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Abstract. Key exchange protocols in the setting of universal compos-
ability are investigated. First we show that the ideal functionality FKE

of [CK02] cannot be realized in the presence of adaptive adversaries. We

proceed to propose a modification F (i,j)
KE , which is proven to be realiz-

able by two natural protocols for key exchange. Furthermore, sufficient
conditions for securely realizing this modified functionality are given.
Motivated by the observation that certain key exchange protocols seem
to guarantee more security than the ideal functionality FKE (resp., F (i,j)

KE )
demands, two notions of key exchange are introduced that allow for
security statements even when one party is corrupted. Namely, a cor-
rupted “initiator” of a key exchange protocol has no influence on the key
agreed upon. Two natural key exchange protocols are proven to fulfill
the “weaker” of these notions, and a construction for deriving protocols
that satisfy the “stronger” notion is given.

Keywords: formal cryptography, cryptographic protocols, universal
composition, key exchange.

1 Introduction

Recently, formal notions of security for key exchange protocols have received
a lot of attention (see, e. g. [BR95,BCK98,Sho99,CK01,CK02]). An important
question not only for key exchange, but for cryptographic protocols in gen-
eral, regards their security under concurrent composition with other protocols.
In [Can01], a very strict notion of security is given which guarantees universal
composability of protocols. More specifically, that means that given any secure
protocol π which utilizes an idealized version F of a protocol task (called an ideal
functionality), another protocol τ which in turn securely realizes F can replace
a polynomial number of instances of F in protocol π without compromising the
overall security of π.

Key exchange protocols in this setting were studied in [CK02]. However, as
we will show in the following, the security notion of [CK02] cannot be fulfilled
when considering adaptive adversaries, which may corrupt participants of the
protocol at any time during the protocol execution. In this contribution we will
therefore provide a slightly modified specification for key exchange realizable



in the presence of adaptive adversaries. Furthermore, two natural key exchange
protocols are proven secure in that sense. In fact, we investigate general sufficient
conditions for key exchange protocols to be secure with respect to our notion.

In view of universal composability one must not restrict attention to the case
where the “initiator” and the “responder” of a key exchange are uncorrupted
and need to be protected against an adversary monitoring the communication
channel “from the outside”. To be able to employ a key exchange protocol within
a more complicated protocol context it is necessary to specify the behaviour of
a key exchange protocol also for the case when the initiator or the responder are
corrupted. In [CK02], in face of a corrupted initiator or responder, the adversary
may freely choose the key which is to be the outcome of the key exchange proto-
col. Investigating, e. g., a Diffie-Hellman-like key exchange we observe that it is
not obvious how the initiator could, if corrupted, let the adversary freely choose
the key agreed upon. This leads to the natural question whether or not some
known key exchange protocols may in fact realize something strictly stronger
than a universally composable key exchange as described in [CK02] (resp., in
Section 3 below). Specifically, it seems that a Diffie-Hellman-like key exchange is
“initiator-resilient” in the sense that a corrupted initiator cannot force the out-
come of the key exchange to be some specific key, which could then be known
to some third party or be some “weak” key of an encryption functionality to be
used after the key exchange.

To make this intuition explicit, we first give a very straightforward and in-
tuitive ideal functionality for initiator-resilient key exchange where even in case
of a corrupted initiator, the key agreed upon is chosen at random. It turns out
that this ideal functionality can be realized securely, although it might be con-
sidered “too restrictive”, as two natural and “intuitively initiator-resilient” key
exchange protocols can be shown not to realize this ideal functionality. Conse-
quently, we introduce a slightly more involved ideal functionality making use of
a non-information oracle, as defined in [CK02].

In the new ideal functionalities introduced in this contribution, the adver-
sary still has complete control over the outcome of the key exchange when the
responder gets corrupted. Yet a close inspection of, e. g., a Diffie-Hellman-like
key exchange protocol suggests that there exist key exchange protocols for which
the influence each individual party has on the key is limited. It is an interesting
open question if this additional property of certain key exchange protocols can
be captured in an appropriate ideal functionality.

2 Preliminaries

To start, we shortly outline the framework for multi-party protocols defined
in [Can01]. First of all, parties (denoted by P1 through Pn) are modeled as
interactive Turing machines (ITMs) (cf. [Can01]) and are supposed to run some
(fixed) protocol π. There also is an adversary (denoted A and modeled as an
ITM as well) carrying out attacks on protocol π. Therefore, A may corrupt
parties (in which case it learns the party’s current state and the contents of

2



all its tapes, and controls its future actions), and intercept or, when assuming
unauthenticated message transfer1, also fake messages sent between parties. If A
corrupts parties only before the actual protocol run of π takes place, A is called
non-adaptive, otherwise A is said to be adaptive. The respective local inputs
for protocol π are supplied by an environment machine (modeled as an ITM
and denoted Z), which may also read all outputs locally made by the parties
and communicate with the adversary. Here we will only deal with environments
guaranteeing a polynomial (in the security parameter) number of total steps all
participating ITMs run. For more discussion on this issue, cf. [HMQS03].

The model we have just described is called the real model of computation.
In contrast to this, the ideal model of computation is defined just like the real
model, with the following exceptions: we have an additional ITM called the ideal
functionality F and being able to send messages to and receive messages from
the parties privately (i. e., without the adversary being able to even intercept
these messages). The ideal functionality may not be corrupted by the adversary,
yet may send messages to and receive messages from it. Furthermore, the parties
P1, . . . , Pn are replaced by dummy parties P̃1, . . . , P̃n which simply forward their
respective inputs to F and take messages received from F as output. Finally,
the adversary in the ideal model is called the simulator and denoted S. The only
means of attack the simulator has in the ideal model are those of corrupting par-
ties (which has the same effect as in the real model), delaying or even suppressing
messages sent from F to a party, and all actions that are explicitly specified in
F . However, S has no access to the contents of the messages sent from F to
the dummy parties (except in the case the receiving party is corrupted) nor are
there any messages actually sent between (uncorrupted) parties S could inter-
cept. Intuitively, the ideal model of computation (or, more precisely, the ideal
functionality F itself) should represent what we ideally expect a protocol to do.
In fact, for a number of standard tasks, there are formulations as such ideal
functionalities (see, e. g., [Can01]).

To decide whether or not a given protocol π does what we would ideally
expect some ideal functionality F to do, the framework of [Can01] uses a simu-
latability-based approach: at a time of its choice, Z may enter its halt state and
leave output on its output tape. The random variable describing the first bit of
Z’s output will be denoted by realπ,A,Z(k, z) when Z is run on security param-
eter k ∈ N and initial input z ∈ {0, 1}∗ (which may, in case of a non-uniform
Z, depend on k) in the real model of computation, and idealF,S,Z(k, z) when
Z is run in the ideal model. Now if for any adversary A in the real model, there
exists a simulator S in the ideal model such that for any environment Z and
any initial input z, we have that

|P(realπ,A,Z(k, z) = 1)−P(idealF,S,Z(k, z) = 1)| (1)

1 In [CK02], the model for message transfer is called unauthenticated, even when each
ordered pair (Pi, Pj) of parties is allowed to exchange one message in an authenti-
cated manner (i. e., the adversary is unable to fake such a message).
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is a negligible2 function in k, then protocol π is said to securely realize function-
ality F .3 Intuitively, this means that any attack carried out by adversary A in
the real model can also be carried out in the idealized modeling with an ideal
functionality by the simulator S (hence the name), such that no environment is
able to tell the difference.

Remark 1. In the framework of [Can01], the above definition of security is equiv-
alent to the seemingly weaker requirement that there is a simulator S so that (1)
is a negligible function in k for any environment Z and input z, and the special
real-model dummy adversary Ã, which follows explicit instructions from Z.

Remark 2. The original modeling of [Can01] does not involve an explicit message
sent to the ideal functionality upon party corruptions. Yet exactly this additional
feature proved helpful in later works (e. g., [CK02,CLOS02]) and in particular
allows to formulate key exchange functionalities in a convenient way. Note that
this change does not affect the validity of the crucial composition theorem proven
in [Can01].

Remark 3. In [Can01], the environment machine is modeled as a non-uniform
ITM (i. e, as an ITM having input z = z(k) dependent on the security parameter
k). However, as the composition theorem of [Can01] remains valid when restrict-
ing to uniform environment machines (i. e., those with input not dependent on
k, cf. [HMQS03]), it makes sense to alternatively consider only uniform environ-
ments where appropriate. In particular, the proofs in the following sections hold
for both uniform and non-uniform environments; alone the respective assump-
tions (i. e., the decisional Diffie-Hellman assumption) have to be considered with
respect to the uniformity class in question.

3 Key Exchange

Now we are ready to show the ideal functionality FKE from [CK02] (also given in
Appendix A) to be non-realizable if adversaries are allowed to corrupt adaptively.
The key observation in our argument is that in the formulation of [CK02], the
functionality FKE determines the common key later given to both participants
right after the respective initialization messages arrived. Thus, an ideal-model
adversary has to cope with corruption requests right after the start of a simulated
protocol run, so at a time when the common key is already fixed by FKE. More
specifically, the simulation is to be valid even if all protocol messages sent by
one participant are chosen by the environment rather than the simulator itself;
we show that this cannot be achieved.4

2 A function f : N → R is called negligible, if for any c ∈ N, there is a k0 ∈ N such
that |f(k)| < k−c for all k > k0.

3 The formulation in [Can01] is slightly different, but equivalent to the one chosen
here which allows to simplify our presentation.

4 Recently we learned that our attack is very similar to the attack of [Dam02] presented
on the bit commitment functionality FCOM from [Can01,CF01].

4



Therefore we introduce a modified key exchange functionality and prove two
common protocols to be secure realizations hereof. In fact, these protocols are
very similar to the ones considered in [BCK98] for key exchange. However, our
key exchange functionality differs from FKE in several respects: first, the com-
mon key may be chosen by the ideal-model adversary if at the end of a simulated
protocol run, anyone of the participants is corrupted. Moreover, to exclude com-
plications conditional on the order and roles in which parties are asked to perform
a key exchange, we define a family {F (i,j)

KE }Pi,Pj
of ideal functionalities indexed by

the parties involved and thus implicitly fixing the respective roles they take in the
key exchange. We remark that there is also a subtlety regarding the distribution
from which the common keys are picked. As with FKE from [CK02], we demand
random k-bit strings (where k is the security parameter) for keys. On the other
hand, the “raw” output resulting from a, say, Diffie-Hellman-like key exchange
may be computationally distinguishable from random k-bit strings, even under
the decisional Diffie-Hellman assumption. In the case of Diffie-Hellman-like key
exchange protocols, we therefore follow the approach in [Sho99, Section 5.2.2]
and use a family of pair-wise independent hash functions to pass from random
group elements to random bitstrings. For practical purposes one might well pre-
fer to use a different key derivation function, e. g., based on a cryptographic hash
function like SHA-1 (cf. the discussion of the hash Diffie-Hellman assumption
in [ABR01]); here we do not address such variants. (A formally sufficient alter-
native to this would be to parametrize FKE even further with possible output
distributions.)

So let’s turn to prove

Proposition 1. Presuming authenticated links and no further set-up assump-
tions, FKE, as specified in [CK02], cannot be securely realized by any two-party
protocol π terminating in strict polynomial time if adversarial corruption is adap-
tive.

Proof. Assume that π securely realizes FKE. Let m(k) be a polynomial bounding
the total number of messages sent between parties while performing π. Further-
more, let’s fix two distinct parties Pi and Pj . To cover ideal-model adversaries
S which do not guarantee timely delivery of the common key, we introduce the
following environment Z1 (expecting to be run with the dummy adversary Ã in
the real model):

1. Activate Pi with (Establish-session,sid,Pi,Pj,initiator).
2. Activate Pj with (Establish-session,sid,Pj,Pi,responder).
3. Advise the adversary to deliver all messages between Pi and Pj , but at most
m(k) messages in total.

4. If Pi or Pj outputs a key, call it α, resp. β; if both Pi and Pj output keys,
output 1, else output 0.

Since π is terminating, in the real model Z1 always outputs 1. Moreover, as
π securely realizes FKE, Z1 must also output 1 in the ideal model in all but
a negligible fraction of runs. That means we may assume that in a “normal”
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protocol run of π, the ideal-model adversary eventually delivers output to the
parties (except in a negligible fraction of runs). A similar argument shows that
π must guarantee matching keys (i. e., α = β) in all but a negligible fraction of
runs. To see this, we only need to modify Z1 in its fourth step, so that it outputs
1 exactly if α = β.

Now consider the following environment Z2, which also expects to commu-
nicate with the dummy adversary Ã in the real model:

1. Pick randomly (b, b̄) ∈ {(i, j), (j, i)}.
2. Activate Pi with (Establish-session,sid,Pi,Pj,initiator).
3. Activate Pj with (Establish-session,sid,Pj,Pi,responder).
4. Instruct the adversary to corrupt Pb and to discard all messages possibly

waiting to be delivered from Pb to Pb̄.
5. Perform protocol π in the role of Pb, therefore send and receive messages

through the corrupted “relay” Pb; let the adversary deliver all messages
between Pb and Pb̄.

6. Compare the output value of Pb̄ with the local result of the key exchange
protocol performed with Pb̄ over Pb; if both match, output 1; otherwise
output 0.

Now in the real model, the adversary Ã will follow precisely Z2’s instructions;
consequently, a “normal” run of protocol π will take place between Pb̄ (which
expects to talk to Pb) and Z2. As α = β with overwhelming probability, the
probability for Z2 to output 1 in the real model will be at most negligibly away
from 1.

On the other hand, in the ideal model, the session key which will be output
by the uncorrupted initiator Pb̄ at the end of the simulated run of π (we’ll call
this key κ here) is fixed by FKE right after step 3, so at a time when neither
initiator nor responder is corrupted. Consequently, κ is picked uniformly out of
{0, 1}k by FKE. (Of course, in step 4 the simulator is allowed to corrupt Pj and
thereby may get to know κ, but it is not able to influence κ.) For mimicking the
real model, S must now be able to convince Z2 that the session key explicitly
negotiated in step 5 is exactly κ. In other words, either Z2 succeeds in distin-
guishing the real from the ideal model, or π offers the initiator as well as the
responder the possibility of “provoking” any output value κ. In case Z2 is not
a successful distinguisher, we will construct from Z2 an environment Z3 which
must be successful in distinguishing real from ideal.

Specifically, consider an environment Z3, which is a modification of Z2.
Namely, we modify Z2 only from the fifth step on, in which Z2 performs protocol
π in the role of Pb with Pb̄. Instead of playing the role of an “honest” Pb with
uniformly selected random tape, Z3 internally keeps a simulation of a complete
ideal model, including simulated dummy parties P (s)

1 , . . . , P
(s)
n , a simulated ideal

functionality F (s)
KE, and a simulation S(s) of the simulator S itself. However, the

role of the environment in Z3’s simulation is taken by a simulation Z(s)
2 of Z2

which in its first step selects b to be the b̄ of Z3 and vice versa. (To avoid confu-
sion, with b and b̄, we mean in the following Z3’s choices of these variables.) The
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idea of this is to let Z(s)
2 corrupt Pb̄ in the simulation and to let S(s) perform

a simulated run of π in the role of Pb with the non-simulated Pb̄ (whose role is
taken by S if we are in the ideal model). Therefore, all messages sent from Pb̄

are forwarded to P (s)
b and vice versa. Finally, Z3 outputs 1 exactly if the local

output of Pb̄ matches that of P (s)
b . (Again, if either of them does not generate

output after m(k) delivered messages, Z3 halts with output 0.)
In the real model, since we assumed Z2 not to be successful in distinguishing

the real from the ideal model, S(s) must be “successful” in performing a key
exchange with a non-corrupted party Pb̄ which yields as output exactly the key
generated by the (simulated) ideal functionality F (s)

KE. As in Z3’s simulation, the
latter output is eventually delivered to P (s)

b , Z3 will output 1 with overwhelming
probability in the real model.

In the ideal model, either the protocol fails (i. e., either S or S(s) does not
deliver an output message from the ideal functionality to an uncorrupted party),
or the local outputs of P (s)

b and Pb̄ are distinct with overwhelming probability.
(Note that FKE and the simulated F (s)

KE have independent random tapes from
which they pick their respective output values.) In any case, Z3 outputs 0 in all
but a negligible fraction of runs in the ideal model, thereby distinguishing the
real from the ideal model. ut

Now we present a family {F (i,j)
KE }Pi,Pj of functionalities intended to capture

the requirements for key exchange.5 More specifically, the functionality F (i,j)
KE

(presented in Figure 1) is aimed at modeling a key exchange between the parties
Pi and Pj . This functionality is derived from the functionality FKE from [CK02],
yet differs from it in several important aspects, see the discussion above.

In the case of authenticated communication, we will show two common pro-
tocols to be securely realizing our key exchange functionality. (For unauthenti-
cated communication in the sense of [CK02], one can use, e. g., an existentially
unforgeable signature scheme to implement authenticated links.) Therefore, we
start with

Definition 1. A protocol π(i,j), parametrized by the indices of two parties Pi

and Pj, will be called a universally composable key exchange protocol, provided
that

– it has the same interface as F (i,j)
KE (with respect to communication between

Z and the parties),
– it involves communication only between Pi and Pj,
– when all messages between Pi and Pj are delivered, and neither Pi nor Pj

gets corrupted, π(i,j) guarantees common output (i. e., matching keys) com-
putationally indistinguishable from random k-bit strings, even when all the
communication between Pi and Pj is made public,

5 Here and from now on, we assume pairs of parties over which families of function-
alities or protocols are indexed not to be of the form (i, i), i. e., we assume the
participating parties to be distinct.
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Functionality F (i,j)
KE

F (i,j)
KE proceeds as follows, running on security parameter k, with parties P1, . . . , Pn

and an adversary S.

1. Wait to receive values (ready,sid) from the parties Pi and Pj and from the
adversary S. When receiving (ready,sid) from either Pi or Pj , forward this
message (including the sender identity) to S.

2. After having received values (ready,sid) from Pi, Pj , and S (in any order),
proceed as follows:

(a) If both Pi and Pj are uncorrupted, choose κ
R← {0, 1}k.

(b) If at least one of the parties Pi and Pj is corrupted, send a mes-
sage (choose-key,sid) to the adversary S. Upon receiving an answer
(key,sid,κ) from S, extract the value of κ from it.

Once κ is set, send (key,sid,κ) to Pi and Pj , and send (key,sid) to the
adversary S. Then halt.

Fig. 1. The modified key exchange functionality F (i,j)
KE

– at the time the first party (either Pi or Pj) generates output, both Pi and
Pj have erased all protocol information other than the output unless they are
corrupted (i. e., Pi and Pj both hold only the output key in memory).

It should be remarked that the last of the requirements in Definition 1 can be
interpreted as a special case of the ack property defined in [CK02], whereas the
requirement for keys indistinguishable from random k-bit strings can be seen as
a special case of SK-security (see [CK02]).

Example 1. Protocol dh
(i,j)
G,H (presented in Figure 2) is a variant of the com-

mon Diffie-Hellman key exchange protocol, derived from the protocol sig-dh
of [CK02]. At this G = {Gµ}µ is a family of cyclic groups of prime order with hard
decisional Diffie-Hellman problem (cf., e. g., [Bon98, Section 2]). For each group
〈g〉 ∈ G we denote by H〈g〉 = {H〈g〉,ν}ν a family of pair-wise indepedent hash
functions that is used to pass from group elements gxy to bitstrings H〈g〉,ν(gxy)
where x, y ∈ {1, . . . , |〈g〉|−1}: as the ideal functionality F (i,j)

KE chooses the key as
a random bitstring κ, we follow the approach in [Sho99, Section 5.3.2] and assume
the parameters to be chosen such that the decisional Diffie-Hellman problem and
the entropy smoothing theorem (cf., e. g., [Lub96, Chapter 8]) imply the com-
putational indistinguishability of the distributions {(g, gx, gy, ν,H〈g〉,ν(gxy))}k
and {(g, gx, gy, ν, κ)}k—with κ a random bitstring of length equal to the output
length of H〈g〉 and k the security parameter. We assume that for a group G ∈ G
that is associated with security parameter k, the output length of HG is exactly
k.

While the protocol sig-dh in [CK02] assumes that a suitable group descrip-
tion along with a group generator is provided to the protocol participants as

8



Protocol dh
(i,j)
G,H

These are instructions for two parties Pi and Pj to carry out a key exchange.
Prior to acting upon these instructions, each of the parties waits for an initial
(ready,sid) input.

1. Dependent on the security parameter k, party Pi chooses a group 〈g〉 ∈ G
along with a generator g. Then Pi chooses x

R← {1, . . . , |〈g〉| − 1}, calculates
α = gx and sends (sid,D(g),α) to Pj , where D(g) is a description of 〈g〉 which
also specifies the generator g.

2. Upon receiving from Pi a message (sid,D(g), α) with D(g) being acceptable

for the current security parameter, Pj chooses y
R← {1, . . . , |〈g〉| − 1} and a

random index ν into the family H〈g〉. Then Pj calculates β = gy, γ = αy, and
κ = H〈g〉,ν(γ), sends (sid, β, ν) to Pi, and erases all local information but κ.

3. Upon receipt of (sid, β, ν) from Pj , Pi calculates γ = βx and κ = H〈g〉,ν(γ),
then erases all local information but κ and sends (sid,done) to Pj . Party Pi

then outputs (key,sid,κ) and halts.
4. Upon receipt of (sid,done) from Pi, party Pj outputs (key,sid,κ) and halts.

Fig. 2. Protocol dh
(i,j)
G,H

‘initial information’, in the protocol dh
(i,j)
G,H in Figure 2 a description D(g) of a

suitable group, including the specification of a generator g, is explicitly trans-
mitted within the protocol. To avoid incorrect choices by the initiator of the
key exchange, we assume that for given security parameter and description D(g)
one can verify in strict polynomial time whether 〈g〉 ∈ G holds and whether
this group—and the specified generator g—is an acceptable choice. Having in
mind practical proposals like IKEv2 [IKE03] or JFKi, JFKr [ABB+02] where the
agreement on the specific group is a relevant issue, this slightly more complicated
formulation seems acceptable.

From the construction it is clear that protocol dh
(i,j)
G,H fulfills the requirements

for a universally composable key exchange protocol—note here that the use of
signed messages is not necessary, as we assume authenticated communication.

Example 2. As another example, take a look at protocol pkke
(i,j)
PK in Figure 3,

where PK = (K, E, D) is a semantically secure public-key encryption scheme
(see [GM84]). By the semantic security of PK, an eavesdropped encryption of
the secret key κ reveals no information about κ to a polynomially bounded ad-
versary, and thus protocol pkke

(i,j)
PK satisfies all the requirements of Definition 1

and can be called a universally composable key exchange protocol.

Proposition 2. Suppose we are in a model with authenticated links and trusted
erasures. Assume further that for two fixed different parties Pi and Pj, protocol
π(i,j) is a universally composable key exchange protocol as defined above. Then
π(i,j) securely realizes functionality F (i,j)

KE with respect to adaptive adversaries.
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Protocol pkke
(i,j)
PK

These are instructions for two parties Pi and Pj to carry out a key exchange.
Prior to acting upon these instructions, each of the parties waits for an initial
(ready,sid) input.

1. Party Pi generates a key pair (d, e) via (d, e)← K(k) and sends the public key
e in form of the message (sid,e) to Pj while locally storing the corresponding
private key d.

2. Upon receiving a message (sid,e) from Pi, party Pj first chooses a random
k-bit string κ, then computes κ’s encryption with respect to the public key e
via c ← E(e, κ), sends (sid,c) to Pi, and erases all local information except
the key κ.

3. Upon receiving (sid,c) from Pj , party Pi computes the decryption κ of c via
κ← D(d, c), then erases all local information but κ, sends (sid,done) to party
Pj , and halts with output (key,sid,κ).

4. Upon receiving (sid,done) from Pi, party Pj outputs (key,sid,κ) and halts.

Fig. 3. Protocol pkke
(i,j)
PK

Proof. Consider the simulator S(i,j)
π presented in Figure 4 mimicking attacks

carried out by the dummy adversary Ã on protocol π(i,j).
Fix an environment Z trying to distinguish between execution of protocol

π(i,j) together with the dummy adversary Ã and running with the ideal func-
tionality F (i,j)

KE and the simulator S(i,j)
π . As parties different from Pi and Pj are

not involved at all in protocol π(i,j), without losing generality we may assume
Z not to request corruptions of parties Pl with l 6∈ {i, j}.

In a first step, we consider a modified Z which we will call Z1 and which
instead of corrupting Pi or Pj before any of them generated output, halts with a
random bit as output. We claim that Z1 has exactly the same success probability
in distinguishing real and ideal model as Z has. For proving this, note that Z
has completely identical views in the real and the ideal model before either Pi

or Pj generate output. But if either Pi or Pj gets corrupted before any of them
generated output, by construction of F (i,j)

KE and S(i,j)
π , the simulator may choose

the output value for the respective other party and thereby simulate a protocol
run exactly as in the real model. So as Z has completely identical views of the real
and the ideal model in this case, it cannot do better than to toss a coin (thereby
doing exactly what Z1 does). For on the one hand, we assumed authenticated
links (so the adversary is only allowed to block, but not to forge messages sent by
uncorrupted parties), and on the other hand Z1 does not corrupt Pi or Pj while
their protocol output is being fixed (i. e., before one of them actually outputs its
key), Z1 is guaranteed matching outputs of Pi and Pj both in the real and the
ideal model.

Consider an environment Z2 which internally simulates environment Z1 and
outputs whatever Z1 outputs. All communication of Z1 with the parties and the
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The simulator S(i,j)
π

S(i,j)
π internally keeps a simulation of two parties P

(s)
i and P

(s)
j running protocol

π(i,j).

– Communication with F (i,j)
KE :

• Upon receiving from F (i,j)
KE a forwarded message (ready,sid) with initial

sender Pl (where l ∈ {i, j}), forward this message to P
(s)
l .

• As soon as the first simulated party P
(s)
l , whose dummy counterpart Pl

is not corrupted, produces output (which we will call κ here), store κ and

send (ready,sid) to F (i,j)
KE .

• Upon receiving (choose-key,sid) from F (i,j)
KE (which by construction of

the ideal functionality can only happen when S(i,j)
π signalized through its

ready signal that it has output κ available), send (key,sid,κ) back to

F (i,j)
KE .

• Deliver output messages sent from the ideal functionality to either Pi or
Pj exactly when the respective simulated party P

(s)
l generated output in

the simulation.
– Communication with Z:
• When being requested by Z to check for messages sent by parties, re-

ply that no messages were sent, except in the following case: when the
dummy party Pi is uncorrupted and the simulated party P

(s)
i wants to

send a message m to P
(s)
j , then, upon being asked by the environment

Z, claim that Pi wants to send m to Pj but do not yet deliver m in the

simulation (similarly for messages being sent from P
(s)
j to P

(s)
i when Pj

is uncorrupted).
• When being asked by Z to deliver a message m to some uncorrupted party
Pl, store this request for future use and additionally, if l ∈ {i, j}, deliver

m to P
(s)
l in the simulation.

• When being told by Z to corrupt some party Pl, first corrupt the dummy
party Pl to gather information about Z’s communication with Pl; then
prepare state information for Pl taking into account all of Pl’s communi-
cation with Z and all messages S(i,j)

π was asked to deliver to Pl. Addi-
tionally, if l ∈ {i, j} and Pl has not done so before, let Pl send a ready
signal to the ideal functionality as soon as the corresponding session ID
sid becomes available to S. Moreover, if l ∈ {i, j}, proceed as follows:

(a) If S(i,j)
π has not yet sent its ready signal to the ideal functionality

(i. e., if no simulated party P
(s)
t , whose counterpart Pt is uncorrupted,

produced output), then deliver P
(s)
l ’s internal state as Pl’s internal

state.
(b) If S(i,j)

π sent its ready signal and therefore, the ideal functionality
sent output to both Pi and Pj , then this output κ is also known to

S(i,j)
π , as Pl has just been corrupted. So in this case, prepare state

information for Pl consistent with κ. (This is possible by assumption
about protocol π(i,j).)

Fig. 4. The simulator S(i,j)
π
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adversary is relayed, with the following exception: if the simulated Z1 wishes to
ask the adversary to corrupt a party Pl (where l ∈ {i, j}) after the first party
generated output, then Z2 answers Z1’s request on its own. It presents Z1 with
a state of Pl that contains as local information only the key which was output by
the first party. By assumption about protocol π(i,j) and the simulator S(i,j)

π , this
is exactly what Z1 would have got both in the real and in the ideal model. From
this point on, Z2 ignores all output generated by the (actually uncorrupted)
party Pl, as well as messages the adversary is asked to deliver in the name of
Pl. As by assumption about protocol π(i,j), both Pi and Pj have already fixed
their output, messages sent by a corrupted Pl would be ignored as well both in
the real and the ideal model. Consequently, Z1 will have identical views in the
simulation inside Z2 and running “live” with parties and an adversary. Then Z2

has still exactly the same advantage in distinguishing the real model from the
ideal one as Z1 and therefore Z has, even though Z2 corrupts neither Pi nor Pj

at any point in time.
We have just shown that we may restrict to environments not corrupting

any party. For such an environment, S(i,j)
π simulates the communication of a

complete protocol run of π(i,j) in the ideal model exactly as it would happen in
the real model. Hence the only difference between real and ideal model is the
value κ output as a common key by both Pi and Pj . In the ideal model, this value
is a random k-bit string which in general “does not fit” to the simulated protocol
run of π(i,j); however as π(i,j) is a universally composable key exchange protocol
and therefore has output computationally indistinguishable from random k-bit
strings, there can be no environment Z distinguishing the real from the ideal
model. ut

4 A Stronger Notion of Key Exchange

The description of FKE as well as the one of F (i,j)
KE allows the adversary to freely

choose the session key if at least one participating party is corrupted. This also
holds for the ‘relaxed’ key exchange functionality FNRKE from [CK02] (cf. also
Appendix A), and one may ask whether this “worst case modeling” of corrupted
parties is indeed justified. E. g., in the protocol pkke

(i,j)
PK the consequences of

corrupting Pi and of corrupting Pj are intuitively quite different: a malicious
party Pj has complete control over the resulting key κ, and it can, e. g., choose
a value for κ that has been chosen earlier by some “outsider” Pa. If κ is later
used to encrypt messages sent by Pi, then the “outsider” Pa will be able to
read all these messages without any communication between Pj and Pa taking
place during or after the key exchange of Pi and Pj . For doing so, Pa does not
even have to eavesdrop the communication between Pi and Pj during the key
exchange. On the other hand, a corrupted Pi is not able to influence an honest
choice of κ performed by Pj .

In the Diffie-Hellman protocol dh
(i,j)
G,H a similar “asymmetry” exists, but this

property is not reflected in the definitions of the mentioned key exchange func-
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tionalities, either. As in some situations an additional security guarentee as pro-
vided by dh

(i,j)
G,H and pkke

(i,j)
PK may be desirable, in the sequel we want to put

this observation on firmer grounds. A natural modification of F (i,j)
KE might be

the one presented in Figure 5. The functionality F (i,j)
KE+ guarantees random keys

even when Pi gets corrupted. However, as soon as Pj is corrupted, the adversary
may freely determine the common key κ as with F (i,j)

KE .

Functionality F (i,j)
KE+

F (i,j)
KE+ proceeds as follows, running on security parameter k, with parties P1, . . . , Pn

and an adversary S.

1. Wait to receive values (ready,sid) from the parties Pi and Pj and from the
adversary S. When receiving (ready,sid) from either Pi or Pj , forward this
message (including the sender identity) to S.

2. After having received values (ready,sid) from Pi, Pj , and S (in any order),
proceed as follows:
(a) If Pj is not corrupted, choose κ uniformly from {0, 1}k.
(b) If Pj is corrupted, send a message (choose-key,sid) to the adversary S.

Upon receiving an answer (key,sid,κ) from S, extract the value of κ from
it.

Once κ is set, send (key,sid,κ) to Pi and Pj , and send (key,sid) to the
adversary. Then halt.

Fig. 5. The key exchange functionality F (i,j)
KE+

Remark 4. Unfortunately, neither protocol dh
(i,j)
G,H nor protocol pkke

(i,j)
PK se-

curely realizes F (i,j)
KE+. This holds also for the “side-reversed” versions dh

(j,i)
G,H

and pkke
(j,i)
PK . To see this, consider the following environment Z, expecting to

be run with the dummy adversary in the real model: Z first corrupts Pi and does
everything Pi would do to carry out a key exchange with Pj , thereby commu-
nicating over the corrupted “relay party” Pi with Pj . When Pj finally outputs
a key, Z checks if it is the same Z itself generated in its key exchange with Pj .
If and only if this is the case, Z outputs 1. Furthermore, when Pj outputs no
key at a time it should do in the real model or Pj sends messages of the wrong
format or no messages at all, Z outputs 0.

For a very brief analysis, first note that by construction of the protocols in
question, Z always outputs 1 in the real model. On the other hand, in the ideal
model with functionality F (i,j)

KE+, regardless of the simulator S and the messages
simulated between Pi and Pj , Pj ’s output is chosen uniformly from {0, 1}k since
only Pi, but not Pj is corrupted. So Pj outputs the key Z locally generated in its
key exchange only in a negligible fraction of runs and thus, Z outputs 0 in the
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Protocol pad(i,j)

These are instructions for two parties Pi and Pj to carry out a key exchange.
Prior to acting upon these instructions, each of the parties waits for an initial
(ready,sid) input. Furthermore, the parties expect to be run in the F (i,j)

KE -hybrid
model, i. e., with access to a polynomial number of instances of the ideal function-
ality F (i,j)

KE .

1. Immediately after having received the initial (ready,sid) message, Pi as well

as Pj sends the message (ready,0) to the F (i,j)
KE -instance with session ID 0.

2. Then Pj , after having received the key κ̄ from this instance of F (i,j)
KE , uniformly

chooses ψ ∈ {0, 1}k and calculates κ = ψ⊕κ̄. It then erases all local information
but κ and sends (sid,ψ) to Pi.

3. Upon receiving a message (sid,ψ) and after having received a key κ̄ from the
F (i,j)

KE -instance with session ID 0, Pi first calculates κ = ψ ⊕ κ̄ and erases all
local information but κ. Then Pi sends (sid,done) to Pj , outputs (key,sid,κ),
and halts.

4. Upon receipt of (sid,done) from Pi, party Pj outputs (key,sid,κ) and halts.

Fig. 6. Protocol pad(i,j)

ideal model with overwhelming probability. Hence Z serves as a distinguisher
between any of the abovementioned protocols and F (i,j)

KE+, as stated in Figure 5.
In the next section a relaxation of F (i,j)

KE+ is given, which yields a “stronger”
security notion than F (i,j)

KE but still is securely realized by dh
(i,j)
G,H and pkke

(i,j)
PK .

Consider protocol pad(i,j) given in Figure 6. As it makes use of exactly one
instance of the ideal functionality F (i,j)

KE , it can be seen as an extension to
any protocol intended to realize F (i,j)

KE . In the next proposition, we will show
pad(i,j) to be securely realizing F (i,j)

KE+. By the composition theorem of [Can01],
this means that for any protocol π which securely realizes F (i,j)

KE , the extension
pad

(i,j)
π (which is essentially protocol pad(i,j), but canonically uses instances of

π as subprotocols instead of talking to instances of F (i,j)
KE ) is guaranteed to still

realize F (i,j)
KE+ securely.

So we have the interesting situation that neither dh
(i,j)
G,H nor pkke

(i,j)
PK securely

realizes F (i,j)
KE+ “by itself”, but already simple refinements of these protocols do

so. Namely, since both of them securely realize F (i,j)
KE , their extensions pad

(i,j)
π ,

with π taken as one of them, securely realize F (i,j)
KE+.

Proposition 3. Protocol pad(i,j) securely realizes F (i,j)
KE+ in the F (i,j)

KE -hybrid
model with respect to adaptive adversaries.

Proof. For any hybrid-model adversary H, we describe a simulator S = SH
mimicking attacks carried out by H in the hybrid model. S internally runs a
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simulation of a complete run of pad(i,j) in the hybrid model, including parties
P

(s)
1 , . . . , P

(s)
n , the adversary H, and (as needed) instances of the ideal function-

ality F (i,j)
KE . Yet all communication of the simulated H with the environment is

forwarded to the (non-simulated) environment Z with which S is to interact.
That means, incoming messages from Z are forwarded to H and vice versa.

The idea is to give Z a complete view of a hybrid-model run with adversary
H. By construction, the described simulation already does this job well, with two
exceptions: by definition, Z is informed about corruptions as they take place.
The solution to this issue is easy: every time H corrupts a party P

(s)
l in the

simulation, S first corrupts the corresponding party Pl in the ideal model. The
state of Pl with which Z possibly expects to be supplied is then delivered by
the simulated H. Furthermore, if Pl has not yet sent its ready signal to the
ideal functionality, S lets Pl do that as soon as the corresponding session ID
sid becomes available to S. (This is to allow the ideal functionality to generate
output even in face of corrupted parties which did not yet send a ready signal.)

The other thing which has to be taken care of is the communication of Z with
the parties Pl in the ideal model. The messages sent (as input) to and received
(as output) from these parties by Z have to be consistent with the view of the
hybrid-model execution by Z. This is a little more involved and we describe our
solution in detail.

In protocol pad(i,j), only the respective first message of the form (sid,ready)
to Pi or Pj has some effect, all other messages are ignored.6 Yet by construction
of F (i,j)

KE+, S is informed about exactly these inputs as they arrive. So when S
is informed about a message (sid,ready) which Pl (l ∈ {i, j}) got as input, it
immediately forwards this as input to the simulated party P (s)

l .
It remains to take care of the output behaviour of the parties. We describe

the necessary modifications:

– When the simulated party P (s)
j sends a message (sid,ψ) to P (s)

i at a time

P
(s)
i , but not P (s)

j is corrupted, then S temporarily stops the simulation,

sends (sid,ready) to F (i,j)
KE+ and delivers to Pi (i. e., to itself, since Pi is

corrupted) the key κ which is sent from F (i,j)
KE+ to Pi. It then sets ψ̄ = κ⊕ κ̄

(where κ̄ is the key P (s)
j received from F (i,j)

KE ) and modifies the internal state

of P (s)
j so to hold only the secret key κ from F (i,j)

KE+ instead of κ̄⊕ ψ.
Consequently, the corresponding message (sid,ψ) is then altered to read
(sid,ψ̄) and the simulation is continued. Note that ψ̄ as a random variable
has uniform distribution over {0, 1}k because κ has and is, as a random
variable, independent of κ̄ (even when H chooses κ̄); that means that the

6 Formally, even ignored input messages are not deleted by the parties, so when H
corrupts a party P

(s)
l in the simulation, then S, after corrupting Pl in the ideal

model as described, first has to modify the state of P
(s)
l so as to take into account

possibly ignored inputs Pl received from Z.
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pad ψ̄ “looks” exactly as if generated by P
(s)
j itself and thus this does not

disturb the authenticity of the hybrid-model simulation.
– When an uncorrupted simulated party (say, P (s)

l , where l ∈ {i, j}) generates
output, then S has to deliver the corresponding output message containing
the common key from F (i,j)

KE+ to Pl. If the key has not yet been determined,
S first sends (sid,ready) to F (i,j)

KE+. (When Pj is corrupted at that time, S
is additionally asked for the common key. It then replies with the key P (s)

l

produced.)
– The one case in which the output of the simulated pad(i,j) still differs from

that in the ideal model is the case in which at the time the message (sid,ψ)
is delivered from P

(s)
j to P (s)

i , neither of them is corrupted.
This is no problem when nobody gets corrupted later, since then H has
no information about the key agreed upon in the simulation. On the other
hand, we have to take that into consideration upon later corruptions of P (s)

i

or P (s)
j . Namely, if in the situation in question a later corruption of P (s)

i is
requested by H, and the message just mentioned is not yet delivered, the key
κ̄ delivered from an instance of F (i,j)

KE has to be replaced by κ⊕ ψ in P
(s)
i ’s

memory; here, κ denotes the key generated by F (i,j)
KE+ in the ideal model.

Upon a later corruption of P (s)
i or one of P (s)

j , we only have to replace the
key they locally hold as output by κ. (Note that κ is accessible to S upon
corruption of the corresponding dummy party Pl.)
Again, if the key κ generated in the ideal model is not yet determined, S
first corrupts Pl (where P (s)

l is the respective party to be corrupted in the
simulation), then sends (sid,ready) to F (i,j)

KE+, possibly chooses the common
key (in that case S chooses it at random), and delivers to Pl (i. e., to itself)
the common key just generated. Furthermore, since no information about
the key κ̄ is revealed to H when neither P (s)

i nor P (s)
j is corrupted, the

above modifications still yield a “valid” view of a protocol execution in the
hybrid model to H and therefore to Z. (Note that the value κ⊕ ψ replaced
for F (i,j)

KE ’s output in the hybrid model has uniform output distribution, as
in our case, ψ is picked uniformly and in particular independent of κ, for Pj

is by assumption not corrupted when picking ψ.)

By the above discussion, in any case, S provides Z with an “authentic-looking”,
complete view of the hybrid model. ut

In principle, the protocol pad(i,j) is sufficient for securely realizing F (i,j)
KE+ on

the basis of a Diffie-Hellman-like key exchange like dh
(i,j)
G,H . However, the addi-

tional communication introduced by protocol pad(i,j) might seem superfluous
when dealing with a protocol like pkke

(i,j)
PK , which intuitively provides the de-

sired additional security guarantee “by itself”. In the next section, we show how
to catch this intuition by means of a suitable ideal functionality.
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5 An Additional Security Guarantee of dh
(i,j)
G,H and pkke

(i,j)
PK

As explained in Remark 4, we cannot hope that pkke
(i,j)
PK or dh

(i,j)
G,H provide a

secure realization of F (i,j)
KE+. To show that these protocols do in fact guarantee

strictly more than needed for realizing F (i,j)
KE , we utilize so-called non-information

oracles, a tool that has been introduced in [CK02]:
Definition 2. Let N be an ITM with strict polynomial running time. Then N
is a non-information oracle if no ITM M, having interacted with N on secu-
rity parameter k, can distinguish with non-negligible probability between the local
output of N and a value drawn uniformly from {0, 1}k.

Example 3. In the proof of the next proposition, we will make use of the following
ITM NG,H (with G,H as in Example 1): when activated for the first time, NG,H
randomly chooses 〈ḡ〉 ∈ G (in dependence of the security parameter), two values
x̄, ȳ ∈ {1, . . . , |〈ḡ〉| − 1}, and a random index ν̄ into the family H〈ḡ〉. Then NG,H
sends a description D(ḡ) (as in Example 1) as well as ᾱ = ḡx̄, β̄ = ḡȳ, and
ν̄ to the ITM it interacts with. After this, when receiving a message accept,
it locally outputs H〈ḡ〉,ν̄(ḡx̄ȳ) and halts. On the other hand, upon receiving a
value reject, NG,H sends x̄ and ȳ to the ITM it interacts with and waits to
receive a pair (D(g′), α) with D(g′) describing a 〈g′〉 ∈ G that is acceptable for
the current security parameter and α ∈ 〈g′〉 \ {1}. Then NG,H uniformly selects
r ∈ {1, . . . , |〈g′〉| − 1} and an index ν′ into the family H〈g′〉, locally outputs
H〈g′〉,ν′(αr), and halts.

We claim that under the decisional Diffie-Hellman assumption,NG,H is a non-
information oracle. To show this, assume that there is an ITM M that, after
running with NG,H, successfully distinguishes (i. e., differs in its output distri-
bution) the local output of NG,H from a random k-bit string. When we modify
M to never issue a reject message (possibly followed by some (D(g′), α)), but
instead to send an accept message and to halt with random output without even
looking at the challenge, this cannot downgrade M’s advantage in distinguish-
ing. This is so since in case of a reject message, followed by some (D(g′), α)
with α ∈ 〈g′〉 \{1}, NG,H outputs the hash value of a uniformly selected element
from 〈g′〉 \ {1} (for 〈g′〉 is of prime order and therefore 〈g′〉 = 〈α〉), this group
element about which M has no information whatsoever.

Thus M is able to distinguish random k-bit strings from the hash values of
group elements ḡx̄ȳ ∈ 〈ḡ〉 \ {1}. By the universal hash property of H〈ḡ〉, this
means that M can also distinguish triples (ḡx̄, ḡȳ, ḡx̄ȳ) from triples (ḡx̄, ḡȳ, ḡr),
hence contradicting the decisional Diffie-Hellman assumption.7

Now we are ready to give the definition of a key exchange functionality which,
on the one hand, guarantees “essentially” random keys which are not predictable
or influencable by the adversary even when one party is corrupted. Yet, on the
7 Formally, M only distinguishes triples (ḡx̄, ḡȳ, ḡx̄ȳ) from triples (ḡx̄, ḡȳ, ḡr) both

subject to the condition x̄, ȳ, r 6= 0. Yet when choosing x̄, ȳ, and r at random, this
happens only in a negligible number of cases, and thus can be neglected.
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Functionality FN ,(i,j)
KE+

FN ,(i,j)
KE+ proceeds as follows, running on security parameter k, with parties

P1, . . . , Pn and an adversary S.

1. Invoke a new copy of N with fresh random input. Allow S to interact with
N , i. e., to receive messages from and send messages to N . If Pi or Pj gets
corrupted at a time N already produced output, or N produces output at a
time at least one of these parties is corrupted, send the complete state of N
(including randomness and in particular the local output) to the adversary.

(Of course, after step 3, FN ,(i,j)
KE+ has halted and this is no longer possible.)

2. Wait to receive values (ready,sid) from the parties Pi and Pj and from the
adversary S. When receiving (ready,sid) from either Pi or Pj , forward this
message (including the sender identity) to S.

3. After having received values (ready,sid) from Pi, Pj , and S (in any order),
and after N produced local output, proceed as follows:
(a) If neither Pi nor Pj is corrupted, choose κ uniformly from {0, 1}k.
(b) If only Pi is corrupted, but not Pj , set κ to the local output of N .
(c) If Pj is corrupted, send a message (choose-key,sid) to the adversary S.

Upon receiving an answer (key,sid,κ) from S, extract κ from it.
Once κ is set, send (key,sid,κ) to Pi and Pj , and send (key,sid) to the
adversary. Then halt.

Fig. 7. The key exchange functionality FN ,(i,j)
KE+

other hand, this fuctionality is securely realized by both dh
(i,j)
G,H and pkke

(i,j)
PK .

(As with F (i,j)
KE+, the party which “may” safely be corrupted without losing the

feature of random keys needs to be fixed in advance.) More specifically, consider
the family {FN ,(i,j)

KE+ }N ,Pi,Pj , parametrized by a non-information oracle N and
the indices of two parties Pi and Pj , specified in Figure 7.

Proposition 4. Presuming authenticated links and trusted erasures, protocol
dh

(i,j)
G,H securely realizes functionality FN ,(i,j)

KE+ with respect to adaptive adversaries
for an appropriate non-information oracle N = NG,H under the decisional Diffie-
Hellman assumption.

Proof. As already mentioned above, N = NG,H is the non-information oracle
from Example 3. We now present a simulator S mimicking attacks carried out
by the dummy adversary on protocol dh

(i,j)
G,H . The idea behind the simulation is

as follows: S is provided with a transcript of a Diffie-Hellman key exchange by
N . It then simulates messages from this transcript between Pi and Pj . When one
of the parties is corrupted, N (resp., FN ,(i,j)

KE+ ) provides S with corresponding
secret information consistent with the protocol transcript. Furthermore, if Pi is
corrupted, S has the chance to perform the “second half” of a key exchange with
N to provide Z with a consistent view of a party actually taking part in the key
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exchange. If Pj is corrupted, S may even pick the common key freely, reflecting
that the message sent from Pj to Pi in the Diffie-Hellman key exchange fully
determines this common key.

So S behaves exactly like the simulator S(i,j)
π from the proof of Proposition 2

(with protocol dh
(i,j)
G,H taken as π), with the following exceptions:

– When being supplied by N with D(ḡ), ᾱ, β̄, and ν̄, S stores these for future
use. (Note that this happens at the first activation of the ideal functionality,
so before the actual protocol simulation takes place.)

– When the simulated P
(s)
i wishes to send a message (sid,D(g),α) to P (s)

j ,
and Pi is not corrupted, S simulates a message (sid,D(ḡ),ᾱ) from Pi to Pj

instead.
– When P (s)

j is delivered a message (sid,D(g),α) with α ∈ 〈g〉\{1}, and Pj is
uncorrupted, then S proceeds as follows: if Pi is uncorrupted (then we have
α = ᾱ and D(g) = D(ḡ)), S sends accept to N and simulates a message
(sid,β̄,ν̄) from Pj to Pi; if, on the other hand, Pi is corrupted, S sends
(D(g), α) to N and, when receiving N ’s complete state (which by definition
happens immediately afterwards), simulates a message (sid,gr,ν′) from Pj

to Pi, where r and ν′ are extracted from N ’s state.
– When S is requested to corrupt Pi, then P (s)

i ’s internal state first has to be
modified so as to match the simulated protocol execution. If Pi already erased
internal data, only the common key has to be acquired from either N ’s state
(if so far, no uncorrupted party generated output) or from FN ,(i,j)

KE+ itself
by corrupting the dummy party Pi and, if necessary, delivering FN ,(i,j)

KE+ ’s
output message to Pi. If, on the other hand, P (s)

i already chose, but did not
yet erase its secret exponent x, S has to obtain the corresponding secret
exponent x̄ from N : if P (s)

j has not yet received its first message from P
(s)
i ,

S does this by sending reject to N (by definition, N immediately replies
with x̄ and ȳ); else, S has already sent accept to N and therefore gets to
know N ’s complete state immediately. Now S modifies the internal state,
which is sent to Z as that of Pi, to be consistent with the exponent x̄ and
the group description D(ḡ).

– When S is requested to corrupt Pj at a time S has already simulated a
message back from Pj to Pi, S has to provide Z with a key consistent
with the preceding protocol transcript. (Note that Pj erases all other secret
information in the same activation it generates it, so S needs never provide
such “temporary secrets”.) If no uncorrupted party generated output so far,
S can obtain this common key by extracting N ’s output from N ’s state,
with which FN ,(i,j)

KE+ provides S upon corruption of Pj . However, if some
party already generated output, the ideal functionality already halted and
therefore, the common key has to be acquired by corrupting the dummy
party Pj and possibly delivering the output message from FN ,(i,j)

KE+ to Pj .

The analysis of S is very similar to that of S(i,j)
π in the proof of Proposition 2;

we therefore only treat the differences caused by the above modifications. First,
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note that the states of corrupted parties with which S supplies the environment
machine are by construction always consistent with the messages sent by the
respective party prior to its corruption. In particular, this holds although the
messages simulated by S between Pi and Pj are in general not those sent between
P

(s)
i and P (s)

j .
Moreover, by construction, the common key agreed upon in the ideal model

is consistent with the messages between Pi and Pj as long as at least one of them
is corrupted: when Pi is corrupted before its first message to Pj is delivered, the
common key is consistent with the sent messages since N then fixes the key
according to the message actually sent to an uncorrupted Pj . Later corruptions
of Pi do not influence the key. When Pj is corrupted, S may freely choose the key
and can thereby guarantee consistency of the common key by itself exactly as
S(i,j)

π . If, on the other hand, neither Pi nor Pj gets corrupted, then the common
key is indistinguishable from k-bit random strings by the universal hash property
of H〈g〉 in combination with the decisional Diffie-Hellman assumption.

Putting all this together, we can now apply the argumentation of the proof
of Proposition 2. ut

Proposition 5. When supposing authenticated links and trusted erasures, pro-
tocol pkke

(i,j)
PK securely realizes functionality FN ,(i,j)

KE+ with respect to adaptive
adversaries for an appropriate non-information oracle N = NPK once PK is a
semantically secure public-key cryptosystem.

Proof. The proof is very similar to the proof of Proposition 4, yet much easier, as
by construction of pkke

(i,j)
PK , Pj may choose the common key by itself. The non-

information oracle N = NPK generates a key pair (d̄, ē) via the key generation
algorithm K (internally invoked on input k) and stores it. Then N chooses a
random k-bit string κ̄, encrypts it via c̄ ← E(ē, κ̄) and sends the public key ē
and the ciphertext c̄ to the ITM it interacts with. It then locally outputs κ̄ and
halts. By the semantic security of PK, N has the non-information property.

We shortly describe the simulator S mimicking attacks carried out by the
dummy adversary on pkke

(i,j)
PK . In particular, S differs from the simulator S(i,j)

π

(with protocol pkke
(i,j)
PK taken as π) only as follows: when Pi is uncorrupted at

that time, S replaces an initial message (sid,e) sent from P
(s)
i to P (s)

j with a
message (sid,ē), where the public key ē together with a ciphertext c̄ is obtained
from N at the beginning of the protocol run. Consequently, a message (sid,c)

sent back from P
(s)
j (with uncorrupted Pj) to P (s)

i is replaced by a simulation of
the message (sid,c̄). Upon corruption requests of Pi (resp., Pj), S first modifies
the internal data of P (s)

i (resp., P (s)
j ) to be consistent with ē, d̄, and κ̄ (resp., ē,

c̄, and κ̄), where upon such a corruption, d̄ and κ̄ are extracted from N ’s state
with which S is supplied. ut

Remark 5. The requirement for trusted erasures might seem a bit hard. If one
is willing to give up perfect forward secrecy, one can modify FN ,(i,j)

KE+ so as to be
realizable by the non-erasing counterparts of the protocols dh

(i,j)
G,H and pkke

(i,j)
PK .
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Namely, FN ,(i,j)
KE+ has to be modified to ask the non-information oracle N for

a key even when neither Pi nor Pj is corrupted at the time the key is fixed.
Furthermore, FN ,(i,j)

KE+ must not halt after having sent the key to Pi and Pj ;
instead, even upon later corruptions of Pi or Pj , it has to send the complete
state of the (terminated) non-information oracle N to supply the adversary with
the (in the real model non-erased) secret information of the simulated parties.

6 Conclusions

The above discussion shows that a universally composable notion of key ex-
change, as expressed through the functionality F (i,j)

KE , can be realized through
quite natural key exchange protocols. However, additional security guarantees
which are provided, e. g., by the described Diffie-Hellman based realization of
F (i,j)

KE are not reflected by functionalities like FKE, FNRKE, or F (i,j)
KE , and we have

shown that at least a part of these additional qualities can be captured by an
appropriately “strengthened” functionality that makes use of a non-information
oracle.

Nevertheless, for all notions of key exchange discussed above, the adversary
has complete control over the result of the key exchange, if the “wrong” party
is corrupted, and it seems that a Diffie-Hellman-like key exchange protocol can
allow for a stronger guarantee. E. g., for appropriate families H〈g〉 the following
variation of dh

(i,j)
G,H seems to limit the possibilities of a corrupted Pj somewhat

more: let Pj choose and send the index ν into the family H〈g〉 directly after Pi

has fixed the group description D(g) (and before α = gx is received). In this
protocol it is not obvious how Pj could force a specific key—even if the index ν
is not chosen at random.

It remains an interesting open question if such additional guarantees of cer-
tain key exchange protocols can be captured through an appropriate ideal func-
tionality in the framework of universal composition.
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A The functionalities FKE and FN
RKE of [CK02]

Functionality FKE

FKE proceeds as follows, running on security parameter k, with parties P1, . . . , Pn

and an adversary S.

1. Upon receiving a value (Establish-session,sid,Pi,Pj,role) from some
party Pi, record the tuple (sid, Pi, Pj , role) and send this tuple to the adver-
sary. In addition, if there already is a recorded tuple (sid, Pj , Pi, role

′) (either
with role′ 6= role or role′ = role) then proceed as follows:

(a) If Pi and Pj are uncorrupted then choose κ
R← {0, 1}k, send (key,sid,κ)

to Pi and Pj , send (key,sid,Pi,Pj) to the adversary, and halt.
(b) If either Pi or Pj is corrupted, then send a message (Choose-value,sid,

Pi,Pj) to the adversary; receive a value κ from the adversary, send
(key,sid,κ) to Pi and Pj , and halt.

2. Upon corruption of either Pi or Pj , proceed as follows. If the session key is not
yet sent (i. e., it was not yet written on the outgoing communication tape),
then provide S with the session key. Otherwise provide no information to S.

Functionality FNRKE

FNRKE is parametrized by a non-information oracle N and proceeds as follows,
running with security parameter k, parties P1, . . . , Pn and adversary S.

1. Upon receiving a value (Establish-session,sid,Pi,Pj,role) from some
party Pi, record the tuple (sid, Pi, Pj , role) and send this tuple to the ad-
versary. In addition, if there already is a recorded tuple (sid, Pj , Pi, role

′) then
proceed as follows:
(a) If both Pi and Pj are uncorrupted then send (key,sid,Pi,Pj) to the

adversary, and invoke N with fresh random input. Whenever N generates
a message, send this message to the adversary. Whenever the adversary
sends a message to N , forward this message to N . When N generates local
output κ, send (key,sid)a to the adversary. When receiving (ok,sid,l)
from the adversary, where l ∈ {i, j}, send (key,sid,κ) to Pl.

(b) If either Pi or Pj is corrupted, then send a message (Choose-value,sid,
Pi,Pj) to the adversary; receive a value κ from the adversary, send
(key,sid,κ) to Pi and Pj .

2. If the adversary S corrupts Pl, l ∈ {i, j}, before the message addressed to Pl

in Step 1 is sent, then provide the adversary with the internal state of N . If a
corruption occurs after this message has been sent then S receives nothing.

a Since Figure 10 of the full version of [CK02], which we reproduced here, seems
to contain a typo, here the functionality sends (key,sid) and not (key,sid,κ).
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