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Abstract

We present a new, elegant composition method for joint signature and encryption, also referred to as
signcryption. The new method, which we call Padding-based Parallel Signcryption (PbPS), builds an effi-
cient signcryption scheme from any family of trapdoor permutations, such as RSA. Each user U generates a
single public/secret key pair fU/f

−1
U used for both sending and receiving the data. To signcrypt a message

m to a recipient with key frcv, a sender with key fsnd efficiently transformsm into a pair 〈w, s〉, and simply
sends frcv(w)‖f−1

snd(s). PbPS enjoys many attractive properties: simplicity, efficiency, generality, paral-
lelism of “encrypting”/“signing”, optimal exact security, flexible and ad-hoc key management, key reuse for
sending/receiving data, optimally-low message expansion, long message and associated data support, and,
finally, complete compatibility with the PKCS#1 infrastructure.

The pairs 〈w, s〉 sufficient for the security of PbPS are called universal two-padding schemes. Using
one round of the Feistel transform, we give a very general construction of such schemes. Interestingly, we
notice that all popular padding schemes with message recovery used for plain signature or encryption, such
as OAEP, OAEP+, PSS-R, and “scramble all, encrypt small” [21], naturally consist of two pieces 〈w, s〉.
Quite remarkably, we show that all such pairs become special cases of our construction. As a result, we find
a natural generalization of all conventional padding schemes, and show that any such padding can be used
for signcryption with PbPS. However, none of such paddings gives optimal message bandwidth. For that
purpose and of independent interest, we define a new “hybrid” between PSS-R and OAEP, which we call
Probabilistic Signature-Encryption Padding (PSEP). We recommend using PbPS with PSEP to achieve
the most flexible and secure signcryption scheme up-to-date. To justify this point, we provide a detailed
practical comparison of PbPS/PSEP with other previously-proposed signcryption candidates.

Keywords: Universal padding schemes, signcryption, joint signature and encryption, authenticated encryption,
Feistel Transform, OAEP, PSS-R, extractable commitment.
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1 Introduction
SIGNCRYPTION. Until recently, the two main building-blocks of modern public-key cryptography — encryp-
tion and signature schemes — have been considered as distinct entities that may be composed in various ways
to ensure message privacy and authentication. From a design and analysis standpoint, this evolution makes
sense, as encryption and signatures serve fundamentally different purposes. In practice, however, there are
increasingly fewer applications that do not use both primitives, whether one considers secure e-mail or the
key-establishment protocols for SSL or SSH.

In the past few years, research in the symmetric key setting has introduced authenticated encryption [5, 19,
23] to combine both functionalities in a single primitive. Soon thereafter, a number of authenticated-encryption
schemes were proposed and other related investigations followed [26, 1, 22, 32, 31, 4, 11]. These results
produced a variety of practical and efficient implementations. As importantly, they established authenticated
encryption as a new cryptographic primitive which can be used to design simpler higher-level protocols.

More recent research has extended authentication encryption to the public-key setting, which is also the
setting of this paper. We refer to this notion of a “joint signature and encryption” primitive as signcryption,
following the terminology of [38]. While several papers [38, 39, 28, 20] offered security arguments about
various signcryption schemes, the first formal investigations appeared only recently [3, 2]. Both works define
signcryption as a multi-user primitive which simultaneously satisfies chosen ciphertext security for privacy and
existential unforgeability for authenticity.1 In terms of constructions, Baek et al. [3] showed that the original
“discrete log-based” proposal of Zheng [38] indeed can be proven secure in the random oracle model under
the so called Gap Diffie-Hellman assumption. Zheng’s signcryption scheme is quite elegant and efficient, but
has the disadvantage that all parties must agree on the same public parameters, such as the common discrete
log group. Thus, for example, all users must uniformly agree on the security parameter and have some trusted
party perform system initialization. Also, if one party wants to use a different security parameter or a different
signcryption scheme, this party has to convince all other parties to change their public keys, or he will no
longer be able to communicate with them. Finally, the security of [3] is based on a specific, non-standard
assumption. In contrast, An, Dodis, and Rabin [2] formally examined generic composition methods of building
signcryption from any secure signature and encryption scheme. In addition to the sequential compositions such
as “encrypt-then-sign” (EtS) and “sign-then-encrypt” (StE), this work also introduced a novel construction
— “commit-then-encrypt-and-sign” (CtE&S) — that allows encryption and authentication to be performed
in parallel. All these composition paradigms are very general and give rise to a large variety of signcryption
schemes. Additionally, users can easily change their public keys or their favorite signature/encryption scheme,
and still be able to seamlessly communicate with other users.2 However, these generic schemes suffer from poor
efficiency. Indeed, they all utilize relatively-expensive encryption and signature schemes which by themselves
must already be IND-CCA2 and sUF-CMA secure.

OUR GOAL. The main motivation of this work is to design a class of signcryption schemes satisfying the
following desirable properties. (1) Key management is simple and flexible. In particular, each user chooses
its public/secret key on its own and has freedom in the type/length of the key chosen. Also, users can easily
change/create their keys “on the fly” and still be able to communicate with others users, provided that they
circulate the new key. (2) Signcryption/de-signcryption are “close” to current standards for plain signature
and encryption, i.e., PKCS #1 [33]. In particular, the signcryption/de-signcryption procedure should be some-
what similar to popular efficient signature/encryption schemes, such as PSS-R [7] or OAEP [6], as few code
changes would therefore be needed to support signcryption with the existing infrastructure. (3) Related to the
above, users should easily be able to use their signcryption keys for plain signature/encryption functionality.

1We will only use the strongest variants of these notions, which we will denote IND-CCA2 and sUF-CMA.
2That is, user S uses S’s signature scheme and R’s encryption scheme when talking to user R.
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(4) Schemes must be simple and efficient. For example, they must be faster than using a generic composition of
strong signature and encryption. (5) Despite this, schemes should be general enough to allow many instantia-
tions. (6) Last, but certainly not least, schemes should be provably secure under well-established cryptographic
assumptions.

OUR METHOD. We propose the following high-level method to achieve all of the above properties based on
any family F of trapdoor permutations. Each player U independently picks a trapdoor permutation fU ∈ F
(together with its trapdoor, denoted f−1

U ) and publishes fU as its public key. To signcrypt a message m from
user S to user R, S first preprocesses m into a pair of strings (w, s), using what we call a universal two-padding
scheme, whose constructions and security properties will be determined later. Then, S transmits fR(w)‖f−1

S (s)
to R. Upon receiving ciphertext ψ‖σ, R computes w = f−1

R (ψ), s = fS(σ), and R recovers m from w and s
(possibly performing some “consistency check” before outputting m; see later). We call this method Padding-
based Parallel Signcryption (PbPS).3

We believe PbPS naturally satisfies all of the above properties (1)-(6). For example, user U independently
picks his key fU and uses the same fU for both sending and receiving data. Moreover, the specific two-padding
schemes we construct are extremely fast and very flexible in accommodating arbitrary domains for fS and
fR, which allows users to use different families and change their keys easily. In fact, we show that popular
padding schemes like OAEP, PSS-R and many others — ordinarily used for plain signature or encryption —
can be used for signcryption purposes too, when viewed as two-paddings! Furthermore, we provide a simple,
general way to construct and verify the security of universal two-padding schemes. The resulting signcryption
is provably secure in the strongest sense (in the random oracle model), assuming the mere one-wayness of
the underlying trapdoor permutation. Moreover, we show that the security reduction is tight for a large class
of trapdoor permutations, including all the known ones such as RSA, Rabin, and Paillier. Additionally, the
schemes easily achieve non-repudiation, since R can extract a regular, publicly verifiable signature w‖f−1

S (s)
of S from the ciphertext (see below). Finally, the more expensive “encrypting” and “signing” operations (using
fR and f−1

S ) are indeed performed in parallel.
To summarize, we believe that PbPS is a very efficient, yet general method, for building a robust, flexible,

and provably-secure signcryption infrastructure.

TWO-PADDING SCHEMES: OUR RESULTS. The soundness of our suggested PbPS paradigm for signcryp-
tion crucially depends on the properties of universal two-padding schemes, a new notion we introduce. Syn-
tactically, such schemes (probabilistically) transform a message m into a pair w‖s, from which m can be later
recovered. In terms of security, we require that for any trapdoor permutation f , f(w)‖s is a chosen-ciphertext-
secure (IND-CCA2) encryption of m, while w‖f−1(s) is an existentially-unforgeable (sUF-CMA) signature
of m. The universality property additionally requires that the above induced signature and encryption schemes
remain secure even when used with the same key f .

First, we formally argue that universal two-paddings — defined entirely using plain signature and encryption
properties — are indeed sufficient for PbPS . This result actually requires some work, as signcryption has to be
defined in the multi-user setting to prevent “identity fraud” [2]. In particular, the naive signcryption candidate
fR(w)‖f−1

S (s) (informally stated earlier for simplicity) will not be secure, unless we ensure that w and s also
non-trivially depend on the public keys of S and R. Luckily, we found several simple and efficient ways to
achieve this “binding” at minimal or no extra cost, formally justifying our initial claim.

Second, we give a simple and very general construction of universal two-paddings in the random oracle
model. Our starting point was the observation that all popular padding schemes with message recovery currently
used for ordinary signature or encryption, such as OAEP [6], OAEP+ [36], PSS-R [7], and “scramble all,
encrypt small” [21] (in the future denoted SAP) actually consist of two natural components w and s, which

3As stated, it applies only to relatively short messages m. However, we later efficiently extend it to support long messages.
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is consistent with our two-padding syntax. Moreover, the last step of computing w and s always consists of a
Feistel Transform applied to some pair d and c (this step uses the random oracle H). This led us to examine
which general properties on d and c suffice to ensure that 〈w = c, s = H(c)⊕ d〉 form a universal two-padding
scheme. Quite interestingly, we found that all one needs is that 〈d, c〉 form a commitment scheme with a special
property, called extractability (see [10]). We formally define it later, but observe that extractable commitments
are extremely easy to construct in the random oracle model, which we use anyway in the subsequent Feistel
Transform. Indeed, we give a number of such simple and efficient constructions, which in turn gives many
examples of provably-secure two-padding schemes. Moreover, our security reductions from the corresponding
two-padding schemes to the problem inverting f are tight for a large class of trapdoor permutations f (defined
later) which includes all currently known examples, such as RSA, Rabin, and Paillier. This makes the PbPS
paradigm very attractive in terms of exact security.

Even more remarkable, however, is that all the aforementioned padding schemes — OAEP, OAEP+, PSS-R,
SAP— become special cases of our general construction when viewed as two-paddings! As a result, not
only do we find a natural generalization of all conventional padding schemes, but we show that any such
padding scheme defines a secure two-padding scheme which can then be used for signcryption. Of indepen-
dent interest, we will also define a new “hybrid” between PSS-R and OAEP, which we call Probabilistic
Signature-Encryption Padding (PSEP). This two-padding will allow us to achieve optimal message bandwidth
for signcryption using PbPS .

EXTENSIONS. We extend the basic PbPS approach in two important ways. First, it can effortlessly support
associated data [31], allowing one to “bind” a public label to a message when signcrypting it. This capability
has many nice applications, including allowing us to trivially bind the message to the public keys of S and
R, thus solving the aforementioned “multi-user” problem for signcryption. Second, using the recent work of
Dodis and An [11], we efficiently extend our method to signcrypt arbitrarily long messages; namely, to build a
full-fledged, practical signcryption scheme of arbitrary messages (that also supports associated data).

RELATION TO PREVIOUS WORK. While padding schemes are very popular in the design of ordinary encryp-
tion and signature schemes (e.g. [6, 7, 36, 15]), the most relevant previous works are those of [9, 2, 27].

COMPARING WITH [9]. Our universal two-padding schemes are similar in spirit to “universal padding”
schemes defined by Coron et al. [9], which we refer to as universal one-paddings. To explain this name,
such one-paddings transform m into a single string π such that f(π) is a secure encryption and f−1(π) is a
secure signature. Additionally, [9] requires that users can use the same trapdoor permutation f for both signing
and encrypting. We now compare one- and two-paddings. Application-wise, one-paddings are conceptually
used for plain signature and encryption separately; i.e., the user can either sign or encrypt with the same key. In
this setting, reusing the key for signing/decrypting is much more important than reusing the padding scheme.
In fact, the latter property is really of marginal importance given the simplicity of current padding schemes.4 In
contrast, our motivation for two-padding scheme comes from joint signature and encryption; i.e., the user can
either signcrypt or de-signcrypt, and even with a single key for both. In this setting, reusing the two-padding is
much more crucial: The whole application to parallel signcryption would not even make sense unless the same
w and s can be used for encrypting and signing simultaneously.

On the other hand, from a technical perspective, every non-trivial partition of a one-padding into two parts is
a secure two-padding — by considering trapdoor permutations of the form f′(w‖s) = f(w)‖s and f ′′(w‖s) =
w‖f(s) — while the converse is easily seen to be false. Of course, prior to this work, no universal one-padding
schemes were known, since [9] only constructs one specific to RSA rather than any f . Subsequent to our work,
several constructions of one-paddings were found [12, 25]. However, the construction of [25] is a special case

4We also remark that reusing the key without reusing the padding already followed from the prior work of Haber and Pinkas [18],
who show that OAEP+ [36] and PSS-R [7] can reuse the same key.
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Figure 1: High-level comparison between CtE&S and PbPS .

of a more general construction of [12], while the latter critically builds upon this current work. Needless to
say, these one-paddings are more complicated than the two-paddings we construct, and we actually do not need
these extra complications for our signcryption application. Finally, we remark that a very special case of our
result — PSS-R is a secure two-padding — can be indirectly derived from previous work of [7, 9]: [7] can
be seen to imply the signing part, while the “partial one-wayness” result of [9] is general enough to imply the
encryption part. Of course, our construction is much more general, gives many more two-paddings, and the
whole signcryption application was not previously considered.

COMPARING WITH [2]. The parallel “commit-then-encrypt-and-sign” (CtE&S) paradigm of [2] for building
signcryption first applies any commitment scheme to transform m into a pair 〈d, c〉, and then encrypts d and
signs c, using a IND-CCA2-secure encryption and sUF-CMA-secure signature, respectively. Two-paddings can
be viewed as allowing us to replace the above “strong” encryption and signature schemes by a mere trapdoor
permutation (resp. its inverse) such as RSA (see Figure 1). In fact, our Feistel-based two-padding construction
essentially says that applying one round of the Feistel Transform to a pair 〈d, c〉 sufficient for CtE&S , we get a
pair 〈w = c, s = H(c)⊕ d〉 sufficient for PbPS! Indeed, using only trapdoor permutations our scheme fully
satisfies the standard IND-CCA2 and sUF-CMA security definitions, which CtE&S schemes cannot!

Of course, another natural question is to compare the generic composition paradigm of [2] with the PbPS
approach in the random oracle model. For example, we could use a padding-based IND-CCA2-secure en-
cryption, such as OAEP+ [36], and a padding-based sUF-CMA-secure signature, such as PSS or PSS-R [7].
While this is indeed a possibility, the resulting signcryption scheme is considerably more awkward and less ef-
ficient (in all respects!) than the optimized PbPS approach used with any of the simple two-padding schemes
we construct. Using such schemes we essentially have to pad the message twice, which only allows us to sign-
crypt significantly shorter messages, and results in much poorer exact security.5 Padding the message twice also
requires more bits for the random salts and unnecessarily complicates the implementation of the signcryption
and de-signcryption operations. Perhaps more importantly, while the resulting scheme is IND-gCCA2/UF-
CMA secure, it can never be IND-CCA2/sUF-CMA secure, as Enc/Sig are probabilistic (see appendix in [2]).
Thus, while CtE&S provides a generic composition paradigm, it is not well suited to implementations based
on trapdoor permutations (which is the setting of this work).

Furthermore, CtE&S does not support associated data, and thus lacks support for efficient long-message
signcryption. Also, in order to achieve security in the multi-user setting, a hash of the sender’s identity must be
included in the encrypted portion and a hash of the recipient’s identity must be included in the signed portion.
These hashes further complicate the implementation and increase the bit expansion. Lastly, while it is tempting
to assume the results of [18] show that CtE&S can safely reuse keys, these results are proven in a completely

5See Appendix A for details demonstrating the significant real-world advantages of our work over CtE&S in terms of exact security.
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different setting when parties want to separately encrypt/sign with the same keys. Therefore, we require some
additional verification to show that specific instantiations of CtE&S , such as for OAEP+ and PSS-R, can
safely reuse keys (and doing so incurs additional losses in exact security). The sequential approaches (StE and
EtS) have similar disadvantages, while additionally losing the parallelism.

COMPARING WITH [27]. This recent work suggests to use the PSS-R padding for sequential signcryption
with RSA. Namely, to transmit RSAR(RSA−1

S (π)), where π is the result of PSS-R applied to the message
m, and RSAU is the RSA key of user U . This approach has several disadvantages as compared to the PbPS
approach. (1) While the approach syntactically makes sense for general f , using PSS-R effectively restricts its
use to RSA [9]. On the other hand, PbPS works for general f with a wide variety of padding schemes. (2) The
exact security of encryption is extremely poor, while PbPS gives tight security reductions. (3) The scheme can
be proven secure only in the so-called two-user setting [2], and is provably insecure in a more realistic multi-
user setting for signcryption. (4) While the above problem could potentially be fixed by somehow “binding”
the message with the users’ public keys, a more serious problem is that [27] use a relatively weak notion of so-
called Outsider security [2] for privacy. In contrast, PbPS uses a much stronger notion of Insider security [2]
for both privacy and authenticity. We see no obvious way how to overcome this problem in the construction
of [27]. (5) The scheme of [27] is sequential, while PbPS is parallel. (6) Using a sequential composition with
RSA creates syntactic problems of ensuring that the domain sizes for RSAS and RSAR “match up”, which
requires special ad-hoc care. In particular, the suggested scheme is not flexible to support RSA keys of different
sizes, while PbPS has no such problem.

On a positive note, if all users in the system have RSA keys of size k, the scheme of [27] allows a user to
signcrypt (very short) messages with a ciphertext of length k. On the other hand, the minimal length of the
ciphertext with PbPS would be 2k. We believe that this disadvantage is minor in light of (1)-(6), especially
since it is relevant only for very short messages. Moreover, using the scheme of [27], one can only signcrypt
messages of length significantly less than k/2, while PbPS with an appropriate two-padding scheme allows a
user to signcrypt messages of length close to 2k.

SUMMARY OF COMPARISONS. Table 1 summarizes the comparison between this work and the previous
works mentioned above. Specific estimates for ciphertext and message lengths based on 2048-bit RSA moduli
(using the existing OAEP+ and PSS-R padding schemes) are provided where appropriate. The security reduc-
tions for TBOS in [27] are indeed so poor that we were unable to determine any appropriate practical message
length (even though we are using their recommended key length). A more detailed breakdown of our estimated
lengths which confirms the advantages of PbPS can be found in Appendix A.

To summarize, we believe that PbPS instantiated with PSEP substantially outperforms all previously pro-
posed signcryption schemes, both from practical and theoretical perspectives. We plan to propose it as a new
standard for public-key signcryption.

2 Definitions

In this section, we start by quickly reviewing some common cryptographic definitions; Appendix B provides
more formal security definitions of such schemes. Second, we introduce the notion of a two-padding. We put
off the discussion of signcryption until Section 5.

2.1 Encryption, Signatures, and Trapdoor and Claw-Free Permutations

ENCRYPTION. A public-key encryption scheme consists of the algorithms (Enc-Gen,Enc,Dec). Enc-Gen(1λ)
generates the public/private key-pair (EK,DK), with a security parameter λ. Syntactically, we write the ran-
domized encryption algorithm as ψ ← EncEK(m), where m is a message chosen from message space M
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ZSCR [3] TBOS [27] StE / EtS [2] CtE&S [2] This Work

Standard Assumption? no yes yes yes yes
Exact Security? poor very poor good good excellent
Insider Security? no no yes yes yes
Multi-User Setting? yes no yes yes yes
CCA2 security? yes yes yes/no no yes
Strong Unforgeability? no∗ no∗ no/yes no yes

General Construction? no no yes yes yes
Key Flexibility? no no yes yes yes
Key Reuse (Short Key)? yes no∗ no no∗ yes
Avoid Special Set-up? no yes yes yes yes
Extract Plain Sig/Enc? no only Sig Sig/Enc yes yes
Associated Data? no no no no yes
Compatible to PKCS#1? no maybe maybe maybe yes
Parallel Operations? n/a no no yes yes

Estimates for 2048-bit moduli
Bit Expansion on Long
Messages

4096 bits varies, expect
> 1350 bits

varies, expect
> 700 bits

varies, expect
> 2900 bits

varies, can make
< 450 bits

Max message can fit in-
side 4096 bits

0? 0? < 3000 bits < 1550 bits 3650 bits

Message / Ciphertext & n/a ?/2048 1550/2300 1550/4096 3650/4096
Key in “native” scheme 4096 4096 4096 2048

Table 1: A comparison of signcryption schemes. A star ∗ signifies that this question was not explicitly consid-
ered/addressed in the relevant work.

and ψ is the associated ciphertext. We express the behavior of the deterministic decryption algorithm as
{m,⊥} ← DecDK(ψ), where Dec outputs m or ⊥ if ψ is invalid. In this paper, we only consider the strongest
notion of security: IND-CCA2 security. This property means that the encryption scheme provides indistin-
guishability of ciphertexts (IND) [16] under adaptive chosen-ciphertext attacks (CCA2) [30, 14]: No proba-
bilistic poly-time (PPT) adversary can distinguish between the ciphertexts of two chosen messages, m0 and
m1, given the corresponding public key EK and oracle access to Dec, with probability greater than εCCA2,
where εCCA2 is negligible in λ.

SIGNATURES. A public-key signature scheme consists of the algorithms (Sig-Gen,Sig,Ver). Sig-Gen(1λ)
generates the key-pair (SK,VK), where SK is the signing key kept private, and VK is the verification key made
public. We write the randomized signature algorithm as σ ← SigSK(m). As we assume that the signature
scheme has message recovery, the deterministic verification algorithm can be expressed as a ← VerVK(σ),
where the answer a ∈ {succeed, invalid}, where invalid is again denoted by ⊥. Correctness requires that
Ver(Sig(m)) �= ⊥ for anym ∈M. We consider the strongest notion of signature security, strong unforgeability
against a chosen-message attack (sUF-CMA) [17, 5]: Given VK and oracle access to Sig, no PPT adversary
can forge a new signature σ∗ with probability greater than εCMA, where εCMA is negligible in λ.

TRAPDOOR PERMUTATIONS. Informally, a family of trapdoor permutations (TDPs) is a family of permuta-
tions such that it is easy to randomly select a permutation f and some “trapdoor” associated with f . Further-
more, f is easy to compute and, given the trapdoor information, so is its inverse f−1. However, without the
trapdoor, f is “hard” to invert: No PPT adversary A, given some y ← f(x), can find x with probability greater
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than εTDP, which is negligible in the security parameter λ of the generation algorithm.

CLAW-FREE PERMUTATIONS. To improve the exact security of our constructions, we will also talk about a
general class of TDPs — those induced by a family of claw-free permutation pairs [17], following the obser-
vation made by [13]. In this context, the generation algorithm outputs (f, f−1, g), where g is another efficient
permutation over the same domain as f . The task of the PPT adversary B now is to find a “claw” (x, z), i.e.,
f(x) = g(z), which it succeeds at with probability εclaw, negligible in λ. It is trivial to see that omitting g
from the generation algorithm induces a TDP family with εTDP ≤ εclaw (B calls A on random g(z)). On the
other hand, all known TDP families, such as RSA, Rabin, and Paillier, are easily seen to be induced by some
claw-free permutation families with εclaw = εTDP. Thus, a tight reduction to “claw-freeness” of such families
implies a tight reduction to inverting them. See [13] for more details.

2.2 Two-Paddings

SYNTAX. A two-padding scheme consists of the poly-time algorithms PAD and DePAD. The probabilistic
algorithm PAD accepts input messages m ∈M and produces a pair of outputs, denoted as (w, s)← PAD(m).
The deterministic algorithm DePAD accepts input pairs of the same form (w, s) and returns either message
m ∈M or ⊥. Correctness requires that DePAD(PAD(m)) = m for any m ∈M.

For syntactical convenience, we further define a pair of operations, with respect to any TDPs f and f′, as the
following: ψ‖s ← PadEncf (m) and w‖σ ← PadSigf ′(m). PadEncf (m) first computes (w, s) ← PAD(m)
and then outputs ψ‖s = f(w)‖s. Similarly, PadSigf ′(m) computes (w, s) ← PAD(m) and outputs w‖σ =
w‖f ′−1(s). The corresponding pair of operations PadDecf (ψ‖s) and PadVerf ′(w‖σ) are defined in the natural
way, both recovering the pair (w, s) and outputting DePAD(w, s).

SECURITY. We call PS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-secure two-padding scheme if, for any
(Tf , εTDP)-secure TDPs f and f ′, the corresponding PadEncf is a (t, εCCA2, qD)-secure IND-CCA2 encryp-
tion and PadSigf ′ is a (t, εCMA, qS)-secure sUF-CMA signature.

We call PS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-secure universal two-padding scheme if, for any
TDP f , the corresponding PadEncf and PadSigf are simultaneously (t, εCCA2, qD)- and (t, εCMA, qS)-secure,
respectively, when a user reuses the same f for both encryption and signature. Formally, the adversary has
access to a PadSigf oracle during the IND-CCA2 attack game played against PadEncf , and, similarly, the
adversary has access to a PadDecf oracle during the sUF-CMA attack game played against PadSigf .

2.3 Extractable Commitments

Our constructions for two-paddings will involve a specialized commitment scheme we call an “extractable”
commitment. Extractable commitments have a syntax similar to standard commitment schemes, but with the
additional property that there exists an extraction algorithm which a simulator can use to extract a unique de-
commitment from any valid commitment with high probability. This extraction algorithm immediately follows
for most commitment schemes based on the random oracle model, but requires the existence of a trapdoor for
commitment schemes which do not make use of the random oracle model. Note that this differs from what is
commonly referred to as a “trapdoor commitment” [8] where the goal is to construct alternative decommitments
(with different openings) for a given commitment.

SYNTAX. An extractable commitment scheme C consists of four algorithms (Setup,Commit,Open,Extract).
The optional setup algorithm Setup(1λ) outputs a public commitment key CK (possibly empty) and possibly
a secret trapdoor TK used by the extraction algorithm Extract. Given a message m ∈ M and some random
coins r, CommitCK(m; r) outputs a pair (c, d) where c is k1-bit string representing the commitment to m and d
is the corresponding k2-bit long decommitment. As a shorthand, we will write (c, d)← Commit(m) and c(m)
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to denote a commitment to message m. OpenCK(c, d) outputs m if (c, d) is a valid commitment/decommitment
pair for m, or ⊥ otherwise. Correctness requires Open(Commit(m)) = m for all m ∈M.

SECURITY. We require this commitment scheme to satisfy two security properties:

HIDING. No PPT adversary can distinguish the commitment of any messages of its choice from a k1-bit
random string: c(m) ≈ R. Formally, for any PPTA running in two stages, find and guess, in time at most t,

Pr
[
A(c; α, guess) = 1

∣∣∣ (m,α)← A(1λ, find),
(c, d)← Commit(m)

]
−Pr

[
A(R; α, guess) = 1

∣∣∣ (m,α)← A(1λ, find),
R

R← {0, 1}k1
]
≤ εhide

where εhide is negligible in the security parameter λ. Note that Setup(1λ) is implicitly run in both experiments
if necessary, and CK is given to A. This property is a slightly stronger requirement than that of an ordinary
commitment scheme which only requires c(m0) ≈ c(m1).

EXTRACTABILITY. There exists a deterministic poly-time algorithm Extract which can extract the “correct”
decommitment from any valid commitment, given access to all random oracle transcripts (and the trapdoor TK
output by Setup if necessary). Formally, for any PPTA running in time at most t,

Pr[Extract(c,T ) �= d ∧Open(c, d) �= ⊥ | (c, d)← A(1λ)] ≤ εextract

where T is either a transcript of all random oracle queries or the trapdoor information TK, and εextract is
negligible in λ. The Setup operation is implicit when necessary, and CK is given to A. For syntactic conve-
nience, we define Extract to output a random value in the event that the extraction algorithm fails to find a valid
decommitment.

We say that a commitment scheme C is a (t, εhide, εextract)-secure extractable commitment if it satisfies
the above properties. The “standard” notion of a commitment requires a binding property, instead of our
extractability property. We now show that a strong form of binding follows from the extractability property.

Lemma 1 (Binding property of extractable commitments) Given CK, it is computationally hard to produce
(c, d, d′) such that (c, d) and (c, d′) are valid commitment pairs and d �= d′. Formally, for any PPTA running
in time at most t (where Setup is implicit and CK is given to A),

Pr[Open(c, d) �= ⊥ ∧ Open(c, d′) �= ⊥ ∧ d �= d′ | (c, d, d′)← A(1λ)]
def

≤ εbind ≤ 2εextract

When appropriate, we directly use εbind for conceptual clarity and because εbind may in fact be tighter than
2εextract. Note this is slightly stronger than the normal binding property of commitment schemes, where (c, d′)
must not represent a valid commitment for a different message: We also disallow alternative decommitments of
the same message.

Proof: Consider a reduction B against the extractability property of the commitment scheme as follows. B runs
A and obtains (c, d, d′) if A succeeds. B then randomly outputs (c, d) or (c, d′) with equal probability. Since
Extract(c,T ) is a deterministic value, it matches the output of B with probability at most 1/2. In the event that
it does not match, B has broken the extractability property. Since this must happens with probability at most
εextract, we find that A succeeds with probability at most 2εextract.

We now state an additional useful property of (t, εhide, εextract)-secure extractable commitments:

Lemma 2 ∀ PPTA running in time t,

Pr[Open(c, d) �= ⊥ | c← A(1k); d R← {0, 1}k2 ]
def

≤ εrand ≤ εextract + 2−k2
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We will use εrand for conceptual clarity and because εrand may in fact be tighter than εextract + 2−k2 .

Proof: Consider a reduction B against the extractability property of the commitment scheme as follows. B
runs A and obtains c ← A(1k), chooses a d uniformly at random, and returns (c, d). The probability that B
succeeds is at least the probability that A succeeds minus the probability that d = Extract(c,T ). Since d is
chosen randomly, the probability that d = Extract(c,T ) is 2−k2 . The lemma follows.

3 Feistel Two-Padding

We now provide a generic construction for a class of provably secure two-padding schemes in the random oracle
model based on a single round of the Feistel Transform.

Definition 1 (Feistel Two-Padding) Let C = (Setup,Commit,Open,Extract) be any (t, εhide, εextract)-secure
extractable commitment scheme and H : {0, 1}k1 → {0, 1}k2 be a random oracle. A Feistel Two-Padding
PADC(m)→ (w, s) induced by C is given by:

(c, d) ← Commit(m)
w ← c
s ← H(w)⊕ d

Note that (w, s) represents a Feistel Transform on input (d, c) using H . The corresponding DePADC algorithm
computes d = H(w)⊕ s and c = w, then returns Open(c, d).

Theorem 1 Feistel two-padding is a universal two-padding. In terms of exact security: For any (t, εhide, εextract)-
secure extractable commitment C and any (t, εTDP)-secure TDP f , the Feistel two-padding scheme induced by
C and f is a (t′, εCCA2, εCMA, qD, qS , qH)-secure universal two-padding scheme, with

εCCA2 ≤ εTDP + qS · ((qS + qH) · 2−k1 + εhide) + qD · εrand + 2εhide + εbind

εCMA ≤ qH · εTDP + qS · ((qS + qH) · 2−k1 + εhide) + (qD + 1) · εrand + εbind + εextract

t′ = t−O((qH + qS) · (Tf + Textract))

where qH is the number of queries to H , Tf is the running time of f , and Textract is the running time of Extract.
Furthermore, if f is induced by a (t, εclaw)-secure family claw-free permutations, then the signature reduc-

tion becomes tight:

εCMA ≤ εclaw + qS · ((qS + qH) · 2−k1 + εhide) + (qD + 1) · εrand + εbind + εextract

The proof of this theorem is given in Appendix C. We note that by the result of [13], a security loss of Ω(qH)
for our signature reduction with general TDPs is inevitable. Thus, the restriction to claw-free permutations is
necessary to obtain a tight security reduction.

4 PSS-R, OAEP, OAEP+, SAP and other Feistel 2-Paddings

We now demonstrate that our Feistel two-padding construction generalizes nearly all common padding schemes
currently used for plain encryption or signature. First, we observe that conventional padding schemes such as
OAEP [6], OAEP+ [36], PSS-R [7], and SAP [21] naturally consist of two parts w‖s and indeed utilize a
round of the Feistel Transform on various pairs of 〈d, c〉 at their last step: 〈w = c, s = H(w) ⊕ d〉. Thus, using
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Figure 2: Schema for PSEP on input m = m1‖m2

Theorem 1 we only need to prove that the corresponding 〈d, c〉 satisfy the simple requirements of extractable
commitments.

The basic arguments we present are quite standard in the random oracle model, so we will often only sketch
the proofs in this section, omitting the obvious (but tedious) details for brevity. We start with a short discus-
sion of OAEP and PSS-R, before generalizing both of these padding schemes to PSEP. Exact bounds on
εhide, εextract will be given later.

• OAEP. This padding is defined as
〈
w = (m‖0k̂)⊕G′′(r), s = H(w)⊕ r

〉
, which is syntactically equiv-

alent to 〈w = (m⊕G(r))‖G′(r), s = H(w) ⊕ r〉. This 〈w, s〉 pair is constructed by a one-round Feistel
Transform on 〈d = r, c = (m⊕G(r))‖G′(r)〉. We now argue that this 〈d, c〉 forms an extractable com-
mitment. Recall |c| = k1 and let |m| = n < k1. (1) Hiding is true as G′′(r) is a perfect one-time-pad
(OTP) unless r is reused, which occurs with negligible probability. (2) Extractability is easily seen to
be true by noticing that one can “extract” r from G′(r) (which is part of c) by simply going through the
random oracle transcripts and seeing which one matches the lastk̂ = (k1 − n) bits of c.

• PSS-R. This padding scheme has the form 〈w = G′(m‖r), s = H(w)⊕ (m‖r)〉, which yields the pair
〈d = m‖r, c = G′(m‖r)〉. Here |m| = n < k2. We again argue that this is an extractable commitment.
(1) Hiding is true since r is random and thusG′(m‖r) hides all information about m, unless the adversary
queries G′ on m‖r, which happens with negligible probability. (2) Extractability is again easily seen by
simply going through the transcripts of G′ and extracting the corresponding m‖r which matches c.

• PSEP. In fact, we observe the surprising fact that the above two padding schemes can be commonly
generalized into the following form. For any parameter a ∈ [0, n] (where |m| = n), write m = m1‖m2,
where |m1| = a and |m2| = n− a, and define

w ←
(
m1 ⊕G(r)

)
‖ G′(m2‖r)

s ← H(w) ⊕ (m2‖r)

Notice if we set a = 0, this scheme yields PSS-R; while if a = n, we exactly have OAEP. Accord-
ingly, we call this “hybrid” scheme Probabilistic Signature Encryption Padding, shown in Figure 2. In
Appendix E, we argue the following bounds on PSEP.
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Lemma 3 The commitment scheme 〈d = m2‖r, c = (m1 ⊕G(r))‖G′(m2‖r)〉 defining PSEP satisfies:

εhide ≤ (qG + qG′) · 2−(k2+a−n); εextract ≤ (q2
G′ + 1) · 2−(k1−a); εrand ≤ 2−(k1−a)

where qG and qG′ are the number of oracle queries to G and G′ made by the adversary.

By playing with the parameter a, we now have greater flexibility in choosing the lengths of w and s, or maxi-
mizing the length n of our message m when |w| = k1 and |s| = k2 are fixed. For example, consider the natural
“balanced case” k1 = k2 = k. With both OAEP and PSS-R, we had to set n < k, while the total length 2k
of our two-padding potentially allowed to make n ≈ 2k. With the more general scheme, we can easily achieve
this goal! Indeed, Lemma 3 implies that it is safe to set |m1| = k− 2k̂, |m2| = k− k̂, |r| = |G′(·)| = k̂, where
k̂ is large enough to be a security parameter (i.e., 150 bits is enough in practice). For example, using our highly
conservative analysis in Appendix A with k = 2048, we can fit a 3680-bit message inside our two-padding
(of total length 4096), instead of about 1500-1650 bits allowed by OAEP+ and PSS-R. (Of course, for many
applications, signcrypting short messages is sufficient. For example, Dodis and An [11] recently showed that
one can easily build an arbitrary-length signcryption from one supporting only about 300-bit messages.)

• OAEP+. This padding is a similar but slightly more “conservative” form of OAEP, with d = r and
c = (m⊕G(r)‖G′(m‖r). The proof that above 〈c, d〉 form an extractable commitment a simple variation
of the argument for OAEP, and is included in Appendix E. We remark, however, that the “extra” input
m to G′ used in OAEP+ is not actually necessary for our application (although it does provide a slightly
tighter bound for εextract). The original reason for which Shoup [36] proposed OAEP+ in place of OAEP
was to provide security for encryption when a generic TDP f is applied to both w‖s, instead of only to
w. In fact, Fujisaki et al. [15] already showed that it is safe to use plain OAEP when f is only applied to
w. Our much more general framework gives yet another verification of this fact.

• SAP. This padding scheme can be viewed as the following. Write m = m1‖m2, and set

w ← G
(
m1‖r‖G′(m2)

)
⊕m2 // pad m2 with 0’s if |m2| < |G(·)|

s ← H(w)⊕
(
m1‖r‖G′(m2)

)
Actually, this is a slight simplification of the “scramble all” padding scheme used in [21]. In the original
version, G′(·) was more conservatively applied to m1‖m2‖r. We show that for our purposes, even
the simpler version suffices, which we also show in Appendix E. (Of course, the original version can
be easily shown secure as well.) Interestingly, if we set |m2| = |G′(·)| = 0 for SAP, we again get
PSS-R! On the other hand, if we set |m1| = 0, we get yet another, new extractable commitment scheme:
〈d = r‖G′(m), c = G(d) ⊕m〉.

In short, the approach of Theorem 1 allows us to derive both old and new provably-secure two-padding
constructions, by only showing a few straightforward properties in 〈d, c〉!

5 Two-Padding as a Secure Signcryption

As observed by [3, 2], full-fledged signcryption must be defined in the multi-party setting, where issues with
users’ identities are addressed. In contrast, authenticated encryption in the symmetric setting only needs to
consider a much simpler two-party setting. A similar two-party model could be used for signcryption too [2].
However, as transforming two-user signcryption to the multi-user setting is quite subtle in general (see [2]), we
will right away consider the more challenging and generally required multi-user setting.
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5.1 Definition of Signcryption

SYNTAX. A signcryption scheme consists of the algorithms (Gen,SigEnc,VerDec). In the multi-party setting,
the Gen(1λ) algorithm for user U generates the key-pair (SDKU ,VEKU ), where λ is the security parameter,
SDKU is the signing/decryption key that is kept private, and VEKU is the verification/encryption key made
public. Without loss of generality, we assume that VEKU is determined from SDKU .

The randomized signcryption algorithm SigEnc for user U implicitly takes as input the user’s secret key
SDKU , and explicitly takes as input the message m ∈ M and the identity of the recipient, in order to compute
and output the signcryption Π. For simplicity, we consider this identity ID to be a public key VEK, although
ID could be of more complex form, provided that other users can easily obtain VEK from ID. Thus, we write
SigEncSDKU

(m, IDR) as SigEncSDKU
(m,VEKR), or simply SigEncU (m,VEKR).

Similarly, user U ’s deterministic de-signcryption algorithm VerDec implicitly takes the user’s private SDKU ,
and explicitly takes as input the signcryption Π̃ and the senders’ identity. Again, we assume IDS = VEKS , and
write VerDecSDKU

(Π,VEKS), or simply VerDecU (Π,VEKS). The algorithm outputs some message m̃, or ⊥
if the signcryption does not verify or decrypt successfully. Correctness ensures that for any users S and R,
VerDecR(SigEncS(m,VEKR),VEKS) = m, for any m ∈M.

SECURITY. Below we will use the strongest notion of Insider security for multi-user signcryption [2]. Clearly,
a weaker notion of the so called Outsider security easily follows as well.

As expected, the security for signcryption consists on IND-CCA2 and sUF-CMA components when attack-
ing some user U . Both games with the adversary, however, share the following common component. After
(SDKU ,VEKU ) ← Gen(1λ) is run and A gets VEKU , A can make up to qSE adaptive signcryption queries
SigEncU (m,VEKR) for arbitrary VEKR, as well as up to qVD de-signcryption queries VerDecU (Π,VEKS),
again for arbitrary VEKS .

The IND-CCA2 security of signcryption requires that no PPT adversary A can find some pair m0,m1

for which he can distinguish SigEncS(m0,VEKU ) from SigEncS(m1,VEKU ). Notice, to make sense of the
statement, A has to output the secret key SDKS of the sender whose messages to U he can “understand”. While
seemingly restrictive, this is a much stronger guarantee than if A tried to do it with some sender S whose key
he did not know. A good way to interpret this requirement is to say that even when compromising S, A still
cannot “understand” messages S sent to U . In fact, we allow A much more, as he can come up with the secret
key SDKS without necessarily generating it via Gen! Formally, for any PPTA running in time t,

Pr

[
b = b̃

∣∣∣∣∣ (m0,m1,SDKS , α)← ASigEncU (·,·),VerDecU (·,·)(VEKU , find), b R← {0, 1},
Π← SigEncS(mb,VEKU ), b̃← ASigEncU (·,·),VerDecU (·,·)(Π; α, guess)

]
≤ 1

2
+ εSC−CCA2

where εSC−CCA2 is negligible in the security parameter λ, and (SDKU ,VEKU )← Gen(1λ) is implicitly called
at the beginning. In the guess stage,A only has the natural restriction of not querying VerDecU with (Π,VEKS),
but can still use (Π,VEKS′) for VEKS′ �= VEKS .

For sUF-CMA security, no PPT A can forge a “valid” signcryption Π (of some message m) from U to any
user R, provided that Π was not previously returned from a query to SigEncU . Again, to make sense of the word
“valid”, A has to come up with the presumed secret key SDKR as part of his forgery. Again, this seemingly
restrictive condition makes the definition actually stronger, similar to the IND-CCA2 case. Formally, for any
PPT A running in time t,

Pr
[
VerDecR(Π,VEKU ) = m ∧m �= ⊥

∣∣∣ (Π,SDKR)← ASigEncU (·,·),VerDecU (·,·)(VEKU)
]
≤ εSC−CMA

where εSC−CMA is negligible in the security parameter λ, Gen(1λ) is implicit, andA did not obtain Π in response
to any SigEncU(m,VEKR) query. We call any scheme satisfying these properties a (t, εSC−CCA2, εSC−CMA, qVD, qSE)-
secure signcryption scheme.
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5.2 PbPS Gives Secure Signcryption

Now, we can formally argue that universal two-padding schemes, when used in the PbPS paradigm, are suffi-
cient for secure signcryption. Recall, in our setting each user U generates a trapdoor permutation fU = VEKU ,
of which only U knows the trapdoor f−1

U = SDKU .
To signcrypt a message from S to R, one is first tempted to generate the two-padding (w, s) ← PAD(m),

and then compute the signcryption ψ‖σ ← fR(w)‖f−1
S (s). De-signcryption is done in reverse, by first recov-

ering w = f−1
R (ψ), s = fS(σ), and finally m = DePAD(w, s). We let Basic-PbPS (Basic Padding-based

Signcryption Scheme) denote this natural signcryption scheme. In fact, Basic-PbPS is secure in the simplistic
“two-party” model [2]. Unfortunately, it is trivially insecure according to our definition of multi-party signcryp-
tion. For example, an adversary A can ask some honest S to send a message m toA. Upon receiving ψ‖σ from
S, A can recover w = f−1

A (ψ), and then forge a valid signcryption fR(w)‖σ of m from S to any other user R.
Similar “identity fraud” allows A to break the IND-CCA2 security as well.

As this demonstrates, in the multi-user setting, the signcryption must non-trivially depend on the identities of
the message’s sender and its intended recipient, in order to protect both the authenticity of S’s messages and the
privacy of R’s messages. In this section, we provide one simple way to accomplish this; an optimized version is
presented in Section 6 when we introduce the notion of associated data. We let PbPS be the following scheme,
where h is a collision-resistant hash function (CRHF) with running time Th. The sender S simply applies
Basic-PbPS to the message m′ = m‖h(VEKS ,VEKR). On the receiver’s side, R first recovers m′ = m‖~
just like in Basic-PbPS , but outputs m only if ~ = h(VEKS ,VEKR); otherwise, R outputs ⊥.

Theorem 2 PbPS is a
(
t−O((qD+qS) · (Tf +Th)), (εCCA2 +q2

h ·εCRHF), (εCMA +q2
h ·εCRHF), qD, qS , qH

)
-

secure signcryption, provided h is a (t, εCRHF)-secure CRHF and (PAD,DePAD) is any (t, εCCA2, εCMA, qD, qS)-
secure universal two-padding scheme.

We include the proof of this theorem in Appendix F. As an immediate corrolary, however, we get that any
Feistel two-padding schemes, such as PSEP, PSS-R, OAEP, OAEP+, SAP, etc., can be used in PbPS .

6 Signcryption for Long Messages (with Associated Data)

The signcryption scheme described in Section 5 is adequate for short messages or keys; however, we can
construct a signcryption scheme for long messages virtually “for free”, using an approach similar to the one
described in [11]. We first extend our Feistel Two-Padding to support labels, or “associated data” as in [31].
Then, to handle long messages, we apply the previous signcryption scheme to a short one-time key used to
encrypt the long message. The ciphertext of the long message is simply attached to the signcryption in the form
of a label. This provides the required authenticity guarantee.

6.1 Two-Paddings with Associated Data

SYNTAX. The syntax is similar to the previously-described two-padding scheme, with the addition of a new
“label” parameter L provided to both PAD and DePAD. That is, we now write (w, s) ← PADL(m) and
m ← DePADL(w, s). PadEnc and PadSig are similarly enhanced as follows: L‖ψ‖s ← PadEncLf (m) and

L‖w‖σ ← PadSigLf (m). Note that ψ and σ are defined exactly as before, i.e., f(w) and f−1(s), respectively.
Naturally, PadDec and PadVer now expect L at the front of their input string as well.

SECURITY. We call LPS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-secure labelled two-padding scheme
if, for any TDPs f and f ′, the corresponding PadEncLf is a (t, εCCA2, qD)-secure IND-CCA2 encryption on the
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message input m (considering the entire output L‖ψ‖s as a ciphertext) and PadSigLf ′ is a (t, εCMA, qS)-secure
sUF-CMA signature on (L,m). Note that A must choose a fixed label L∗, in addition to m0 and m1, during
the find stage of the IND-CCA2 game. Although the IND-CCA2 security does not require hiding for L—in
fact, it is given in the clear—L is considered part of the ciphertext. For example, given a challenge ciphertext
L∗‖ψ∗‖s∗ during the IND-CCA2 game, the adversary may ask the decryption oracle to decrypt L′‖ψ∗‖s∗ for
any L′ �= L∗.

We call LPS = (PAD,DePAD) a (t, εCCA2, εCMA, qD, qS)-secure labelled universal two-padding scheme
if it is a (t, εCCA2, εCMA, qD, qS)-secure labelled two-padding even when a user is reusing the same TDP f for
both encryption and signature. This definition is analogous to that of Section 2.2.

Definition 2 (Labelled Feistel Two-Padding) Let C = (Setup,Commit,Open,Extract) be any extractable
commitment scheme and H : {0, 1}∗ × {0, 1}k1 → {0, 1}k2 be a random oracle. A Labelled Feistel Two-
Padding PADL(m)→ (w, s) is given by:

(c, d) ← Commit(m)
w ← c
s ← H(L, w) ⊕ d

Note that (w, s) represents a Feistel Transform on input 〈d, c〉 using H(L, ·). The corresponding DePAD
computes d = H(L, w)⊕ s and c = w, then returns Open(c, d).

Theorem 3 The Labelled Feistel Two-Padding described above is a secure labelled universal two-padding
scheme, with the same exact security as the Feistel Two-Padding in Theorem 1, including the tighter exact
security when a claw-free permutation family is used instead of a TDP.

The proof of this theorem is in Appendix D. Intuitively, the label L selects a random oracle H(L, ·) from an
infinite family of oracles to be applied in the Feistel transform. Using an incorrect oracle will cause d to become
randomly defined; by Lemma 2, this will cause Open to return invalid. Thus, the label is effectively bound to
the rest of the padding. Notice that security for the label is “free” as a consequence of our use of a random
oracle in the padding: (1) there is no loss in security due to the inclusion of the label, and (2) the computational
cost of adding the label is negligible in practice, as it entails merely increasing the size of input to H .

6.2 Signcryption with Associated Data

SYNTAX. The syntax of the labelled signcryption and de-signcryption algorithms differs from normal sign-
cryption only by the inclusion of a “label” parameter &. These algorithms are denoted SigEnc� and VerDec�.

SECURITY. The security notions for these labelled algorithms are similar to those of standard signcryption,
with the added requirement that & is considered part of the ciphertext (for the purposes of CCA2 decryption
oracle queries), and must be authenticated. However, there is no hiding requirement for &.

If we replace the universal two-padding in the PbPS construction described in Section 5 with a labelled
universal two-padding, the resulting signcryption SigEnc� supports associated data by simply setting L = &.
This is a natural extension, and the proof is similar to that of Theorem 2. However, we can do better than this by
taking advantage of the associated data to bind the identities of the participants, rather than wasting part of the
message space to append a hash of their public keys. We define Labelled Padding-based Parallel Signcryption
(&-PbPS) to be Basic-PbPS using a labelled universal two-padding with label L = &‖VEKS‖VEKR, where
& is the associated data to be used for signcryption and VEKS , VEKR are the public keys of the sender and
recipient, respectively.
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Theorem 4 &-PbPS as described above is a (t−O((qD+qS)·Tf ), εCCA2, εCMA, qD, qS , qH)-secure signcryp-
tion, provided that (PAD,DePAD) is a (t, εCCA2, εCMA, qD, qS)-secure labelled universal two-padding scheme.

The proof is similar to that of Theorem 2 but it provides improved exact security since the CRHF is not
involved. Note that including the public keys in the associated data does not increase the length of a ciphertext
since the keys are already available.

6.3 Signcryption of Long Messages using Associated Data

Using the “concealment” approach described in [11], we can extend any short-message signcryption scheme
with support for associated data to include support for long messages. Although arbitrary concealment schemes
will suffice, for efficiency purposes we will consider concealments utilizing any one-time (t, εOTE)-secure
encryption scheme (E,D),6 as discussed below. As will be obvious from our implementation below, the
construction described in the following theorem is analogous to that of symmetric key authenticated encryption
with support for associated data given in [11].

Let SC = (Gen,SigEnc,VerDec) be any signcryption scheme on n̂-bit messages with support for associated
data, and (E,D) be any one-time encryption scheme with keysize n̂. We define a signcryption scheme SC′ =
(Gen,SigEnc′,VerDec′) on long messages with support for associated data as follows. Let SigEnc′�(M) =
SigEncL(τ), where L = &‖Eτ (M) and τ is a random n̂-bit string. Similarly, VerDec′�(π,Π) = Dτ (π), where
τ = VerDecL(Π) and L = &‖π.

Theorem 5 If SC is (t, εSC−CCA2, εSC−CMA, qVD, qSE)-secure and (E,D) is (t, εOTE)-secure (with encryp-
tion/decryption time TOTE), then SC′ is (t − O((qVD + qSE) · TOTE), εSC−CCA2 + εOTE, εSC−CMA, qVD, qSE)-
secure.

The proof of this theorem is given in Appendix G. The result of this theorem allows us extend &-PbPS to
support long messages by using the padding label L = L‖VEKS‖VEKR = &‖Eτ (M)‖VEKS‖VEKR.

6.4 Putting the Pieces Together

We now construct a complete signcryption scheme with support for long messages and associated data by
collecting the pieces described in Sections 6.1 through 6.3. Figure 3 shows a graphical representation of this
scheme, which we name Feistel-&-PbPS .

Definition 3 (Feistel-&-PbPS) Let C = (Setup,Commit,Open,Extract) be an extractable commitment scheme
and (E,D) be a one-time secure encryption scheme with n̂-bit keys. Let H be a random oracle, and assume
that

〈
fS, f

−1
S

〉
and

〈
fR, f

−1
R

〉
are TDPs known to the sender S and receiver R, respectively. Also, let & denote

an arbitrary length label and M ∈ {0, 1}poly(n̂) be a (long) message.

Define SigEnc�S(M,VEKR) as the following:

τ
R← {0, 1}n̂

π = Eτ (M)
L = & ‖ π ‖ VEKS ‖ VEKR

(c, d) ← Commit(τ)
w = c ; s = H(L, c) ⊕ d

ψ = fR(w) ; σ = f−1
S (s)

Output Π = &‖π‖ψ‖σ
6I.e., no distinguisher in time t can tell Eτ (M0) from Eτ (M1) for any two messages (M0, M1) with probability greater than εOTE.
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Figure 3: Schema for Feistel-&-PbPS

Define VerDec�R(Π,VEKS) as the following, parsing Π as &‖π‖ψ‖σ and setting L = &‖π‖VEKS‖VEKR:

w = f−1
R (ψ) ; s = fS(σ)
c = w ; d = s⊕H(L, c)

τ = Open(c, d)
If τ = ⊥ ⇒ Output ⊥

Output M = Dτ (π)

We also note that a user U can utilize the same f−1
U , fU for both sending and receiving the data.

Theorem 6 &-PbPS is a (t−O((qD + qS) · (Tf + TOTE)), εCCA2 + εOTE, εCMA, qD, qS)-secure signcryption
with associated data when instantiated with a (t, εhide, εextract)-secure extractable commitment scheme C and
a one-time (t, εOTE)-secure encryption scheme (E,D), where εCCA2, εCMA, qD, qS , and Tf are defined as in
Theorem 1 and TOTE as in Theorem 5.

The proof of this theorem follows trivially from Theorem 3, Theorem 4, and Theorem 5.

PRACTICAL CONSIDERATIONS. We believe this general Feistel &-PbPS scheme meets nearly all of the
desirable goals for a signcryption scheme we describe in Section 1 using any typical one-time secure encryption
and extractable commitment. We now offer some final recommendations for a specific instantiation of Feistel
&-PbPS that we feel best achieves our goals.

It is our recommendation to use Eτ (M) = K(τ)⊕M and Dτ (π) = K(τ)⊕ π for the one-time encryption
scheme, where K : {0, 1}n̂ → {0, 1}poly(n̂) is either a random oracle or a pseudo-random generator. We are
already in the random oracle model, so we can achieve the tightest security by using a random oracle, giving
εOTE ≤ qK ·2−n̂. This allows us to select n̂ as small as 128-bits in practical schemes. We also recommend using
PSEP for the extractable commitment scheme, with a suitable choice of parameters to match the input sizes
of the TDPs and the desired exact security bound. Appropriate selection of the parameter a even allows the
use of existing OAEP or PSS-R padding implementations. For applications where bandwidth is at a premium,

16



careful selection of the parameters allows over 3680 data bits to fit into the padding when using typical 2048-
bit RSA moduli. For such applications it is possible to transfer almost 3600 message bits from the one-time
encryption into the padding (along with τ ), resulting in about 500 bits of overhead for long messages.7

We believe that this instantiation of Feistel &-PbPS is extremely practical and flexible, and provides optimal
exact security. Our scheme is consistent with current PKCS#1 infrastructure, and using low-exponent RSA, the
cost of a signcryption or de-signcryption operation is approximately the cost of a single modular exponentiation.
Thus, our recommended scheme truly satisfies all the goals for a signcryption scheme.
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Figure 4: High-level comparison between CtE&S with OAEP+ and PSS-R and Feistel-&-PbPS .

A Exact Security Comparisons

In Table 2, we present approximate asymptotic bounds for the exact security of several TDP based signcryption
schemes, including &-PbPS instantiated with PSEP. For EtS and StE we imagine that any leftover bits that
cannot be squeezed into the padding for the second operation are somehow accounted for outside of the TDPs,
with no additional loss of security. In order to achieve security in the multi-user setting EtS , StE , and RSA-
TBOS all require that a hash of the participant’s identities be included alongside the message (similar to our
scheme in Section 5.2). We subtract a fixed overhead of 160-bits to account for this hash (which prevents
“identity fraud”) from those schemes. As was noted in [2], CtE&S requires a hashes in both the encryption
and signature portions, but we assume that the signature padding is already large enough to support both the
commitment and the hash, allowing us to subtract only the 160-bits for the encrypted portion (which contains
the message bits).

The bounds we give are accurate up to small constant factors (which may lead to an additive error of a
few bits in bit-security estimates), based on the current literature. We use qS , qD, and qh to denote the upper
bounds on the total number of signcryption, de-signcryption, and hash oracle queries made by an adversary
(respectively). We use r to represent the number of random salt bits required and κ to denote the number of bits
used to provide an “integrity check” in the padding.

In Table 3 we provide the actual bit lengths required to achieve roughly 100-bit security using 2048-bit RSA
(assuming that 2048-bit RSA 100-bit secure). We used qS = qD = 230 and qh = 260, consistent with current
literature. Polynomial time losses in the reduction were not considered in the selection of parameters. Although
this is unrealistic, we note that this approach is common, and that time loss in the reduction for &-PbPS is
significantly smaller than that of the other schemes. In particular, &-PbPS does not lose any factors proportional
to q2h as the other schemes do.8 In a practical sense, this means &-PbPS requires a weaker assumption on the
security of the TDP to achieve 100-bit security than the other schemes. We cannot achieve greater than 50-bit
security for RSA-TBOS with any choice of parameters, so it was omitted from this analysis. We further note
that, even using much larger RSA moduli, RSA-TBOS will require more than half of the padding to be used for
integrity check bits in order to avoid cubic losses in security.

8Using low-exponent RSA, one can reduce the factor of q2h in the OAEP+ based schemes to a factor of qh, but even for this special
case, the time losses are still worse than our scheme.
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Scheme EtS using OAEP+ and PSS-R
Public Key Length 2k
Random Salt Lengths OAEP+: r1 PSS-R: r2
Integrity Check Lengths OAEP+: κ1 PSS-R: κ2

Message / Ciphertext Length (k − κ1 − r1 − 160)/(k + κ2 + r2)
Time loss: t′ = t−O(((qh + qS) · κ2 + q2

h) · k3 + (qh + qD) · k)
εCCA2 ≤ εTDP + (qh + qD) · 2−κ1 + qhqD · 2−r1
εCMA ≤ εclaw · (1 + qS · 2−r2) + (qh + qS)2 · 2−κ2
Scheme StE using PSS-R and OAEP+
Message / Ciphertext Length (k − κ2 − r2 − 160)/(k + κ1 + r1)
Remaining entries as for EtS above

Scheme CtE&S using H(m‖r), OAEP+, and PSS-R
Public Key Length 2k
Random Salt Lengths OAEP+: r1 PSS-R: r2 Commitment: r3
Integrity Check Lengths OAEP+: κ1 PSS-R: κ2

Message / Ciphertext Length (k − κ1 − r1 − r3 − 160)/(2k)
Time loss: t′ = t−O(((qh + qS) · κ2 + q2

h) · k3 + (qh + qD) · k)
εCCA2 ≤ εTDP + (qh + qD) · 2−κ1 + qhqD · 2−r1 + 2−r3
εCMA ≤ εclaw · (1 + qS · 2−r2) + (qh + qS)2 · 2−κ2 + 2−k+κ1+r1

Scheme CtE&S with key reuse (H(m‖r), OAEP+, and PSS-R)
Public Key Length k

εCCA2 ≤ εTDP + (qh + qD) · 2−κ1 + qhqD · 2−r1 + 2−r3 + (qh + qS)2 · 2−κ2
εCMA ≤ εclaw·(1+qS ·2−r2)+(qh+qS)2·2−κ2+2−k+κ1+r1 +(qh+qD)·2−κ1+qhqD·2−r1
Remaining entries as for CtE&S (without key reuse) above

Scheme RSA-TBOS
Public Key Length k

Random Salt Length r

Integrity Check Length κ Special Parameter: ν = !(5k)/(4κ)" Note: ν ≥ 2
Message / Ciphertext Length (k − κ− r − 160)/k
Time loss: t′ = t/ν − (qh + qS)ν · poly(k)−O((qh + qS) · k3)
εCCA2 ≤ (εTDP + 2−k/8)1/ν + (qh + qS) · 2−r + qD · 2−κ
εCMA ≤ εclaw + (qSqh + q2

S) · (2−r + 2−κ) + (qSqh + q2
h) · 2−κ

Scheme &-PbPS using PSEP
Public Key Length k

Random Salt Length r

Integrity Check Length κ

Message / Ciphertext Length (2k − κ− r)/(2k)
Time loss: t′ = t−O((qD + qS + qh) · k3)
εCCA2 ≤ εTDP + qS · qh · 2−r + (qD + q2

h) · 2−κ + q2
S · 2−k

εCMA ≤ εclaw + qS · qh · 2−r + (qD + q2
h) · 2−κ + q2

S · 2−k

Table 2: Exact security bounds of several k-bit TDP based signcryption schemes in the random oracle model.
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EtS [StE ] CtE&S CtE&S + key reuse &-PbPS / PSEP

Key Length 4096 4096 2048 2048
Random Salt 190 + 30 190 + 30 + 100 190 + 30 + 100 190
Lengths = 220 = 320 = 320
Integrity Check 160 + 220 160 + 220 160 + 220 220
Lengths = 380 = 380 = 380
Message Length 2048 − 510 [410] 2048 − 510 2048 − 510 4096 − 410

= 1538 [1638] = 1538 = 1538 = 3686
Ciphertext Length 2298 [2398] 4096 4096 4096

Table 3: Approximate parameters for several 2048-bit RSA based signcryption schemes

B Formal Security Definitions

ENCRYPTION. This paper only considers IND-CCA2 security for encryption: No probabilistic poly-time
(PPT) adversary A can distinguish between the ciphertexts of two chosen messages, m0 and m1, given the
corresponding public key EK and oracle access to Dec. Formally, for any PPTAwhich runs in two stages, find
and guess, in total time t and making at most qD decryption oracle queries, we say that Enc is (t, εCCA2, qD)-
secure if

Pr
[
b = b̃

∣∣∣ (EK,DK)← Enc-Gen(1λ), (m0,m1, α)← ADec(·)(EK, find),
b

R← {0, 1}, ψ ← EncEK(mb), b̃← ADec(·)(ψ; α, guess)

]
≤ 1

2
+ εCCA2

where εCCA2 is negligible in the security parameter λ. Naturally, A cannot query Dec on input ψ in the guess
stage.

SIGNATURES. The strongest notion of signature security, sUF-CMA, is defined as the following: For any
PPT adversary A, running in time t and making at most qS signature oracle queries, we say that Sig is
(t, εCMA, qS)-secure if

Pr
[
VerVK(σ∗) �= ⊥

∣∣∣ (SK,VK)← Sig-Gen(1λ), σ∗ ← ASig(·)(VK)
]
≤ εCMA

where εCMA is negligible in λ, and σ∗ was not returned to A by Sig(·).
TRAPDOOR PERMUTATIONS. A trapdoor permutation generator consists of the algorithms (TDP-Gen,Eval, Inv).
TDP-Gen(1λ) generates the pair

〈
f, f−1

〉
, such that the algorithms Evalf (·) and Invf−1(·) define permuta-

tions of {0, 1}k which are inverses of one another. We abuse notation and write f(x) (f−1(y)) for Evalf (x)
(Invf−1(y)).

For any PPT adversary A running in time t, we say that f is a (t, εTDP)-secure TDP if

Pr
[
x = x̃

∣∣∣ (f, f−1)← TDP-Gen(1λ), x← {0, 1}k , y ← f(x), x̃← A(f, y)
]
≤ εTDP

where εTDP is negligible in the security parameter λ.

CLAW-FREE PERMUTATIONS. Formally, for any PPT adversary B running in time t, we say that f is a
(t, εclaw)-secure claw-free permutation if

Pr
[
f(x) = g(z)

∣∣∣ (f, f−1, g)← CFP-Gen(1λ), (x, z)← B(f, g)
]
≤ εclaw

where εclaw is negligible in the security parameter λ.
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C Proof of Theorem 1 (Feistel Two-Padding)

The following two sub-theorems (of independent interest), which establish regular (“non-universal”) security
of Feistel two-paddings, form the main building blocks of the proof.

Theorem 7 The Feistel Two-Padding described above produces an IND-CCA2 secure PadEnc. Specifically,

εCCA2 ≤ εTDP + 2εhide + qD · εrand + εbind

Proof: Assume there exists an adversary A who succeeds in the IND-CCA2 attack game with probability
1/2 + εCCA2. We describe a reduction B which inverts a TDP with probability nearly εCCA2.

DESCRIPTION OF THE REDUCTION. The reduction B accepts a random challenge y∗ and attempts to produce
a pre-image x∗ = f−1(y∗). B finds the pre-image by running A and simulating responses to oracle queries
made by A. To initialize the game, B may run Setup(1λ) for the extractable commitment scheme, obtaining
commitment key CK and possibly a trapdoor T (which B never uses). B then runsA and simulates responses to
H oracle queries “honestly” by providing truly random responses. However, for each query w to the H oracle,
B tests to see if f(w) = y∗, and if so, the simulation halts and B returns x∗ = w. B also simulates responses
to decryption oracle queries of the form ψ‖s by examining a transcript of all H oracle queries made by A and
comparing f(w) to ψ for every query w. If w such that f(w) = ψ is found, B responds with DePAD(w, s);
otherwise, it rejects. Note, B will always reject decryption oracle queries of the form y∗‖s, as there is never
a transcript containing a query w such that f(w) = y∗ (since in this event the simulation halts). When A
requests a challenge ciphertext, B randomly selects a bit b and then returns ψ∗‖s∗ as the challenge ciphertext
corresponding to mb, where s∗ is random and ψ∗ = y∗ is the challenge.

ANALYSIS OF THE REDUCTION. To analyze the success of B, we define a sequence of games (G0, . . . ,G4)
which we play against A. Game G0 is the original “honest” IND-CCA2 game, and game G4 is the game B
runs against A (as described above). In game Gi let Si denote the event that A guessed b correctly. By our
assumption,

Pr[S0] = 1/2 + εCCA2 (1)

Let G1 be the same as G0, except we replace the original decryption oracle with the decryption oracle
simulation performed by B as described above. We will also explicitly require the decryption oracle simulation
to reject any ciphertext query of the form ψ∗‖s, where ψ∗‖s∗ is the challenge ciphertext presented to A and s
is arbitrary. (The original simulation as run by B would automatically reject these ciphertexts, but since we are
simulating the rest of the game honestly, we explicitly reject queries of this form here.) Let DecBad denote the
event that our decryption oracle simulator differs from the decryption oracle in G0. We note that the simulation
may fail in only two ways:

Case 1. The decryption oracle rejects a valid ciphertext ψ‖s because w = c = f−1(ψ) was not queried to H . We
note that if H(w) was never queried, it is randomly defined, and thus d = H(w) ⊕ s will be random as
well. However, by Lemma 2, the probability that (c, d) is a valid pair when d is random is bounded by
εrand (≤ εextract + 2−k2). Thus, the probability this case occurs is bounded by qD · εrand.

Case 2. The decryption oracle rejects a valid ciphertext of the form ψ∗‖s. This differs from the first case because
H(w∗) will be defined by the challenger when it computes the challenge ciphertext ψ∗‖s∗. However, we
note that if s is valid, we have found d �= d∗ such that both (c∗, d∗) and (c∗, d) represent valid pairs. One
can imagine some other reduction which plays G1 against A in order to find two such pairs, attacking
the binding property described in Lemma 1. Thus, this event must occur with probability at most εbind

(≤ 2εextract) across all decryption queries, or the binding property would be broken by such a reduction.
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Combining the results for the previous two cases, we have that:

Pr[DecBad] ≤ qD · εrand + εbind (2)

Since G1 plays identically to G0 unless DecBad occurs, we find that:

Pr[S1] + Pr[DecBad] ≥ Pr[S0] (3)

Let G2 be G1 modified so that it halts in the event that A queries H(w∗). We denote this event as Halt2. In
the event that G2 does not halt, it has played out identically to G1. We have that:

Pr[S2 | ¬Halt2] + Pr[Halt2] ≥ Pr[S1] (4)

Let G3 be G2 modified so that the s∗ component of the original challenge ciphertext is replaced by a random
string. Denote the event that G3 halts as Halt3. We note that A can never obtain a response to a query H(w∗)
in either G2 or G3. Thus, H(w∗) should appear to be perfectly random to A, and therefore s∗ = H(w∗)⊕ d∗
should also appear to be perfectly random to A. That is, by replacing s∗ with a random string, we have only
made a conceptual change to the game - the probability space remains the same as in G2. Clearly,

Pr[S3 | ¬Halt3] + Pr[Halt3] = Pr[S2 | ¬Halt2] + Pr[Halt2] (5)

Let G4 be G3 modified so that the ψ∗ component of the original challenge ciphertext is replaced by a
random string. Clearly, this implies that the value of w∗ = c∗ which corresponds to f−1(ψ∗) has been replaced
by a random string. Denote the event that G4 halts as Halt4. We note that neither G3 or G4 ever use any
information regarding the value of d∗ (which may be discarded, since s∗ is now chosen at random), and that G4

simply replaces the actual commitment of mb (that is, the original value of c∗) with a random string. One may
imagine some reduction against the hiding property of the commitment scheme which runs A in either G3 or
G4. If the probability of any observable event in G4 is different from the probability of the same event in G3,
it may be used to distinguish the actual commitment of a message (used in G3) from a random string (used in
G4). Thus, the probability of any observable event in G4 must be within εhide of the probability of the same
event in G3, and we find that:

(Pr[S4 | ¬Halt4] + εhide) + (Pr[Halt4] + εhide) ≥ Pr[S3 | ¬Halt3] + Pr[Halt3] (6)

If G4 does not halt, the entire simulation operates independently of the challenge bit b. In this case, A’s
probability of success is exactly 1/2.

Pr[S4 | ¬Halt4] = 1/2 (7)

Combining (1)-(7), and solving for Pr[Halt4], we find the following:

Pr[Halt4] ≥ εCCA2 − 2εhide − qD · εrand − εbind (8)

Since G4 is exactly the game played by our reduction B (where B substitutes y∗ as the random string for ψ∗),
and Halt4 is the event that B inverts the TDP f , B succeeds with the probability claimed above. Since this
probability it at most εTDP, the claimed upper bound of εCCA2 follows.

Theorem 8 The Feistel Two-Padding described above produces an sUF-CMA secure PadSig. Specifically,

εCMA ≤ qH · εTDP + qS · ((qS + qH) · 2−k1 + εhide) + εrand + εbind + εextract

Proof: We describe a reduction B which inverts a TDP f given an algorithm A which outputs a forgery in the
sUF-CMA game.
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DESCRIPTION OF THE REDUCTION. The reduction B accepts a random challenge y∗ and returns a pre-image
x∗ = f−1(y∗). B begins by selecting a random integer i ∈ {1, . . . , qH}, and running Setup(1k) for the
commitment scheme if necessary, obtaining the public CK and possibly a trapdoor T which B keeps private.
If there is no trapdoor, T will represent the current transcript of all oracle queries made thus far during the
simulation. After this initialization is complete, B runs A and simulates responses to H oracle queries and
signing oracle queries. In response to the j-th H oracle query wj , for j �= i, B selects a random value for
H(wj) and returns it. In response to the i-th oracle query H(wi), B defines H(wi) = s∗ ⊕ Extract(wi,T ),
where s∗ = y∗ is the challenge of B.

In order to respond to a signing oracle query on m, B computes (c, d) ← Commit(m) and sets w = c.
If H(w) was previously defined the simulation aborts; otherwise, B selects a random x and defines H(w) =
f(x) ⊕ d. Since H(w) was defined in this fashion, B can simply return the signature w‖σ, where σ = x =
f−1(s). (Note that H oracle queries generated by the signing oracle simulation are not counted toward qH .)
B can successfully invert the TDP by returning x∗ = σ∗ if A returns a forgery of the form w∗‖σ∗ where
σ∗ = f−1(y∗), which corresponds to forgery derived by A using the i-th oracle query.

ANALYSIS OF THE REDUCTION. The simulation in B is a faithful recreation of the standard sUF-CMA game
unless the signing oracle simulation fails. Let SigFail denote the event that this happens. The only possible
failure occurs when the signing oracle computes a commitment c = w for which H(w) has already been
defined. Since at most qS + qH values of H(w) are defined during a run of the simulation, if c were a truly
random k1-bit string, this failure would occur with probability at most (qS+qH) ·2−k1 on any particular signing
query. Thus, if it occurs with probability greater than (qS + qH) · 2−k1 + εhide on any such query, we can break
the hiding property of the commitment scheme. Since there are at most qS signing queries, we obtain:

Pr[SigFail] ≤ qS · ((qS + qH) · 2−k1 + εhide) (9)

Let us also denote ForgeBad as the event that A outputs a valid forgery w‖σ, such that either (1) A “reused”
one of the w’s returned by the signing oracle, but with a different σ; or (2) the above did not happen and H(w)
was not first queried by A; or (3) f(σ) = s �= H(w) ⊕ Extract(w, τ). In the first case, we can easily build a
reduction breaking the binding property described in Lemma 1, so it can happen with probability at most εbind.
In the second case, H(w) remains randomly defined, which implies a random d, and Lemma 2 implies that A
would be successful with probability at most εrand (≤ 2−k2 + εextract). The last case corresponds exactly to
breaking the extractability property. Again, in this case we can easily build a reduction against the extractability
property, so this case must occur with probability at most εextract. Thus, totaling these probabilities, we have:

Pr[ForgeBad] ≤ εrand + εbind + εextract (10)

Now, conditioned on (¬SigFail ∧ ¬ForgeBad), if A successfully forges, the forgery must correspond to one
of the qH queries of the H oracle. In this case B can invert the TDP provided the forgery corresponds to the
i-th oracle query, since in this case we will have s∗ = H(wi) ⊕ di = y∗. Since i is chosen randomly and
independently of A’s operation, using Equations (9) and (10) we get the required bound:

εTDP ≥ Pr[B succeeds] ≥
(
εCMA − Pr[SigFail]− Pr[ForgeBad]

)/
qH

≥
(
εCMA − qS · ((qS + qH) · 2−k1 + εhide)− εrand − εbind − εextract

)/
qH

To conclude our proof of Theorem 1, we must extend the proofs of the sub-theorems by adding a PadSig
oracle to the IND-CCA2 proof and a PadEnc oracle to the sUF-CMA proof. (Additionally, we also must
consider the extension to claw-free permutations.) For conciseness, we omit the details of these extensions
until Appendix D. In fact, Theorem 1 follows as a special case of Theorem 3 with the label L replaced by the
empty string.
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D Proof of Theorem 3 (Labelled Feistel Two-Padding)

The proof is established by definition, given the following two theorems (which are of independent interest).

Theorem 9 Labelled Feistel Two-Padding produces an (t′, εCCA2, qD, qS , qH)-secure IND-CCA2 encryption
PadEncLf , in the presence of a PadSigLf signing oracle (using the same TDP f ), where

εCCA2 ≤ εTDP + qS · ((qS + qH) · 2−k1 + εhide) + 2εhide + qD · εrand + εbind

and t′ = t−O((qH + qS) · (Tf + Textract)).

Proof: The proof is the same as the proof of Theorem 7, with a few minor alterations to the reduction. In
particular, H oracle queries are now of the form (L, w). This does not in fact alter any of the probabilities in
the analysis, since a change to any part of the pair (L, w) will now have the same effect as a change to w in the
original proof. This effectively “binds” L to w through the random oracle, preventing A from simply changing
L to obtain a related ciphertext. In particular, recall that A will select some L∗ to become part of the challenge
ciphertext corresponding to mb. One way to view this is that L∗ determines the random oracle H(L∗, ·) which
is of interest to A, effectively removing consideration of any other label from our analysis. The only remaining
alteration is the simulation of a signing oracle which must now be provided to A.

The signing oracle simulation is performed as in the proof of Theorem 8, though we note that here it is not
necessary to single out the i-th H oracle query and modify the response. The simulation fails under exactly
the same circumstance (when SigFail occurs) with the same probability. Thus, for the purpose of analysis, we
may simply introduce the signing oracle simulator along with the decryption oracle simulator in G1, replacing
Equation 3 by:

Pr[S1] + Pr[DecBad] + Pr[SigFail] ≥ Pr[S0] (11)

Substituting this new equation into the proof, and using the bound on Pr[SigFail] from our earlier analysis gives
the new final result:

Pr[Halt4] ≥ εCCA2 − 2εhide − qD · εrand − εbind − qS · ((qS + qH) · 2−k1 + εhide) (12)

Here, G4 is the game played by our new reduction, and Halt4 will correspond to the event that our reduction
successfully inverts a TDP, giving us the claimed upper-bound.

Theorem 10 The Labelled Feistel Two-Padding described above produces a (t′, εCMA, qS, qD, qH)-secure sUF-
CMA signature PadSigLf , in the presence of a PadDecLf decryption oracle (using the same TDP f ), where

εCMA ≤ qH · εTDP + qS · ((qS + qH) · 2−k1 + εhide) + qD · εrand + 2−k2 + 2εbind + 2εextract

and t′ = t−O((qH + qS) · (Tf + Textract)).

Proof: The proof is the same as the proof of Theorem 8, with a few minor alterations to the reduction. In
particular, we replace all appropriate instances of w with the pair (L, w). By a similar argument to the one we
used in the proof of Theorem 9, this alteration will not affect the analysis of the reduction. Most importantly,
we note that the analysis now precludes the forging of a new (L, w) pair corresponding to some valid σ, by
the extension of Equation 10. In fact, there is no additional loss of security to obtain this extension, as both
events ForgeBad and SigFail occur with the same probability as before. Since this is ultimately responsible for
providing the unforgeability property of the label, we can see that security of labels follows for “free”. Finally,
we note that the reduction must now provide a decryption oracle simulation as in the proof of Theorem 9. The
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decryption oracle simulation has no impact on the signing oracle simulation, but may cause our reduction to
fail if the event DecBad occurs. Referring back to our previous analysis of DecBad, we note that there is no
challenge ciphertext here, so Case 2 cannot occur. Let DecBad′ be the event that Case 1 occurs. By our earlier
analysis:

Pr[DecBad′] ≤ qD · εrand (13)

Thus, the new bound we obtain, as claimed, is:

εTDP ≥ Pr[B succeeds]

≥
(
εCMA − Pr[SigFail]− Pr[DecBad′]− Pr[ForgeBad]

)/
qH

≥
(
εCMA − qS · ((qS + qH) · 2−k1 + εhide)− (qD + 1) · εrand − εbind − εextract

)/
qH

TIGHTER SECURITY REDUCTION FOR CLAW-FREE PERMUTATIONS. We begin by noting that, since TDPs
are special cases of claw-free permutations, the security bound previously established for IND-CCA2 security
of PadEncLf holds. Since this bound is already tight, we will only tighten the reduction for the sUF-CMA proof,
following the observation made by [13].

Theorem 11 If f is induced by a family of (t, εclaw)-secure claw-free permutations, The Labelled Feistel Two-
Padding described above produces a (t′, εCMA, qS , qD, qH)-secure sUF-CMA signature PadSigLf , in the pres-

ence of a PadDecLf decryption oracle, where

εCMA ≤ εclaw + qS · ((qS + qH) · 2−k1 + εhide) + qD · εrand + 2−k2 + 2εbind + 2εextract

and t′ = t−O((qH + qS) · (Tf + Textract)).

Proof: We describe a reduction B which, given a claw-free pair (f, g), finds a claw given an algorithm A which
outputs a forgery in the sUF-CMA game.

DESCRIPTION OF THE REDUCTION. The reduction B against the claw-free properties of (f, g) operates in
a similar fashion to the earlier reduction in Theorem 10, but with modified signing and H oracle simulations.
To respond to the j-th H oracle query H(Lj , wj), B chooses a random value zj , and defines H(Lj, wj) =
g(zj)⊕Extract(wj ,T ). To respond to a signing oracle query for message m with label L, B chooses a random
x, computes (w, s)← PADL(m), and definesH(L, w) = f(x)⊕dwhere d is the decommitment corresponding
to c = w (which B may simply record during the computation of w and s). B then returns a signature of the
form L‖w‖x, since clearly x = f−1(H(L, w) ⊕ d) = f−1(σ). If A outputs a forgery of the form Lj‖wj‖σ∗
where (Lj , wj) correspond to the j-th oracle query, for any j ∈ {1, . . . , qH}, B returns (x∗ = σ∗, z∗ = zj).
We note that, by construction, f(x∗) = sj = g(z∗), and B has successfully output a claw.

ANALYSIS OF THE REDUCTION. The analysis proceeds in an analogous fashion to our earlier analysis in
Theorem 10.

Defining events SigFail, DecBad′, and ForgeBad as in the proof of Theorem 10, we find that their analysis
proceeds completely identically, and we will not repeat it here. We also note that, conditioned on (¬SigFail ∧
¬DecBad′ ∧ ¬ForgeBad), the reduction now always outputs a valid claw if A produces a valid forgery. Thus,
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we no longer have a multiplicative loss of 1/qH in our reduction. Using Equations 9, 13, and 10, we obtain the
bound:

εclaw ≥ Pr[B succeeds]
≥ εCMA − Pr[SigFail]− Pr[DecBad′]− Pr[ForgeBad]
≥ εCMA − qS · ((qS + qH) · 2−k1 + εhide)− (qD + 1) · εrand − εbind − εextract

E Padding Schemes that Use Extractable Commitments

In Section 4, we described how PSS-R, OAEP, OAEP+, PSEP, and SAP are all comprised of a Feistel
Transform on an extractable commitment, and thus are universal secure two-paddings. Here, we provide more
in-depth proof sketches supported these lemmas.

PSEP (PROOF OF LEMMA 3). The pair 〈d = m2‖r, c = (m1 ⊕G(r))‖G′(m2‖r)〉 resulting from PSEP
is a secure extractable commitment for any value of a. Here, we briefly argue the scheme’s exact security
bounds for εhide and εextract.padding scheme. To break hiding, an adversary A must differentiate c from some
random value R← {0, 1}k1 , given the fixed m. It is easy to see that this can happen only if A queries G(r) or
G′(m2‖r). Since r was random,

εhide ≤ (qG + qG′) · 2−(k2+a−n)

To break extractability, the adversary finds some 〈d′, c〉, where d′ = m′
2‖r′, and one of two cases occur. In

the first case, m′
2‖r′ was not queried to G′. In the second, the adversary finds some d′ �= d that represents a

birthday attack on G′, i.e., finds some G′(m′
2‖r′) = G′(m2‖r). Upper-bounding the probability of both events

in the obvious way, we get the following:

εextract ≤ 2−(k1−a) + qG′(qG′−1) · 2−(k1−a+1) < (q2
G′ + 1) · 2−(k1−a)

To show the bound on εrand, consider that (for fixed c) a random d will be valid if and only if G′(m2‖r) =
G′(m′

2‖r′) where m′
2 and r′2 are randomly defined by d. Since G′ is a random oracle, this happens with

probability 2−|G′(·)| = 2−(k1−a).

OAEP+. OAEP+ results in the pair 〈d = r, c = (m⊕G(r)‖G′(m‖r)〉. We can easily see the following
two results. (1) Hiding is achieved as in OAEP: G(r) is a perfect OTP unless r is reused and G′(m‖r) also
hides m for random r. (2) Extractability is achieved as, given c, we examine all queries to G′ and look for
the output value matching c in its final (k1 − n) bits. For any corresponding input m‖r, extract d = r. To
break extractability, an adversary must either “guess” some d′ without querying the random oracles, or, at the
very least, perform a birthday attack on G′. In fact, the bound for εextract is tighter, as the values 〈m, r〉 �=
〈m′, r′〉 returned by the birthday attack must simultaneously satisfy the equations G′(m‖r) = G′(m′‖r′) and
m⊕G(r) = m′ ⊕G(r′).

SAP. Now, we briefly argue that the corresponding pair 〈d = m1‖r‖G′(m2), c = G(d) ⊕m2〉 forms an ex-
tractable commitment. (1) Hiding is true as before: on inputs that include a random r (such as d), G(·) is
a perfect OTP unless r is reused. (2) Extractability is achieved as we examine all input queries (m′

1‖r′‖γ)
to G and look for the output value which, xor’d with c, yields an m2 for which G′(m2) = γ. Finding
an alternative decommitment by Extract requires one to find some 〈m1,m2, r〉 and 〈m′

1,m
′
2, r

′〉 such that
G(m1‖r‖G′(m2)) ⊕ G(m′

1‖r′‖G′(m′
2)) = m2 ⊕m′

2. This, however, can be easily seen to imply that either
(1) G′(m2) = G′(m′

2) for m2 �= m′
2, or (2) one has to find values α �= β such that G(α) ⊕G(β) is equal to a

fixed constant. By birthday bound, both events happen with negligible probability.

28



F Proof of Theorem 2 (PbPS)

This section proves that PbPS is a secure signcryption parameterized as follows:(
t−O((qD + qS) · (Tf + Th)), (εCCA2 + q2

h · εCRHF), (εCMA + q2
h · εCRHF), qD, qS, qH , qh

)
Instead of reducing PbPS directly again to the underlying TDP, we make use of Theorem 1, which has already
established that there exists a (t, εCCA2, εCMA, qD, qS , qH)-secure universal two-padding scheme PS , such that
PadEnc is a IND-CCA2 secure encryption and PadSig is a sUF-CMA secure signature, even when the same
key pair is used for both encryption and signature.

Note that in the Insider model, the full universal two-padding f(w)‖f−1(s) reduces to just f(w)‖s for the
CCA2 game and w‖f−1(s) for the CMA game, or exactly PadEnc and PadSig, respectively. The inclusion of
identities in signcryption adds a few definitional subtleties; otherwise, the reduction would be trivial.

Proof: Our proof of PbPS uses the following reductions:

• PadEnc is IND-CCA2 secure encryption⇒PbPS is IND-CCA2 secure signcryption

• PadSig is sUF-CMA secure signature⇒PbPS is sUF-CMA secure signcryption

If these reductions hold, any such PS yields a secure signcryption PbPS .

PROOF OF IND-CCA2. We give a reduction B which uses any adversary A against the IND-CCA2 security
of the PbPS signcryption to break the IND-CCA2 security of PadEnc. B answers both signcryption and
de-signcryption queries from A. The reduction is straight-forward.
B handlesA’s signcryption queries of the form (m,VEKR) as follows. B generates m′ = m‖h(VEKA,VEKR)

and sends m′ to the PadSig signing oracle. The oracle returns something of the form (w‖σ) ← PadSigA(m′).
B computes ψ ← fR(w) and returns ψ‖σ as the response to A.

At some point, A issues its IND-CCA2 challenge (m0,m1,SDKS,VEKS). B similarly generates (m′
0,m

′
1)

using (VEKS,VEKA), and queries a PadEnc challenge oracle, which returns ψ∗‖s∗ for some m′
b. B then

computes σ∗ ← f−1
SDKS

(s∗) and returns ψ∗‖σ∗ to A as the challenge ciphertext.
B handles A’s de-signcryption queries of the form (ψ‖σ,VEKS) as follows. B computes s ← fS(σ)

and passes ψ‖s to the PadDec decryption oracle. If the oracle returns some m′ = m‖~, such that ~ =
h(VEKS ,VEKA), B returns m. Otherwise, B returns ⊥.

The re-use of keys must be considered in the case that A submits a valid de-signcryption query of the form
(ψ∗‖σ∗,VEKS′). We know that VEKS′ �= VEKS , as A is not allowed to query the oracle with the IND-CCA2
challenge. Therefore, A must have found some VEKS′ that breaks the hash function’s collision-resistance, i.e.,
h(VEKS ,VEKA) = h(VEKS′ ,VEKA), which is a legal oracle query in the multi-party Insider model.

Therefore, B has clearly completely simulated the actions of the signcryption oracle. If B returns the same
guess b̃ that A returns, it has the same advantage in breaking the IND-CCA2 security of PbPS as A does for
breaking the IND-CCA2 security of PadEnc, modulo the birthday-bounded probability of finding a collision in
h. That is, B’s advantage is εCCA2 + q2

h · εCRHF.

PROOF OF sUF-CMA. We give a reduction B which uses any adversary A against the sUF-CMA security of
the PbPS signcryption to break the sUF-CMA security of PadSig. B simulates responses for A’s signcryption
and de-signcryption queries in the same manner as described above.

At some point, A returns a forgery on m of the form (ψ∗‖σ∗,SDKR,VEKR). Given this forgery, B simply
computes w∗ ← f−1

SDKR
(ψ∗) and returns w∗‖σ∗. Remember that this forgery can be on some message m

previously queried to the signcryption oracle, provided that the forgery differs in VEKR.
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B’s output w∗||σ∗ is a valid forgery on m′, provided that this value has not been returned previously by
the PadSig oracle. This event again occurs only with the probability that A previously made the signcryption
query (m,VEKR′), and h(VEKA,VEKR) = h(VEKA,VEKR′), for VEKR �= VEKR′ , Therefore, once again, B
forges with the same probability asA, modulo the probability of finding a collision in h. That is, B’s advantage
is εCMA + q2

h · εCRHF.

G Proof of Theorem 5 (Signcryption of Long Messages)

Proof: The sUF-CMA security bound is automatic, since the notion of a forgery for signcryption with as-
sociated data encompasses the entire signcryptext, including the label. In other words, consider a reduc-
tion B against the sUF-CMA security of SC that uses any A that breaks the sUF-CMA security of SC′. B
simply answers A’s signcryption queries SigEnc′�(M,VEK) by selecting at random a τ , and then returning
SigEnc�‖Eτ (M)(τ,VEK). B uses the obvious corresponding approach for VerDec′ queries. Clearly, any sign-
cryptext A forges against SC′ is also a valid forgery against SC, and thus the reduction succeeds with the same
probability as A by simply returning A’s forgery.

The IND-CCA2 security reduction is also as described above, and the security bound follows from a simple
two-step hybrid argument.

(1) We modify the original IND-CCA2 game by replacing the Eτ operation during the construction of the
challenge ciphertext with Eτ̃ , where τ̃ is a random key independent of the signcrypted key τ . Any
adversary capable of telling this game apart from the original game can be used to win the IND-CCA2
game against the underlying signcryption scheme SC with at least the same advantage. It does this by
simply using the label Eτ (Mb) (where b ← {0, 1}) and providing m0 = τ and m1 = τ̃ as the messages
it claims to distinguish against SC in the IND-CCA2 attack (it also uses the same oracle simulations as
B). Thus, in this step, the advantage of B is reduced by at most εSC−CCA2.

(2) We replace Eτ̃ (M) in the challenge ciphertext byEτ̃ (M̃), where M̃ is a random message. Any adversary
capable of differentiating this game from the game of Step 1 can be used to break the security of the
one-time encryption with at least the same advantage. (In a fashion similar to Step 1, we can use SC to
signcrypt a random string with eitherEτ̃ (M) orEτ̃ (M̃ ) as the label and useA to distinguish the resulting
ciphertexts.) Thus, in going to this final step, the advantage of B is further reduced by at most εOTE.

We note that, in the final step, B cannot have any advantage over guessing, since the challenge ciphertext is
random and independent of the challenge messages. Therefore, by this hybrid argument, B has a total advantage
at most εSC−CCA2 + εOTE in the original game, and the proof is complete.
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