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Abstract. All node certificate based transitive signature schemes avail-
able in the literature make use of any digital signature scheme which
is assumed to be provably secure against adaptive chosen-message at-
tack, as a building block to produce node certificates in a graph. Con-
sequently the algebraic structures to represent nodes in the graph are
independent of the algebraic structure of signature scheme employed.
This inconsistence of representation structures of the signature scheme,
nodes and edges in the graph could increase the cost to manage those
public data. For example, the transitive signature schemes presented by
Micali and Rivest [5] and Bellare and Neven (the node certificate based
version FBTS-1, in [1]), both heavily rely on the standard provably se-
cure signature scheme (say Goldwasser-Micali-Rivest’s signature scheme
[7]). Consequently, a core problem related to transitive signature schemes
is how to construct transitive signature schemes so that the representa-
tion structures of signature schemes, nodes and edges in a graph can be
implemented compactly?

Bellare and Neven’s hash-based modification, FBTS-2, achieving shorter
signatures by eliminating the need for node certificates and provable
under the same factoring assumption in the random oracle model, is ac-
tually the first solution to the above question. Our approach to attack
the problem mentioned above, is different from Bellare and Neven’s. We
attack the problem by first carefully defining algebraic structure to rep-
resent vertices and edges in an undirected graph, then we construct a
signature scheme so that its algebraic structure is coincident with that
of vertices and edges in the graph. Finally, we present a practical realiza-
tion of a transitive signature scheme that is proven transitively unforge-
able under adaptive chosen message attack in the standard intractability
paradigm. To the best knowledge of authors, this approach has NOT
been reported in the literature.
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tion, transitive signature scheme

1 Introduction

TRANSITIVE SIGNATURE SCHEME. The notation of transitive signature
scheme, first introduced by Micali and Rivest [5], is a way to digitally sign



vertices and edges of a dynamically growing transitively closed graph G, so as
to guarantee the following properties:

-Given the signatures of edges (u, v) and (v, w), anyone can easily derive the
digital signature of the edge (u,w);

-It is computationally hard for any adversary to forge the digital signature
of any edge that is not in the transitive closure Ḡ of a graph G, even if the
adversary can request the legitimate signer to digitally sign any number of G’s
vertices and edges of his choice in an adaptive fashion.

The transitive signature scheme presented in [5] is provably secure under
adaptive chosen-message attack assuming that the discrete logarithm problem is
hard in an underlying prime order group and assuming security of an underlying
signature scheme to realize the concept in an undirected graph.

RELATED WORKS: Following from the pioneer works of Micali and Rivest,
Johnson et al [4], have investigated related generations to model a situation
where a censor can delete certain substrings of signed document without de-
stroying the ability of the recipient to verify the integrity of the redacted docu-
ment. In particular, the authors describe a scheme that allows a signature holder
to construct the signature on an arbitrarily redacted sub-message of the orig-
inally signed message and also present another scheme for signing sets that is
homomorphic with respect to both union and taking subsets.

Finally, Bellare and Neven [1] present novel realizations of the transitive sig-
nature primitive introduced by Micali and Rivest. The transitive scheme under
the rubric of FBTS-1, is proven transitively unforgeable under adaptive chosen-
message attack assuming factoring is hard. They also present a hash-based mod-
ification, FBTS-2, achieving shorter signatures by eliminating the need for node
certificates, and provable under the same factoring assumption in the random
oracle model.

THE PROBLEM. We realize that all node certificate based transitive signa-
ture schemes available in the literature make use of any digital signature scheme
which is assumed to be provably secure against adaptive chosen-message attack,
as a building block to produce node certificates in a graph. Consequently the
algebraic structure to represent nodes in the graph are independent with that
of the signature scheme employed. The inconsistence of representation struc-
tures of the signature scheme, nodes and edges in the graph could increase the
cost to manage those public data. For example, the transitive signature schemes
presented by Micali and Rivest [5] and Bellare and Neven (the node certifi-
cate based version FBTS-1, in [1]), both heavily rely on the standard provably
secure signature scheme (say Goldwasser-Micali-Rivest’s signature scheme [7]).
Consequently a core problem related to transitive signature schemes is how to
construct transitive signature schemes so that the representation structures of
signature schemes, nodes and edges in a graph can be implemented compactly?

We emphasize the importance of the problem: one of the prospective ap-
plications of transitive signature scheme may be applied to solve secure trust
delegation problem in the distributed networks [9]. In this setting, the cost of



the computation and communication to manage public date of each party is
most expensive and the history of direct or indirect recommendation should
be updated frequently. Therefore, how to construct a security proved transitive
signature scheme with minimum public date size is a interesting problem.

Bellare and Neven’s hash-based modification FBTS-2 that achieves shorter
signatures by eliminating the need for node certificates and it also is provable
under the same factoring assumption in the random oracle model, is actually the
first solution to the above question. We present alternative approach to attack
the problem mentioned above, We attack the problem by first carefully defining
algebraic structure to represent vertices and edges in an undirected graph, then
we construct a signature scheme so that its algebraic structure is coincident with
that of vertices and edges in the graph. To the best knowledge of authors, this
approach has NOT been reported in the literature.

OUR CONTRIBUTIONS. In this report, we present a practical realization
of the transitive signature primitive, introduced by Micali and Rivest [5]. The
transitive signature scheme is proven transitively unforgeable under adaptive
chosen message attack in the standard intractability model.

2 Notions and Definitions

NOTIONS A graph G = (V, E) has a finite set V of vertices and a finite set
E ⊆ V ×V of edges. The transitive closure G∗ = (V ∗, E∗) of a graph G = (V, E)
is defined to have V ∗ = V and to have an edge (u, v) in E∗ if and only if there
is a path from u to v in G.

A transitive signature scheme TS = (TKG, TSign, TV f, Comp) which is
defined over an undirected graph, is specified by four polynomial-time algorithms
and the functionality is as follows:

– The randomized key generation algorithm TKG takes input 1k, where k ∈ N
is the security parameter, and returns a pair (tpk, tsk) consisting of public
key and security key of a transitive signature scheme.

– The signing algorithm TSign consists of a vertex signing algorithm V Sign
and a edge signing algorithm ESign, where V Sign is a stateful and ran-
domized algorithm that takes input of the security key tsk and a node i and
returns a value calls certificate of node i, denoted by Certi. ESign is a deter-
ministic algorithm that takes input of the security key tsk and a two different
nodes i, j ∈ N , and returns a value calls certificate of edge {i, j} relative to
tsk. TSign maintains state which it updates upon each invocation.

– The deterministic verification algorithm TV f consists of two algorithms
(V V f, EV f), where V V f is the deterministic vertex/node certificate ver-
ification algorithm that takes input of tpk and a certificate Certi of vertex i,
returns either 1 or 0. EV f is the deterministic algorithm that takes input of
tpk and two nodes i, j ∈ N , and a certificate σ of edge {i, j}, returns either
1 or 0 (in the former case we say that σ is a valid signature of edge {i, j}
relative to tpk ).



– The deterministic composition algorithm Comp takes input of tpk and nodes
i, j, k ∈ N and values σ1, σ2 to return either a value of σ or a symbol indicate
failure.

DEFINITION OF CORRECTNESS. The definition of correctness is straight
forward in a node certificate based transitive signature scheme, however it is
rather a tricky matter to define the correctness in the setting where the node
certificate is eliminated (please refer to [1] for more details). To achieve the goal
of consistence of standard signature scheme and the representations of algebraic
structures of vertices and edges in a graph, we define signing algorithm TSign =
(V Sign, ESign) with two components so that it is easy to ensure the correctness.
More details, when enquiring the TSign oracle, we allow the signing oracle first
checks the signature of the vertices adjacent to the edge. If there is at least one
vertices has NOT been signed, then edge signing oracle runs the conventional
signature scheme V Sign to sign the vertices at first. When the signature of both
nodes in an edge are valid, it runs an edge signing oracle then.

EXPERIMENT TO ENSURE CORRECTNESS OF TRANSITIVE SIGNA-
TURE SCHEME:

(tpk, tsk) ← TKG(1k)
S1 ← ∅; S2 ← ∅, Legit ← true; NotOK ← false
Run Adv with its oracles until it halts, replying to its oracle queries as follows:
If Adv makes V Sign query i then

If node i has been signed by V Sign, then σ ← V Sign(i)
Else

Run V Sign and let σ ← V Sign(i), S1 = S1 ∪ {i, V Sign(i)}
If Adv makes ESign query i, j, then

If i = j, then abort;
Else

If edge (i, j) has been in signed by V Sign and ESign, then δ ←
ESign(i, j)

Else
Run V Sign to generate signatures of nodes i, j, then run ESign

and letting δ ← ESign(i, j), S2 = S2 ∪ {(i, j), V Sign(i, j)}
If A makes Comp query (i, j, k, δ1, δ2), then

If [{(i, j), δ1} /∈ S2] OR [{(j, k), δ2} /∈ S2] OR [i, j, k are not all distinct]
then

Legit ← false
Else

Let τ be the output of the Composition oracle Comp, and δ ←
ESign(i, k), then

If τ = δ, then S2 = S2 ∪ {(i, k), V Sign(i, k)}
Else NotOK ← true,

When Adv halts, output (Legit ∧ NotOK) and halt.

The experiment computes a boolean predict Legit which is set to false if
Adv ever makes an illegitimate query. It also compute a boolean predict NotOK



which is set to true if a signature returned by the composition algorithm differs
from the ESgin. The correctness of a transitive signature scheme requires that
the probability Pr { Legit ∧ NotOk=true } is zero. The definition of correctness
in slightly different from Bellare and Neven’s [1] since we distinguish V Sign and
ESign algorithms explicitly in a transitive signature scheme.

SECURITY OF TRANSITIVE SIGNATURE SCHEME: To define the secu-
rity, we do the following experiment by running a key generation algorithm on
input 1k to get keys (tpk, tsk). Then we run Adv, provide this adversary with in-
put pk and oracle access to the function TSign =(V Sign, ESign). The oracle is
assumed to maintain the state or toss coins as needed. Eventually, Adv will out-
put (i′, j′) ∈ N×N and some τ ′. Let E be the set of all edges {a, b} such that Adv
made oracle query a, b, and let V be the set of all integers a such that a is adja-
cent to some edge {i′, j′} is not in the transitive closure G of a graph G = (V, E).
The experiment returns 1 if Adv wins and 0 otherwise. The advantage of Adv
in this attack defined for k ∈ N by Succ=Pr[Adv wins experiment].

We say that a transitive signature scheme is transitively unforgeable under
adaptive chosen-message if Succ is negligible for any adversary Adv whose run-
ning time is polynomial in the security parameters k.

3 A practical transitive signature scheme

SYSTEM PARAMETERS: Let p, q be two large primes such that p − 1 = 2p′

and q− 1 = 2q′, where p′, q′ are two (l′ + 1)-bit strings. Let n = pq and QRn be
the quadratic residue of Z∗n. Let g, h be two generators of QRn.

REPRESENTATION OF VERTEX: a vertex vi = gxihyi in an undirect
graph G.

REPRESENTATION OF EDGE: Signature of an edge {i, j} is a pair: αi =
xi − wxj mod p′q′ and βi = yi − wyj mod p′q′ in an undirect graph G.

SIGNATURE SCHEME: We present compact implementation of transitive
signature scheme that is consistent with a representation of edges in the graph.
The signature scheme is defined as follows:

– Key generation algorithm: Let p, q be two large primes such that p−1 = 2p′

and q − 1 = 2q′, where p′, q′ are two (l′ + 1)-bit strings. Let n = pq and
QRn be the quadratic residue of Z∗n. Let g, h be two generators of QRn. The
public key is (n, g, h, X,H), where X ∈ QRn and H is a collision free hash
function with output length l. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that



X = yeg−th−H(m)modn. If the equation is valid, then the verifier accepts,
otherwise, it rejects.

Fortunately, we are able to show that the signature scheme is immune to
adaptive chosen-message attack under joint assumptions of the strong RSA prob-
lem as well as the existence of collision free hash function (see appendix for more
details).

CERTIFICATE OF VERTEX: The certificate of each vertex vi in authenti-
cated graph is defined by Certi = (ei, yi, ti) derived from the signature equation:
yi

ei = XgtihH(vi)modn.

A TRANSITIVE SIGNATURE SCHEME: We now can describe our transi-
tive signature scheme.

-Given input 1k, the key generation scheme algorithm a pair of signing keys
(spk, ssk) for the signature scheme defined above.

-The signing algorithm TSign = (V Sign,ESign) maintains the state of
V Sign(i), ESign(i, j), where the node vi = gxihyi and signatures of the vertex is
defined by Certi = (ei, yi, ti) derived from the equation yi

ei = XgtihH(vi)modn.
The signature of an edge {i, j} is δi,j =(αi,j , βi,j), where αi,j = xi − wxj mod
p′q′ and βi,j = yi − wyj mod p′q′.

-The composition algorithm Comp: Given nodes vi, vj and vk and the signa-
tures of edge {i, j} and edge {j, k}, it checks the validity of certificate of each
node Certi, Certj and Certk and it checks the validity of signature of each edge
δi,j and δj,k. If all are valid then it outputs δi,k = (αi,k, βi,k).

We remark that the representation structures of signature schemes, nodes and
edges in a graph are implemented compactly in the above transitive signature
scheme. We capture the compactness of the scheme by first defining algebraic
structure to represent vertices and edges in an undirected graph, then we con-
struct a signature scheme so that its algebraic structure is coincident with that
of vertices and edges in the graph.

CORRECTNESS: The transitive signature scheme defined above satisfies the
correctness property.

Proof: Since the composition algorithm Comp checks that the certificate
Certj of vj in the given signature of edge {i, j} exactly matches the one in
the given signature of {j, k}. This ensures that the public labels in those two
certificates match, which is important in the proof of correctness. Now suppose
{ Legit ∧ NotOK = True }, i.e., Legit=True and NotOK = True. From the first
statement Legit=True, it follows that all queries to the Comp oracle is valid.
Since the composition algorithm is a deterministic algorithm, consequently, the
output of composition oracle is the same as the output of ESign(i, k). Therefore
the variable NotOK can never become true.

SECURITY: The transitive signature scheme is proven transitively unforge-
able under adaptive chosen message attack in the standard intractability model.



Proof: Forgery of transitive signature can be in only two ways: either Type 1
Forgery: there is a forgery that recycles node certificates from previously issued
signature, or Type 2 Forgery: there is a forgery that includes at least one new
node. We therefore study the two cases in details below.

Type 1 Forgery: recycling node certificates from previously issued signature.

Simulator:
-on input 1k, {g, h, N, p, q,H} ← KG(1k), where H is a collision free hash

function defined in a proper domain.
-Defining a transitive signature oracle which is the same as that in a real

transitive signature scheme.
-Defining the verification oracle which is the same as that in a real transitive

signature scheme.

This completes the description of simulator. Notice that in the real transitive
signature scheme, the knowledge logg h is not a private information, therefore,
the simulation defined above is the same as the real scheme from the point views
of an adversary. Let E be a set of edges for which F queried a signature, and let
Ḡ = (V, Ē) denote the transitive closure of G = (V,E). For each oracle query
(V Sign, ESign), there is no information leaked, due to the following fact:

logg(vi) = xi + wyi (1)

logg(vj) = xj + wyj (2)

Notice that the signature of the edge {i, j} is δi,j =(αi,j , βi,j), where αi,j =
xi − xj mod p′q′ and βi,j = yi − yj mod p′q′. Therefore αi,j and βi,j is a linear
combination of equation (1) and (2). Consequently, the distribution of variable
(xi, yi) and (xj , yj) are same from the point views of the adversary. And any
adversary at most with probability 1/p′q′ to guess correctly of the secret key
(xi, yi) ( or (xj , yj) respectively). After the polynomial size oracle query, the
adversary is able to forge a signature of edge {i′, j′} /∈ Ḡ with non-negligible
advantage then it is able to forge a pair α′, β′ such that

αi,j + wβi,j = α′ + wβ′modp′q′ (3)

Since the simulator knows p, q, it follows that logg h is revealed from equation
(3).

Type 2 Forgery: a forgery containing at least one new node.
Simulator (given a signature scheme):
-On input 1k, {g, h,N, p, q, H} ← KG(1k), where H is a collision free hash

function defined in a proper domain;
-Choosing xi, yi ∈ Zn at random and defining vi = gxihyi ;
-Running the given signature scheme to sign the vertex vi.
-Defining the signature of the edge {i, j} is δi,j =(αi,j , βi,j), where αi,j =

xi − xj and βi,j = yi − yj .



This completes the description of simulator. Notice that the simulator does
not know the exact values p, q therefore we should show that the probability so
that the event αi,j ≥ 0 and the event βi,j ≥ 0 are both true with non-negligible.
Notice that Pr{αi,j > 0} =

∑
j=1···p′q′ pj(

∑
i≥j pi) is at least 1/4, where pi is the

distribution of random variable i. Since variables xi, yi, xj , yj ∈ Zn are chosen
at random, it follows that

Pr{αi,j ≥ 0 ∧ βi,j ≥ 0} ≥ 1/16

By assumption, there is a forgery containing at least one new node which
is not signed by the signature scheme algorithm actually with non-negligible
probability. Consequently, the underlying signature scheme can be broken with
non-negligible advantage, a contradiction of the assumption of security of the
standard signature scheme.

4 Conclusions

We have developed a practical realization of node certificate based transitive
signature primitive, introduced by Micali and Rivest [5]. The transitive signature
scheme is proven transitively unforgeable under adaptive chosen message attack
in the standard intractability model.
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Appendix: Security proof of Zhu’s signature scheme

Zhu’s signature scheme is defined as follows [10].

– Key generation algorithm: Let p, q be two large primes such that p−1 = 2p′

and q − 1 = 2q′, where p′, q′ are two (l′ + 1)-bit strings. Let n = pq and
QRn be the quadratic residue of Z∗n. Let g, h be two generators of QRn. The
public key is (n, g, h, X,H), where X ∈ QRn and H is a collision free hash
function with output length l. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
X = yeg−th−H(m)modn. If the equation is valid, then the verifier accepts,
otherwise, it rejects.

Before we provide a rigorous proof of security to Zhu’s signature scheme, we
remark relations between Zhu’s and Fischlin’s signature scheme [3].

Fischlin’s signature scheme Marc Fischlin’s signature scheme is defined
as follows [3]:

– Key generation: Generating n = pq, where p = 2p′ + 1 and q = 2q′ + 1
for primes p, q, p′, q′. Also pick three quadratic residue h1, h2, x ∈ QRn. The
public key verification key is (n, h1, h2, x) and the private key is (p, q).

– Signing: To sign a message m calculate the l-bit hash value H(m) with a
collision-intractable hash function H(·). Pick a random (l + 1)-bit prime
e, and a random l-bit string α and compute a representation (−α,−(α ⊕
H(m)), y) of x with respect to h1, h2, e, n, i.e.,

ye = xh1
αh2

α⊕H(m)modn.

Computing this e-th root y from xh1
αh2

α⊕H(m) is easy given the factoriza-
tion of n. The signature is (e, α, y).

– Check that e is an odd (l + 1)-bit integer, that α is l bits long, and that
ye = xh1

αh2
α⊕H(m)modn.

We remark the relationships between two signature schemes below:

– It is clear that the algebraic structures of Zhu’s and Fischlin’s signature are
same;

– If there is no collision hash function involved in the above two schemes, then
it is not hard to show that the above two signature schemes are equivalent
in the same security level. More precisely, if Zhu’s scheme can be broken by
an adversary A with non-negligible probability then there exists an adver-
sary BA so that Fischlin’s signature scheme can be broken with the same
probability. The statement is also true by means of vis-a-vis argument.



– In case of a collision free hash function involved in both schemes, suppose
Zhu’s signature scheme can be broken with non-negligible probability, i.e.,
there is an adversary A is able to forge a faking message m in Zhu’s signature
scheme, denoted by σ(m) = (e, y, t) with non-negligible probability. Then
there exists an adversary BA in Fischlin’s signature scheme so that it is able
to produce a valid signature σ(m′) = (e, y, t) for any message in the set
S := {m′|H(m) ⊕ H(m′) = t}, where t is a component of faking signature
σ(m) correspondent to Zhu’s signature scheme. The statement is also true
by means of vis-a-vis argument.

Strong RSA assumption: Strong RSA assumption was introduced by Baric
and Pfitzmann very recently [2]: for any randomly chosen n, given a random
element z ∈ Z∗n, it is hard to find a pair (e, y) such that ye = zmodn.

Guillou-Quisquater Lemma [8] : The following lemma, suggested by Guillou
and Quisquater, is useful for the proof of the main result. Suppose we = zb and
d = gcd(e, b). Then there exists an efficient algorithm computing the (e/d)-th
root of z.

Proof: Since d = gcd(e, b), by Euclidean algorithm, d = ee′ + bb′. It yields
the equation z = (ze′wb′)e/d.

Main result: The signature scheme is immune to adaptive chosen-message at-
tack under joint assumptions of the strong RSA problem as well as the existence
of collision free hash function.

Proof: Assume that the signature scheme is NOT secure against adaptive
chosen message attack. That is, there is an adversary, who is able to forge the
signature (e, t, y) of a message m(m 6= mi, 1 ≤ i ≤ k) with non-negligible prob-
ability after it has queried correspondent signature of each message m1, · · · ,mk,
which is chosen adaptively by the adversary. Let (e1, t1, y1), · · · , (ek, tk, yk) be
signatures provided by the signing oracle corresponding to a set of messages
m1, · · · ,mk. We consider two types of forgeries: 1) for some 1 ≤ j ≤ k, e = ej ;
2) for all 1 ≤ j ≤ t, e 6= ej . We should show that any forgery scheme of the
two types will lead to a contradiction to the assumptions of the theorem. This
renders any forgery impossible.

Type 1-Forger

We consider an adversary who chooses a forgery signature such that e = ej

for a fixed j: 1 ≤ j ≤ k, where k is the total number of the queries to the
signing oracle. If the adversary succeeds in a signature forgery as type1 with
non-negligible probability then given n, we are able to compute z1/r with non-
negligible probability for a given z and r, where r is a (l + 1)-bit prime. This
contradicts to the assumed hardness of the standard RSA problem. We state the
attack in details as follows: given z ∈ Z∗n and r, we choose a set of total k − 1
primes with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ek at random. We then create
the correspondent public key (g, h) of the simulated signature scheme as follows:



g = z2e1...ej−1ej+1...ek , h = v2e1...ek and X = g−αw2e1...ek , where w, v ∈ Zn

and α is a l-bit string. Since QRn is a cyclic group, we can assume that g, h
are generators of QRn with overwhelming probability. To sign the i-th message
mi(i 6= j), the signing oracle selects a random string ti ∈ {0, 1}l, and computes:

yi
ei = ((wv)2e1...ei−1ei+1...ekz2(ti−α)Πs 6=i,s 6=jes)ei

The output of the signing oracle is a signature of message mi, denoted by
σ(mi) = (ei, yi, ti).

To sign the j-th message mj , the signing oracle, sets tj ← α and computes:

yj
ej = ((wv)2Πs 6=jes)ej

The output of the signing oracle is a signature of message mj , denoted by
σ(mj) = (ej , yj , tj).

Let σ(m) = (e, y, t) be a valid signature forged by the adversary of message
m. By assumption, we know that ye = XgthH(m). Consequently, we have the
following equation:

gtj hH(mj)yj
ej = gthH(m)ye

Equivalently
z2(α−t)Πi 6=jei = (v2(H(m)−H(mj))Πi 6=jei

y

yj
)ej

In the case that t 6= α, we apply Guillou-Quisquater lemma to extract the
r-th root of z. We therefore arrive at the contraction of hardness of the standard
RSA assumption.

In the case t = tj =α, i.e, the adversary outputs a forgery (e, y, t) such that
e = ej and t = tj = α with some value y, the above equation at the end is trivial,
therefore we should reconsider the simulator as follows:

Again, given z ∈ Z∗n and r, we choose a set of total k − 1 primes with
length (l + 1)-bit e1, ...ej−1, ej+1, ..., ek at random. We also choose w, v ∈ Zn at
random and create the correspondent public key (g, h) of the simulated signature
scheme by computing h = z2e1...ej−1ej+1...ek , g = ve1···ekz2e1...ej−1ej+1...ek and
X = we1···ekz2e1...ej−1ej+1...ek(−α).

Since the simulator knows each ei, therefore it is easy to compute the i-th
signing query. What we need to show is how to simulate the j-th signing query.
This can be done as follows:

y
ej

j = xgtj hH(mj) = (wv)e1···ekz2e1...ei−1ei+1...ek(−α+tj+H(mj))

Now we set −α + tj + H(mj) = 0, i.e, tj = α − H(mj). To show the simula-
tion above is non-trivial, we should show Pr{α ≥ H(mj)} is an non-negligible
amount. Since H(mj) ∈ {0, 1}l is random variable, we define xj = H(mj) and
Pr(x = xj) = pj , without loss of generality, we may further denote xj by j. It
is not hard to show that Pr{α ≥ xj} =

∑
j=1···2l pj(

∑
i≥j pi). What we want

to show is that the probability Pr{α ≥ xj} is an non-negligible amount. Sup-
pose Pr{α ≥ xj} is an negligible amount, i.e.,

∑
j=1···2l xjpj = 2l, except for



an negligible amount. Equivalently, H is a single valued function except for an
negligible amount, this is an contradiction.

Now we suppose the adversary is able to forge a faking signature of message
m, denoted by (e, y, t), such that ej = e(= r), tj = t. Notice that one can not
assume that ej = e, tj = t and yj = y, since H is a collision free hash function.
Now we have two equations: ye

j = XgthH(mj) and ye = XgthH(m). Consequently,
we obtain the equation:

(
yj

y
)e = hH(mj)−H(m) = z2e1,...ej−1,ej+1,...,ek(H(mj)−H(m))

It follows that one can extract the e-th root of z with non-negligible probabil-
ity. Therefore, we arrive at the contradiction of the standard hardness of RSA
assumption.

Type 2-Forger

We consider the second type of the attack: the adversary forgery is that for
all 1 ≤ j ≤ k, e 6= ej . If the adversary succeeds in forgery with non-negligible
probability, then given n, a random z ∈ Z∗n, we are able to compute z1/d (d > 1
) with non-negligible probability, which contradicts to the assumed hardness of
strong RSA assumption. We state our attack in details as follows: we generate g
and h with the help of z. We define g = z2e1...ek and h = ga, where a ∈ (1, n2), is a
random element. We can assume that g is a generator of QRn with overwhelming
probability. Finally, we define X = gb, where b ∈ (1, n2). Since the simulator
knows the all ej , the signature oracle can be perfectly simulated. Let (e, t, y) be
a forgery signature of message m. It yields the equation ye = XgthH(m) = zE ,
where E = (b + t + aH(m))2e1...ek. Since we are able to compute (e/E)-th root
of z provided e is a not a divisor of E according to the lemma of Guillou and
Qusiquater, it is sufficient to show that e is not a divisor of E with non-negligible
probability. Due to the the fact that gcd(e, e1e2 · · · ek) = 1, it is sufficient to show
that e is not a divisor of b + t + aH(m) with non-negligible probability. Suppose
e|(b + t + aH(m), or equivalently, b + t + aH(m) ≡ 0mode. Since a ∈ (1, n2),
we can write a as a = a′p′q′ + c′. It follows a′ is a random element from the
adversary’s view. Hence the probability that b + t + aH(m) ≡ 0mode is about
1/e. Thus, with non-negligible probability, e is not a divisor of b + t + aH(m).
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