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Abstract

Textbooks tell us that a birthday attack on a hash function h with range size r requires r1/2

trials (hash computations) to find a collision. But this is quite misleading, being true only if
h is regular, meaning all points in the range have the same number of pre-images under h; if
h is not regular, fewer trials may be required. But how much fewer? This paper answers this
question by introducing a measure of the “amount of regularity” of a hash function that we call
its balance, and then providing tight estimates of the success-rate of the birthday attack, and
the expected number of trials to find a collision, as a function of the balance of the hash function
being attacked. In particular, we will see that the number of trials can be significantly less than
r1/2 for hash functions of low balance. This leads us to examine popular design principles, such
as the MD (Merkle-Damg̊ard) transform, from the point of view of balance preservation, and to
mount experiments to determine the balance of popular hash functions.
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1 Introduction

Birthday attacks. Let h: D → R be a hash function. In a birthday attack, we pick points
x1, . . . , xq from D and compute yi = h(xi) for i = 1, . . . , q. The attack is successful if there exists
a collision, i.e. a pair i, j such that xi 6= xj but yi = yj . We call q the number of trials.

There are several variants of this attack which differ in the way the points x1, . . . , xq are chosen
(cf. [3, 7, 8]). The one we consider is that they are chosen independently at random from D.1

Textbooks (eg. Stinson [7, Section 7.3]) say that (due to the birthday phenomenon which gives
the attack its name) a collision is expected within r1/2 trials, where r denotes the size of the range
of h. In particular, collisions in a hash function with output length m bits can be found in about
2m/2 trials. This estimate is the basis for the choice of hash function length m, which is typically
made just large enough to make 2m/2 trials infeasible.

However Stinson’s analysis [7, Section 7.3], as well as all others that we have seen, are misleading,
for they assume the hash function is regular, meaning all points in the range have the same number
of pre-images under h. It turns out that if h is not regular, it takes fewer than r1/2 trials to find a
collision, meaning the birthday attack would succeed sooner than expected.

This could be dangerous, for we do not know that popular hash functions are regular. In fact
they are usually designed to have “random” behavior and thus would not be regular. Yet, one
might say, they are probably “almost” regular. But what exactly does this mean, and how does
the “amount of regularity” affect the number of trials to success in the birthday attack? Having
answers to such questions will enable us to better assess the true impact of birthday attacks.

This paper. To help answer questions such as those posed above, this paper begins by introducing
a measure of the “amount of regularity” that we call the balance of a hash function. This is a real
number between 0 and 1, with balance 1 indicating that the hash function is regular and balance 0
that it is a constant function, meaning as irregular as can be. We then provide precise quantitative
estimates of the success-rate, and number of trials to success, of the birthday attack, as a function
of the balance of the hash function being attacked.

This yields a tool that has a variety of uses, and lends insight into various aspects of hash
function design and parameter choices. For example, by analytically or experimentally estimating
the balance of a particular hash function, we can tell how quickly the birthday attack on this hash
function will succeed. Let us now look at all this in more detail.

The balance measure. View the range R of hash function h: D → R as consisting of r ≥ 2
points R1, . . . , Rr. For i = 1, . . . , r we let h−1(Ri) be the pre-image of Ri under h, meaning the set
of all x ∈ D such that h(x) = Ri, and let di = |h−1(Ri)| be the size of the pre-image of Ri under
h. We let d = |D| be the size of the domain. We define the balance of h as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]
,

where logr(·) denotes the logarithm in base r. Proposition 3.2 says that for any hash function h,
the balance of h is a real number in the range from 0 to 1. Furthermore, the maximum balance
of 1 is achieved when h is regular (meaning di = d/r for all i) and the minimum balance of 0 is
achieved when h is a constant function (meaning di = d for some i and dj = 0 for all j 6= i). Thus
regular functions are well-balanced and constant functions are poorly balanced, but there are lots

1 One might ask how to mount the attack (meaning how to pick random domain points) when the domain is a
very large set as in the case of a hash function like SHA-1 whose domain is the set of all strings of length at most
264. We would simply let h be the restriction of SHA-1 to inputs of some reasonable length, like 161 bits or 320 bits.
A collision for h is a collision for SHA-1, so it suffices to attack the restricted function.
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of possibilities in between these extremes.

Results. We are interested in the probability C of finding a collision in q trials of the birthday
attack, and also in the threshold Q, defined as the number of trials required for the expected
number of collisions to be one. (Alternatively, the expected number of trials to find a collision.)
Theorems 4.1 and Theorem 4.3, respectively, say that, up to constant factors,2

C =
(

q

2

)
· 1
rµ(h)

and Q = rµ(h)/2 . (1)

These results indicate that the performance of the birthday attack can be characterized, quite
simply and accurately, via the balance of the hash function h being attacked.

Remarks. Note that when µ(h) = 1 (meaning, h is regular) then Equation (1) says Q = r1/2,
which agrees with the above-discussed standard estimate for this case. At the other extreme, when
µ(h) = 0, meaning h is a constant function, the attack finds collisions in O(1) trials so Q = 1.
The value of the general results of Equation (1) is that they show the full spectrum in between
the extremes of regular and constant functions. As the balance of the hash function drops, the
threshold Q of the attack decreases, meaning collisions are found faster. For example a birthday
attack on a hash function of balance µ(h) = 1/2 will find a collision in about Q = r1/4 trials, which
is significantly less than r1/2. Thus, we now have a way to quantitatively assess how irregularity in
h impacts the success-rate of the birthday attack.

We clarify that the attacker does not need to know the balance of the hash function in order to
mount the attack. (The attack itself remains the birthday attack outlined above.)

Good bounds rather than approximate equalities. Theorem 4.1 provides both upper and
lower bounds on C that are tight in the sense of being within a constant factor (specifically, a factor
of four) of each other. (And Lemma 4.5 does even better, providing bounds within a factor two of
each other, but the expressions are a little more complex.) Similarly, Theorem 4.3 provides upper
and lower bounds on Q that are within a constant factor of each other.

We claim good bounds are important. The estimates of how long the birthday attack takes to
succeed, and the ensuing choices of output-lengths of hash functions, have been based so far on
textbook approximate equality calculations of the threshold that are usually upper bounds but not
lower bounds on the exact value. Yet, the relevant parameter is actually a lower bound on the
threshold since otherwise the attack might be doing better than we estimate.

Deriving tight bounds, and in particular a good lower bound on C, required significantly more
analytical work than merely producing a rough estimate of approximate equality.

Impact on output lengths. Suppose we wish to design a hash function h for which the birthday
attack threshold is 280 trials. A consequence of our results above is that we must have rµ(h)/2 = 280,
meaning must choose the output-length of the hash function to be 160/µ(h) bits. Thus to minimize
output-length we must maximize balance, meaning we would usually want to design hash functions
that are almost regular (balance close to one).

The general principle that hash functions should be as close to regular as possible is, we believe,
well-known as a heuristic. Our results, however, provide a way of quantifying the loss in security
as a function of deviations from regularity.

Random hash functions. Designers of hash functions often have as target to make the hash
function have “random” behavior. Proposition 4.4 together with Equation (1) enable us to estimate
the impact of this design principle on birthday attacks. As an example, they imply that if h is a

2 This assumes d ≥ 2r and, in the case of C, that 8 ≤ q ≤ Q. As Remark 4.2 argues, however, these conditions
are not restrictive in practical settings.
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random hash function with d = 2r then the expected probability of a collision in q trials is about
3/2 times what it would be for a regular function, while the expected threshold is about two-thirds
what it would be for a regular function. In particular, random functions are worse than regular
functions from the point of view of protection against birthday attacks!

Thus, if one wants the best possible protection against both birthday and cryptanalytic attacks,
one should design a function that is not entirely random but random subject to being regular. This,
however, may be more difficult than designing a hash function that has entirely random behavior,
so that the latter remains the design goal, and in this case it is useful to have tools like ours that
enable designers to estimate the impact of deviations from regularity on the birthday attack and
fine tune output lengths if necessary.

Does the MD transform preserve balance? Given the above results we would like to be
building hash functions that have high balance. We look at some elements of current design to see
how well they reflect this requirement.

Hash functions like MD5 [6], SHA-1 [5] and RIPEMD-160 [2] are designed by applying the
Merkle-Damg̊ard (MD) [4, 1] transform to an underlying compression function. Designers could
certainly try to ensure that the compression function is regular or has high balance, but this turns
out not to be enough to ensure high balance of the hash function because Proposition 5.1 shows
that the MD transform does not preserve regularity or maintain balance. (We give an example of a
compression function that has balance one, yet the hash function resulting from the MD transform
applied to this compression function has balance zero.)

Proposition 5.2 is more positive, showing that regularity not only of the compression function
but also of certain associated functions does suffice to guarantee regularity of the hash function. But
Proposition 5.3 notes that if the compression and associated functions have even minor deviations
from regularity, meaning balance that is high but not equal to one, then the MD transform can
amplify the imbalance and result in a hash function with very low balance.

Given that a random compression function has balance close to but not equal to one, and
we expect practical compression functions to be similar, our final conclusion is that we cannot
recommend, as a general design principle, attempting to ensure high balance of a hash function by
only establishing some properties of the compression function and hoping the MD transform does
the rest.

We stress that none of this implies any weaknesses in specific existing hash functions such as
those mentioned above. But it does indicate a weakness in the MD transform based design principle
from the point of view of ensuring high balance, and means that if we want to ensure or verify
high balance of a hash function we might be forced to analyze it directly rather than being able to
concentrate on the possibly simpler task of analyzing the compression function. We turn next to
some preliminary experimental work in this vein with SHA-1.

Experimenting with SHA-1. The hash function SHA-1 was designed with the goal that the
birthday attack threshold is about 280 trials. As per the above, this goal would only be met if the
balance of the hash function was close to one. More precisely, letting SHAn: {0, 1}n → {0, 1}160

denote the restriction of SHA-1 to inputs of length n < 264, we would like to know whether SHAn

has balance close to one for practical values of n, since otherwise a birthday attack on SHAn will
find a collision for SHA-1 in less than 280 trials.

The balance of SHAn is however hard to compute, and even to estimate experimentally, when
n is large. Section 6 however reports on some experiments that compute µ(SHAn) for small values
of n and find it to be extremely close to one. Toward estimating the balance of SHAn for larger
values of n, Section 6 reports on some experiments on SHAn;t1...t2 for small values of n and t2− t1,
where SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 is the function which returns the t1-th through t2-th
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output bits of SHAn. Broadly speaking, the experiments indicate that these functions have high
balance. This can be taken as some indication that SHAn also has high balance, meaning SHA-1
is well-designed from the balance point of view.

Is anything broken? This paper does not uncover any weaknesses, or demonstrate improved
performance of birthday attacks, on any specific, existing hash functions such as those mentioned
above. However it provides analytical tools that contribute toward the goal of better understanding
the security of existing hash functions or building new ones, and suggests a need to put more effort
into estimating the balance of existing hash functions to see whether weaknesses exist.

2 Notation and Terminology

If n is a non-negative integer then we let [n] = {1, . . . , n}. If S is a set then |S| denotes its size. We
denote by h: D → R a hash function mapping domain D to range R, and throughout the paper
we assume that R has size at least two. We usually denote |D| by d and |R| by r. A collision for
h is a pair x1, x2 of points in D such that x1 6= x2 but h(x1) = h(x2). For any y ∈ R we let

h−1(y) = { x ∈ D : h(x) = y } .

We say that h is regular if |h−1(y)| = d/r for every y ∈ R, where d = |D| and r = |R|.

3 The Balance Measure and its Properties

We introduce a measure that we call the balance, and establish some of its basic properties.

Definition 3.1 Let h: D → R be a hash function whose domain D and range R = {R1, . . . , Rr}
have sizes d, r ≥ 2, respectively. For i ∈ [r] let di = |h−1(Ri)| denote the size of the pre-image of
Ri under h. The balance of h, denoted µ(h), is defined as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]
, (2)

where logr(·) denotes the logarithm in base r.

It is easy to see that a regular function has balance 1 and a constant function has balance 0. The
following says that these are the two extremes: In general, the balance is a real number that could
fall somewhere in the range between 0 and 1. The proof is based on standard facts, and provided
in Appendix A for completeness.

Proposition 3.2 Let h be a hash function. Then

0 ≤ µ(h) ≤ 1 . (3)

Furthermore, µ(h) = 0 iff h is a constant function, and µ(h) = 1 iff h is a regular function.

The following will be useful later.

Lemma 3.3 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ r ≥ 2.
Then

r−µ(h) − 1
d
≥
(
1− r

d

)
· r−µ(h) , (4)

where µ(h) is the balance of h as per Definition 3.1.
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For i = 1, . . . , q do // q is the number of trials
Pick xi at random from the domain of h
yi ← h(xi) // Hash xi to get yi

If there exists j < i such that yi = yj but xi 6= xj then return xi, xj EndIf // collision found
EndFor
Return ⊥ // No collision found

Figure 1: Birthday attack on a hash function h: D → R. The attack is successful in finding a
collision if it does not return ⊥. We call q the number of trials.

Proof of Lemma 3.3: Note that

r−µ(h) − 1
d

=

(
1− rµ(h)

d

)
· r−µ(h) .

Proposition 3.2 says that µ(h) ≤ 1, and this implies that rµ(h) ≤ r. This in turn implies

1− rµ(h)

d
≥ 1− r

d
.

This concludes the proof.

4 Balance-based Analysis of the Birthday attack

The attack is presented in Figure 1. (Note that it picks the points x1, . . . , xq independently at
random, rather than picking them at random subject to be being distinct as in some variants of
the attack [7]. The difference in performance is negligible as long as the domain is larger than the
range.)

We are interested in two quantities: the probability C of finding a collision in a given number
q of trials, and the threshold Q, defined as the number of trials at which the expected number of
collisions is 1. Both will be estimated in terms of the balance of the hash function being attacked.
Note that although Q is a simpler metric it is less informative than C since the latter shows how
the success-rate of the attack grows with the number of trials. We begin with Theorem 4.1 below,
which gives both upper and lower bounds on C that are within small constant factors of each other.
The proof of Theorem 4.1 is in Section 4.1 below.

Theorem 4.1 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Let C denote the probability of finding a collision for h in q trials of the birthday attack of Figure 1.
Let µ(h) be the balance of h as per Definition 3.1. Then

1
4
·
(

q

2

)
· 1
rµ(h)

≤ C ≤
(

q

2

)
· 1
rµ(h)

, (5)

under the assumption that 8 ≤ q ≤ rµ(h)/2.

As we mentioned before, we believe it is important to have close upper and lower bounds rather
than approximate equalities when it comes to computing the success rate of attacks, since we are
making very specific choices of parameters, such as hash function output lengths, based on these
estimates, and if our estimates of the success rates are not specific too we might choose parameters
incorrectly.
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Remark 4.2 Theorem 4.1 is only valid when 8 ≤ q ≤ rµ(h)/2. In practice, this condition is hardly
restrictive, since making q ≥ 8 is not costly, and, on the other hand, the case of interest is q smaller
than the expected number of trials to get a collision, which as per Theorem 4.3 is rµ(h)/2. For q
higher than this, C is essentially 1.

Next, we show that the threshold is Θ(rµ(h)/2). Again, we provide explicit upper and lower bounds
that are within a small constant factor of each other. The proof of Theorem 4.3 is in Appendix C.

Theorem 4.3 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Let Q denote the threshold, meaning the number of trials for which the expected number of collisions,
in the birthday attack of Figure 1, is 1. Let µ(h) be the balance of h as per Definition 3.1. Then

√
2 · rµ(h)/2 ≤ Q ≤ 1 + 2 · rµ(h)/2 (6)

Designers of hash functions often have as target to make the hash function have “random” behavior.
We now state a result which will enable us to gage how well random functions fare against the
birthday attack. (Consequences are discussed after the statement). Proposition 4.4 below says
that if h is chosen at random then the expectation of r−µ(h) is more than 1/r (what it would
be for a regular function) by a factor equal to about 1 + r/d. The proof of Proposition 4.4 is in
Appendix D.

Proposition 4.4 Let D,R be sets of sizes d, r respectively, where d ≥ r ≥ 2. If we choose a
function h: D → R at random then

E
[
r−µ(h)

]
=

1
r
·
(

1 +
r − 1

d

)
.

As an example, suppose d = 2r. Then the above implies that if h is chosen at random then

E
[
r−µ(h)

]
≈ 3

2
· 1
r

.

As per Theorem 4.1 and Theorem 4.3 this means that if h is chosen at random then the probability
of finding a collision in q trials is expected to rise to about 3/2 times what it would be for a regular
function, while the threshold is expected to fall to about

√
2/3 times what it would be for a regular

function. Thus, from the point of view of protection against birthday attacks, it is better to have
a function chosen at random subject to being regular than chosen entirely at random.

4.1 Proof of Theorem 4.1

We will establish a somewhat stronger result, namely:

Lemma 4.5 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d > r ≥ 2.
Let C denote the probability of finding a collision for h in q ≥ 2 trials of the birthday attack of
Figure 1. Let µ(h) be the balance of h as per Definition 3.1. Assume

q ≤ min
(

rµ(h)/2 , (1/4) · (1− r/d) · rµ(h)
)

. (7)

Then
1
2
·
(

q

2

)
·
[

1
rµ(h)

− 1
d

]
≤ C ≤

(
q

2

)
·
[

1
rµ(h)

− 1
d

]
. (8)
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We show in Appendix B how Lemma 4.5 implies Theorem 4.1, and now proceed to the proof of
Lemma 4.5.

Proof of Lemma 4.5: We let [q]2 denote the set of all two-element subsets of [q]. Recall that
the attack picks x1, . . . , xq at random from the domain D of the hash function. We associated to
any two-element set I = {i, j} ∈ [q]2 the random variable XI which takes value 1 if xi, xj form a
collision (meaning xi 6= xj and h(xi) = h(xj)), and 0 otherwise. We let

X =
∑

I∈[q]2
XI .

The random variable X is the number of collisions. (We clarify that in this manner of counting
the number of collisions, if n distinct points have the same hash value, they contribute n(n− 1)/2
toward the value of X.) For any I ∈ [q]2 we have

E [XI ] = Pr [XI = 1 ] =
r∑

i=1

di(di − 1)
d2

=
r∑

i=1

d2
i

d2
−

r∑
i=1

di

d2
= r−µ(h) − 1

d
. (9)

By linearity of expectation we have

E [X] =
∑

I∈[q]2

E [XI ] =
(

q

2

)
·
[
r−µ(h) − 1

d

]
. (10)

Let

p = r−µ(h) − 1
d

.

The upper bound of Lemma 4.5 is a simple application of Markov’s inequality and Equation (10):

Pr [C ] = Pr [X ≥ 1 ] ≤ E [X]
1

=
(

q

2

)
· p .

We proceed to the lower bound. Let [q]2,2 denote the set of all two-elements subsets of [q]2. Via
the inclusion-exclusion principle we have

Pr [C ] = Pr
[∨

I∈[q]2
XI = 1

]
≥

∑
I∈[q]2

Pr [XI = 1 ] −
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1 ] . (11)

Equation (10) tells us that the first sum above is∑
I∈[q]2

Pr [XI = 1 ] =
∑

I∈[q]2

E [XI ] = E [X] =
(

q

2

)
· p . (12)

We now claim that ∑
{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1 ] ≤ 1
2

(
q

2

)
· p . (13)

This completes the proof because from Equations (11), (12) and (13) we obtain Equation (8) as
follows:

Pr [C ] ≥
(

q

2

)
· p −

∑
{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1 ]

≥
(

q

2

)
· p − 1

2

(
q

2

)
· p

=
1
2

(
q

2

)
· p .
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It remains to prove Equation (13).

Let E be the set of all {I, J} ∈ [q]2,2 such that I ∩ J = ∅, and let N be the set of all {I, J} ∈ [q]2,2

such that I ∩ J 6= ∅. Then∑
{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1 ]

=
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1 ]

︸ ︷︷ ︸
SE

+
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1 ]

︸ ︷︷ ︸
SN

. (14)

We now claim that

SE ≤ 1
4

(
q

2

)
· p (15)

SN ≤ 1
4

(
q

2

)
· p . (16)

Equation (13) follows from Equations (14), (15) and (16), so it remains to prove the last two
inequalities.

To upper bound SE , we note that if {I, J} ∈ E then the random variables XI and XJ are inde-
pendent. Using Equation (9) we get

SE =
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1 ] =
∑

{I,J}∈E

Pr [XI = 1 ] · Pr [XJ = 1 ] = |E| · p2 .

Computing the size of the set E and simplifying, we get

SE =
1
2

(
q

2

)(
q − 2

2

)
· p2 =

(
q

2

)
· p ·

[
1
2

(
q − 2

2

)
· p
]

=
(

q

2

)
· p · q

2 − 5q + 6
4

· p .

We now upper bound this as follows:

SE <

(
q

2

)
· p · q2 · p

4
≤
(

q

2

)
· p · rµ(h) · p

4
≤ 1

4

(
q

2

)
· p .

Above the first inequality is true because Lemma 4.5 assumes q ≥ 2. The second inequality is true
because of the assumption made in Equation (7). The third inequality is true because rµ(h) · p < 1.
We have now obtained Equation (15).

The remaining task is to upper bound SN . The difficulty here is that for {I, J} ∈ N the random
variables XI and XJ are not independent. We let di = |h−1(Ri)| for i ∈ [r] where R = {R1, . . . , Rr}
is the range of the hash function. If {I, J} ∈ N then the two-elements sets I and J intersect in
exactly one point. (They cannot be equal since I, J are assumed distinct.) Accordingly we have

SN =
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1 ] = |N | ·
r∑

i=1

di(di − 1)2

d3
<
|N |
d3
·

r∑
i=1

d3
i . (17)
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We now compute the size of the set N :

|N | =
1
2

(
q

2

)(
q

2

)
− 1

2

(
q

2

)
− 1

2

(
q

2

)(
q − 2

2

)
=

(
q

2

)
·
[
1
2

(
q

2

)
− 1

2

(
q − 2

2

)
− 1

2

]
=

(
q

2

)
·
[
q(q − 1)

4
− (q − 2)(q − 3)

4
− 1

2

]
=

(
q

2

)
· (q − 2) .

Putting this together with Equation (17) we have

SN <

(
q

2

)
· q ·

[
1
d3
·
∑r

i=1d
3
i

]
. (18)

To upper bound the sum of Equation (18), we view d1, . . . , dr as variables and consider the problem
of maximizing d3

1 + · · ·+ d3
r subject to the constraints
r∑

i=1

di = d and
r∑

i=1

d2
i = d2 · r−µ(h) .

The maximum occurs when di = d · r−µ(h) for i = 1, . . . , rµ(h) and di = 0 for i = rµ(h), . . . , r. The
value of the maximum is

rµ(h) · d3r−3µ(h) = d3r−2µ(h) .

Returning to Equation (18) with this information we get

SN <

(
q

2

)
· q ·

[
1
d3
·
∑r

i=1d
3
i

]
≤
(

q

2

)
· q · 1

d3
· d3r−2µ(h) =

(
q

2

)
· q · r−2µ(h) .

We now use the assumption made in Equation (7), and finally use Lemma 3.3, to get

SN <

(
q

2

)
· 1
4
·
(
1− r

d

)
· rµ(h) · r−2µ(h) ≤

(
q

2

)
· 1
4
·
(
1− r

d

)
r−µ(h) ≤

(
q

2

)
· 1
4
· p .

This proves Equation (16) and thus concludes the proof of Lemma 4.5.

5 Does the MD transform preserve balance?

We consider the following popular paradigm for the construction of hash functions. First build a
compression function H: {0, 1}b+c → {0, 1}c, where b ≥ 1 is called the block-length and c ≥ 1 is
called the chaining-length. Then transform H into a hash function H: Db → {0, 1}c, where

Db = {M ∈ {0, 1}∗ : |M | = nb for some 1 ≤ n < 2b } ,

via the Merkle-Damg̊ard (MD) [4, 1] transform depicted in Figure 2. (In this description and
below, we let 〈i〉b denote the representation of integer i as a string of length exactly b bits for
i = 0, . . . , 2b − 1.) In particular, modulo details, this is the paradigm used in the design of popular
hash functions including MD5 [6], SHA-1 [5] and RIPEMD-160 [2].

For the considerations in this section, we will focus on the restriction of H to strings of some
particular length. For any integer 1 ≤ n < 2b (the number of blocks) we let Hn: Db,n → {0, 1}c
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Function H(M)
Break M into b-bit blocks M1‖ · · · ‖Mn

Mn+1 ← 〈n〉b ; C0 ← 0c

For i = 1, . . . , n + 1 do Ci ← H(Mi‖Ci−1) EndFor
Return Cn+1

Figure 2: Hash function H: Db → {0, 1}c obtained via the MD transform applied to compression
function H: {0, 1}b+c → {0, 1}c.

denote the restriction of H to the domain Db,n, defined as the set of all strings in Db that have
length exactly nb bits.

Our results lead us to desire that Hn has high balance for all practical values of n. Designers
could certainly try to ensure that the compression function is regular or has high balance, but to be
assured that Hn has high balance it would need to be the case that the MD transform is “balance
preserving.” Unfortunately, the following shows that this is not true. It presents an example of a
compression function H which has high balance (in fact is regular, with balance one) but Hn has
low balance (in fact, balance zero) even for n = 2.

Proposition 5.1 Let b, c be positive integers. There exists a compression function H: {0, 1}b+c →
{0, 1}c such that H is regular (µ(H) = 1) but H2 is a constant function (µ(H2) = 0).

Proof of Proposition 5.1: Let H: {0, 1}b+c → {0, 1}c map B‖C to C for all b-bit strings B and
c-bit strings C. Clearly µ(H) = 1 since each point in {0, 1}c has exactly 2b pre-images under H.
Because the initial vector (IV) in the MD transform is the constant C0 = 0c, and by the definition
of H, the function H2 maps all inputs to 0c.

This example might be viewed as contrived particularly because the compression function H above
is not collision-resistant (although it is very resistant to birthday attacks), but in fact it still serves
to illustrate an important point. The popularity of the MD paradigm arises from the fact that it
provably preserves collision-resistance [4, 1]. However, the above shows that it does not provably
preserve balance. Even though Proposition 5.1 does not say that the transform will always be poor
at preserving balance, it says that we cannot count on the transform to preserve balance in general.
This means that simply ensuring high balance of the compression function is not a suitable general
design principle.

Is there any other design principle whereby some properties of the compression function suffice to
ensure high balance of the hash function? Toward finding one we note that the behavior exhibited
by the function H2 in the proof of Proposition 5.1 arose because the initial vector (IV) of the
MD transform was C0 = 0c, and although H was regular, the restriction of H to inputs having
the last c bits 0 was not regular, and in fact was constant. Accordingly we consider requiring
regularity conditions not just on the compression function but on certain related functions as well.
If H: {0, 1}b+c → {0, 1}c then define H0: {0, 1}b → {0, 1}c via M 7→ H(M‖0c) for all M ∈ {0, 1}b,
and for n ≥ 1 define Hn: {0, 1}c → {0, 1}c via M 7→ H(〈n〉b‖M) for all M ∈ {0, 1}c. The following
shows that if H,H0,Hn are all regular, meaning have balance one, then Hn is also regular.

Proposition 5.2 Let b, c, n be positive integers. Let H: {0, 1}b+c → {0, 1}c and let H0,Hn be as
above. Assume H, H0, and Hn are all regular. Then Hn is regular.
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Proof of Proposition 5.2: The computation of Hn can be written as

Function Hn(M)
Break M into b-bit blocks M1‖ · · · ‖Mn ; C1 ← H0(M1)
For i = 2, . . . , n do Ci ← H(Mi‖Ci−1) EndFor
Cn+1 ← Hn(Cn) ; Return Cn+1

It is not hard to check that the assumed regularity of H0,H and Hn imply the regularity of Hn.

Unfortunately Proposition 5.2 is not “robust.” Although Hn has balance one if H,H0,Hn have
balance one, it turns out that if H,H0,Hn have balance that is high but not quite one, we are
not assured that Hn has high balance. Proposition 5.3 shows that even a slight deviation from the
maximum balance of one in H,H0,Hn can be amplified, and result in Hn having very low balance.
The proof of the following is in Appendix E.

Proposition 5.3 Let b, c be integers, b ≥ c ≥ 2, and let n ≥ c. Then there exists a compression
function H: {0, 1}b+c → {0, 1}c such that µ(H) ≥ 1 − 1/c, µ(H0) = 1, and µ(Hn) ≥ 1 − 2/c, but
µ(Hn) ≤ 1/c, where the functions H0,Hn are defined as above.

As indicated by Proposition 4.4, a random compression function will have expected balance that
is high but not quite 1. We expect that practical compression functions are in the same boat.
Furthermore it seems harder to build compression functions that have balance exactly one than
close to one. So the lack of robustness of Proposition 5.2, as exhibited by Proposition 5.3, means
that Proposition 5.2 is of limited use.

The consequence of the results in this section is that we are unable to recommend any design
principle that, to ensure high balance, focuses solely on establishing properties of the compression
function. It seems one is forced to look directly at the hash function. We endeavor next to do this
for SHA-1.

6 Experiments on SHA-1

Let SHAn: {0, 1}n → {0, 1}160 denote the restriction of SHA-1 to inputs of length n < 264. Because
SHA-1’s range is {0, 1}160, it is commonly believed that the expected number of trials necessary to
find a collision for SHAn is approximately 280. As Theorem 4.3 shows, however, this is only true if
the balance of SHAn is one or close to one for all practical values of n. If the balance is not close
to one, then we expect to be able to find collisions using less work. It therefore seems desirable to
calculate (or approximate) the balance of SHAn for reasonable values of n (eg. n = 320). A direct
computation of µ(SHAn) based on Definition 3.1 is however infeasible given the size of the range
of SHAn. Accordingly we focus on a more achievable goal. We look at properties of SHAn that
one can reasonably test and whose absence might indicate that SHAn does not have high balance.
Our experiments are not meant to be exhaustive, but rather representative of the types of feasible
experiments one can perform with SHA-1.

Let SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 denote the function that returns the t1-th through t2-
th output bits of SHAn. We ask what exactly is the balance of SHA32;t1...t2 when t2 − t1 + 1 ∈
{8, 16, 24}. And we ask whether the functions SHA256;t1...t2 and SHA320;t1...t2 appear regular when
t2 − t1 + 1 ∈ {8, 16, 24}. We only consider t1 ≡ 1 mod 8. (Note that SHA256 is SHA-1 restricted to
the domain {0, 1}256, not NIST’s new SHA-256 hash algorithm.)
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Balance of SHA32;t1...t2. We calculate the balance of SHA32;t1...t2 for all pairs t1, t2 such that t2−
t1 +1 ∈ {8, 16, 24} and t1 begins on a byte boundary (ie. we look at all 1-, 2-, and 3-byte portions of
the SHA-1 output). The calculated values of µ(SHA32;t1...t2) appear in Appendix F.1. Characteris-
tic values are µ(SHA32;1...8) = 0.99999998893, µ(SHA32;1...16) = 0.999998623, and µ(SHA32;1...24) =
0.99976567, indicating that, for the specified values of t1, t2, SHA32;t1...t2 is close to regular.

These results do not imply that the functions SHAn;t1...t2 or SHAn, n > 32 and t1, t2 as before,
are regular. But the fact that SHA32;t1...t2 is almost regular is encouraging — a small value for
µ(SHA32;t1...t2) for any of the specified t1, t2 pairs might indicate some unusual property of the
SHA-1 hash function.

Experiments on SHA256 and SHA320. Fix m = 256 or m = 320. Although we cannot calculate
the balance of SHAm (cf. the discussions above), we can compare the outputs of SHAm;t1...t2 on
random inputs to what one would expect from a regular function. Assume that t2 − t1 + 1 ∈
{8, 16, 24}.

If the outputs of SHAm;t1...t2 on random bits are approximately the same as what one would
expect from a regular function, it would support the view that SHAm has high balance. However,
a significant difference between the outputs of SHAm;t1...t2 on random inputs and what one would
expect from a regular function might indicate some unusual behavior with SHA-1, and this unusual
behavior would deserve further investigation.

We used χ2 tests to compare the output of SHAm;t1...t2 on random inputs to the output of a
regular function. For each test we picked 232 distinct random strings from {0, 1}m, hashed those
values using SHAm, and counted the number of times we saw each t2 − t1 + 1-bit substring. (The
random inputs were generated using 256-bit Rijndael in counter mode with a randomly chosen key.)
If SHAm is regular, then we expect each t2 − t1 + 1-bit output of SHAm;t1...t2 to occur 232+t1−t2−1

times. The results of the experiments are summarized in Appendix F.2 and Appendix F.3. Recall
that the P -value indicates the probability that SHAm;t1...t2 will have the observed χ2 test statistic
when the null hypothesis is true; ie. when SHAm;t1...t2 is indeed regular.

The results in Appendix F.2 and Appendix F.3 are consistent with SHA256 and SHA320 having
high balance. However, we again point out that these tests were only designed to uncover gross
anomalies and are not exhaustive.
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A Proof of Proposition 3.2

Let h: D → R where R = {R1, . . . , Rr}. Let di = |h−1(Ri)| for i ∈ [r]. Let d = |D| and let

S = { (x1, . . . , xr) ∈ Rr : x1 + · · ·+ xr = d } .

Define the function f : S → R by f(x1, . . . , xr) = x2
1 + · · ·+ x2

r for any x1, . . . , xr ∈ S and let

MinS(f) = min{ f(x1, . . . , xr) : (x1, . . . , xr) ∈ S }

MaxS(f) = max{ f(x1, . . . , xr) : (x1, . . . , xr) ∈ S } .

We note that

MinS(f) ≤ d2

rµ(h)
≤ MaxS(f) .

The extremums of f over S are well studied, and it is known that f achieves its minimum on S
when di = d/r for all i ∈ [r], which implies MinS(f) = r(d/r)2 = d2/r and corresponds to h being
regular, with all points in the range having pre-image size d/r. On the other hand f achieves its
maximum when xi = d for some i ∈ [r] and xj = 0 for all j ∈ [r]−{i}, which implies MaxS(f) = d2

and corresponds to h being a constant function that maps all d points in the domain to some single
point in the range. We thus get

d2

r
≤ d2

rµ(h)
≤ d2 .

Dividing by d2 and re-arranging terms we get

1 ≤ rµ(h) ≤ r .

Taking logarithms to base r yields the Proposition.

B Proof of Theorem 4.1

To apply Lemma 4.5, we first verify that under the conditions of Theorem 4.1, Equation (7) is true.
The assumption d ≥ 2r, made in the statement of Theorem 4.1, implies

1− r

d
≥ 1

2
. (19)

This implies
1
4
·
(
1− r

d

)
· rµ(h) = rµ(h)/2 · 1

4
·
(
1− r

d

)
· rµ(h)/2 ≥ rµ(h)/2 · 1

8
· rµ(h)/2 .

The assumption 8 ≤ q ≤ rµ(h)/2 made in the statement of Theorem 4.1 implies 8 ≤ rµ(h)/2 and
thus (1/8) · rµ(h)/2 ≥ 1. So from the above we get

1
4
·
(
1− r

d

)
· rµ(h) ≥ rµ(h)/2 .

The assumption q ≤ rµ(h)/2 made in the statement of Theorem 4.1 thus suffices to yield Equation (7),
and we can apply Lemma 4.5. The upper bound on C claimed in Theorem 4.1 follows directly
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from the upper bound on C in Lemma 4.5. On the other hand, applying first Lemma 3.3 and then
Equation (19) we have

1
2
·
(

q

2

)
·
[

1
rµ(h)

− 1
d

]
≥ 1

2
·
(

q

2

)
·
(
1− r

d

)
· 1
rµ(h)

≥ 1
2
·
(

q

2

)
· 1
2
· 1
rµ(h)

.

Thus the lower bound on C in Lemma 4.5 implies the lower bound on C claimed in Theorem 4.1.

C Proof of Theorem 4.3

We will establish a somewhat stronger result, namely:

Lemma C.1 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d > r ≥ 2.
Let Q denote the expected number of trials to find a collision for h in the birthday attack of
Figure 1. Let µ(h) be the balance of h as per Definition 3.1. Then

Q =
1
2

+
1
2
·

√
1 +

8
r−µ(h) − 1/d

. (20)

We will first use Lemma C.1 to prove Theorem 4.3 and then prove Lemma C.1.

Proof of Theorem 4.3: For the upper bound we have

Q =
1
2

+
1
2
·

√
1 +

8
r−µ(h) − 1/d

(21)

≤ 1
2

+
1
2
·

(
√

1 +

√
8

r−µ(h) − 1/d

)
(22)

=
1
2

+
1
2

+
√

2√
r−µ(h) − 1/d

≤ 1 +
√

2√
(1− r/d)r−µ(h)

(23)

≤ 1 +
√

2√
r−µ(h)/2

(24)

= 1 + 2 · r−µ(h)/2 . (25)

Equation (21) is by Lemma C.1. Equation (22) uses the fact that
√

a + b ≤
√

a +
√

b which is
valid for all non-negative reals a, b. Equation (23) is by Lemma 3.3. Equation (24) is true by the
assumption, made in the statement of Theorem 4.3, that d ≥ 2r. We now proceed to the lower
bound. We have

Q =
1
2

+
1
2
·

√
1 +

8
r−µ(h) − 1/d

≥ 1
2
·

√
8

r−µ(h) − 1/d
≥

√
2√

r−µ(h)
=
√

2 · r−µ(h)/2 .

This concludes the proof of Theorem 4.3.

Proof of Lemma C.1: Let the random variable X be as in the proof of Lemma 4.5. The
threshold is the number of trials at which one expects there to be one collision, meaning is a value

15



of q such that E [X] = 1. Taking the value of E [X] from Equation (10), we proceed to solve the
equation (

q

2

)
·
[
r−µ(h) − 1

d

]
= 1

for q. The above can be written as

q2 − q − 2
r−µ(h) − 1/d

= 0 .

The positive root of this equation,

Q =
1
2

+
1
2
·

√
1 +

8
r−µ(h) − 1/d

,

is the value we seek.

D Proof of Proposition 4.4

Proof of Proposition 4.4: As usual say R = {R1, . . . , Rr}, and also D = {D1, . . . , Dd}. For
i ∈ [r] let di = |h−1(Ri)|. This is a random variable over the choice of h, and we begin by computing
the expectation of d2

i . For j ∈ [d] let Xj be the random variable that takes value 1 if h(Dj) = Ri

and 0 otherwise. Then

E
[
d2

i

]
= E

[
(X1 + · · ·+ Xd)2

]
= E

[∑d
j=1X

2
j +

∑
k 6=lXkXl

]
=

d∑
j=1

E
[
X2

j

]
+
∑
k 6=l

E [XkXl] (26)

=
d∑

j=1

E [Xj ] +
∑
k 6=l

E [Xk] ·E [Xl] (27)

=
d∑

j=1

1
r

+
∑
k 6=l

1
r2

=
d

r
+

d2 − d

r2

=
d2 + dr − d

r2
.

Equation (26) is by linearity of expectation. Since Xj is boolean valued we have X2
j = Xj , and on

the other hand if k 6= l then Xk, Xl are independent, which justifies Equation (27). Now from the
above we have

E
[
r−µ(h)

]
= E

[
d2

1 + · · ·+ d2
r

d2

]
=

1
d2
·

r∑
i=1

E
[
d2

i

]
=

1
d2
· r · d

2 + dr − d

r2
=

1
r
·
(

1 +
r − 1

d

)
.

This completes the proof of Proposition 4.4.
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E Proof of Proposition 5.3

Proof of Proposition 5.3: Let H: {0, 1}b+c → {0, 1}c be defined as

H(B‖C) =

{
〈B〉c C = 0c

〈C � 1〉c⊕(0c−11) C 6= 0c

where B is b-bits long, C is c-bits long, 〈B〉c is the right-most c bits of B, and 〈C � 1〉c is the
left shift of C by one bit (ie. 〈C � 1〉c is a c-bit string, the left-most c − 1 bits of which are the
right-most c− 1 bits of C, and the right-most bit of which is 0).

Clearly µ(H0) = 1. To see that µ(H) ≥ 1 − 1/c we note that there are 2c−1 points X ∈ {0, 1}c
with a right-most bit of 0 and each of these points has 2b−c pre-images (corresponding to the set
{0, 1}b−cX0c). There is one point of the form 0c−11 and it has 2b +2b−c pre-images (corresponding
to the sets {0, 1}b10c−1 and {0, 1}b−c0c−110c). There are 2c−1 − 1 additional points Y ∈ {0, 1}c
with a right-most bit of 1 and each of these points has 2b+1 + 2b−c pre-images (corresponding to
the sets {0, 1}b+1Y ′ and {0, 1}b−cY 0c, where Y ′ is the left-most c− 1 bits of Y ). Let

S = 2c−1(2b−c)2 + (2b + 2b−c)2 + (2c−1 − 1)(2b+1 + 2b−c)2

≤ 22b+c+1 .

It follows that

µ(H) = log2c

[
22b+2c

S

]
≥ log2c

[
22b+2c

22b+c+1

]
=

c− 1
c

.

We lower bound µ(Hn) as follows. Let R =
∑

C∈{0,1}c d2
C , where d2

C is the number of pre-images
of C ∈ {0, 1}c under Hn. We divide the analysis into three cases. In the first case we assume that
the right-most bit of 〈n〉b is 0. This implies that there will be one point in {0, 1}c−10 with one
pre-image and all the remaining points in {0, 1}c−10 will have no pre-image. Of the 2c−1 points in
{0, 1}c−11, all but point 0c−11 will have two pre-images, and 0c−11 will have one pre-image. Thus
R < 2c+1.

Let 〈n〉c be the right-most c bits of 〈n〉b. In the second case we assume that the right-most bit
of 〈n〉b is 1 and and that 〈n〉c 6= 0c−11. All the points in {0, 1}c−10 have no pre-images, 2c−1 − 2
points in {0, 1}c−11 have two pre-images, the point 〈n〉c has three pre-images, and the point 0c−11
has one pre-image. In this case R < 2c+2. In the final case we assume that the right-most bit of
〈n〉b is 1 and that 〈n〉c = 0c−11. All the points in {0, 1}c−10 have no pre-images and all the points
in {0, 1}c−11 have two pre-images. In this case R = 2c+1. These results imply that

µ(Hn) = log2c

[
22c

R

]
≥ log2c

[
22c

2c+2

]
=

c− 2
c

.

Let us now consider the balance of Hn. Let M = M1‖ · · · ‖Mn ∈ {0, 1}bn be a string and let
|Mi| = b. Then if M1 6∈ {0, 1}b−c0c, we have that Hn(M) = 1c; i.e., |H−1

n (1c)| ≥ 2bn − 2bn−c. This
allows us to upper bound µ(Hn) as follows:

µ(Hn) ≤ log2c

[
(2bn)2

(2bn − 2bn−c)2

]
≤ log2c

[
22bn

22bn − 22bn−c+1

]
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Using the assumption that c ≥ 2,

µ(Hn) ≤ log2c

[
22bn

22bn−1

]
=

1
c

as desired.

F Experimental Data

F.1 Balance of SHA-1 on 32-bit inputs

The following table shows the balance of SHA32;t1...t2 when t2 − t1 + 1 ∈ {8, 16, 24} and t1 begins
on a byte boundary.

t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
µ(SHA32;1...8) = 0.99999998893 µ(SHA32;1...16) = 0.999998623 µ(SHA32;1...24) = 0.99976567
µ(SHA32;9...16) = 0.99999998941 µ(SHA32;9...24) = 0.999998604 µ(SHA32;9...32) = 0.99976548
µ(SHA32;17...24) = 0.99999998972 µ(SHA32;17...32) = 0.999998620 µ(SHA32;17...40) = 0.99976553
µ(SHA32;25...32) = 0.99999998884 µ(SHA32;25...40) = 0.999998627 µ(SHA32;25...48) = 0.99976561
µ(SHA32;33...40) = 0.99999999079 µ(SHA32;33...48) = 0.999998641 µ(SHA32;33...56) = 0.99976582
µ(SHA32;41...48) = 0.99999998909 µ(SHA32;41...56) = 0.999998620 µ(SHA32;41...64) = 0.99976559
µ(SHA32;49...56) = 0.99999998912 µ(SHA32;49...64) = 0.999998626 µ(SHA32;49...72) = 0.99976558
µ(SHA32;57...64) = 0.99999999083 µ(SHA32;57...72) = 0.999998625 µ(SHA32;57...80) = 0.99976581
µ(SHA32;65...72) = 0.99999998923 µ(SHA32;65...80) = 0.999998627 µ(SHA32;65...88) = 0.99976575
µ(SHA32;73...80) = 0.99999999083 µ(SHA32;73...88) = 0.999998637 µ(SHA32;73...96) = 0.99976577
µ(SHA32;81...88) = 0.99999998925 µ(SHA32;81...96) = 0.999998622 µ(SHA32;81...104) = 0.99976558
µ(SHA32;89...96) = 0.99999998987 µ(SHA32;89...104) = 0.999998617 µ(SHA32;89...112) = 0.99976554
µ(SHA32;97...104) = 0.99999998862 µ(SHA32;97...112) = 0.999998624 µ(SHA32;97...120) = 0.99976567
µ(SHA32;105...112) = 0.99999998826 µ(SHA32;105...120) = 0.999998626 µ(SHA32;105...128) = 0.99976562
µ(SHA32;113...120) = 0.99999998959 µ(SHA32;113...128) = 0.999998616 µ(SHA32;113...136) = 0.99976566
µ(SHA32;121...128) = 0.99999998999 µ(SHA32;121...136) = 0.999998634 µ(SHA32;121...144) = 0.99976556
µ(SHA32;129...136) = 0.99999999052 µ(SHA32;129...144) = 0.999998636 µ(SHA32;129...152) = 0.99976563
µ(SHA32;137...144) = 0.99999998916 µ(SHA32;137...152) = 0.999998615 µ(SHA32;137...160) = 0.99976554
µ(SHA32;145...152) = 0.99999998769 µ(SHA32;145...160) = 0.999998626
µ(SHA32;153...160) = 0.99999998993

F.2 Random 256-bit inputs

The following table shows the P -values of the χ2 test statistics for SHA256;t1...t2 when t2 − t1 + 1 ∈
{8, 16, 24} and t1 begins on a byte boundary.

t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
Function P -value Function P -value Function P -value

SHA256;1...8 0.100485 SHA256;1...16 0.586626 SHA256;1...24 0.692566
SHA256;9...16 0.619285 SHA256;9...24 0.140110 SHA256;9...32 0.317284
SHA256;17...24 0.935787 SHA256;17...32 0.466384 SHA256;17...40 0.021164
SHA256;25...32 0.175975 SHA256;25...40 0.439931 SHA256;25...48 0.469674
SHA256;33...40 0.748468 SHA256;33...48 0.361088 SHA256;33...56 0.040855
SHA256;41...48 0.031226 SHA256;41...56 0.184079 SHA256;41...64 0.676174
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t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
Function P -value Function P -value Function P -value

SHA256;49...56 0.583221 SHA256;49...64 0.763258 SHA256;49...72 0.670727
SHA256;57...64 0.457368 SHA256;57...72 0.376232 SHA256;57...80 0.096921
SHA256;65...72 0.329475 SHA256;65...80 0.309056 SHA256;65...88 0.744634
SHA256;73...80 0.547074 SHA256;73...88 0.686284 SHA256;73...96 0.170097
SHA256;81...88 0.085886 SHA256;81...96 0.310768 SHA256;81...104 0.313116
SHA256;89...96 0.841003 SHA256;89...104 0.898719 SHA256;89...112 0.919306
SHA256;97...104 0.508412 SHA256;97...112 0.749241 SHA256;97...120 0.806863
SHA256;105...112 0.091271 SHA32;105...120 0.159980 SHA32;105...128 0.241736
SHA256;113...120 0.972487 SHA256;113...128 0.384936 SHA256;113...136 0.113037
SHA256;121...128 0.068753 SHA256;121...136 0.914603 SHA256;121...144 0.443723
SHA256;129...136 0.580299 SHA256;129...144 0.975337 SHA256;129...152 0.136327
SHA256;137...144 0.353030 SHA256;137...152 0.317605 SHA256;137...160 0.492472
SHA256;145...152 0.675190 SHA256;145...160 0.581100
SHA256;153...160 0.235566

F.3 Random 320-bit inputs

The following table shows the P -values of the χ2 test statistics for SHA320;t1...t2 when t2 − t1 + 1 ∈
{8, 16, 24} and t1 begins on a byte boundary.

t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
Function P -value Function P -value Function P -value

SHA320;1...8 0.427497 SHA320;1...16 0.815452 SHA320;1...24 0.850009
SHA320;9...16 0.929965 SHA320;9...24 0.042673 SHA320;9...32 0.669224
SHA320;17...24 0.083470 SHA320;17...32 0.423254 SHA320;17...40 0.612206
SHA320;25...32 0.011549 SHA320;25...40 0.296112 SHA320;25...48 0.307289
SHA320;33...40 0.999038 SHA320;33...48 0.866707 SHA320;33...56 0.252888
SHA320;41...48 0.776933 SHA320;41...56 0.301196 SHA320;41...64 0.817281
SHA320;49...56 0.936904 SHA320;49...64 0.778989 SHA320;49...72 0.501343
SHA320;57...64 0.329116 SHA320;57...72 0.919067 SHA320;57...80 0.732148
SHA320;65...72 0.201503 SHA320;65...80 0.157921 SHA320;65...88 0.007878
SHA320;73...80 0.782695 SHA320;73...88 0.556592 SHA320;73...96 0.855473
SHA320;81...88 0.391338 SHA320;81...96 0.963846 SHA320;81...104 0.216442
SHA320;89...96 0.916778 SHA320;89...104 0.207163 SHA320;89...112 0.904849
SHA320;97...104 0.484870 SHA320;97...112 0.128456 SHA320;97...120 0.688773
SHA320;105...112 0.912156 SHA320;105...120 0.450265 SHA320;105...128 0.216091
SHA320;113...120 0.426536 SHA320;113...128 0.786771 SHA320;113...136 0.901526
SHA320;121...128 0.885900 SHA320;121...136 0.601405 SHA320;121...144 0.616341
SHA320;129...136 0.680423 SHA320;129...144 0.153638 SHA320;129...152 0.804534
SHA320;137...144 0.351930 SHA320;137...152 0.293502 SHA320;137...160 0.213030
SHA320;145...152 0.342827 SHA320;145...160 0.131438
SHA320;153...160 0.111307

Because the P -values for some of the above experiments (eg. SHA320;65...88) were moderately small,
we repeated the above experiment. The results of the second experiment are presented below.
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t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
Function P -value Function P -value Function P -value

SHA320;1...8 0.883591 SHA320;1...16 0.831152 SHA320;1...24 0.306404
SHA320;9...16 0.607924 SHA320;9...24 0.180552 SHA320;9...32 0.117292
SHA320;17...24 0.007593 SHA320;17...32 0.531028 SHA320;17...40 0.823950
SHA320;25...32 0.037554 SHA320;25...40 0.738748 SHA320;25...48 0.753472
SHA320;33...40 0.725501 SHA320;33...48 0.756219 SHA320;33...56 0.175559
SHA320;41...48 0.769757 SHA320;41...56 0.820646 SHA320;41...64 0.238651
SHA320;49...56 0.833762 SHA320;49...64 0.116576 SHA320;49...72 0.446928
SHA320;57...64 0.090176 SHA320;57...72 0.027964 SHA320;57...80 0.836329
SHA320;65...72 0.379653 SHA320;65...80 0.192988 SHA320;65...88 0.294248
SHA320;73...80 0.774100 SHA320;73...88 0.121466 SHA320;73...96 0.290684
SHA320;81...88 0.266744 SHA320;81...96 0.078667 SHA320;81...104 0.726818
SHA320;89...96 0.648729 SHA320;89...104 0.233293 SHA320;89...112 0.991511
SHA320;97...104 0.887169 SHA320;97...112 0.258782 SHA320;97...120 0.826019
SHA320;105...112 0.456699 SHA320;105...120 0.578998 SHA320;105...128 0.489699
SHA320;113...120 0.012146 SHA320;113...128 0.733158 SHA320;113...136 0.561124
SHA320;121...128 0.494374 SHA320;121...136 0.893367 SHA320;121...144 0.831479
SHA320;129...136 0.558424 SHA320;129...144 0.361668 SHA320;129...152 0.249553
SHA320;137...144 0.543976 SHA320;137...152 0.616025 SHA320;137...160 0.862948
SHA320;145...152 0.315248 SHA320;145...160 0.182013
SHA320;153...160 0.538103
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