
An extended abstract of this paper appears in Advances in Cryptology – EUROCRYPT ’04, Lecture
Notes in Computer Science Vol. 3027, C. Cachin and J. Camenisch ed., Springer-Verlag, 2004. This
is the full version.

Hash Function Balance

and its Impact on Birthday Attacks

Mihir Bellare∗ Tadayoshi Kohno†

May 1, 2004

Abstract

Textbooks tell us that a birthday attack on a hash function h with range size r requires r1/2

trials (hash computations) to find a collision. But this is quite misleading, being true only if h
is regular, meaning all points in the range have the same number of pre-images under h; if h
is not regular, fewer trials may be required. But how much fewer? This paper addresses this
question by introducing a measure of the “amount of regularity” of a hash function that we call
its balance, and then providing estimates of the success-rate of the birthday attack, and the
expected number of trials to find a collision, as a function of the balance of the hash function
being attacked. In particular, we will see that the number of trials can be significantly less than
r1/2 for hash functions of low balance. This leads us to examine popular design principles, such
as the MD (Merkle-Damg̊ard) transform, from the point of view of balance preservation, and to
mount experiments to determine the balance of popular hash functions.

Keywords: Hash functions, birthday attacks, collision-resistance.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF grants CCR-0098123, ANR-0129617 and CCR-0208842, and by an IBM Faculty Partnership Development
Award.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-mail: tkohno@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tkohno. Supported
by a National Defense Science and Engineering Graduate Fellowship.

1

Contents

1 Introduction 2

2 Notation and Terminology 5

3 The Balance Measure and its Properties 5

4 Balance-based Analysis of the Birthday attack 7

4.1 Proof of Theorem 4.1 . 10
4.2 Proof of Theorem 4.4 . 12

5 Does the MD transform preserve balance? 15

6 Experiments on SHA-1 18

References 21

2

1 Introduction

Birthday attacks. Let h: D → R be a hash function. In a birthday attack, we pick points
x1, . . . , xq from D and compute yi = h(xi) for i = 1, . . . , q. The attack is successful if there exists
a collision, i.e. a pair i, j such that xi 6= xj but yi = yj . We call q the number of trials.

There are several variants of this attack which differ in the way the points x1, . . . , xq are chosen
(cf. [3, 7, 8, 9]). The one we consider is that they are chosen independently at random from D.1

Textbooks (eg. Stinson [7, Section 7.3]) say that (due to the birthday phenomenon which gives
the attack its name) a collision is expected within r1/2 trials, where r denotes the size of the range
of h. In particular, they say that collisions in a hash function with output length m bits can be
found in about 2m/2 trials. This estimate is the basis for the choice of hash function length m,
which is typically made just large enough to make 2m/2 trials infeasible.

However Stinson’s analysis [7, Section 7.3], as well as all others that we have seen, are misleading,
for they assume the hash function is regular, meaning all points in the range have the same number
of pre-images under h.2 It turns out that if h is not regular, it takes fewer than r1/2 trials to find
a collision, meaning the birthday attack would succeed sooner than expected.

This could be dangerous, for we do not know that popular hash functions are regular. In fact
they are usually designed to have “random” behavior and thus would not be regular. Yet, one
might say, they are probably “almost” regular. But what exactly does this mean, and how does
the “amount of regularity” affect the number of trials to success in the birthday attack? Having
answers to such questions will enable us to better assess the true impact of birthday attacks.

This paper. To help answer questions such as those posed above, this paper begins by introducing
a measure of the “amount of regularity” that we call the balance of a hash function. This is a real
number between 0 and 1, with balance 1 indicating that the hash function is regular and balance
0 that it is a constant function, meaning as irregular as can be. We then provide quantitative
estimates of the success-rate, and number of trials to success, of the birthday attack, as a function
of the balance of the hash function being attacked.

This yields a tool that has a variety of uses, and lends insight into various aspects of hash
function design and parameter choices. For example, by analytically or experimentally estimating
the balance of a particular hash function, we can tell how quickly the birthday attack on this hash
function will succeed. Let us now look at all this in more detail.

The balance measure. View the range R of hash function h: D → R as consisting of r ≥ 2
points R1, . . . , Rr. For i = 1, . . . , r we let h

−1(Ri) be the pre-image of Ri under h, meaning the set
of all x ∈ D such that h(x) = Ri, and let di = |h−1(Ri)| be the size of the pre-image of Ri under
h. We let d = |D| be the size of the domain. We define the balance of h as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]

,

where logr(·) denotes the logarithm in base r. Proposition 3.2 says that for any hash function h,
the balance of h is a real number in the range from 0 to 1. Furthermore, the maximum balance
of 1 is achieved when h is regular (meaning di = d/r for all i) and the minimum balance of 0 is

1 One might ask how to mount the attack (meaning how to pick random domain points) when the domain is a
very large set as in the case of a hash function like SHA-1 whose domain is the set of all strings of length at most
264. We would simply let h be the restriction of SHA-1 to inputs of some reasonable length, like 161 bits or 320 bits.
A collision for h is a collision for SHA-1, so it suffices to attack the restricted function.

2 They regard xi as a ball thrown into bin h(xi) and then apply the standard birthday analysis. But the latter
assumes each ball is equally likely to land in each bin. If R1, . . . , Rr denote the range points then the probability
that a ball lands in bin Rj is |h

−1(Rj)|/d where d = |D|. These values are all the same only if h is regular.

3

achieved when h is a constant function (meaning di = d for some i and dj = 0 for all j 6= i). Thus
regular functions are well-balanced and constant functions are poorly balanced, but there are lots
of possibilities in between these extremes.

Results. We are interested in the probability C of finding a collision in q trials of the birthday
attack, and also in the threshold Q, defined as the number of trials required for the expected
number of collisions to be one. (Alternatively, the expected number of trials to find a collision.)
Corollary 4.2 and Theorem 4.4, respectively, say that, up to constant factors,3

C =

(
q

2

)

· 1

rµ(h)
and Q = rµ(h)/2 . (1)

These results indicate that the performance of the birthday attack can be characterized, quite
simply and accurately, via the balance of the hash function h being attacked.

Remarks. Note that when µ(h) = 1 (meaning, h is regular) then Equation (1) says that, up to
constant factors, Q = r1/2, which agrees with the above-discussed standard estimate for this case.
At the other extreme, when µ(h) = 0, meaning h is a constant function, the attack finds collisions
in O(1) trials so Q = 1. The value of the general results of Equation (1) is that they show the full
spectrum in between the extremes of regular and constant functions. As the balance of the hash
function drops, the threshold Q of the attack decreases, meaning collisions are found faster. For
example a birthday attack on a hash function of balance µ(h) = 1/2 will find a collision in about
Q = r1/4 trials, which is significantly less than r1/2. Thus, we now have a way to quantitatively
assess how irregularity in h impacts the success-rate of the birthday attack.

We clarify that the attacker does not need to know the balance of the hash function in order to
mount the attack. (The attack itself remains the birthday attack outlined above.)

Bounds rather than approximate equalities. Corollary 4.2 provides both upper and lower
bounds on C that are tight in the sense of being within a constant factor (specifically, a factor
of four) of each other. (And Theorem 4.1 does even better, but the expressions are a little more
complex.) Similarly, Theorem 4.4 provides upper and lower bounds on Q that are within a constant
factor of each other.

We claim bounds are important. The estimates of how long the birthday attack takes to succeed,
and the ensuing choices of output-lengths of hash functions, have been based so far on textbook
approximate equality calculations of the threshold that are usually upper bounds but not lower
bounds on the exact value. Yet, from a design perspective, the relevant parameter is actually a
lower bound on the threshold since otherwise the attack might be doing better than we estimate.

The quality (ie. tightness) of the bounds is also important. Deriving a good lower bound on C
required significantly more analytical work than merely producing a rough estimate of approximate
equality. With regard to Q we remark that our upper bound, although within a constant factor of
the lower bound, is not as tight as would like, and it is an interesting question to improve it.

Impact on output lengths. Suppose we wish to design a hash function h for which the birthday
attack threshold is 280 trials. A consequence of our results above is that we must have rµ(h)/2 = 280,
meaning must choose the output-length of the hash function to be 160/µ(h) bits. Thus to minimize
output-length we must maximize balance, meaning we would usually want to design hash functions
that are almost regular (balance close to one).

The general principle that hash functions should be as close to regular as possible is, we believe,
well-known as a heuristic. Our results, however, provide a way of quantifying the loss in security
as a function of deviations from regularity.

3 This assumes d ≥ 2r and, in the case of C, that q ≤ O(rµ(h)/2).

4

Random hash functions. Designers of hash functions often have as target to make the hash
function have “random” behavior. Proposition 4.5 together with Equation (1) enable us to estimate
the impact of this design principle on birthday attacks. As an example, they imply that if h is
a random hash function with d = 2r then the expected probability of a collision in q trials is
about 3/2 times what it would be for a regular function, while the expected threshold is about
√

2/3 times what it would be for a regular function. In particular, random functions are worse
than regular functions from the point of view of protection against birthday attacks, though the
difference between random and regular functions decrease as the ratio d/r increases.

Thus, if one wants the best possible protection against both birthday and cryptanalytic attacks,
one should design a function that is not entirely random but random subject to being regular. This
is true both of the hash function itself, and of the hash function restricted to domains from which
the adversary may draw points in its attack (eg. a restriction of SHA-1 to all 161-bit strings). This,
however, may be more difficult than designing a hash function that has entirely random behavior,
so that the latter remains the design goal, and in this case it is useful to have tools like ours that
enable designers to estimate the impact of deviations from regularity on the birthday attack and
fine tune output lengths if necessary.

Does the MD transform preserve balance? Given the above results we would like to be
building hash functions that have high balance. We look at some elements of current design to see
how well they reflect this requirement.

Hash functions like MD5 [6], SHA-1 [5] and RIPEMD-160 [2] are designed by applying the
Merkle-Damg̊ard (MD) [4, 1] transform to an underlying compression function. Designers could
certainly try to ensure that the compression function is regular or has high balance, but this turns
out not to be enough to ensure high balance of the hash function because Proposition 5.1 shows
that the MD transform does not preserve regularity or maintain balance. (We give an example of a
compression function that has balance one, yet the hash function resulting from the MD transform
applied to this compression function has balance zero.)

Proposition 5.2 is more positive, showing that regularity not only of the compression function
but also of certain associated functions does suffice to guarantee regularity of the hash function. But
Proposition 5.3 notes that if the compression and associated functions have even minor deviations
from regularity, meaning balance that is high but not equal to one, then the MD transform can
amplify the imbalance and result in a hash function with very low balance.

Given that a random compression function has balance close to but not equal to one, and
we expect practical compression functions to be similar, our final conclusion is that we cannot
recommend, as a general design principle, attempting to ensure high balance of a hash function by
only establishing some properties of the compression function and hoping the MD transform does
the rest.

We stress that none of this implies any weaknesses in specific existing hash functions such as
those mentioned above. But it does indicate a weakness in the MD transform based design principle
from the point of view of ensuring high balance, and means that if we want to ensure or verify
high balance of a hash function we might be forced to analyze it directly rather than being able to
concentrate on the possibly simpler task of analyzing the compression function. We turn next to
some preliminary experimental work in this vein with SHA-1.

Experimenting with SHA-1. The hash function SHA-1 was designed with the goal that the
birthday attack threshold is about 280 trials. As per the above, this goal would only be met if the
balance of the hash function was close to one. More precisely, letting SHAn: {0, 1}n → {0, 1}160
denote the restriction of SHA-1 to inputs of length n < 264, we would like to know whether SHAn
has balance close to one for practical values of n, since otherwise a birthday attack on SHAn will

5

find a collision for SHA-1 in less than 280 trials.
The balance of SHAn is however hard to compute, and even to estimate experimentally, when

n is large. Section 6 however reports on some experiments that compute µ(SHA32;t1...t2) for small
values of t2 − t1, where SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 is the function which returns the t1-th
through t2-th output bits of SHAn. The computed values for µ(SHA32;t1...t2) are extremely close
to what one would expect from a random function with the same domain and range. Toward
estimating the balance of SHAn for larger values of n, Section 6 reports on some experiments on
SHAn;t1...t2 for larger n. Broadly speaking, the experiments indicate that these functions have high
balance. This can be taken as some indication that SHAn also has high balance, meaning SHA-1
is well-designed from the balance point of view.

Remarks. We clarify that while high balance is a necessary requirement for a collision-resistant
hash function, it is certainly not sufficient. It is easy to give examples of high-balance hash functions
for which it easy to find collisions. High balance is just one of many design criteria that designers
should consider.

We also clarify that this paper does not uncover any weaknesses, or demonstrate improved
performance of birthday attacks, on any specific, existing hash functions such as those mentioned
above. However it provides analytical tools that contribute toward the goal of better understanding
the security of existing hash functions or building new ones, and suggests a need to put more effort
into estimating the balance of existing hash functions to see whether weaknesses exist.

2 Notation and Terminology

If n is a non-negative integer then we let [n] = {1, . . . , n}. If S is a set then |S| denotes its size.
We denote by h: D → R a function mapping domain D to range R, and throughout the paper we
assume that R has size at least two. We usually denote |D| by d and |R| by r. A collision for h is
a pair x1, x2 of points in D such that x1 6= x2 but h(x1) = h(x2). For any y ∈ R we let

h−1(y) = { x ∈ D : h(x) = y } .
We say that h is regular if |h−1(y)| = d/r for every y ∈ R, where d = |D| and r = |R|.

3 The Balance Measure and its Properties

We introduce a measure that we call the balance, and establish some of its basic properties.

Definition 3.1 Let h: D → R be a function whose domain D and range R = {R1, . . . , Rr} have
sizes d, r ≥ 2, respectively. For i ∈ [r] let di = |h−1(Ri)| denote the size of the pre-image of Ri

under h. The balance of h, denoted µ(h), is defined as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]

, (2)

where logr(·) denotes the logarithm in base r.

It is easy to see that a regular function has balance 1 and a constant function has balance 0. The
following says that these are the two extremes: In general, the balance is a real number that could
fall somewhere in the range between 0 and 1.

Proposition 3.2 Let h be a function. Then

0 ≤ µ(h) ≤ 1 . (3)

6

Furthermore, µ(h) = 0 iff h is a constant function, and µ(h) = 1 iff h is a regular function.

Proof of Proposition 3.2: The proof is based on standard facts. Let h: D → R where R =
{R1, . . . , Rr}. Let di = |h−1(Ri)| for i ∈ [r]. Let d = |D| and let

S = { (x1, . . . , xr) ∈ Rr : x1 + · · ·+ xr = d } .
Define the function f : S → R by f(x1, . . . , xr) = x2

1 + · · ·+ x2
r for any x1, . . . , xr ∈ S and let

MinS(f) = min{ f(x1, . . . , xr) : (x1, . . . , xr) ∈ S }
MaxS(f) = max{ f(x1, . . . , xr) : (x1, . . . , xr) ∈ S } .

We note that

MinS(f) ≤
d2

rµ(h)
≤ MaxS(f) .

The extremums of f over S are well studied, and it is known that f achieves its minimum on S
when di = d/r for all i ∈ [r], which implies MinS(f) = r(d/r)2 = d2/r and corresponds to h being
regular, with all points in the range having pre-image size d/r. On the other hand f achieves its
maximum when xi = d for some i ∈ [r] and xj = 0 for all j ∈ [r]−{i}, which implies MaxS(f) = d2

and corresponds to h being a constant function that maps all d points in the domain to some single
point in the range. We thus get

d2

r
≤ d2

rµ(h)
≤ d2 .

Dividing by d2 and re-arranging terms we get

1 ≤ rµ(h) ≤ r .

Taking logarithms to base r yields the Proposition.

The following will be useful later.

Lemma 3.3 Let h: D → R be a function. Let d = |D| and r = |R| and assume d ≥ r ≥ 2. Then

r−µ(h) − 1
d
≥
(

1− r

d

)

· r−µ(h) , (4)

where µ(h) is the balance of h as per Definition 3.1.

Proof of Lemma 3.3: Note that

r−µ(h) − 1
d
=

(

1− rµ(h)

d

)

· r−µ(h) .

Proposition 3.2 says that µ(h) ≤ 1, and this implies that rµ(h) ≤ r. This in turn implies

1− rµ(h)

d
≥ 1− r

d
.

This concludes the proof.

7

For i = 1, . . . , q do // q is the number of trials

Pick xi at random from the domain of h
yi ← h(xi) // Hash xi to get yi

If there exists j < i such that yi = yj but xi 6= xj then return xi, xj EndIf // collision found

EndFor
Return ⊥ // No collision found

Figure 1: Birthday attack on a hash function h: D → R. The attack is successful in finding a
collision if it does not return ⊥. We call q the number of trials.

4 Balance-based Analysis of the Birthday attack

The attack is presented in Figure 1. (Note that it picks the points x1, . . . , xq independently at
random, rather than picking them at random subject to being distinct as in some variants of the
attack [7]. The difference in performance is negligible as long as the domain is larger than the
range.)

We are interested in two quantities: the probability C of finding a collision in a given number q
of trials, and the threshold Q, defined as the expected number of trials to get a collision. Both will
be estimated in terms of the balance of the hash function being attacked. Note that although Q
is a simpler metric it is less informative than C since the latter shows how the success-rate of the
attack grows with the number of trials. We begin with Theorem 4.1 below, which gives both upper
and lower bounds on C that are within constant factors of each other. The proof of Theorem 4.1
is in Section 4.1 below.

Theorem 4.1 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d > r ≥ 2.
Let C denote the probability of finding a collision for h in q ≥ 2 trials of the birthday attack of
Figure 1. Let µ(h) be the balance of h as per Definition 3.1. Then

C ≤
(
q

2

)

·
[
1

rµ(h)
− 1
d

]

. (5)

Additionally, if α is any real number, we have
(

1− α2

4
− α

)

·
(
q

2

)

·
[
1

rµ(h)
− 1
d

]

≤ C (6)

under the assumption that

q ≤ α ·
(

1− r

d

)

· rµ(h)/2 . (7)

The above may be a bit hard to interpret. The following, which simply picks a particular value for
the parameter α and applies the above, may be easier to understand. It provides upper and lower
bounds on C that are within a factor of four of each other assuming q = O(rµ(h)/2).

Corollary 4.2 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Let C denote the probability of finding a collision for h in q ≥ 2 trials of the birthday attack of
Figure 1. Let µ(h) be the balance of h as per Definition 3.1. Then

C ≤
(
q

2

)

· 1

rµ(h)
. (8)

8

Additionally,

1

4
·
(
q

2

)

· 1

rµ(h)
≤ C (9)

under the assumption that q ≤ (1/5) · rµ(h)/2.

Proof of Corollary 4.2: Fix α = 2/5. To apply Theorem 4.1, we first verify that under the
conditions of Corollary 4.2, Equation (7) is true. The assumption d ≥ 2r, made in the statement
of Corollary 4.2, implies

1− r

d
≥ 1

2
. (10)

This implies

2

5
·
(

1− r

d

)

· rµ(h)/2 ≥ 1

5
· rµ(h)/2 .

The assumption q ≤ (1/5) · rµ(h)/2 made in the statement of Corollary 4.2 thus suffices to yield
Equation (7), and we can apply Theorem 4.1. The upper bound on C claimed in Corollary 4.2
follows directly from the upper bound on C in Theorem 4.1. On the other hand, applying first
Lemma 3.3 and then Equation (10) we have

(

1− α2

4
− α

)

·
(
q

2

)

·
[
1

rµ(h)
− 1
d

]

≥
(

1− α2

4
− α

)

·
(
q

2

)

·
(

1− r

d

)

· 1

rµ(h)

≥
(

1− α2

4
− α

)

·
(
q

2

)

· 1
2
· 1

rµ(h)
. (11)

Replacing α with 2/5 we get
(

1− α2

4
− α

)

·
(
q

2

)

·
[
1

rµ(h)
− 1
d

]

≥ 1

2
·
(
q

2

)

· 1
2
· 1

rµ(h)
.

Therefore, the lower bound on C in Theorem 4.1 implies the lower bound on C claimed in the
Corollary 4.2.

As we mentioned before, we believe it is important to have close upper and lower bounds rather
than approximate equalities when it comes to computing the success rate of attacks since we are
making very specific choices of parameters, such as hash function output lengths, based on these
estimates, and if our estimates of the success rates are not specific too we might choose parameters
incorrectly.

Remark 4.3 The lower bound in Equation (9) is only valid when 2 ≤ q ≤ (1/5) · rµ(h)/2. The
upper bound on q here is not particularly restrictive since we know that as q approaches rµ(h)/2,
the probability C gets close to 1. However, note that we are implicitly assuming 2 ≤ (1/5) · rµ(h)/2,
meaning we are assuming a lower bound on µ(h). However the result only excludes functions of
tiny balance.

Next, we show that the threshold is Θ(rµ(h)/2). Again, we provide explicit upper and lower bounds
that are within a constant factor of each other. The proof of Theorem 4.4 is in Section 4.2.

Theorem 4.4 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥
2r ≥ 4. Let Q denote the threshold, meaning the expected number of trials, in the birthday attack

9

of Figure 1, to get a collision. Let µ(h) be the balance of h as per Definition 3.1 and assume
((
√
7− 2)/3) · rµ(h)/2 ≥ 2. Then

(1/2) · rµ(h)/2 ≤ Q ≤ 72 · rµ(h)/2 (12)

Designers of hash functions often have as target to make the hash function have “random” behavior.
We now state a result which will enable us to gage how well random functions fare against the
birthday attack. (Consequences are discussed after the statement). Proposition 4.5 below says
that if h is chosen at random then the expectation of r−µ(h) is more than 1/r (what it would be
for a regular function) by a factor equal to about 1 + r/d.

Proposition 4.5 Let D,R be sets of sizes d, r respectively, where d ≥ r ≥ 2. If we choose a
function h: D → R at random then

E
[

r−µ(h)
]

=
1

r
·
(

1 +
r − 1
d

)

.

Proof of Proposition 4.5: As usual say R = {R1, . . . , Rr}, and also D = {D1, . . . , Dd}. For
i ∈ [r] let di = |h−1(Ri)|. This is a random variable over the choice of h, and we begin by computing
the expectation of d2

i . For j ∈ [d] let Xj be the random variable that takes value 1 if h(Dj) = Ri

and 0 otherwise. Then

E
[
d2
i

]
= E

[
(X1 + · · ·+Xd)

2
]

= E
[
∑d

j=1X
2
j +

∑

k 6=lXkXl

]

=

d∑

j=1

E
[
X2
j

]
+
∑

k 6=l

E [XkXl] (13)

=
d∑

j=1

E [Xj] +
∑

k 6=l

E [Xk] ·E [Xl] (14)

=
d∑

j=1

1

r
+
∑

k 6=l

1

r2

=
d

r
+
d2 − d
r2

=
d2 + dr − d

r2
.

Equation (13) is by linearity of expectation. Since Xj is boolean valued we have X
2
j = Xj , and on

the other hand if k 6= l then Xk, Xl are independent, which justifies Equation (14). Now from the
above we have

E
[

r−µ(h)
]

= E

[
d2

1 + · · ·+ d2
r

d2

]

=
1

d2
·

r∑

i=1

E
[
d2
i

]
=

1

d2
· r · d

2 + dr − d
r2

=
1

r
·
(

1 +
r − 1
d

)

.

This completes the proof of Proposition 4.5.

As an example, suppose d = 2r. Then the above implies that if h is chosen at random then

E
[

r−µ(h)
]

≈ 3
2
· 1
r
.

10

As per Theorem 4.1 and Theorem 4.4 this means that if h is chosen at random then the probability
of finding a collision in q trials is expected to rise to about 3/2 times what it would be for a regular
function, while the threshold is expected to fall to about

√

2/3 times what it would be for a regular
function. Although the difference in the efficacy of birthday attacks against regular and random
functions becomes less as d/r increases, the above example with d = 2r suggests that although
hash functions are often designed to be “random”, in terms of resistance to birthday attacks a
more desirable goal is to have randomness subject to regularity. This also applies to all restrictions
of the hash function to domains from which an adversary may draw during a birthday attack (eg.
SHA-1 restricted to 161-bit inputs).

4.1 Proof of Theorem 4.1

We let [q]2 denote the set of all two-element subsets of [q]. Recall that the attack picks x1, . . . , xq
at random from the domain D of the hash function. We associated to any two-element set I =
{i, j} ∈ [q]2 the random variable XI which takes value 1 if xi, xj form a collision (meaning xi 6= xj
and h(xi) = h(xj)), and 0 otherwise. We let

X =
∑

I∈[q]2
XI .

The random variable X is the number of collisions. (We clarify that in this manner of counting
the number of collisions, if n distinct points have the same hash value, they contribute n(n− 1)/2
toward the value of X.) For any I ∈ [q]2 we have

E [XI] = Pr [XI = 1] =
r∑

i=1

di(di − 1)
d2

=
r∑

i=1

d2
i

d2
−

r∑

i=1

di
d2

= r−µ(h) − 1
d
. (15)

By linearity of expectation we have

E [X] =
∑

I∈[q]2

E [XI] =

(
q

2

)

·
[

r−µ(h) − 1
d

]

. (16)

Let

p = r−µ(h) − 1
d
.

The upper bound of Theorem 4.1 is a simple application of Markov’s inequality and Equation (16):

Pr [C] = Pr [X ≥ 1] ≤ E [X]

1
=

(
q

2

)

· p .

We proceed to the lower bound. Let [q]2,2 denote the set of all two-elements subsets of [q]2. Via
the inclusion-exclusion principle we have

Pr [C] = Pr
[
∨

I∈[q]2
XI = 1

]

≥
∑

I∈[q]2

Pr [XI = 1] −
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1] . (17)

Equation (16) tells us that the first sum above is
∑

I∈[q]2

Pr [XI = 1] =
∑

I∈[q]2

E [XI] = E [X] =

(
q

2

)

· p . (18)

11

We now claim that
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1] ≤
(
α2

4
+ α

)

·
(
q

2

)

· p . (19)

This completes the proof because from Equations (17), (18) and (19) we obtain Equation (6) as
follows:

Pr [C] ≥
(
q

2

)

· p −
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1]

≥
(
q

2

)

· p −
(
α2

4
+ α

)

·
(
q

2

)

· p

=

(

1− α2

4
− α

)

·
(
q

2

)

· p .

It remains to prove Equation (19).
Let E be the set of all {I, J} ∈ [q]2,2 such that I∩J = ∅, and let N be the set of all {I, J} ∈ [q]2,2

such that I ∩ J 6= ∅. Then
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1]

=
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1]

︸ ︷︷ ︸

SE

+
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1]

︸ ︷︷ ︸

SN

. (20)

We now claim that

SE ≤
(
q

2

)

· 1
4
· α2 · p (21)

SN ≤
(
q

2

)

· α · p , (22)

Equation (19) follows from Equations (20), (21) and (22). We now prove Equations (21) and (22).
To upper bound SE , we note that if {I, J} ∈ E then the random variables XI and XJ are

independent. Using Equation (15) we get

SE =
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1]

=
∑

{I,J}∈E

Pr [XI = 1] · Pr [XJ = 1] = |E| · p2 .

Computing the size of the set E and simplifying, we get

SE =
1

2

(
q

2

)(
q − 2
2

)

· p2 =

(
q

2

)

· p ·
[
1

2

(
q − 2
2

)

· p
]

=

(
q

2

)

· p · q
2 − 5q + 6

4
· p .

We now upper bound this as follows:

SE <

(
q

2

)

· p · q2 · p
4
≤
(
q

2

)

· p · α2 · rµ(h) · p
4
≤ 1

4
· α2 ·

(
q

2

)

· p .

12

Above the first inequality is true because Theorem 4.1 assumes q ≥ 2. The second inequality is true
because of the assumption made in Equation (7). The third inequality is true because rµ(h) · p < 1.
We have now obtained Equation (21).

The remaining task is to upper bound SN . The difficulty here is that for {I, J} ∈ N the random
variables XI and XJ are not independent. We let di = |h−1(Ri)| for i ∈ [r] where R = {R1, . . . , Rr}
is the range of the hash function. If {I, J} ∈ N then the two-elements sets I and J intersect in
exactly one point. (They cannot be equal since I, J are assumed distinct.) Accordingly we have

SN =
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1] = |N | ·
r∑

i=1

di(di − 1)2
d3

<
|N |
d3
·

r∑

i=1

d3
i . (23)

We now compute the size of the set N :

|N | =
1

2

(
q

2

)(
q

2

)

− 1
2

(
q

2

)

− 1
2

(
q

2

)(
q − 2
2

)

=

(
q

2

)

·
[
1

2

(
q

2

)

− 1
2

(
q − 2
2

)

− 1
2

]

=

(
q

2

)

·
[
q(q − 1)
4

− (q − 2)(q − 3)
4

− 1
2

]

=

(
q

2

)

· (q − 2) .

Putting this together with Equation (23) we have

SN <

(
q

2

)

· q ·
[
1

d3
·∑r

i=1d
3
i

]

. (24)

To upper bound the sum of Equation (24), we view d1, . . . , dr as variables and consider the problem
of maximizing d3

1+ · · ·+ d3
r subject to the constraint

∑r
i=1 d

2
i = d2 · r−µ(h). The maximum occurs

when d1 = d · r−µ(h)/2 and di = 0 for i = 2, . . . , r, meaning that
∑r

i=1d
3
i ≤ d3r−3µ(h)/2 .

Returning to Equation (24) with this information we get

SN <

(
q

2

)

· q ·
[
1

d3
·∑r

i=1d
3
i

]

≤
(
q

2

)

· q · 1
d3
· d3r−3µ(h)/2 =

(
q

2

)

· q · r−3µ(h)/2 .

We now use the assumption made in Equation (7), and finally use Lemma 3.3, to get

SN <

(
q

2

)

· α ·
(

1− r

d

)

· rµ(h)/2 · r−3µ(h)/2

≤
(
q

2

)

· α ·
(

1− r

d

)

r−µ(h) ≤
(
q

2

)

· α · p .

This proves Equation (22) and thus concludes the proof of Theorem 4.1.

4.2 Proof of Theorem 4.4

We begin by proving the lower bound. Let the random variable Y denote the number of trials to
collision. Let C(q) denote the probability of finding a collision for h in q ≥ 2 trials of the birthday
attack in Figure 1, and let D(q) denote the probability of finding the first collision on the q-th trial.

13

Let Q = rµ(h)/2. ¿From the definition of Y :

E [Y] =
∞∑

x=1

x ·D(x) ≥ Q ·
∞∑

x=Q

D(x) = Q · (1− C(Q− 1)) .

We claim that

C(Q− 1) < 1

2
. (25)

It follows that

E [Y] ≥ Q · (1/2) ≥ (1/2) · rµ(h)/2 ,

as desired. We now justify Equation (25). From Equation (8) of Corollary 4.2 we know that

C(Q− 1) ≤
(
Q− 1
2

)

· 1

rµ(h)
=
1

2
·
(

(Q− 1)2 − (Q− 1)
)

· 1

rµ(h)
.

Since Q = rµ(h)/2 ≥ 2 by assumption,
(Q− 1)2 − (Q− 1) = Q2 − 3 ·Q+ 2 < Q2 = rµ(h)

and

C(Q− 1) <
1

2
· rµ(h) · 1

rµ(h)
=
1

2

as desired
For the upper bound, we must be careful since there is an upper restrictions on q in Equation (9)

and Equation (6). Fix α = (2
√
7− 4)/3 and q = (α/2) · rµ(h)/2. First note that

q =
α

2
· rµ(h)/2 ≤ α ·

(

1− r

d

)

· rµ(h)/2

since we assume that d ≥ 2r and therefore that 1 − r/d ≥ 1/2. This means that we can use
Theorem 4.1 with α and q defined as above. Combining Theorem 4.1 with Lemma 3.3 and the as-
sumptions that d ≥ 2r and q = (α/2)·rµ(h)/2 ≥ 2, we have (see also the derivation of Equation (11))

C(q) ≥
(

1− α2

4
− α

)

·
(
q

2

)

· 1
2
· 1

rµ(h)

≥
(

1− α2

4
− α

)

· q2 · 1
8
· 1

rµ(h)
.

Replacing q with (α/2) · rµ(h)/2 we get

C(q) ≥
(

1− α2

4
− α

)

·
(α

2
· rµ(h)/2

)2
· 1
8
· 1

rµ(h)

=
1

32
·
(

α2 − α4

4
− α3

)

. (26)

Now consider the following experiment that repeatedly runs the birthday attack, using q = (α/2) ·
rµ(h)/2 trials, until a collision is found:

14

For j = 1, 2, . . . do
For i = 1, . . . , q do

Pick xq(j−1)+i at random from the domain of h

yq(j−1)+i ← h(xq(j−1)+i)

If ∃k such that q(j − 1) < k < q(j − 1) + i and yq(j−1)+i = yk but xq(j−1)+i 6= xk then

return xq(j−1)+i, xk // collision found in this block of q trials

EndIf
EndFor

EndFor

Let the random variable A denote the number of trials to success in the above experiment. We
claim that

E [Y] ≤ E [A] (27)

and

E [A] ≤ q

C(q)
, (28)

and combining with Equation (26), it follows that

E [Y] ≤ q

C(q)
≤ (α/2) · rµ(h)/2

(1/32) · (α2 − (α4/4)− α3)
< 72 · rµ(h)/2 ,

giving the upper bound in the theorem statement.
To prove Equation (27) it is sufficient to note that, for any random tape T ,

Y (T) ≤ A(T)

since any collision in the above experiment is immediately a collision for the birthday attack in
Figure 1.

To prove Equation (28), consider each inner loop of the above experiment an independent
Bernoulli trial, and let Z denote the expected number of Bernoulli trials (inner loop executions) to
collision. Since each inner loop has a success probability C(q), standard results tell us that

E [Z] ≤ 1

C(q)
. (29)

Let F (i) denote the probability that the first collision in the above experiment occurs on the i-th
trial. Let G(j) denote the probability that the first collision is found in the j-th execution of the
inner loop in the above experiment. Then

E [A] =
∞∑

i=1

i · F (i)

=
∞∑

j=1

q
∑

i=1

(q · (j − 1) + i) · F (q · (j − 1) + i)

≤ q ·
∞∑

j=1

(

j ·
q
∑

i=1

F (q · (j − 1) + i)

)

Since, by the definition of G(j), for any j ≥ 1
q
∑

i=1

F (q · (j − 1) + i) = G(j) ,

15

Function H(M)
Break M into b-bit blocks M1‖ · · · ‖Mn

Mn+1 ← 〈n〉b ; C0 ← 0c

For i = 1, . . . , n+ 1 do Ci ← H(Mi‖Ci−1) EndFor
Return Cn+1

Figure 2: Hash function H: Db → {0, 1}c obtained via the MD transform applied to compression
function H: {0, 1}b+c → {0, 1}c.

it follows that

E [A] ≤ q ·
∞∑

j=1

j ·G(j) = q ·E [Z] . (30)

Combining Equation (29) with Equation (30) yields Equation (28), completing the proof.

5 Does the MD transform preserve balance?

We consider the following popular paradigm for the construction of hash functions. First build a
compression function H: {0, 1}b+c → {0, 1}c, where b ≥ 1 is called the block-length and c ≥ 1 is
called the chaining-length. Then transform H into a hash function H: Db → {0, 1}c, where

Db = {M ∈ {0, 1}∗ : |M | = nb for some 1 ≤ n < 2b } ,
via the Merkle-Damg̊ard (MD) [4, 1] transform depicted in Figure 2. (In this description and
below, we let 〈i〉b denote the representation of integer i as a string of length exactly b bits for
i = 0, . . . , 2b − 1.) In particular, modulo details, this is the paradigm used in the design of popular
hash functions including MD5 [6], SHA-1 [5] and RIPEMD-160 [2].

For the considerations in this section, we will focus on the restriction of H to strings of some
particular length. For any integer 1 ≤ n < 2b (the number of blocks) we let Hn: Db,n → {0, 1}c
denote the restriction of H to the domain Db,n, defined as the set of all strings in Db that have
length exactly nb bits.

Our results lead us to desire that Hn has high balance for all practical values of n. Designers
could certainly try to ensure that the compression function is regular or has high balance, but to be
assured that Hn has high balance it would need to be the case that the MD transform is “balance
preserving.” Unfortunately, the following shows that this is not true. It presents an example of a
compression function H which has high balance (in fact is regular, with balance one) but Hn has
low balance (in fact, balance zero) even for n = 2.

Proposition 5.1 Let b, c be positive integers. There exists a compression function H: {0, 1}b+c →
{0, 1}c such that H is regular (µ(H) = 1) but H2 is a constant function (µ(H2) = 0).

Proof of Proposition 5.1: Let H: {0, 1}b+c → {0, 1}c map B‖C to C for all b-bit strings B and
c-bit strings C. Clearly µ(H) = 1 since each point in {0, 1}c has exactly 2b pre-images under H.
Because the initial vector (IV) in the MD transform is the constant C0 = 0

c, and by the definition
of H, the function H2 maps all inputs to 0

c.

This example might be viewed as contrived particularly because the compression function H above
is not collision-resistant (although it is very resistant to birthday attacks), but in fact it still serves

16

to illustrate an important point. The popularity of the MD paradigm arises from the fact that it
provably preserves collision-resistance [4, 1]. However, the above shows that it does not provably
preserve balance. Even though Proposition 5.1 does not say that the transform will always be
poor at preserving balance, it says that we cannot count on the transform to preserve balance in
general. This means that simply ensuring high balance of the compression function is not a suitable
general design principle. (We also remark that there exist adversaries capable of finding collisions
for any unkeyed compression function, including the compression functions in MD5, SHA-1, and
RIPEMD-160, using exactly two trials. We just do not know what these adversaries are.)

Is there any other design principle whereby some properties of the compression function suffice to
ensure high balance of the hash function? Toward finding one we note that the behavior exhibited
by the function H2 in the proof of Proposition 5.1 arose because the initial vector (IV) of the
MD transform was C0 = 0c, and although H was regular, the restriction of H to inputs having
the last c bits 0 was not regular, and in fact was constant. Accordingly we consider requiring
regularity conditions not just on the compression function but on certain related functions as well.
If H: {0, 1}b+c → {0, 1}c then define H0: {0, 1}b → {0, 1}c via M 7→ H(M‖0c) for all M ∈ {0, 1}b,
and for n ≥ 1 define Hn: {0, 1}c → {0, 1}c via M 7→ H(〈n〉b‖M) for all M ∈ {0, 1}c. The following
shows that if H,H0, Hn are all regular, meaning have balance one, then Hn is also regular.

Proposition 5.2 Let b, c, n be positive integers. Let H: {0, 1}b+c → {0, 1}c and let H0, Hn be as
above. Assume H, H0, and Hn are all regular. Then Hn is regular.

Proof of Proposition 5.2: The computation of Hn can be written as

Function Hn(M)
Break M into b-bit blocks M1‖ · · · ‖Mn ; C1 ← H0(M1)
For i = 2, . . . , n do Ci ← H(Mi‖Ci−1) EndFor
Cn+1 ← Hn(Cn) ; Return Cn+1

It is not hard to check that the assumed regularity of H0, H and Hn imply the regularity of Hn.

Unfortunately Proposition 5.2 is not “robust.” Although Hn has balance one if H,H0, Hn have
balance one, it turns out that if H,H0, Hn have balance that is high but not quite one, we are
not assured that Hn has high balance. Proposition 5.3 shows that even a slight deviation from the
maximum balance of one in H,H0, Hn can be amplified, and result in Hn having very low balance.

Proposition 5.3 Let b, c be integers, b ≥ c ≥ 2, and let n ≥ c. Then there exists a compression
function H: {0, 1}b+c → {0, 1}c such that µ(H) ≥ 1 − 1/c, µ(H0) = 1, and µ(Hn) ≥ 1 − 2/c, but
µ(Hn) ≤ 1/c, where the functions H0, Hn are defined as above.

Proof of Proposition 5.3: Let H: {0, 1}b+c → {0, 1}c be defined as

H(B‖C) =
{

〈B〉c C = 0c

〈C ¿ 1〉c⊕(0c−11) C 6= 0c

where B is b-bits long, C is c-bits long, 〈B〉c is the right-most c bits of B, and 〈C ¿ 1〉c is the
left shift of C by one bit (ie. 〈C ¿ 1〉c is a c-bit string, the left-most c − 1 bits of which are the
right-most c− 1 bits of C, and the right-most bit of which is 0).
Clearly µ(H0) = 1. To see that µ(H) ≥ 1 − 1/c we note that there are 2c−1 points X ∈ {0, 1}c
with a right-most bit of 0 and each of these points has 2b−c pre-images (corresponding to the set

17

{0, 1}b−cX0c). There is one point of the form 0c−11 and it has 2b+2b−c pre-images (corresponding
to the sets {0, 1}b10c−1 and {0, 1}b−c0c−110c). There are 2c−1 − 1 additional points Y ∈ {0, 1}c
with a right-most bit of 1 and each of these points has 2b+1 + 2b−c pre-images (corresponding to
the sets {0, 1}b+1Y ′ and {0, 1}b−cY 0c, where Y ′ is the left-most c− 1 bits of Y). Let

S = 2c−1(2b−c)2 + (2b + 2b−c)2 + (2c−1 − 1)(2b+1 + 2b−c)2

≤ 22b+c+1 .

It follows that

µ(H) = log2c

[
22b+2c

S

]

≥ log2c

[
22b+2c

22b+c+1

]

=
c− 1
c

.

We lower bound µ(Hn) as follows. Let R =
∑

C∈{0,1}c d
2
C , where d

2
C is the number of pre-images

of C ∈ {0, 1}c under Hn. We divide the analysis into three cases. In the first case we assume that
the right-most bit of 〈n〉b is 0. This implies that there will be one point in {0, 1}c−10 with one
pre-image and all the remaining points in {0, 1}c−10 will have no pre-image. Of the 2c−1 points in
{0, 1}c−11, all but point 0c−11 will have two pre-images, and 0c−11 will have one pre-image. Thus
R < 2c+1.

Let 〈n〉c be the right-most c bits of 〈n〉b. In the second case we assume that the right-most bit
of 〈n〉b is 1 and and that 〈n〉c 6= 0c−11. All the points in {0, 1}c−10 have no pre-images, 2c−1 − 2
points in {0, 1}c−11 have two pre-images, the point 〈n〉c has three pre-images, and the point 0c−11
has one pre-image. In this case R < 2c+2. In the final case we assume that the right-most bit of
〈n〉b is 1 and that 〈n〉c = 0c−11. All the points in {0, 1}c−10 have no pre-images and all the points
in {0, 1}c−11 have two pre-images. In this case R = 2c+1. These results imply that

µ(Hn) = log2c

[
22c

R

]

≥ log2c

[
22c

2c+2

]

=
c− 2
c

.

Let us now consider the balance of Hn. Let M = M1‖ · · · ‖Mn ∈ {0, 1}bn be a string and let
|Mi| = b. Then if M1 6∈ {0, 1}b−c0c, we have that Hn(M) = 1

c; i.e. |H−1
n (1

c)| ≥ 2bn − 2bn−c. This
allows us to upper bound µ(Hn) as follows:

µ(Hn) ≤ log2c

[
(2bn)2

(2bn − 2bn−c)2
]

≤ log2c

[
22bn

22bn − 22bn−c+1

]

Using the assumption that c ≥ 2,

µ(Hn) ≤ log2c

[
22bn

22bn−1

]

=
1

c

as desired.

As indicated by Proposition 4.5, a random compression function will have expected balance that
is high but not quite 1. We expect that practical compression functions are in the same boat.
Furthermore it seems harder to build compression functions that have balance exactly one than
close to one. So the lack of robustness of Proposition 5.2, as exhibited by Proposition 5.3, means
that Proposition 5.2 is of limited use.

The consequence of the results in this section is that we are unable to recommend any design
principle that, to ensure high balance, focuses solely on establishing properties of the compression
function. It seems one is forced to look directly at the hash function. We endeavor next to do this
for SHA-1.

18

6 Experiments on SHA-1

Let SHAn: {0, 1}n → {0, 1}160 denote the restriction of SHA-1 to inputs of length n < 264. Because
SHA-1’s range is {0, 1}160, it is commonly believed that the expected number of trials necessary to
find a collision for SHAn is approximately 2

80. As Theorem 4.4 shows, however, this is only true if
the balance of SHAn is one or close to one for all practical values of n. If the balance is not close
to one, then we expect to be able to find collisions using less work. It therefore seems desirable to
calculate (or approximate) the balance of SHAn for reasonable values of n (eg. n = 256). A direct
computation of µ(SHAn) based on Definition 3.1 is however infeasible given the size of the domain
and range of SHAn. Accordingly we focus on a more achievable goal. We look at properties of
SHAn that one can reasonably test and whose absence might indicate that SHAn does not have
high balance. Our experiments are not meant to be exhaustive, but rather representative of the
types of feasible experiments one can perform with SHA-1.

Let SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 denote the function that returns the t1-th through t2-th
output bits of SHAn. We ask what exactly is the balance of SHA32;t1...t2 when t2−t1+1 ∈ {8, 16, 24}.
And we ask whether the functions SHAm;t1...t2 , m ∈ {160, 256, 1024, 2048}, appear regular when
t2− t1+1 ∈ {8, 16, 24}. (Note that SHA256 is SHA-1 restricted to the domain {0, 1}256, not NIST’s
SHA-256 hash algorithm.)

Balance of SHA32;t1...t2. We calculate the balance of SHA32;t1...t2 for all pairs t1, t2 such that
t2 − t1 + 1 ∈ {8, 16, 24} and t1 begins on a byte boundary (ie. we look at all 1-, 2-, and 3-byte
portions of the SHA-1 output). The calculated values are shown below. These values indicate that,
for the specified values of t1, t2, the balance of SHA32;t1...t2 is high.

t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
µ(SHA32;1...8) = 0.99999998893 µ(SHA32;1...16) = 0.999998623 µ(SHA32;1...24) = 0.99976567
µ(SHA32;9...16) = 0.99999998941 µ(SHA32;9...24) = 0.999998604 µ(SHA32;9...32) = 0.99976548
µ(SHA32;17...24) = 0.99999998972 µ(SHA32;17...32) = 0.999998620 µ(SHA32;17...40) = 0.99976553
µ(SHA32;25...32) = 0.99999998884 µ(SHA32;25...40) = 0.999998627 µ(SHA32;25...48) = 0.99976561
µ(SHA32;33...40) = 0.99999999079 µ(SHA32;33...48) = 0.999998641 µ(SHA32;33...56) = 0.99976582
µ(SHA32;41...48) = 0.99999998909 µ(SHA32;41...56) = 0.999998620 µ(SHA32;41...64) = 0.99976559
µ(SHA32;49...56) = 0.99999998912 µ(SHA32;49...64) = 0.999998626 µ(SHA32;49...72) = 0.99976558
µ(SHA32;57...64) = 0.99999999083 µ(SHA32;57...72) = 0.999998625 µ(SHA32;57...80) = 0.99976581
µ(SHA32;65...72) = 0.99999998923 µ(SHA32;65...80) = 0.999998627 µ(SHA32;65...88) = 0.99976575
µ(SHA32;73...80) = 0.99999999083 µ(SHA32;73...88) = 0.999998637 µ(SHA32;73...96) = 0.99976577
µ(SHA32;81...88) = 0.99999998925 µ(SHA32;81...96) = 0.999998622 µ(SHA32;81...104) = 0.99976558
µ(SHA32;89...96) = 0.99999998987 µ(SHA32;89...104) = 0.999998617 µ(SHA32;89...112) = 0.99976554
µ(SHA32;97...104) = 0.99999998862 µ(SHA32;97...112) = 0.999998624 µ(SHA32;97...120) = 0.99976567
µ(SHA32;105...112) = 0.99999998826 µ(SHA32;105...120) = 0.999998626 µ(SHA32;105...128) = 0.99976562
µ(SHA32;113...120) = 0.99999998959 µ(SHA32;113...128) = 0.999998616 µ(SHA32;113...136) = 0.99976566
µ(SHA32;121...128) = 0.99999998999 µ(SHA32;121...136) = 0.999998634 µ(SHA32;121...144) = 0.99976556
µ(SHA32;129...136) = 0.99999999052 µ(SHA32;129...144) = 0.999998636 µ(SHA32;129...152) = 0.99976563
µ(SHA32;137...144) = 0.99999998916 µ(SHA32;137...152) = 0.999998615 µ(SHA32;137...160) = 0.99976554
µ(SHA32;145...152) = 0.99999998769 µ(SHA32;145...160) = 0.999998626
µ(SHA32;153...160) = 0.99999998993

These results do not imply that the functions SHAn;t1...t2 or SHAn, n > 32 and t1, t2 as before, are
regular. But it is encouraging that µ(SHA32;t1...t2) are high, and in fact very close to what one would

19

expect from a random function (cf. Proposition 4.5), since a small value for µ(SHA32;t1...t2) for any
of the specified t1, t2 pairs might indicate some unusual property of the SHA-1 hash function.

Experiments on SHA160, SHA256, SHA1024, and SHA2048. Let n ∈ {160, 256, 1024, 2048}.
Although we cannot calculate the balance of SHAn, we can compare the behavior of SHAn;t1...t2 ,
t2 − t1 + 1 ∈ {8, 16, 24}, on random inputs to what one would expect from a regular or random
function. There are several possible approaches to take. Knowing that the balance of SHAn;t1...t2

directly affects the expected number of trials to collision, the approach we take is to compute the
average, over 10000 runs, of the number of trials to collision in a birthday attack against SHAn;t1...t2 .

If the average number of trials to collision against SHAn;t1...t2 on random bits is approximately
the same as what one would expect from a regular function, it would support the view that SHAn

has high balance. However, a significant difference between the results for SHAn;t1...t2 on random
inputs and what one would expect from a regular function might indicate some unusual behavior
with SHA-1, and this unusual behavior would deserve further investigation. Our experimental
results, shown below, are consistent with SHAn having high balance. However, we again point out
that these tests were only designed to uncover gross anomalies and are not exhaustive.

The following table presents the results of the experiments for the case that t2 − t1 + 1 = 8.
The values in the table compare favorably with 20.767, which is the average, over 10000 trials,
of the number of trials to get a collision when selecting directly from {0, 1}8. (Recall that, from
Proposition 4.5 we know that the difference between regular and random functions with these
domains and ranges is small, and that the affects of domain collisions on the attack in Figure 1 can
safely be ignored.)

n = 160 n = 256 n = 1024 n = 2048

SHAn;1...8 20.902 20.703 20.742 20.619
SHAn;9...16 20.659 20.531 20.854 20.700
SHAn;17...24 20.822 20.649 20.720 20.817
SHAn;25...32 20.921 20.573 20.752 20.842
SHAn;33...40 20.570 20.625 20.696 20.584
SHAn;41...48 20.619 20.845 20.773 20.718
SHAn;49...56 20.671 20.728 20.785 20.844
SHAn;57...64 20.747 20.872 20.728 20.884
SHAn;65...72 20.858 20.932 20.681 20.753
SHAn;73...80 20.645 20.828 20.713 20.755
SHAn;81...88 20.695 20.799 20.581 20.652
SHAn;89...96 20.588 20.898 20.841 20.800
SHAn;97...104 20.692 20.541 20.727 20.704
SHAn;105...112 20.651 20.620 20.641 20.753
SHAn;113...120 20.750 20.872 20.690 20.713
SHAn;121...128 20.587 20.742 20.678 20.558
SHAn;129...136 20.700 20.772 20.767 21.008
SHAn;137...144 20.818 20.564 20.758 20.644
SHAn;145...152 20.637 20.731 20.781 20.806
SHAn;153...160 20.729 20.680 20.707 20.671

The following table presents the results of the experiments for the case that t2 − t1 + 1 = 16. The

20

values in the table compare favorably with 322.022, which is the average, over 10000 trials, of the
number of trials to get a collision when selecting directly from {0, 1}16.

n = 160 n = 256 n = 1024 n = 2048

SHAn;1...16 322.520 321.775 323.075 320.633
SHAn;9...24 324.466 322.279 320.699 319.976
SHAn;17...32 322.325 320.855 320.906 318.821
SHAn;25...40 321.452 322.776 322.991 321.710
SHAn;33...48 321.195 321.599 321.361 321.740
SHAn;41...56 321.271 317.590 324.250 324.042
SHAn;49...64 321.303 322.510 324.363 321.359
SHAn;57...72 324.354 324.871 320.952 318.812
SHAn;65...80 323.541 321.954 321.311 319.864
SHAn;73...88 319.579 324.532 321.852 321.341
SHAn;81...96 320.464 319.972 317.707 321.097
SHAn;89...104 321.945 323.850 321.069 319.027
SHAn;97...112 322.278 322.481 319.597 321.459
SHAn;105...120 322.913 321.542 319.146 323.368
SHAn;113...128 319.987 323.135 323.556 322.418
SHAn;121...136 325.424 323.744 320.563 318.487
SHAn;129...144 319.952 322.051 320.358 322.981
SHAn;137...152 323.541 320.649 320.737 322.697
SHAn;145...160 324.209 320.841 322.237 318.131

The following table presents the results of the experiments for the case that t2 − t1 + 1 = 24. The
values in the table compare favorably with 5115.792, which is the average, over 10000 trials, of the
number of trials to get a collision when selecting directly from {0, 1}24.

n = 160 n = 256 n = 1024 n = 2048

SHAn;1...24 5127.745 5153.495 5154.322 5068.701
SHAn;9...32 5197.151 5118.969 5131.849 5095.946
SHAn;17...40 5138.006 5058.419 5152.759 5140.513
SHAn;25...48 5111.721 5141.191 5145.636 5144.499
SHAn;33...56 5091.043 5109.205 5091.709 5151.495
SHAn;41...64 5124.141 5091.645 5213.522 5100.002
SHAn;49...72 5107.788 5158.789 5102.141 5117.858
SHAn;57...80 5098.596 5114.334 5110.574 5104.240
SHAn;65...88 5142.429 5126.335 5155.340 5125.409
SHAn;73...96 5152.197 5149.759 5150.777 5137.483
SHAn;81...104 5128.786 5141.567 5112.861 5159.055
SHAn;89...112 5123.421 5107.850 5086.567 5120.090
SHAn;97...120 5170.419 5147.376 5156.535 5176.335
SHAn;105...128 5078.523 5117.745 5095.737 5159.911
SHAn;113...136 5119.295 5178.102 5159.654 5152.766
SHAn;121...144 5083.147 5127.695 5133.270 5110.142

21

n = 160 n = 256 n = 1024 n = 2048

SHAn;129...152 5139.078 5110.979 5164.754 5137.829
SHAn;137...160 5114.577 5137.686 5122.160 5113.044

References

[1] I. Damg̊ard. A design principle for hash functions. Advances in Cryptology – CRYPTO ’89,
Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[2] H. Dobbertin, A. Bosselaers and B. Preneel. RIPEMD-160, a strengthened version
of RIPEMD. Fast Software Encryption ’96, Lecture Notes in Computer Science Vol. 1039,
D. Gollmann ed., Springer-Verlag, 1996.

[3] A. Menezes, P. van Oorschot and S. Vanstone. Handbook of applied cryptography.
CRC Press, 1997.

[4] R. Merkle. One way hash functions and DES. Advances in Cryptology – CRYPTO ’89,
Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[5] National Institute of Standards. FIPS 180-2, Secure hash standard. August 1, 2000.

[6] R. Rivest. The MD5 message-digest algorithm. IETF RFC 1321, April 1992.

[7] D. Stinson. Cryptography theory and practice, 1st Edition. CRC Press, 1995.

[8] P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications,
Journal of Cryptology 12(1), Jan 1999, 1–28.

[9] G. Yuval. How to swindle Rabin. Cryptologia (3), 1979, 187–190.

22

