2. We give a reductionB which uses any adversaryA against theIND-CCA2 security
of the PbPS signcryption to break theIND-CCA2 security ofPadEnc. B answers both signcryption and
de-signcryption queries fromA. The reduction is straight-forward.
B handlesA’s signcryption queries of the form(m,VEKR) as follows.B generatesm′ = m‖h(VEKA,VEKR)

and sendsm′ to thePadSig signing oracle. The oracle returns something of the form(w‖σ)← PadSigA(m′).
B computesψ ← fR(w) and returnsψ‖σ as the response toA.

At some point,A issues itsIND-CCA2 challenge(m0,m1,SDKS ,VEKS). B similarly generates(m′0,m
′
1)

using (VEKS ,VEKA), and queries aPadEnc challenge oracle, which returnsψ∗‖s∗ for somem′b. B then
computesσ∗ ← f−1

SDKS
(s∗) and returnsψ∗‖σ∗ toA as the challenge ciphertext.

B handlesA’s de-signcryption queries of the form(ψ‖σ,VEKS) as follows. B computess ← fS(σ)
and passesψ‖s to the PadDec decryption oracle. If the oracle returns somem′ = m‖~, such that~ =
h(VEKS ,VEKA), B returnsm. Otherwise,B returns⊥.

The re-use of keys must be considered in the case thatA submits a valid de-signcryption query of the form
(ψ∗‖σ∗,VEKS′). We know thatVEKS′ 6= VEKS , asA is not allowed to query the oracle with theIND-CCA2
challenge. Therefore,Amust have found someVEKS′ that breaks the hash function’s collision-resistance,i.e.,
h(VEKS ,VEKA) = h(VEKS′ ,VEKA), which is a legal oracle query in the multi-party Insider model.

Therefore,B has clearly completely simulated the actions of the signcryption oracle. IfB returns the same
guess̃b thatA returns, it has the same advantage in breaking theIND-CCA2 security ofPbPS asA does for
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breaking theIND-CCA2 security ofPadEnc, modulo the birthday-bounded probability of finding a collision in
h. That is,B’s advantage isεCCA2 + q2

h · εCRHF.

PROOF OFsUF-CMA. We give a reductionB which uses any adversaryA against thesUF-CMA security of
thePbPS signcryption to break thesUF-CMA security ofPadSig. B simulates responses forA’s signcryption
and de-signcryption queries in the same manner as described above.

At some point,A returns a forgery onm of the form(ψ∗‖σ∗,SDKR,VEKR). Given this forgery,B simply
computesw∗ ← f−1

SDKR
(ψ∗) and returnsw∗‖σ∗. Remember that this forgery can be on some messagem

previously queried to the signcryption oracle, provided that the forgery differs inVEKR.
B’s outputw∗||σ∗ is a valid forgery onm′, provided that this value has not been returned previously by

thePadSig oracle. This event again occurs only with the probability thatA previously made the signcryption
query(m,VEKR′), andh(VEKA,VEKR) = h(VEKA,VEKR′), for VEKR 6= VEKR′ , Therefore, once again,B
forges with the same probability asA, modulo the probability of finding a collision inh. That is,B’s advantage
is εCMA + q2

h · εCRHF.

F Proof of Theorem 5 (Signcryption of Long Messages)

Proof: The sUF-CMA security bound is automatic, since the notion of a forgery for signcryption with as-
sociated data encompasses the entire signcryptext, including the label. In other words, consider a reduc-
tion B against thesUF-CMA security ofSC that uses anyA that breaks thesUF-CMA security ofSC′. B
simply answersA’s signcryption queriesSigEnc′`(M,VEK) by selecting at random aτ , and then returning
SigEnc`‖Eτ (M)(τ,VEK). B uses the obvious corresponding approach forVerDec′ queries. Clearly, any sign-
cryptextA forges againstSC′ is also a valid forgery againstSC, and thus the reduction succeeds with the same
probability asA by simply returningA’s forgery.

TheIND-CCA2 security reduction is also as described above, and the security bound follows from a simple
two-step hybrid argument.

(1) We modify the originalIND-CCA2 game by replacing theEτ operation during the construction of the
challenge ciphertext withEτ̃ , where τ̃ is a random key independent of the signcrypted keyτ . Any
adversary capable of telling this game apart from the original game can be used to win theIND-CCA2
game against the underlying signcryption schemeSC with at least the same advantage. It does this by
simply using the labelEτ (Mb) (whereb ← {0, 1}) and providingm0 = τ andm1 = τ̃ as the messages
it claims to distinguish againstSC in the IND-CCA2 attack (it also uses the same oracle simulations as
B). Thus, in this step, the advantage ofB is reduced by at mostεSC−CCA2.

(2) We replaceEτ̃ (M) in the challenge ciphertext byEτ̃ (M̃), whereM̃ is a random message. Any adversary
capable of differentiating this game from the game of Step 1 can be used to break the security of the
one-time encryption with at least the same advantage. (In a fashion similar to Step 1, we can useSC to
signcrypt a random string with eitherEτ̃ (M) orEτ̃ (M̃) as the label and useA to distinguish the resulting
ciphertexts.) Thus, in going to this final step, the advantage ofB is further reduced by at mostεOTE.

We note that, in the final step,B cannot have any advantage over guessing, since the challenge ciphertext is
random and independent of the challenge messages. Therefore, by this hybrid argument,B has a total advantage
at mostεSC−CCA2 + εOTE in the original game, and the proof is complete.
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