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Abstract. We propose public-key cryptosystems with public key
a system of polynomial equations, algebraic or differential, and
private key a single polynomial or a small-size ideal. We set up
probabilistic encryption, signature, and signcryption protocols.

1. Introduction

This paper focuses on Hidden Monomial Cryptosystems, a class of
public key (PK) cryptosystems first proposed by Imai and Matsumoto
[IM85]. In this class, the PK is a system of polynomial nonlinear equa-
tions. The private key is the set of parameters that the user chooses
to construct the equations. Before we discuss our variations, we re-
view briefly a simplified version of the original cryptosystem, better
described in [Kob99]. The parties throughout this paper are:

• Alice who wants to receive secure messages;
• Bob who wants to send her secure messages;
• Eve, the eavesdropper.

Alice takes two finite fields Fq < K, q a power of 2, and β1, β2, . . . , βn

a basis of K as an Fq-vector space. Next she takes 0 < h < qn such
that h = qθ + 1, and gcd(h, qn − 1) = 1. Then she takes two generic
vectors u = (u1, . . . , un) and v = (v1, . . . , vn) upon Fq, and sets1:

(1) v = uqθ

u.

The condition gcd(h, qn − 1) = 1 is equivalent to requiring that the
map u 7−→ uh on K is 1↔1 ; its inverse is the map u 7−→ uh′

, where
h′ is the inverse multiplicative of h modulo qn − 1.

In addition, Alice chooses two secret affine transformations, i.e., two
invertible matrices A = {Aij} and B = {Bij} with entries in Fq, and
two constant vectors c = (c1, . . . , cn) and d = (d1, . . . , dn), and sets:

(2) u = Ax + c and v = By + d.
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Recall that the operation of raising to the qk-th power in K is an

Fq-linear transformation. Let P (k) = {p(k)
ij } be the matrix of this linear

transformation in the basis β1, β2, . . . , βn, i.e.:

(3) βqk

i =
n∑

j=1

p
(k)
ij βj, p

(k)
ij ∈ Fq,

for 1 ≤ i, k ≤ n. Alice also writes all products of basis elements in
terms of the basis, i.e.:

(4) βiβj =
n∑

`=1

mij`β`, mij` ∈ Fq,

for each 1 ≤ i, j ≤ n. Now she expands the equation (1). By equalizing
coefficients of the βi, she obtains a system of n equations, explicit in
the v, and quadratic in the u. She uses now her affine relations (2) to
replace the u, v by the x, y. So she obtains n equations, linear in the
y, and of degree 2 in the x. Using linear algebra, she can get n explicit
equations, one for each y as polynomials of degree 2 in the x.

Alice makes these equations public. Bob to send her a message
(x1, x2, . . . , xn), substitutes it into the public equations. So he obtains
a linear system of equations in the y. He solves it, and sends y =
(y1, y2, . . . , yn) to Alice.

To eavesdrop, Eve has to substitute (y1, y2, . . . , yn) into the pub-
lic equations, and solve the nonlinear system of equations for the un-
knowns x.

When Alice receives y, she decrypts:

y1, y2, . . . , yn

⇓
v = By + d

⇓
v =

∑
viβi

⇓
u = vh′

⇓
x = A−1(u− c).

In Eurocrypt ′88 [IM89], Imai and Matsumoto proposed a digital
signature algorithm for their cryptosystem.

At Crypto ′95, Jacques Patarin [Pat95] showed how to break this

cryptosystem. He noticed that if one takes the equation v = uqθ+1,
raises both sides on the (qθ − 1)-th power, and multiplies both sides

by uv, he gets the equation uvqθ
= uq2θ

v that leads to equations in
the x, y, linear in both sets of variables. Essentially the equations do
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not suffice to identify uniquely the message, but now even an exhaus-
tive search will be feasible. The system was definitively insecure and
breakable, but its ideas inspired a whole class of PK cryptosystems and
digital signatures based on structural identities for finite field opera-
tions [HFE, Moh99, Kob99, Pat96a, Pat96b, GP].

The security of this class rests on the difficulty of the problem of
solving systems of nonlinear polynomial equations. This problem is
hard iff the equations are randomly chosen. If they really were random,
the problem is hard to Alice, too. So, all we try to do is to get systems
of equations that are not random, but appear to be the most possible.

Our paper is organized as follows. In the next section we develop an
our own, new cryptosystem. Alice builds her PK by manipulations as
above, starting from a certain bivariate polynomial.

All of Alice’s manipulations are meant to hide from Eve this polyno-
mial. It is the most important part of the private key. Its knowledge
reduces decryption to the relatively easy problem of solving a single
univariate polynomial of a moderate degree.

Encryption is probabilistic, in the sense that to a given cleartext
correspond zero, one, or more ciphertexts. Decryption is deterministic,
in the sense that if encryption succeeds, decryption does succeed, too.

Almost any bivariate nonlinear polynomial can give raise to a PK.
This plentitude of choices is an important security parameter.

In the third section we discuss some security issues. In the fourth
one we provide our cryptosystem with a digital signature algorithm.

In the fifth we provide a signcryption protocol. Signcryption stands
for joint encryption and signature.

In the sixth one we discuss some more variations. Essentially, we
replace the single bivariate polynomial by an ideal of a small size.

In the seventh section we mention what Shannon [Sti02] calls un-
conditionally secure cryptosystems. Nowadays they are considered an
exclusive domain of the private key cryptography. This is due mostly
to the unhappy state of art of the PK one.

In the eighth one we extend our constructions to differential fields of
positive characteristic. We hope they are the suitable environment for
unconditionally secure PK (USPK) cryptosystems.

2. A New Cryptosystem

2.1. Key Generation. Alice chooses two finite fields Fq < K, and
a basis β1, β2, . . . , βn of K as an Fq-vector space. In practice, q = 2.
However, it can be any pr, for any p prime, and any r ∈ N.

Next Alice takes a generic (for now) bivariate polynomial:

(5) f(X,Y ) =
∑
ij

aijX
iY j
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in K[X,Y ], such that she is able to find all its roots in K with respect
to X; ∀ Y ∈ K, if any. For the range of i employed, this is nowadays
considered a relatively easy problem. Further, f(X, Y ) is subject to
other few constraints, that we make clear at the opportune moment.

In transforming cleartext into ciphertext message, Alice will work
with two intermediate vectors, u = (u1, . . . , un) and v = (v1, . . . , vn);
u,v ∈ K. She sets:

(6)
∑
ij

aiju
ivj = 0.

For aij 6= 0, she sets somehow:

(7) i =

ni∑
k=1

qθik and j =

nj∑
k=1

qθjk ,

where θik, θjk, ni, nj, i, j ∈ N∗ = {0, 1, 2, . . . }.
Here somehow means that (7) may or may not be the q-ary repre-

sentation of i, j. Taking this freedom, we increase our range of choices,
whence the random-looking of the PK. In any fashion, what we are
dealing with, are nothing but identities.

Next Alice substitutes the (7) to the exponents in (6), obtaining:

(8)
∑
ij

(aijexp(u,

ni∑
k=1

qθik)exp(v,

n0∑
k=1

qθjk)) = 0;

that is:

(9)
∑
ij

(aij

ni∏
k=1

uqθik

nj∏
k=1

vq
θjk

) = 0.

Recall that the operation of raising to the qk-th power in K
is an Fq-linear transformation. Let P (k) = {p(k)

`m} be the matrix of
this linear transformation in the basis β1, β2, . . . , βn, i.e.:

(10) βqk

i =
n∑

j=1

p
(k)
ij βj, p

(k)
ij ∈ Fq;

for 1 ≤ i, j ≤ n. Alice also writes all products of basis elements in
terms of the basis, i.e.:

(11) βiβj =
n∑

k=1

mijkβk, mijk ∈ Fq;

for 1 ≤ i, j ≤ n.
Now she substitutes u = (u1, u2, . . . , un), aij = (aij1, aij2, . . . , aijn),

v = (v1, v2, . . . , vn), and the identities (10), (11) to (9), and expands.
So she obtains a system of n equations of degree t in the u, v, where:

(12) t = max {ni + nj : aij 6= 0}.

MAILTO:TOLI@POSSO.DM.UNIPI.IT


HIDDEN POLYNOMIAL(S) CRYPTOSYSTEMS 5

Every term under the Σ in (7) contributes by one to the size of t.
Here we pause to give some constraints on the range of i, j in (6).

The aim of this section is to generate a set of polynomials; linear in a
set of variables, and nonlinear in another one. For that purpose, we
relate (6) and (7): aij 6= 0 ⇒ {ni > 1, nj = 1}.

On the other side, the size of PK is O(nt+1). So, it grows polynomi-
ally with n, and exponentially with t. Therefore, we are interested to
keep t rather modest, e.g., t = 2, 3, or so. So, we have to choose i, j
in (5), (7) in order to keep t under a forefixed bound.

Next she takes A = {Aij}, B = {Bij} ∈ GL(Fq), c,d ∈ K, and sets:

(13) u = Ax + c and v = By + d,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are vectors of variables.
Now she substitutes (13) to the equations in the u, v above, and

expands. So she obtains a system of n equations of degree t in the x,
y; linear in the y, and nonlinear in the x.

After the (13) each monomial XiYj expands into polynomials with
terms of each degree, from ni + nj to zero. So, they shuffle better the
terms coming from different monomials of (9). On the other hand, they
render the PK very dense, so increase drastically its size.

At this point, we are ready to define the cryptosystem.

2.2. The Protocol. With the notations adopted above, we define
the HPE Cryptosystem (Hidden Polynomial Equations) as the PK
cryptosystem such that:

• The public key is:
– The set of the polynomial equations in the x, y as above;
– The field Fq;
– The alphabet: a set of elements of Fq, or strings of them.

• The private key is:
– The polynomial (5);
– A, B, c, d as in (13);
– The identities (6) to (11);
– The field K.

• Encryption: Bob substitutes the cleartext x = (x1, x2, . . . , xn)
in the PK, finds one solution y = (y1, y2, . . . , yn) of it, and sends
y to Alice. We assume that solutions exist, and postpone the
case when there are not.

• Decryption: Alice substitutes v = By + d ∈ K > Fq in (6),
and finds all solutions within K. There is at least one. Indeed,
if x is Bob’s cleartext, u as in (13) is one. For each solution u,
she solves:

(14) x = A−1(u− c),
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and represents all solutions in the basis β1, β2, . . . , βn. It takes a
Chinese Remainder Theorem. With probability ≈ 1, all results
but one, Bob’s (x1, x2, . . . , xn), are gibberish, or even stretch
out of the alphabet. We come back later at this point, too.

2.2.1. The main suspended question is that of the existence of solu-
tions. Well, Bob succeeds to encrypt a certain message x iff Alice’s
equation (6) has solutions for u as in (13) for that x. Alice’s polyno-
mial (6) in v for a given u is a random one. It is a well-known fact from
algebra that the probability that a random polynomial with coefficients
upon a finite field has a root in it is 1− 1

e
≈ 63.2% [Kob99, Mar97].

Here the remedy is probabilistic. Alice renders the alphabet public
with letters being sets of elements of Fq, or sets of strings in it. Bob
writes down a plaintext, and starts encryption. If he fails, he substi-
tutes a letter or a string of the cleartext with another one of the same
set, and retries. After s trials, the probability he does not succeed is
1
es ; practically good enough.

2.2.2. The other problem is that Alice may have to distinguish the
right solution among a great number of them. Here is a first remedy.
Her number of solution is bounded above by the degree in X of f . So,
it is beter to keep it moderate. Later we give other remedies, too.

2.3. Observations. Solving univariate polynomial equations is used
by Patarin, too [Pat96b, Wol02]. He takes a univariate polynomial:

f(x) =
∑
i,j

βijx
qθij +qϕij

+
∑

i

αix
qξi + µ0,

and with manipulations like ours, both the same as Imai-Matsumoto
[IM85], he gets his PK; a set of quadratic equations. He uses two affine
transformations to shuffle the equations. We claim that the first one
adds nothing to the security.

The bigger the degree of f is, the more the PK resembles a randomly
chosen set of quadratic equations. So, it is a security parameter. On
the other side, it slows down decryption, principally by adding a lot
of undesired solutions. To face that second problem, to the PK are
added other, randomly chosen, equations. This is its Achilles’ heel.
It makes the PK overdefined, therefore subject to certain facilities to
solve [SCPK]. So, it weakens the trapdoor problem.

We do not add equations to discard undesired solutions. Indeed,
we take the degree in X rather modest, so we do not have so many
undesired solutions. Thus, we are not subject to attacks exploiting
overdefined equations. If in certain variations we ever do, we need to
add less equations, however.

What is most important, we have now a practically infinite range of
choices of f . This is not Patarin’s case. There the choices are bounded
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below because of being easy to attack cases, and above because of being
impractical to the legitimate users.

The only few constraints we put on monomials of f aim to:

• keep PK equations linear in the y;
• have less undesired solutions in decryption process;
• keep the size of PK moderate;
• keep all PK equations nonlinear in the x.

The constraint that all PK equations must be nonlinear in the x is
the only non-negotiable one. Indeed, if Alice violates it, the trapdoor
problem becomes fatally easy to Gröbner techniques.

We can take the degree in Y arbitrarily huge. It gives no trouble to
us. We only require PK to be linear with respect to the y. For that,
Y i must be of the form Y qi

. Moreover, Y qn
= Y , Xqn

= X gives us
the upper bound of the values of i, j in (5).

Well, card{PK} = (qn · |GL(n, q)|)2 · card{f}. If Alice decides to

keep PK of degree two in the x, X i will be of the form Xqi+qj
. So,

card{X i} = bn2+1
2
c, one less for q = 2, card{X iY j} = n · bn2+1

2
c, and

card{f} = 2n·bn2+1
2

c. A lot of such f are bad choices, but the good ones
are still a plethora. So, for t = 2 we have:

card{PK} = (qn ·
n∏

k=1

(qn − qk−1))2 · 2n·bn2+1
2

c.

Different parameters above may give raise to the same PK. On how
does this fact shrink card{PK}, nothing is known.

Assume now that PK is nonlinear in the y. Once Bob substitutes
the x in the public equations, he is required to find any solution of
the system that he obtains. This can be done within polynomial time
with respect to Bezout number of the system. Later we give settings
to keep PK nonlinear of low total degree in the y.

Each of such solutions (if any) is encryption to the same cleartext.
So we have set up a probabilistic encryption protocol. To a single
cleartext may correspond zero, one, or more ciphertexts.

3. Security Issues

The main data to Eve are PK and n. By brute force, she has to take
(y1, y2, . . . , yn), to substitute it in the PK equations, to solve within
the base field, and to take the sensate solution. Almost surely, there is
only one sensate solution among those that she finds. She has to find
it among tn of them. However, the main difficulty to her is just solving
the system. Supposedly, it will pass through the complete calculus of
a Gröbner basis. It is a well-known hard problem.

So, the complexity of the trapdoor problem is O(tn). On the other
hand, the size of the PK is O(nt+1). This fully suggests the values
of the parameters. It is better to take n huge. This diminishes the
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probability that Alice confuses decryption, however close to zero, and,
what is most important, it renders Eve’s task harder. Alice and Bob
will have to solve sets of bigger systems of linear equations, and face
Chinese Remainder Theorem for bigger n.

If we take t very small, we restrict somehow choices of f . If very big,
it renders the size of PK impractical. Actually, n ≥ 100 and t = 2, 3, 4
are quite good sample values. If we only take the monomials of f to be
univariate, PK size is roughly the same as HFE, and we have infinite
choices still. In any case, later in section 6 we present better settings
that all in one: moderate the size of the PK, increase its randomness,
and contain better the number of undesired solutions.

There exist well-known facilities [SCPK] to solve overdefined systems
of equations. Unlike most of the rest, our PK is irrendundant, so it is
not subject to such facilities.

Now, by exhaustive search we mean that Eve substitutes the y in the
public equations, and tries to solve it by substituting values to the x. If
we have d letters each of them being represented by a single element of
Fq, the complexity of an exhaustive search is O(dn). It is easy for Alice
to render exhaustive search more cumbersome than Gröbner attack.
The last one seems to be the only choice to Eve.

Affine multiple attack [Pat96b] seems of no use in our settings.

4. A Digital Signature Algorithm

For Bob to be able to sign messages, he builds a cryptosystem as
above with [KB : FqB

] = nB. Assume now that we are publicly given a
set of hash functions that send cleartexts to nB-tuples of FqB

.
Bob to sign a message M :

• calculates H(M) = (y1, y2, . . . , ynB
) = yB, then vB = BByB +

dB;
• finds one solution (if any, otherwise see section 2.2.1) uB of

fB(uB,vB) = 0 in KB.
• calculates x = AB

−1(uB − cB);
• appends x = (x1, x2, . . . , xnB

) to M , encrypts, and sends it to
Alice. (x1, x2, . . . , xnB

) is a signature to M .

To authenticate, Alice first decrypts, then she calculates H(M) =
(y1, y2, . . . , ynB

). If (x1, x2, . . . , xnB
), (y1, y2, . . . , ynB

) is a solution of
Bob’s PK, she accepts the message; otherwise she knows that Eve has
been causing trouble.

If Eve tries to impersonate Bob and send to Alice her own mes-
sage with hash value y = (y1, y2, . . . , ynB

), then to find a signature
(x1, x2, . . . , xnB

), she may try to find one solution of Bob’s system of
equations for y. We trust on the hardness of this problem for the
security of authentication.
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Actually, the hash functions play no role in this class of signatures.
They may as well output parts of the cleartext itself.

5. A Signcryption Protocol

Here is the shortest possible description. Let FA and FB be Alice’s
and Bob’s PK functions respectively. To send a message x to Alice, Bob
sends her a random element of FA(F−1

B (x)), that she can decrypt by
calculating FB(F−1

A (FA(F−1
B (x)))). So if FA(F−1

B (x)) 6= ∅. Otherwise,
the approach is probabilistic, as in the previous section.

Here is the extended description. Each letter (or some of them, only)
is represented by a set of few (two, e.g.) elements of the field, or strings
of them. For ease of explanation, assume that FqA

= FqB
and nA = nB.

Bob writes down the cleartext X, calculates vB = BBX + dB, and
finds one solution (if any, otherwise see section 2.2.1) uB of his private
polynomial fB(X,Y ). Next he calculates xB = AB

−1(uB − cB), that
he encrypts as above by means of Alice’s PK, and sends her the result.

Alice now first decrypts as in section 2.2. Next, she substitutes the
x-es she finds into Bob’s PK variables x, and solves. There is at least
one solution, and at most few of them. One of them is Bob’s message.

What is the trapdoor problem now? Well, on authentication matter,
nothing new. Eve has the same chances to forge here that she had
before. Recall that this class of signatures is already considered best
with respect to the other ones.

On security, instead, there are improvements. By brute force, Eve
has to take the ciphertext, substitute on Alice’s PK, find all solutions,
substitute them all on Bob’s PK, and take the sensate ones.

Let us assume that the letters are strings of a fixed length. For an
exhaustive search Eve now has to run throughout all the n-tuples of
all elements of Alice’s ground field; not just throughout n-tuples made
of letters. She sets up such n-tuples, checks whether they are solutions
of Alice’s PK for Bob’s ciphertext y substituted to the variables y. If
yes, she substitutes to Bob’s PK, and takes the sensate ones.

So, Alice now has a full freedom on building alphabet. In decryp-
tion she discards a priori the solutions that contain non-letters. Now
practically the good solution is unique.

Apart all, we save the space and calculi of the signature.

6. Hidden Ideal Equations

Instead of a single bivariate polynomial, Alice may employ an ideal of
a very modest size. She separates the variables that she employs within
two sets, {Xi}, {Yj}; one for encryption, one for decryption. She may
decide to leave one of the equations employed of higher degree in the
{Yj} after manipulations, so she gives raise to a probabilistic encryption
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protocol. Alice obtains her PK with manipulations as in section 2.1 on
all variables {Xi}, {Yj}. Her parameters are:

• n = [K : Fq];
• the number s1, s2 of variables {Xi}, {Yj}, respectively;
• the number r of private equations.

So, the number of PK equations is n · r, the number of the variables
xij is n · s1, and that of the ykl is n · s2.

Alice’s number of variables, the {Xi}, is insignificant so far, so she is
supposed to be able to appeal to Gröbner techniques in order to solve
her system of equations within the field of coefficients for Bob’s {Yj}.

What is most important here and throughout, if Bob succeeds to
encrypt, Alice does always succeed to decrypt.

For ease of treatment, assume now that Alice does not apply affine
transformations to her variables. Bob fails encryption for a certain
cleartext (X1, . . . Xs1) iff Alice’s private ideal has no solutions in the
Y for such an (X1, . . . Xs1). Alice’s private ideal is a random one. If
she takes r ≤ s2, the probability that it has no solutions is ≈ 0, and
≈ 1 for r > s2. So, it suffices that Alice takes r ≤ s2. The rare critical
cases that may supervene are faced simply changing alphabet.

With slight changes, this reasoning holds in the case that Alice ap-
plies affine transformations, too.

The other problem is that the solutions to Alice may be too many,
and in any case finitely many, as the base field is finite. The best remedy
to that is that Alice takes r = s1. So, the ideal that she obtains after
substitution of Bob’s ciphertext is zerodimensional (quite easy to cause
it happen), and the number of solutions is bounded above by the total
degree of the system. So, she can contain the number of solutions by
taking the total degree in the {Xi} modest.

Alice can take all equations of very low degree in the X, and then
transform that basis of the ideal they generate to another one of very
high degrees in the X. So she has a low Bezout number of the ideal,
and higher degrees in the X, and transformations as above can take
place. If she takes the first basis linear, the number of solutions of her
equations reduce to one: Bob’s cleartext. She can use in decryption
the most suitable of the bases of her private ideal.

As soon as r > s1, the PK becomes overdefined.
Alice applies a permutation to the equations and a renumeration to

the variables before publishing her key, so Eve does not know how are
they related. She may apply affine transformations, or may not, or
may apply to only some of the Xi, Yj; at her discretion.

If s1 < s2, the size of the ciphertext is bigger than that of cleartext,
and nothing else wrong. By this case, encryption is practically always
probabilistic. Indeed, even when the equations are linear with respect
to the ykl, since there are more variables than equations, the solutions
exist, and are not unique.
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Actually, Alice can take a big s2. She may choose to manipulate
some of the Yj within a subfield of K, rather than within K. Doing
so, she is allowed a big s2, and a contained size of the ciphertext. The
number of the variables ykl now is no more n · s2.

One can employ this protocol for signcryption. The sizes of cipher-
texts throughout are roughly equal to those of the plaintext ones. So,
one can use all the protocols we describe throughout for multiple en-
cryption as well. They seem suitable for private key schemes, too.

Now the size of the PK is O(s1(n)t+1), and the complexity of the
trapdoor problem is O(tn·s1).

Even though the size of PK throughout grows polynomially with n,
before n becomes interesting, the PK is already quite cumbersome. So,
opting for the choices of this section we can employ much smaller n,
whence moderate a lot the size of the public key.

Actually, n ≥ 20 is quite good. We are allowed some more values of
t, too. Alice takes s1 as big as she can handle, e.g., s1 = 1, 2, 3, 4, 5, 6, 7,
or more, and n · s1 ≥ 100.

For ns1 fixed, the bigger s1 is, the exponentially less cumbersome
the PK is, and the exponentially harder becomes Eve’s task.

Generally speaking, Alice’s task becomes exponentially harder with
s1, too. In practice, it depends very much on whether does she have
any good basis of her private ideal, or not. In any case, the speeds of
becoming harder of tasks of Alice and Eve are quite different.

6.1. There exist classes of ideals called with doubly exponential ideal
membership property [Swa]. These are the ideals for which the calculus
of a Gröbner basis requires doubly exponential time on the number of
variables. It is very interesting to know whether can we employ them
in some fashion in this class of cryptosystems. In any fashion, this
is the theoretical limit for employing solving of polynomial systems of
equations in PK cryptography.

7. Some Considerations

The idea of PK was first proposed by Diffie and Hellman [DH76].
Since then, it has seen several vicissitudes [Odl91, Mora, Morb].

A trapdoor function is a map from cleartext units to ciphertext units
that can be feasibly computed by anyone having the PK, but whose
inverse function cannot be computed without its knowledge:

• either because (at present, publicly) there is no known way;
• or there are, but the amount of calculi is deterring.

Shannon [Sti02] called the cryptosystems with trapdoor of the first
class unconditionally secure.

Actually, the aim is to render the trapdoors equivalent to time-
honoured hard problems. Being of a problem hard or undecidable
implies nothing a priori about the security of a cryptosystem [Odl91],



12 ILIA TOLI

however. Recall that of all schemes ever set up, only two of them, RSA
[RSA78] and ECDL [Kob99], are going to be broken (or, at least, are
going to become impractical) by solving their hard problems. The rest
have been broken with theories of no other use.

The author is very fond of the idea of the PK, and believes howsoever
in new developments that will make it fully suffice for all purposes.

Actually, one tendency is that of investigating poor structures, mean,
structures with less operations, like groups, semigroups with cryptosys-
tems upon the word problem [AAFG01, Yam98, Hug02]. Yamamura’s
paper [Yam98] can be considered a pioneering USPK. Unfortunately,
its scheme is still uneffective.

William Sit and the author are investigating rich structures. We
are investigating among other things effective USPK schemes upon
differential fields of positive characteristic. We hope that cryptography
will arouse new interests on differential and universal algebra, too, as it
did in number theory and arithmetic geometry. One reason of optimism
is that in universal algebra one can go on further with new structures
and hard or undecidable problems forever. Until now we have appealed
to only unary and binary arithmetic operations.

8. Generalizations on Differential Fields

Differential2 algebra [Kol73, Sit02, Rit50, Sad, Kap57] owes its exis-
tence mostly to the efforts of Ritt [Rit50] to handle differential equa-
tions by means of algebra.

A differential field is a field F endowed with a set of linear maps
θ : F −→ F called derivatives, such that: θ(ab) = aθ(b) + θ(a)b.

Kaplansky’s booklet is perhaps the best introduction in the topic.
The schemes given throughout work as well in differential settings.

Take K to be a finite differential field extension of a differential field F
of positive characteristic3. Any such K is defined by a system of linear
homogeneous differential equations, and there are structural constants
defining the operations for the derivations (one matrix for each deriva-
tion), as well for multiplication.

One can now replace (5) with a differential polynomial of higher
order and degree. Throughout section 6, one can replace ideals with
small suitable differential ideals, too. The schemes work verbatim.

The techniques given throughout for polynomials, if applied to dif-
ferential polynomials, will definitely make it much harder to attack any
protocol developed. Any affine transformation (by this is meant a lin-
ear combination of the differential indeterminates with not-necessarily
constant coefficients, and this linear combination is then substituted

2Most of considerations given in this section are suggestions of professor Sit
through private communications.

3In zero characteristic numerical analysis tools seriously affect security, or at
least constrain us to more careful choices. We shall not dwell on this topic here.
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differentially in place of the differential indeterminates) will not only
even out the degrees, but also the orders of the various partials, and
making the resulting differential polynomials very dense.

However, there is one thing to caution about: any time one specifies
these structural matrices, they have to satisfy compatibility equations.
In the algebraic case, it is the relations between P k = {pij

(k)} in (10)
and M` = {mij`} in (11). The P k are simply determined uniquely by
M`, given the choices implicitely defined in (11).

It is very interesting to know in the algebraic case whether Alice’s
PK is invariant under a change of basis, all the other settings being
equal. There is probably some group of matrices in GL(n, q) that can
do that. Such a knowledge would only weaken all cryptosystems based
on equations systems solving.

In the differential case there is a similar action called Loewy action,
or the gauge transformation. For ordinary differential equations, two
matrices A, B are Loewy similar if there is an invertible matrix K
such that A = δK ·K−1 + KBK−1. Using this action, one can classify
the different differential vector space structures of a finite dimensional
vector space. There is also a cyclic vector algorithm to find a special
basis, so that the differential linear system defining the vector space
becomes equivalent to a single linear ODE.

If no other problems arise for the differential algebraic schemes, there
is however one caution more for them to be unconditionally secure. We
have to avoid the exhaustive search. For that, Alice has to publish a
finite alphabet where each letter is represented by an infinite set, dis-
joint sets for different letters. This is possible in proper differential
fields, as they are infinite. Alice renders the sets public parametrically,
as differential algebraic functions of elements of the base differential
field, and parameters, e.g., in Z. Bob chooses a letter, gives random
values to parameters, obtains one representant of the letter, and pro-
ceeds as above. In any case, if µ is the order of public equations, any
two elements Ξ, Θ ∈ F such that (Ξ − Θ)(µ) = 0 must represent the
same letter, if any.

The main care for Alice is that the PK equations must not fall into
feasible cases by well-known means, such as linear algebra.

Now the size of the PK is O(nto+1), where o is the order of PK
equations. Quite explosive!!! One more reason to take q = 2, so some
more monomials reduce to zero.

Anyway, we do not have to increase parameters for better security.
The trapdoor problem is simply undecidable. Unlike the algebraic case,
we can split cleartext into small strings. Actually, quite good sample
values are: n = 20 and t, o = 2, 3, 4, or so. As of now, HDPE trapdoor
problem seems undecidable, and the scheme effective.
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