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Abstract

Textbooks tell us that a birthday attack on a hash function h with range size r requires r1/2

trials (hash computations) to find a collision. But this is quite misleading, being true only if h
is regular, meaning all points in the range have the same number of pre-images under h; if h
is not regular, fewer trials may be required. But how much fewer? This paper addresses this
question by introducing a measure of the “amount of regularity” of a hash function that we call
its balance, and then providing estimates of the success-rate of the birthday attack, and the
expected number of trials to find a collision, as a function of the balance of the hash function
being attacked. In particular, we will see that the number of trials can be significantly less than
r1/2 for hash functions of low balance. This leads us to examine popular design principles, such
as the MD (Merkle-Damg̊ard) transform, from the point of view of balance preservation, and to
mount experiments to determine the balance of popular hash functions.
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1 Introduction

Let h: D → R be a function, where the domain D and range R are finite sets. We say that h
is a hash function if |D| > |R|. A collision for h is a pair x, y of distinct points in D for which
h(x) = h(y). Cryptographers are interested in hash functions that are collision-resistant, meaning
it is computationally infeasible to find a collision. (Such functions have numerous uses, for example
for digital signatures.) The best known general collision-finding attack is the so-called birthday
attack. In this paper, we assess the performance and success rate of this attack.

The birthday attack. In a birthday attack, we pick points x1, . . . , xq from D and compute
yi = h(xi) for i = 1, . . . , q. The attack is successful if there is a pair i, j such that xi, xj form a
collision for h. We call q the number of trials.

There are several variants of this attack which differ in the way the points x1, . . . , xq are chosen
(cf. [9, 15, 18, 20]). The one we consider is that they are chosen independently at random from D.

Picking random points from the domain may be prohibitive in the case of a hash function like
SHA-1 [11] whose domain is the set of all strings of length at most 264. In such cases we would
simply attack the function h = SHAn: {0, 1}n → {0, 1}160, the restriction of SHA-1 to inputs of
length n < 264, for some suitable value of n, say n = 161. This works because a collision for SHAn

is also a collision for SHA-1. This is to be understood henecforth in discussing attacks on hash
functions like SHA-1.

We let Ch(q) be the probability that the birthday attack on hash function h: D → R succeeds
in finding a collision in q trials. We are interested in how this function grows with q.

Current beliefs. It is generally stated that

Ch(q) ≈
(

q

2

)

· 1
r

, (1)

where r = |R| is the size of the range of h and q ≤ O(
√

r). This implies that a collision is expected
in about r1/2 trials. In particular, it predicts that collisions in a hash function with output length
m bits would take about 2m/2 trials to find. This estimate is the basis for the choice of output
length m, which is typically made just large enough to make 2m/2 trials infeasible.

How is Equation (1) obtained? The apparent reasoning is to view the range points y1, . . . , yq

computed in the attack as being uniformly and independently distributed in R. Then the standard
birthday phenomenon says that the probability that there exist distinct i, j such that yi = yj is,
up to constant factors,

(
q
2

)
/r.

However, this argument is actually not correct, because the point h(x), for x drawn at random
from D, is not necessarily uniformly distributed in R. Rather, the probability that h(x) equals a
particular range point y is |h−1(y)/|D|, where h−1(y) is the set of all pre-images of y under h. So
the range points computed in the attack are uniformly distributed over R if and only if h is regular,
meaning every range point has the same number of pre-images under h.1

If h is not regular, then Ch(q) is actually larger than
(
q
2

)
/r, meaning that the attack would find

a collision in fewer than the expected r1/2 trials. But how much fewer? Is there cause for concern?

This paper. To help answer questions such as those posed above, this paper begins by introducing
a measure of the “amount of regularity” that we call the balance of a hash function. This is a real
number between 0 and 1, with balance 1 indicating that the hash function is regular and balance 0
that it is a constant function, meaning as irregular as can be. We then provide quantitative estimates
of the success-rate of the birthday attack as a function of the balance of the hash function being

1 We refer the reader to Section 4 for more details.
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attacked. This yields a tool that has a variety of uses, and lends insight into various aspects of hash
function design and parameter choices. For example, by analytically or experimentally estimating
the balance of a particular hash function, we can tell how quickly the birthday attack on this hash
function will succeed. Let us now look at all this in more detail.

The balance measure. View the range R of hash function h: D → R as consisting of r ≥ 2
points R1, . . . , Rr. For i = 1, . . . , r we let h−1(Ri) be the pre-image of Ri under h, meaning the set
of all x ∈ D such that h(x) = Ri, and let di = |h−1(Ri)| be the size of the pre-image of Ri under
h. We let d = |D| be the size of the domain. We define the balance of h as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]

,

where logr(·) denotes the logarithm in base r. Proposition 5.2 says that the maximum balance of a
hash function is 1 and is achieved when h is regular (meaning di = d/r for all i), while the minimum
balance is 0 and is achieved when h is a constant function (meaning di = d for some i and dj = 0
for all j 6= i). Thus regular functions are well-balanced and constant functions are poorly balanced,
but there are lots of possibilities in between these extremes.

Results. Theorem 6.1 and Corollary 6.2 say that, up to constant factors,2

Ch(q) =

(
q

2

)

· 1

rµ(h)
. (2)

Thus, a collision is expected in about rµ(h)/2 trials. This indicates that the performance of the
birthday attack can be characterized, quite simply and accurately, via the balance of the hash
function h being attacked.

Note that when µ(h) = 1 (meaning, h is regular) then Equation (2) agrees with Equation (1).
At the other extreme, when µ(h) = 0, meaning h is a constant function, the attack finds collisions
in O(1) trials. The value of the general result of Equation (2) is that it shows the full spectrum
in between the extremes of regular and constant functions. For example the birthday attack on a
hash function of balance µ(h) = 1/2 will find a collision in about r1/4 trials, which is significantly
less than r1/2.

Suppose we wish to design a hash function h for which the birthday attack is expected to take
280 trials. A consequence of our results above is that we must have rµ(h)/2 ≈ 280, meaning must
choose the output-length of the hash function to be about 160/µ(h) bits. Thus to minimize output-
length we must maximize balance, meaning we would usually want to design hash functions that
are almost regular (have balance close to one).

Above we said the output-length of the hash function should be “about” 160/µ(h) bits. The
inexactitude here arises from the hidden constants underlying Equation (2), and leads us to another
point. Our results provide both upper and lower bounds on Ch(q) that are tight in the sense of
being within a constant factor of each other. We claim that it is important to have both upper
and lower bounds, and the closer to each other the better, for this enables us to make calcluations
like the one we just did with precision, choosing output lengths for hash functions large enough to
prevent attacks without incurring costs from being larger than strictly necessary.

We clarify that the attacker does not need to know the balance of the hash function in order to
mount the attack. (The attack itself remains the birthday attack outlined above.)

Random hash functions versus regular ones. It is commonly perceived that an “ideal”
hash function is a random one. Let us consider the thought experiment of picking h at random

2 This assumes d ≥ 2r and q ≤ O(rµ(h)/2).
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from the set of all functions mapping D to R, and then mounting the birthday attack. We let
C $

D,R(q) denote the probability of success. It is interesting to note that from the point of view
of security against birthday attacks, regular functions actually fare (slightly) better than random
ones. This is illustrated by Proposition 7.4 which says that if h: D → R is regular and d ≥ 2r then
C $

D,R(q) > (8/5) · Ch(q).
We clarify that we are not saying that random functions fare poorly against the birthday at-

tack: in fact C $
D,R(q) ≈

(
q
2

)
/r (cf. [16, 7] and Theorem 7.3). Rather we are noting, as a mathematical

curiosity and because it might seem counter-intuitive, that regular functions actually fare even bet-
ter. This is explained and discussed more in Section 7. We also clarify that we are not critiquing
the design principle of attempting to make hash functions have random behavior, for the gap in
performance of the birthday attack between random and regular functions is tiny, while random
behavior is crucial to obtain protection against other classes of attacks.

Does the MD transform preserve balance? Given the above results we would like to be
building hash functions that have high balance. We look at some elements of current design to see
how well they reflect this requirement.

Hash functions like MD5 [12], SHA-1 [11] and RIPEMD-160 [8] are designed by applying the
Merkle-Damg̊ard (MD) [10, 6] transform to an underlying compression function. Designers could
certainly try to ensure that the compression function is regular or has high balance, but this turns
out not to be enough to ensure high balance of the hash function because Proposition 8.1 shows
that the MD transform does not preserve regularity or maintain balance. (We give an example of a
compression function that has balance one, yet the hash function resulting from the MD transform
applied to this compression function has balance zero.)

Proposition 8.2 is more positive, showing that regularity not only of the compression function
but also of certain associated functions does suffice to guarantee regularity of the hash function. But
Proposition 8.3 notes that if the compression and associated functions have even minor deviations
from regularity, meaning balance that is high but not equal to one, then the MD transform can
amplify the imbalance and result in a hash function with very low balance.

Given that a random compression function has balance close to but not equal to one, and
we expect practical compression functions to be similar, our final conclusion is that we cannot
recommend, as a general design principle, attempting to ensure high balance of a hash function by
only establishing some properties of the compression function and hoping the MD transform does
the rest.

We stress that none of this implies any weaknesses in specific existing hash functions such as
those mentioned above. But it does indicate a weakness in the MD transform based design principle
from the point of view of ensuring high balance, and means that if we want to ensure or verify
high balance of a hash function we might be forced to analyze it directly rather than being able to
concentrate on the possibly simpler task of analyzing the compression function. We turn next to
some preliminary experimental work in this vein with SHA-1.

Experimenting with SHA-1. The hash function SHA-1 was designed with the goal that the
birthday attack threshold is about 280 trials. As per the above, this goal would only be met if the
balance of the hash function was close to one. More precisely, letting SHAn: {0, 1}n → {0, 1}160
denote the restriction of SHA-1 to inputs of length n < 264, we would like to know whether SHAn

has balance close to one for practical values of n, since otherwise a birthday attack on SHAn will
find a collision for SHA-1 in less than 280 trials.

The balance of SHAn is however hard to compute, and even to estimate experimentally, when
n is large. Section 11 however reports on some experiments that compute µ(SHA32;t1...t2) for small
values of t2 − t1, where SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 is the function which returns the t1-th

4



through t2-th output bits of SHAn. The computed values for µ(SHA32;t1...t2) are extremely close
to what one would expect from a random function with the same domain and range. Toward
estimating the balance of SHAn for larger values of n, Section 11 reports on some experiments on
SHAn;t1...t2 for larger n. Broadly speaking, the experiments indicate that these functions have high
balance. This can be taken as some indication that SHAn also has high balance, meaning SHA-1
is well-designed from the balance point of view.

Remarks. We clarify that while high balance is a necessary requirement for a collision-resistant
hash function, it is certainly not sufficient. It is easy to give examples of high-balance hash functions
for which it easy to find collisions. High balance is just one of many design criteria that designers
should consider.

We also clarify that this paper does not uncover any weaknesses, or demonstrate improved
performance of birthday attacks, on any specific, existing hash functions such as those mentioned
above. However it provides analytical tools that contribute toward the goal of better understanding
the security of existing hash functions or building new ones, and suggests a need to put more effort
into estimating the balance of existing hash functions to see whether weaknesses exist.

What textbooks say. It is informative to briefly survey what textbooks say about the birthday
attack on hash functions.

Stinson, in the first edition of his book [15], shows that Equation (1) is true under the assumption
that h is regular. There is no information regarding the case where h is not regular.

In the second edition of his book [16], Stinson drops this result in favor of an analysis in the
random oracle model [4], showing that C $

D,R(q) ≈
(
q
2

)
/r. (Our Theorem 7.3 is a more precise version

of this statement, with bounds rather than approximate equalities.) Delfs and Knebl [7] also assume
that h is random. The weakness of these results is that an analysis for random functions ultimately
provides no real information or guarantees about what happens with a specific real function. (We
expand on this in Section 4.)

Buchmann’s discussion of the attack says: “We assume that strings from the domain can be
chosen such that the distribution on the corresponding hash values is the uniform distribution”
[5]. Under this assumption he correctly argues Equation (1), but it is unclear how to realize this
assumption unless h is regular.

Stallings [14, Section 11.5] says “the strength of a hash function against brute-force attacks
depends solely on the length of the hash code produced by the algorithm.” This is wrong. (The
strength does depend on the length of the hash code, but not solely on this). Schneier [13, Section
7.4] says that to prevent birthday attacks one should choose the output length m large enough that
2m/2 trials is infeasible, without giving any indication that this is not true in general but only if
the hash function is random or regular. Later [13, Section 18.1] he says: “Most practical one-way
hash functions produce 128-bit hashes. This forces anyone attempting the birthday attack to hash
264 random documents to find two that hash to the same value.” This is wrong in that the mere
fact that the output-length is 128b its does not force the attacker to use 264 trials. (That is only
true if h is regular or random.)

2 Notation and Terminology

We let N = {1, 2, 3, . . .} denote the set of positive integers. If n is a non-negative integer then we
let [n] = {1, . . . , n}. If S is a set then |S| denotes its size, and

s
$← S

5



For i = 1, . . . , q do

xi
$← D ; yi ← h(xi)

If (∃j : j < i & yi = yj & xi 6= xj ) then return xi, xj EndIf

EndFor
Return ⊥

Figure 1: Birthday attack on a hash function h: D → R. The integer q ≥ 2 is the number of trials.
The attack either returns a collision for h, or the symbol ⊥ to indicate it did not find one. When
the highlighted text is omitted, the attack becomes one to find possibly trivial collisions rather
than collisions.

denotes the operation of picking a random element of S and denoting it by s.
We denote by h: D → R a function mapping domain D to range R, and throughout the paper

we assume that R has size at least two. We usually let d = |D| and r = |R|. We say that h
is a hash function if d > r. A collision for h is a pair x1, x2 of points in D such that x1 6= x2

but h(x1) = h(x2). A possibly trivial collision for h is a pair x1, x2 of points in D such that
h(x1) = h(x2). (That is, unlike for a collision, we do not require x1 6= x2). For any y ∈ R we let

h−1(y) = { x ∈ D : h(x) = y } .

We say that h is regular if |h−1(y)| = d/r for every y ∈ R.

3 The attack and associated metrics

The attack we consider is presented in Figure 1. It picks points x1, x2, . . . , xq independently at
random from the domain D of the given hash function h: D → R. If two of these points form a
collision for h they are returned, and if no collision is found the attack returns ⊥. (Variants of the
attack, that differ in the way the points x1, x2, . . . , xq are chosen, are discussed in Section 9.2). We
say that the attack was successful if it returns a collision. We refer to the integer q ≥ 2 as the
number of trials. We are interested in the following quantities associated to h via this attack.

Definition 3.1 Let h: D → R be a hash function. For any integer q ≥ 2 we let Ch(q) denote the
probability that the birthday attack of Figure 1 succeeds. For any real number c with 0 ≤ c < 1
we let

Qh(c) = min { q : Ch(q) ≥ c }

denote the minimum number of trials required for the probability of success to exceed c. We refer
to Ch as the collision probability function of h and to Qh as the collision threshold function of h.

To facilitate some later discussions it is useful to also introduce the following. Consider the birthday
attack of Figure 1 with the highlighted text omitted, and let C∗

h(q) denote the probability that this
attack is successful. (This is the probability that the attack finds a possibly trivial collision.) Then
let Q∗

h(p) denote the minimum value of q for which C∗
h(q) ≥ p.
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For i = 1, . . . , q do

yi
$← R

If (∃j : j < i & yi = yj) then return i, j EndIf
EndFor
Return ⊥

Figure 2: Experiment to find collisions in a set R by random sampling. The integer q ≥ 2 is the
number of trials. The experiment either returns two distinct indices i, j for which yi = yj , or ⊥ to
indicate it did not find such indices.

4 Approaches to the analysis of the birthday attack

Let us consider how the analysis of the birthday attack may be approached. We begin by reviewing
some information about the classical birthday problem.

The classical birthday problem. Let R be a set of size r that in our context is the range of the
hash function. Figure 2 depicts a simple sampling experiment in which we draw points y1, y2, . . . , yq

uniformly and independently at random from R and declare success if some two of them are equal.
Clearly the probability of success in this experiment is the probability of a collision in throwing q
balls randomly and independently into r bins. (A collision here means two different balls land in
the same bin.) We denote this value by Br(q), and let Pr(c) denote the minimum value of q for
which Br(q) ≥ c. It is well-known that

Br(q) = Θ(1) ·
(

q

2

)

· 1
r

and Pr(c) = Θ
(√

rc
)

, (3)

assuming q ≤ O(
√

r) and some appropriate upper bound on c. For precise bounds, see for example
[1].

Relation to hash functions. Conventional wisdom appears to be that Ch(q) = Br(q) and
Qh(c) = Pr(c) for any h: D → R, where r = |R|. This conclusion appears to arise by viewing
the points y1, . . . , yq computed in the birthday attack of Figure 1 as corresponding to the points
y1, . . . , yq in the sampling experiment of Figure 2. This view is however (in general) false, for two
reasons, as we now explain.

First, and most importantly, in Figure 2, the points y1, . . . , yq are uniformly distributed over R,
while in Figure 1, whether or not the points y1, . . . , yq are uniformly distributed over R depends on
h, in particular being true if and only if h is regular. To see why this is true, let R1, . . . , Rr denote
the points in R, and for each j ∈ [r] let

pj =
|h−1(Rj)|
|D| . (4)

This is the probability that h(x) = Rj if we choose x at random from D. Thus for each j ∈ [r] and
each i ∈ [q], when xi is drawn at random from D and yi is set to h(xi), we have Pr[yi = Rj ] = pj .
So y1, . . . , yq are uniformly distributed over R if and only if |h−1(R1)| = · · · = |h−1(Rr)|, or, in
other words, if and only if h is a regular function.

Second, the sampling experiment of Figure 2 is successful if yi = yj for some i 6= j, while
success in Figure 2 requires additionally that xi 6= xj . In other words, an analogy between the two
corresponds to seeking only possibly trivial collisions rather than collisions in the birthday attack.

7



This is less important than the first point, though, because if D is sufficiently larger than R, the
probability that some two of x1, . . . , xq are equal can be neglected.

The conclusion from the above is that if h is a regular function then C∗
h(q) = Br(q) and

Q∗
h(c) = Pr(c), and if D is sufficiently larger than R these serve as approximate estimates of Ch(q)

and Qh(c) respectively. However if h is not regular then the sampling experiment and classical
birthday analysis do not appear to have any particular bearing on the birthday attack on h and on
the values of Ch(q) and Qh(c).

Extending the approach. One way to proceed is to consider a more general version of the
birthday problem in which the probability that a ball lands in bin j is not simply 1/r where r is the
number of bins, but rather is a number pj , where p1 + · · ·+ pr = 1. Let p = (p1, . . . , pr), let Bp(q)
denote the probability of a collision in this game, and let Pp(c) be the smallest value of q for which
Bp(q) ≥ c. Then it is easy to see that if p1, . . . , pr are defined by Equation (4) then C∗

h(q) = Bp(q)
and Q∗

h(c) = Pp(c).
However, this generalized birthday problem is (surprisingly) not analyzed in the literature, so

the analogy between it and our birthday attack problem does not yield any immediate results or
analysis for the latter. Furthermore, this approach continues to consider possibly trivial collisions,
while the object of interest is collisions, and even though the difference is low order, we prefer not
to ignore it a priori. For these reasons, we analyze the birthday attack, and estimate Ch(q) and
Qh(c), directly.

We mention that using the same techniques, one can obtain results for the (easier) generalized
birthday problem, and in Section 10 we state these. (The latter are not used in this paper, but
might be of interest in other contexts.)

Random functions. Another approach is to assume h was chosen at random. That is, consider
the thought experiment of picking h at random from the set of all functions mapping D to R and
then mounting the birthday attack. We let C $

D,R(q) denote the probability of finding a collision in q

trials. Then one can show (cf. [16, 7] or Theorem 6.1) that C $
D,R(q) ≈

(
q
2

)
/r. Now, heuristically, it

is is argued that a “good” hash function h is designed to have “random behavior” and hence Ch(q)
is also about

(
q
2

)
/r. This argument however does not eventually yield any mathematically sound

conclusions about Ch(q) for a specific h. There is no mathematical definition of what it means to
“have random behavior” and it is unclear a suitable one can be found. We end up not analyzing h,
but rather analyzing an abstract and ideal object that ultimately has no connection to h, regardless
of the design principles underlying h. Indeed, the analysis of the attack ignores the actual hash
function entirely: whether it be MD5, SHA-1, RIPEMD-160 or some other function, there is no
change in the analysis, for the latter looks at a random function. In some settings this may be
the best we can do [4], but this paper shows that for the birthday attack one need not resort to
this abstraction: the balance is a real measure, varying from hash function to hash function, and
characterizes the performance of the birthday attack.

5 The Balance Measure and its Properties

We introduce a measure that we call the balance, and establish some of its basic properties.

Definition 5.1 Let h: D → R be a function whose domain D and range R = {R1, . . . , Rr} have
sizes d, r ≥ 2, respectively. For i ∈ [r] let di = |h−1(Ri)| denote the size of the pre-image of Ri

under h. The balance of h, denoted µ(h), is defined as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]

, (5)
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where logr(·) denotes the logarithm in base r.

For some intuition about what this is measuring, note that

1

rµ(h)
=

d2
1 + · · ·+ d2

r

d2

is the probability that h(a) = h(b) if a, b are drawn independently at random from the domain D.
It is easy to see that a regular function has balance one and a constant function has balance

zero. The following says that these are the two extremes:

Proposition 5.2 Let h be a function. Then 0 ≤ µ(h) ≤ 1. Furthermore µ(h) = 0 iff h is a
constant function, and µ(h) = 1 iff h is a regular function.

Proof of Proposition 5.2: The proof is based on standard facts. Let

S = { (x1, . . . , xr) ∈ R
r : x1 + · · ·+ xr = d } .

Define the function f : S → R by f(x1, . . . , xr) = x2
1 + · · ·+ x2

r for any x1, . . . , xr ∈ S and let

MinS(f) = min{ f(x1, . . . , xr) : (x1, . . . , xr) ∈ S }
MaxS(f) = max{ f(x1, . . . , xr) : (x1, . . . , xr) ∈ S } .

The definition of µ(h) implies thaty

MinS(f) ≤ d2

rµ(h)
≤ MaxS(f) .

The extremums of f over S are well studied, and it is known that f achieves its minimum on S
when di = d/r for all i ∈ [r], which implies MinS(f) = r(d/r)2 = d2/r and corresponds to h being
regular, with all points in the range having pre-image size d/r. On the other hand f achieves its
maximum when xi = d for some i ∈ [r] and xj = 0 for all j ∈ [r]−{i}, which implies MaxS(f) = d2

and corresponds to h being a constant function that maps all d points in the domain to some single
point in the range. We thus get

d2

r
≤ d2

rµ(h)
≤ d2 .

Dividing by d2 and re-arranging terms we get

1 ≤ rµ(h) ≤ r .

Taking logarithms to base r yields the Proposition.

The following will be useful later.

Lemma 5.3 Let h: D → R be a function. Let d = |D| and r = |R| and assume d ≥ r ≥ 2. Then

r−µ(h) − 1

d
≥
(

1− r

d

)

· r−µ(h) , (6)

where µ(h) is the balance of h as per Definition 5.1.

Proof of Lemma 5.3: Note that

r−µ(h) − 1

d
=

(

1− rµ(h)

d

)

· r−µ(h) .

9



Proposition 5.2 says that µ(h) ≤ 1, and this implies that rµ(h) ≤ r. This in turn implies

1− rµ(h)

d
≥ 1− r

d
.

This concludes the proof.

6 Balance-based Analysis of the Birthday attack

We state the main results and discuss them, and then go on to the proofs.

6.1 Bounds on Ch(q)

Theorem 6.1 below gives both upper and lower bounds on Ch(q) that are within constant factors
of each other. The proof of Theorem 6.1 is in Section 6.3.

Theorem 6.1 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d > r ≥ 2.
Let α ≥ 0 be any real number. Then for any integer q ≥ 2

(1− α2/4− α) ·
(

q

2

)

·
[

1

rµ(h)
− 1

d

]

≤ Ch(q) ≤
(

q

2

)

·
[

1

rµ(h)
− 1

d

]

, (7)

the lower bound being true under the additional assumption that

q ≤ α ·
(

1− r

d

)

· rµ(h)/2 . (8)

As we mentioned before, it is important to have upper and lower bounds on Ch(q) that are close to
each other, because we are making very specific choices of hash function parameters, in particular
output lengths, based on these estimates, and if our estimates are not close to the reality then
we might choose parameters incorrectly. Accordingly Theorem 6.1 strives for good bounds, and
achieves this, since as α → 0, the lower bound of Equation (7) approaches the upper bound, so
the bounds can be made as close as we want. However one must keep in mind that there is a
tradeoff: as α → 0 the lower bound is valid across smaller and smaller ranges of q due to the
restriction of Equation (8).

The following Corollary may be simpler and easier to understand or work with than the theorem,
at least at first. By restricting attention to hash functions with domain is at least twice as large as
the range it removes the 1/d term from Equation (7). Then by plugging in a particular value of α,
precise constants emerge, showing that

Ch(q) = Θ(1) · q2

rµ(h)

as long as q is not too large. Here we choose α = 2/5, but the choice is arbitrary and made purely
for the sake of illustration. The proof of Corollary 6.2 is in Section 6.4.

Corollary 6.2 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Then for any integer q ≥ 2

0.28 ·
(

q

2

)

· 1

rµ(h)
≤ Ch(q) ≤

(
q

2

)

· 1

rµ(h)
, (9)

the lower bound under the assumption that q ≤ 0.2 · rµ(h)/2.
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Typically, the bounds of Equation (9) are good enough, and Corollary 6.2 can be used directly, but
in case one needs very close estimates of Ch(q) one can return to Theorem 6.1.

In practice we do not expect the restriction q ≤ 0.2 · rµ(h)/2 to significantly reduce the appli-
cability of Corollary 6.1, because Ch(q) gets close to one as q gets close to rµ(h)/2, meaning the
probability of a collision is already significant enough that we can view the attack as successful.

One should note, though, that due to this restriction (and the corresponding Equation (8) of
Theorem 6.1), these results do not apply to some hash functions, namely those of extremely tiny
balance. For example if µ(h) = 0 then the assumed upper bounds on q together with the assumed
lower bound q ≥ 2 mean that in fact the result is vacuous, saying nothing about what happens in
this case. However, in practice, hash functions with extremely tiny balance are unlikely to arise or
be of interest, so the practical applicability of the result is not particularly impacted.

6.2 Bounds on Qh(c)

Next, we present lower and upper bounds on Qh(c). The following theorem says that

Qh(c) = Θ(
√

c) · rµ(h)/2

as long as c is not too close to one. The proof of Theorem 6.3 is in Section 6.5.

Theorem 6.3 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Let α ≥ 0 be any real number such that β = 1−α2/4−α > 0. Let c be a real number in the interval
0 ≤ c < 1. Then

√
2c · rµ(h)/2 ≤ Qh(c) ≤ 1 +

√
4c

β
· rµ(h)/2 , (10)

the upper bound being true under the additional assumption that

c ≤
(

α · (1− r/d)− r−µ(h)/2
)2
· β

4
. (11)

Again, the statement of the following Corollary is simpler and easier to understand or work with
at first. The proof of Corollary 6.4 is in Section 6.6.

Corollary 6.4 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Then

√
2c · rµ(h)/2 ≤ Qh(c) ≤ 1 + 2.36 ·

√
2c · rµ(h)/2 , (12)

the upper bound being true under the additional assumptions c ≤ 0.006 and rµ(h) ≥ 2, 200.

As Equations (10) and (12) indicate, the lower and upper bounds on Qh(c) are quite close to each
other. Let us now discuss the restrictions.

The upper bound on Qh(c) requires an upper bound on c, meaning is not valid for values of
c close to 1. Specifically, the upper bound of Equation (12) of Corollary 6.4 requires that the
probability c not exceed 0.6%. In practice, once the collision probability is as high as this, we
would conclude that the attack succeeds, so this upper bound may not be too much of a restriction.
Nonetheless, we would, ideally, prefer a result holding for larger values of c, but do not know how
to obtain it.

Also required for the upper bound of Equation (12) of Corollary 6.4 is the condition rµ(h) ≥
2, 200. Say r = 2n. Then, for this condition to hold, it suffices that µ(h) ≥ 11/n. In practice r
is very large, with n in the range 128–160, so the condition implies only that the result does not

11



apply to functions of very small balance. (For example if r = 2160, the range size of SHA-1, then it
suffice that µ(h) ≥ 11/160 ≥ 0.068). But as discussed above, such functions are not likely to arise
in practice.

6.3 Proof of Theorem 6.1

Let

p = r−µ(h) − 1

d
.

Let [q]2 denote the set of all two-element subsets of [q]. Recall that the attack picks x1, . . . , xq

at random from the domain D of the hash function. We associated to any two-element set I =
{i, j} ∈ [q]2 the random variable XI which takes value 1 if xi, xj form a collision (meaning xi 6= xj

and h(xi) = h(xj)), and 0 otherwise. We let

X =
∑

I∈[q]2
XI .

The random variable X is the number of collisions. (We clarify that in this manner of counting
the number of collisions, if n distinct points have the same hash value, they contribute n(n− 1)/2
toward the value of X.) For any I ∈ [q]2 we have

E [XI ] = Pr [ XI = 1 ] =
r∑

i=1

di(di − 1)

d2
=

r∑

i=1

d2
i

d2
−

r∑

i=1

di

d2
= r−µ(h) − 1

d
= p . (13)

By linearity of expectation we have

E [X] =
∑

I∈[q]2

E [XI ] =

(
q

2

)

· p . (14)

The upper bound of Theorem 6.1 is a simple application of Markov’s inequality and Equation (14):

Ch(q) = Pr [ X ≥ 1 ] ≤ E [X]

1
=

(
q

2

)

· p . (15)

We proceed to the lower bound. Let [q]2,2 denote the set of all two-elements subsets of [q]2. Via
the inclusion-exclusion principle we have

Ch(q) = Pr
[
∨

I∈[q]2
XI = 1

]

≥
∑

I∈[q]2

Pr [ XI = 1 ] −
∑

{I,J}∈[q]2,2

Pr [ XI = 1 ∧XJ = 1 ] . (16)

Equation (14) tells us that the first sum above is

∑

I∈[q]2

Pr [XI = 1 ] =
∑

I∈[q]2

E [XI ] = E [X] =

(
q

2

)

· p . (17)

We now claim that
∑

{I,J}∈[q]2,2

Pr [ XI = 1 ∧XJ = 1 ] ≤
(

α2

4
+ α

)

·
(

q

2

)

· p . (18)
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This completes the proof because from Equations (16), (17) and (18) we obtain the lower bound of
Equation (7) as follows:

Ch(q) ≥
(

q

2

)

· p −
∑

{I,J}∈[q]2,2

Pr [ XI = 1 ∧XJ = 1 ]

≥
(

q

2

)

· p −
(

α2

4
+ α

)

·
(

q

2

)

· p

=

(

1− α2

4
− α

)

·
(

q

2

)

· p .

It remains to prove Equation (18).

Let E be the set of all {I, J} ∈ [q]2,2 such that I ∩ J = ∅, and let N be the set of all {I, J} ∈ [q]2,2

such that I ∩ J 6= ∅. Then
∑

{I,J}∈[q]2,2

Pr [ XI = 1 ∧XJ = 1 ]

=
∑

{I,J}∈E

Pr [ XI = 1 ∧XJ = 1 ]

︸ ︷︷ ︸

SE

+
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1 ]

︸ ︷︷ ︸

SN

. (19)

We now claim that

SE ≤
(

q

2

)

· 1
4
· α2 · p (20)

SN ≤
(

q

2

)

· α · p . (21)

Equation (18) follows from Equations (19), (20) and (21). We now prove Equations (20) and (21).

To upper bound SE , we note that if {I, J} ∈ E then the random variables XI and XJ are inde-
pendent. Using Equation (13) we get

SE =
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1 ]

=
∑

{I,J}∈E

Pr [XI = 1 ] · Pr [ XJ = 1 ] = |E| · p2 .

Computing the size of the set E and simplifying, we get

SE =
1

2

(
q

2

)(
q − 2

2

)

· p2 =

(
q

2

)

· p ·
[
1

2

(
q − 2

2

)

· p
]

=

(
q

2

)

· p · q
2 − 5q + 6

4
· p .

We now upper bound this as follows:

SE <

(
q

2

)

· p · q2 · p
4
≤
(

q

2

)

· p · α2 · rµ(h) · p
4
≤ 1

4
· α2 ·

(
q

2

)

· p .

Above the first inequality is true because Theorem 6.1 assumes q ≥ 2. The second inequality is true
because of the assumption made in Equation (8). The third inequality is true because rµ(h) · p < 1.
We have now obtained Equation (20).
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The remaining task is to upper bound SN . The difficulty here is that for {I, J} ∈ N the random
variables XI and XJ are not independent. We let di = |h−1(Ri)| for i ∈ [r] where R = {R1, . . . , Rr}
is the range of the hash function. If {I, J} ∈ N then the two-elements sets I and J intersect in
exactly one point. (They cannot be equal since I, J are assumed distinct.) Accordingly we have

SN =
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1 ] = |N | ·
r∑

i=1

di(di − 1)2

d3
<
|N |
d3
·

r∑

i=1

d3
i . (22)

We now compute the size of the set N :

|N | =
1

2

(
q

2

)(
q

2

)

− 1

2

(
q

2

)

− 1

2

(
q

2

)(
q − 2

2

)

=

(
q

2

)

·
[
1

2

(
q

2

)

− 1

2

(
q − 2

2

)

− 1

2

]

=

(
q

2

)

·
[
q(q − 1)

4
− (q − 2)(q − 3)

4
− 1

2

]

=

(
q

2

)

· (q − 2) .

Putting this together with Equation (22) we have

SN <

(
q

2

)

· q ·
[

1

d3
·∑r

i=1d
3
i

]

. (23)

To upper bound the sum of Equation (23), we view d1, . . . , dr as variables and consider the problem
of maximizing d3

1 + · · ·+d3
r subject to the constraint

∑r
i=1 d2

i = d2 · r−µ(h).3 The maximum occurs
when d1 = d · r−µ(h)/2 and di = 0 for i = 2, . . . , r, meaning that

∑r
i=1d

3
i ≤ d3r−3µ(h)/2 .

Returning to Equation (23) with this information we get

SN <

(
q

2

)

· q ·
[

1

d3
·∑r

i=1d
3
i

]

≤
(

q

2

)

· q · 1

d3
· d3r−3µ(h)/2 =

(
q

2

)

· q · r−3µ(h)/2 .

We now use the assumption made in Equation (8), and finally use Lemma 5.3, to get

SN <

(
q

2

)

· α ·
(

1− r

d

)

· rµ(h)/2 · r−3µ(h)/2

≤
(

q

2

)

· α ·
(

1− r

d

)

· r−µ(h) ≤
(

q

2

)

· α · p .

This proves Equation (21) and thus concludes the proof of Theorem 6.1.

3 There is another constraint as well, namely d1 + · · · + dr = d. The maximum when this constraint is also
considered could be lower than the one we discover, which would improve the bounds in the theorem, but we do not
know how to do the maximization with this additional constraint.
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6.4 Proof of Corollary 6.2

The upper bound on Ch(q) is directly from Theorem 6.1. For the lower bound, begin by observing
that

(

1− α2

4
− α

)

·
(

q

2

)

· 1
2
· 1

rµ(h)
≤

(

1− α2

4
− α

)

·
(

q

2

)

·
(

1− r

d

)

· 1

rµ(h)

≤
(

1− α2

4
− α

)

·
(

q

2

)

·
[

1

rµ(h)
− 1

d

]

.

Above the first inequality is true because the assumption d ≥ 2r made in the Corollary implies
1/2 ≤ 1− r/d. The second inequality uses Lemma 5.3. Setting α = 2/5, the upper bound on q in
Equation (8) is implied by the upper bound on q in the statement of the Corollary, again because
1/2 ≤ 1− r/d. Now the proof of the lower bound of the Corollary follows from the lower bound of
Theorem 6.1 once we check that

0.56 ≤ 1− α2

4
− α

when α = 2/5.

6.5 Proof of Theorem 6.3

From Equation (7) of Theorem 6.1 we have

Ch(q) ≤
(

q

2

)

· 1

rµ(h)
︸ ︷︷ ︸

U(q)

.

The (quadratic) equation U(q) = c in unknown q has as its (only) non-negative root the value

q =
1

2
+

√

1

4
+ 2crµ(h) ≥

√

2crµ(h) .

yoshi says: Previously was

q =
1

2
+

√

1

4
+ 2cr−µ(h) ≥

√

2cr−µ(h) .

I suspect the −µ(h)s were typos, but thought I’d double check.

This proves the lower bound of Equation (10). We now move to the upper bound. The assumption
d ≥ 2r implies 1− r/d ≥ 1/2. Now using Lemma 5.3 and Equation (7) of Theorem 6.1 we get

Ch(q) ≥ β ·
(

q

2

)

·
[

1

rµ(h)
− 1

d

]

≥ β ·
(

q

2

)

·
(

1− r

d

)

· r−µ(h)

≥ β ·
(

q

2

)

· 1
2
· r−µ(h)

︸ ︷︷ ︸

L(q)

.
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The (quadratic) equation L(q) = c in unknown q has as its (only) non-negative root the value

q =
1

2
+

√

1

4
+

4crµ(h)

β
≤ 1

2
+

√

1

4
+

√

4crµ(h)

β
= 1 +

√

4crµ(h)

β
︸ ︷︷ ︸

qu

.

This proves the upper bound of Equation (10) as long as we can ensure that q = qu meets the
restriction of Equation (8). Given the assumption made in Equation (11) we have

qu ≤ 1 +

[

4rµ(h) ·
(

α · (1− r/d)− r−µ(h)/2
)2
· β

4
· 1

β

]1/2

= 1 +
(

α · (1− r/d)− r−µ(h)/2
)

· rµ(h)/2

= 1 + α · (1− r/d) · rµ(h)/2 − 1

= α · (1− r/d) · rµ(h)/2 .

Thus Equation (8) is true.

6.6 Proof of Corollary 6.4

Let α = (
√

17 − 3)/2 ≈ 0.56155 and let β = 1 − α2/4 − α. (This choice of α maximizes α2β, in
an attempt to get the largest possible range for c under the restriction of Equation (11).) Apply
Theorem 6.3. The lower bound of Equation (12) is that of Equation (10). From the upper bound
of the latter we have

Qh(c) ≤ 1 +

√
4c

β
· rµ(h)/2 = 1 +

√

2

1− α2/4− α
·
√

2c · rµ(h)/2 ≤ 1 + 2.36 ·
√

2c · rµ(h)/2 .

It remains to check that Equation (11) is true. The assumption rµ(h) ≥ 2, 200 implies r−µ(h)/2 ≤
α/26. So

[

α(1− r/d)− r−µ(h)/2
]2
· β

4
≥ (α/2− r−µ(h)/2)2 · β

4

≥ (α/2− α/26)2 · β
4

= (6α/13)2 · β
4

= (6α/13)2 · 1− α2/4− α

4

≥ 0.00603 .

Thus the condition c ≤ 0.006 implies that Equation (11) holds.

7 Special classes of hash functions

We consider (and contrast) two classes of hash functions, namely regular ones and random ones.
In this section we fix a domain D and range R with d = |D| > r = |R|.
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7.1 Regular functions

A symmetry argument says that if h1, h2: D → R are regular functions, then Ch1(q) = Ch2(q).
Accordingly we denote this value by C reg

D,R(q). Similarly Qh1(c) = Qh2(c) and this value is denoted

by Q reg
D,R(c). Now, one can show:

Proposition 7.1 If h: D → R is not regular then C reg
D,R(q) < Ch(q) and Q reg

D,R(c) > Qh(c).

In other words, regular functions are the best with regard to security against the birthday attack.
The collision probability is the lowest possible, and the collision threshold the highest possible.

7.2 Random functions

Designers of hash functions often have as target to make the hash function have “random” behavior.
To assess how this impacts their security against the birthday attack, we consider the performance
of the birthday attack when the function h is random.

Let Maps(D, R) denote the set of all functions with domain D and range R. Let us choose a
function h at random from Maps(D, R), and then run the birthday attack of Figure 1. (This means
we are in the random oracle model [4]). We let C $

D,R(q) denote the probability that the attack
succeeds, where q is the number of trials and the probability is over the initial choice of h and the
choices of x1, . . . , xq made in the attack. We let Q $

D,R(c) denote the smallest value of q for which

C $
D,R(q) ≥ c.

Now, when we draw h at random, it has some non-zero probability of being non-regular. (In
fact it has some non-zero probability of being a constant function, for which the birthday attack
will succeed after selecting only two distinct points in the domain). Given Proposition 7.1 we may
conclude that:

Proposition 7.2 C $
D,R(q) > C reg

D,R(q) and Q $
D,R(c) < Q reg

D,R(c).

In other words, random functions offer less security than regular functions against the birthday
attack.

However, Proposition 7.2 is a qualitative statement, not a quantitative one. How much less
is “less,” and is it enough to matter in practice? Towards answering this question we begin by
obtaining bounds on C $

D,R(q). The proof of the following is in Section 7.4.

Theorem 7.3 Let D, R be sets with d = |D| > r = |R|. Let α ≥ 0 be any real number. Then for
any integer q ≥ 2

(1− α2/4− α) ·
(

q

2

)

·
(

1− 1

d

)

· 1
r
≤ C $

D,R(q) ≤
(

q

2

)

·
(

1− 1

d

)

· 1
r

, (24)

the lower bound being true under the additional assumption that

q ≤ α · r1/2 . (25)

Theorem 7.3 improves on [16, Section 4.2.2] by presenting good bounds under precisely stated
conditions, as opposed to approximate equality calculations.

It is interesting to compare Theorem 7.3 to the case µ(h) = 1 (namely the case where h is
regular) of Theorem 6.1. We see that the bounds are very similar but not identical. The difference
can become detectable when d is close to r. To illustrate, the following, whose proof is in Section 7.5,
shows that if d = 2r then C $

D,R(q) is more than C reg
D,R(q) by a constant factor.
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Proposition 7.4 Suppose |D| = 2|R| ≥ 10. Then

C $
D,R(q) >

8

5
· C reg

D,R(q) (26)

for all q satisfying 2 ≤ q ≤ 0.1 · r1/2.

To be concrete, consider hash functions mapping {0, 1}n+1 to {0, 1}n for some n ≥ 4. If h is chosen
at random then the probability of a collision in q trials is higher, by a factor of 8/5 = 1.6, than it
would be if h were regular. In particular, if we imagine that SHA-1 has random behavior, then the
probability of a collision in q trials, when attacking the restriction of SHA-1 to inputs of length 161
bits, is higher, by 60%, than it would be for a regular function of 161 bits to 160 bits.

One might note that if |D| increases with |R| fixed, then C $
D,R(q) approaches C reg

D,R(q), meaning
the difference between random and regular functions decreases as the size of the domain, relative
to the size of the range, increases. Still, an adversary attacking a hash function with a very large
domain D might restrict its choices of domain elements to some smaller subset of D. Thus the
case d = 2r is quite relevant, and in this case the difference between random and regular functions
becomes greater.

7.3 Discussion

The conclusion that random functions do not fare as well as regular ones against the birthday
attack may go against some prevailing intuition. One might argue that the performance of the
attack on random functions is captured by the standard birthday phenomenon, since the image of
each point drawn in the attack is equally likely to equal any range point. But, if so, isn’t this the
case where the attack fares least well? The above shows that the answer is no, but some intuition
as to why this is the case, and why C $

D,R(q) > C reg
D,R(q), might help.

Having picked x1 from D, let y1 = h(x1) and consider choosing x2 at random from D. Assume
x2 6= x1, since otherwise x2, x1 do not form a collision. If h is random then the probability that
h(x2) = h(x1) = y1 is exactly 1/r. But if h is regular then this probability is a little less, namely
it is 1/r − 1/d. This is the phenomenon that ultimately accounts for the difference.

Now, one might also suggest that the difference between random and regular functions pointed
out above arises because our version of the birthday attack draws random domain points rather
than random and distinct ones. Namely, one might think the difference is due to collisions in
the domain points arising in the attack. This is not true. Suppose we consider the attack in
which we draw random but distinct domain points x1, . . . , xq rather than random but independent
domain points as in Figure 1. In that case it is true that the performance of the attack on random
functions is captured exactly by the standard birthday phenomenon. However, even in this case,
regular functions fare better than random functions. The underlying cause is the same as indicated
above. Namely, once a point xi ∈ D has been selected, the probability of selecting a distinct point
xj ∈ D such that h(xi) = h(xj) is 1/r if h is random but is less, namely at most 1/r − 1/d, if h
is regular. In other words, the difference arises from more basic causes than collisions in domain
points.

We would like to stress that saying regular functions fare better against the birthday attack than
random ones does not mean that random ones fare poorly; as the above indicates the difference
is small. In particular, our results and discussion are not a critique of the design principle of
attempting to make hash functions have random behavior. We believe that this principle is sound
and central to security. In practice, hash functions need to be designed not only to resist the
birthday attack but also to resist cryptanalytic attacks, and for this, random behavior appears to
be important. If it were possible to design hash functions that have random behavior subject to
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being regular it might improve security slightly, but this might be a harder task than designing hash
functions that simply attempt to have random behavior. Our contrasting of random functions with
regular ones was done more to highlight what we consider theoretically interesting phenomenon
and shed some light on some aspects of the birthday attack.

7.4 Proof of Theorem 7.3

We follow the outline of the proof of Theorem 6.1, only indicating the changes. Let

p =

(

1− 1

d

)

· 1
r

.

Now proceeding as in the proof of Theorem 6.1 we have

E [XI ] = Pr [ XI = 1 ] = p .

So Equation (15) is true with Ch(q) replaced by C $
D,R(q), proving the upper bound of Equation (24).

We proceed to the lower bound. Continue substituting C $
D,R(q) for Ch(q) in the proof of Theorem 6.1.

We claim that Equation (18) continues to hold, completing the proof of the lower bound of
Equation (24) in the same way as in the proof of Theorem 6.1. To establish Equation (18), we
claim that Equations (20) and (21) continue to hold.

We now justify Equation (20). Using the value of |E| from the proof of Theorem 6.1, and then
using Equation (25), we have

SE = |E| · p2 =
1

2
·
(

q

2

)

·
(

q − 2

2

)

· p2 ≤
(

q

2

)

· p · q
2

4
· p ≤

(
q

2

)

· p · α
2r

4
· p .

Equation (20) follows since rp = 1− 1/d < 1.

We now justify Equation (21). Using the value of |N | from the proof of Theorem 6.1, and then
using Equation (25), we have

SN = |N | ·
(

1− 1

d

)2

· 1

r2
=

(
q

2

)

· (q − 2) · p2 ≤
(

q

2

)

· p · α · r1/2 · p .

Equation (21) follows since r1/2p < rp = 1− 1/d < 1. This concludes the proof.

7.5 Proof of Proposition 7.4

For any real number α ≥ 0 we have:

C $
D,R(q) ≥ (1− α2/4− α) ·

(
q

2

)

·
(

1− 1

d

)

· 1
r

(27)

= 2 · (1− α2/4− α) ·
(

1− 1

d

)

·
(

q

2

)

·
[
1

r
− 1

2r

]

≥ 2 · (1− α2/4− α) ·
(

1− 1

d

)

· C reg
D,R(q) (28)

Equation (27) used the lower bound of Equation (24). Equation (28) used the upper bound of
Equation (7) for the case µ(h) = 1, and the assumption d = 2r made in the theorem statement.
Now, set α = 0.1. Since d ≥ 10 we get

2 · (1− α2/4− α) ·
(

1− 1

d

)

≥ 359

200
·
(

1− 1

10

)

=
3231

200
>

8

5
.
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Function H(M)
Break M into b-bit blocks M1‖ · · · ‖Mn

Mn+1 ← 〈n〉b ; C0 ← 0c

For i = 1, . . . , n + 1 do Ci ← H(Mi‖Ci−1) EndFor
Return Cn+1

Figure 3: Hash function H: Db → {0, 1}c obtained via the MD transform applied to compression
function H: {0, 1}b+c → {0, 1}c.

8 Does the MD transform preserve balance?

We consider the following popular paradigm for the construction of hash functions. First build a
compression function H: {0, 1}b+c → {0, 1}c, where b ≥ 1 is called the block-length and c ≥ 1 is
called the chaining-length. Then transform H into a hash function H: Db → {0, 1}c, where

Db = {M ∈ {0, 1}∗ : |M | = nb for some 1 ≤ n < 2b } ,

via the Merkle-Damg̊ard (MD) [10, 6] transform depicted in Figure 3. (In this description and
below, we let 〈i〉b denote the representation of integer i as a string of length exactly b bits for
i = 0, . . . , 2b − 1.) In particular, modulo details, this is the paradigm used in the design of popular
hash functions including MD5 [12], SHA-1 [11] and RIPEMD-160 [8].

For the considerations in this section, we will focus on the restriction of H to strings of some
particular length. For any integer 1 ≤ n < 2b (the number of blocks) we let Hn: Db,n → {0, 1}c
denote the restriction of H to the domain Db,n, defined as the set of all strings in Db that have
length exactly nb bits.

Our results lead us to desire that Hn has high balance for all practical values of n. Designers
could certainly try to ensure that the compression function is regular or has high balance, but to be
assured that Hn has high balance it would need to be the case that the MD transform is “balance
preserving.” Unfortunately, the following shows that this is not true. It presents an example of a
compression function H which has high balance (in fact is regular, with balance one) but Hn has
low balance (in fact, balance zero) even for n = 2.

Proposition 8.1 Let b, c be positive integers. There exists a compression function H: {0, 1}b+c →
{0, 1}c such that H is regular (µ(H) = 1) but H2 is a constant function (µ(H2) = 0).

Proof of Proposition 8.1: Let H: {0, 1}b+c → {0, 1}c map B‖C to C for all b-bit strings B and
c-bit strings C. Clearly µ(H) = 1 since each point in {0, 1}c has exactly 2b pre-images under H.
Because the initial vector (IV) in the MD transform is the constant C0 = 0c, and by the definition
of H, the function H2 maps all inputs to 0c.

This example might be viewed as contrived particularly because the compression function H above
is not collision-resistant (although it is very resistant to birthday attacks), but in fact it still serves
to illustrate an important point. The popularity of the MD paradigm arises from the fact that it
provably preserves collision-resistance [10, 6]. However, the above shows that it does not provably
preserve balance. Even though Proposition 8.1 does not say that the transform will always be poor
at preserving balance, it says that we cannot count on the transform to preserve balance in general.
This means that simply ensuring high balance of the compression function is not a suitable general
design principle.
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Is there any other design principle whereby some properties of the compression function suffice to
ensure high balance of the hash function? Toward finding one we note that the behavior exhibited
by the function H2 in the proof of Proposition 8.1 arose because the initial vector (IV) of the
MD transform was C0 = 0c, and although H was regular, the restriction of H to inputs having
the last c bits 0 was not regular, and in fact was constant. Accordingly we consider requiring
regularity conditions not just on the compression function but on certain related functions as well.
If H: {0, 1}b+c → {0, 1}c then define H0: {0, 1}b → {0, 1}c via M 7→ H(M‖0c) for all M ∈ {0, 1}b,
and for n ≥ 1 define Hn: {0, 1}c → {0, 1}c via M 7→ H(〈n〉b‖M) for all M ∈ {0, 1}c. The following
shows that if H, H0, Hn are all regular, meaning have balance one, then Hn is also regular.

Proposition 8.2 Let b, c, n be positive integers. Let H: {0, 1}b+c → {0, 1}c and let H0, Hn be as
above. Assume H, H0, and Hn are all regular. Then Hn is regular.

Proof of Proposition 8.2: The computation of Hn can be written as

Function Hn(M)
Break M into b-bit blocks M1‖ · · · ‖Mn ; C1 ← H0(M1)
For i = 2, . . . , n do Ci ← H(Mi‖Ci−1) EndFor
Cn+1 ← Hn(Cn) ; Return Cn+1

It is not hard to check that the assumed regularity of H0, H and Hn imply the regularity of Hn.

Unfortunately Proposition 8.2 is not “robust.” Although Hn has balance one if H, H0, Hn have
balance one, it turns out that if H, H0, Hn have balance that is high but not quite one, we are
not assured that Hn has high balance. Proposition 8.3 shows that even a slight deviation from the
maximum balance of one in H, H0, Hn can be amplified, and result in Hn having very low balance.

Proposition 8.3 Let b, c be integers, b ≥ c ≥ 2, and let n ≥ c. Then there exists a compression
function H: {0, 1}b+c → {0, 1}c such that µ(H) ≥ 1 − 1/c, µ(H0) = 1, and µ(Hn) ≥ 1 − 2/c, but
µ(Hn) ≤ 1/c, where the functions H0, Hn are defined as above.

Proof of Proposition 8.3: Let H: {0, 1}b+c → {0, 1}c be defined as

H(B‖C) =

{

〈B〉c C = 0c

〈C ¿ 1〉c⊕(0c−11) C 6= 0c

where B is b-bits long, C is c-bits long, 〈B〉c is the right-most c bits of B, and 〈C ¿ 1〉c is the
left shift of C by one bit (ie. 〈C ¿ 1〉c is a c-bit string, the left-most c − 1 bits of which are the
right-most c− 1 bits of C, and the right-most bit of which is 0).

Clearly µ(H0) = 1. To see that µ(H) ≥ 1 − 1/c we note that there are 2c−1 points X ∈ {0, 1}c
with a right-most bit of 0 and each of these points has 2b−c pre-images (corresponding to the set
{0, 1}b−cX0c). There is one point of the form 0c−11 and it has 2b +2b−c pre-images (corresponding
to the sets {0, 1}b10c−1 and {0, 1}b−c0c−110c). There are 2c−1 − 1 additional points Y ∈ {0, 1}c
with a right-most bit of 1 and each of these points has 2b+1 + 2b−c pre-images (corresponding to
the sets {0, 1}b+1Y ′ and {0, 1}b−cY 0c, where Y ′ is the left-most c− 1 bits of Y ). Let

S = 2c−1(2b−c)2 + (2b + 2b−c)2 + (2c−1 − 1)(2b+1 + 2b−c)2

≤ 22b+c+1 .

21



It follows that

µ(H) = log2c

[
22b+2c

S

]

≥ log2c

[
22b+2c

22b+c+1

]

=
c− 1

c
.

We lower bound µ(Hn) as follows. Let R =
∑

C∈{0,1}c d2
C , where d2

C is the number of pre-images
of C ∈ {0, 1}c under Hn. We divide the analysis into three cases. In the first case we assume that
the right-most bit of 〈n〉b is 0. This implies that there will be one point in {0, 1}c−10 with one
pre-image and all the remaining points in {0, 1}c−10 will have no pre-image. Of the 2c−1 points in
{0, 1}c−11, all but point 0c−11 will have two pre-images, and 0c−11 will have one pre-image. Thus
R < 2c+1.

Let 〈n〉c be the right-most c bits of 〈n〉b. In the second case we assume that the right-most bit
of 〈n〉b is 1 and and that 〈n〉c 6= 0c−11. All the points in {0, 1}c−10 have no pre-images, 2c−1 − 2
points in {0, 1}c−11 have two pre-images, the point 〈n〉c has three pre-images, and the point 0c−11
has one pre-image. In this case R < 2c+2. In the final case we assume that the right-most bit of
〈n〉b is 1 and that 〈n〉c = 0c−11. All the points in {0, 1}c−10 have no pre-images and all the points
in {0, 1}c−11 have two pre-images. In this case R = 2c+1. These results imply that

µ(Hn) = log2c

[
22c

R

]

≥ log2c

[
22c

2c+2

]

=
c− 2

c
.

Let us now consider the balance of Hn. Let M = M1‖ · · · ‖Mn ∈ {0, 1}bn be a string and let

|Mi| = b. Then if M1 6∈ {0, 1}b−c0c, we have that Hn(M) = 1c; i.e. |H−1
n (1c)| ≥ 2bn − 2bn−c. This

allows us to upper bound µ(Hn) as follows:

µ(Hn) ≤ log2c

[
(2bn)2

(2bn − 2bn−c)2

]

≤ log2c

[
22bn

22bn − 22bn−c+1

]

Using the assumption that c ≥ 2,

µ(Hn) ≤ log2c

[
22bn

22bn−1

]

=
1

c

as desired.

As indicated by Proposition 7.2, a random compression function will have expected balance that
is high but not quite 1. We expect that practical compression functions are in the same boat.
Furthermore it seems harder to build compression functions that have balance exactly one than
close to one. So the lack of robustness of Proposition 8.2, as exhibited by Proposition 8.3, means
that Proposition 8.2 is of limited use.

The consequence of the results in this section is that we are unable to recommend any design
principle that, to ensure high balance, focuses solely on establishing properties of the compression
function. It seems one is forced to look directly at the hash function.

9 Extensions and variations

We consider two issues. One is extending the definitions and results here to families of hash
functions rather than individual functions, and the other is variants of the attack that differ in the
way the points are chosen from the domain.
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9.1 Treating families of hash functions

A family of functions is a map H: K ×D → R, where K is the set of keys, D is the domain and
R is the range of the family. It is a family of hash functions if |D| > |R|. For each key k ∈ K
we let the function Hk: D → R be defined by Hk(x) = H(k, x) for all x ∈ D. We say that Hk is
a member of the family H. In usage, a key k is drawn at random and made public, specifying a
particular hash function Hk.

This approach is particularly important in theoretical treatments involving proofs of security
of collision-resistance [6, 3], for there appears to be no meaningful formalization of a notion of
collision-resistance for single functions as opposed to families. We, however, are not discussing
the notion of collision-resistance, but rather the performance of a particular attack, so in our case
consideration of a single hash function as opposed to a family is meaningful. It also more directly
reflects practice, where we have hash functions like MD5, SHA-1 and RIPEMD-160 not overlain by
any explicit families.

Still, one might be interested in how the birthday attack fares against a family of functions H.
Here we discuss how our metrics and results lift easily from single functions to families.

First, let us extend the collision-probability metric. When function Hk of family H has been
chosen, the probability of finding a collision in q trials is CHk

(q). Since the choice of k is made at
random from K, the metric of interest, which we denote CH(q), is

CH(q) =
1

|K| ·
∑

k∈K

CHk
(q) .

Each member Hk of H also has an associated balance µ(Hk). We extend the balance measure to
families by defining for H a balance µ(H), computed as a function of the balance of the members
of the family, as follows:

Definition 9.1 Let H: K ×D → R be a family of hash functions whose domain D and range R
have sizes d, r ≥ 2, respectively. The balance of H, denoted µ(H), is defined as

µ(H) = logr

[

1

|K| ·
∑

k∈K

1

rµ(Hk)

]−1

where logr(·) denotes the logarithm in base r.

In other words,

1

rµ(H)
=

1

|K| ·
∑

k∈K

1

rµ(Hk)
.

Now we claim that

CH(q) = Θ(1) ·
(

q

2

)

· 1

rµ(H)

assuming some appropriate upper bound on q. The precise bounds are as follows:

Theorem 9.2 Let H: K × D → R be a family of hash functions. Let d = |D| and r = |R| and
assume d > r ≥ 2. Let α ≥ 0 be any real number. Then for any integer q ≥ 2

(1− α2/4− α) ·
(

q

2

)

·
[

1

rµ(H)
− 1

d

]

≤ CH(q) ≤
(

q

2

)

·
[

1

rµ(H)
− 1

d

]

,
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the lower bound being true under the additional assumption that

q ≤ α ·
(

1− r

d

)

· rµ(h)/2 .

This shows that Theorem 6.1 lifts in a simple and natural way from individual functions to families
of functions. This theorem follows easily from Theorem 6.1 and the above definitions, so we omit
the proof.

9.2 Variants of the attack

The version of the birthday attack on a hash function h: D → R that we consider draws points
x1, . . . , xq uniformly and independently at random from the domain D. Other possibilities for how
these points may be chosen have been mentioned and considered in the literature.

One is to use a fixed sequence of points. For example if the domain is {0, 1}n for some n,
then we identify it with {1, . . . , 2n} and use the points 1, . . . , q. This strategy is effective if the
function h is random (cf. Section 7), and in this case the performance of the attack is captured by
the standard birthday problem. However, this is not a viable attack strategy in general, because
there are certainly hash functions where this attack fails even though collisions may be easy to find
and may be found by other variants of the birthday attack. Accordingly we do not consider this
attack.

Another possibility is to use a sequence of random but distinct points x1, . . . , xq, as opposed to
random and independently chosen ones. We have not considered this attack in detail because the
lack of independence makes a precise analysis harder. However, as long as d = |D| is somewhat
larger than r = |R|, say d ≥ 2r, the performance of this attack will approach that of the one we
consider, since the probability that some two of x1, . . . , xq are equal in Figure 1 is small compared
to the probability of a collision. Thus in practice we do not expect serious performance differences
between this attack and the one we consider.

10 The generalized birthday problem

In the birthday problem, we have q balls 1, . . . , q and r bins 1, . . . , r. In the standard version of the
problem, we throw the balls at random into the bins, each ball having probability 1/r of landing
in each bin, and the probabilities for different balls being independent. A collision occurs if there
are two different balls that land in the same bin.

One can however consider a more general problem in which the probability of a ball landing
in bin i depends on i rather than being equal to 1/r for each i. To discuss this, let us say that
p = (p1, . . . , pr) is a probability vector if p1 + · · ·+ pr = 1 and 0 ≤ pi ≤ 1 for all i ∈ [r]. Now in the
balls in bins game associated to p, we throw the q balls at random into the r bins in such a way
that for every i ∈ [q] and j ∈ [r], ball i has probability pj of landing in bin j, and the probabilities
for different balls are independent. Again, a collision is said to occur if there are two different balls
that land in the same bin. The following defines some metrics of interest for this game:

Definition 10.1 Let p = (p1, . . . , pr) be a probability vector, where r ≥ 2. For any integer q ≥ 2,
we let Bp(q) denote the probability of a collision in the balls in bin game associated to p. For any
real number c with 0 ≤ c < 1 we let

Pp(c) = min { q : Bp(q) ≥ c }
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denote the minimum number of balls required for the probability of a collision to exceed c. We
refer to Bp as the collision probability function of p and to Pp as the collision threshold function
of p.

Let r = (1/r, . . . , 1/r). The literature contains analyses of the standard birthday problem, meaning
bounds on Br(q) (we had denoted this by Br(q) in Section 4), e.g. [1]. The more general version
of the problem seems natural and potentially useful, in particular in the context of problems like
the ones considered in this paper, but we have not found any analysis or bounds for this general
problem in the literature. Accordingly we provide some here. To do so we first introduce a measure,
which we again call the balance, associated to a probability vector.

Definition 10.2 Let p = (p1, . . . , pr) be a probability vector, where r ≥ 2. The balance of p,
denoted µ(p), is defined as

µ(p) = logr

[
p2
1 + · · ·+ p2

r

]−1
,

where logr(·) denotes the logarithm in base r.

For some intuition about what this is measuring, note that

1

rµ(p)
= p2

1 + · · ·+ p2
r

is the probability that any two particular balls collide. Now the following shows that

Bp(q) = Θ(1) ·
(

q

2

)

· 1

rµ(p)
= Θ(1) ·

(
q

2

)

· (p2
1 + · · ·+ p2

r) ,

assuming some appropriate upper bound on q. The proof is in Section 10.1.

Theorem 10.3 Let p = (p1, . . . , pr) be a probability vector, where r ≥ 2. Let α ≥ 0 be any real
number. Then for any integer q ≥ 2

(1− α2/4− α) ·
(

q

2

)

· 1

rµ(p)
≤ Bp(q) ≤

(
q

2

)

· 1

rµ(p)
, (29)

the lower bound being true under the additional assumption that

q ≤ α · rµ(p)/2 . (30)

The bounds in the theorem are good. In particular as α→ 0 the lower bound approaches the upper
bound, although being valid across a smaller range of values for the number q of balls thrown. In
particular we remark that in the case of the standard birthday problem, namely when p = r, the
above enables us to obtain better lower bounds than shown in [1], but valid across a smaller range
of q.

We discussed in Section 4 how the generalized birthday problem is related to the analysis of the
birthday attack for a function h: D → R. Namely if R = {R1, . . . , Rr}, let di = |h−1(Ri) and let
pi = di/d (1 ≤ i ≤ r). Then Bp(q) = C∗

h(q) is the probability of finding possibly trivial collisions in
the birthday attack. We attacked the analysis of the birthday attack on h directly, rather than via
the generalized birthday problem, only to ensure that our analysis is about collisions, not trivial
collisions. However the heart of the problem is really the generalized birthday problem.
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10.1 Proof of Theorem 10.3

We follow the outline of the proof of Theorem 6.1, only indicating the changes. Let

p =
1

rµ(p)
.

Let [q]2 denote the set of all two-element subsets of [q]. We associate to any two-element set
I = {i, j} ∈ [q]2 the random variable XI which takes value 1 if balls i, j form a collision (meaning
land in the same bin), and 0 otherwise. Then for any I ∈ [q]2 we have

E [XI ] = Pr [ XI = 1 ] =
r∑

i=1

p2
i = p .

We continue to follow the proof of Theorem 6.1, the random variable X being defined as there, and
Bp(q) being substituted for Ch(q). The proof of the upper bound of Equation (29) is unchanged,
and we proceed to the lower bound. We need to make amendments only when we get to the upper
bounding of SN . In place of Equation (22) we have

SN =
∑

{I,J}∈N

Pr [ XI = 1 ∧XJ = 1 ] = |N | ·
r∑

i=1

p3
i . (31)

Now, identify di/d (in the proof of Theorem 6.1) with pi (in the current proof) and continue. This
will conclude the proof.

11 Experiments on SHA-1

Let SHAn: {0, 1}n → {0, 1}160 denote the restriction of SHA-1 to inputs of length n < 264. Because
SHA-1’s range is {0, 1}160, it is commonly believed that the expected number of trials necessary to
find a collision for SHAn is approximately 280. As Theorem 6.3 shows, however, this is only true if
the balance of SHAn is one or close to one for all practical values of n. If the balance is not close
to one, then we expect to be able to find collisions using less work. It therefore seems desirable to
calculate (or approximate) the balance of SHAn for reasonable values of n (eg. n = 256). A direct
computation of µ(SHAn) based on Definition 5.1 is however infeasible given the size of the domain
and range of SHAn. Accordingly we focus on a more achievable goal. We look at properties of
SHAn that one can reasonably test and whose absence might indicate that SHAn does not have
high balance. Our experiments are not meant to be exhaustive, but rather representative of the
types of feasible experiments one can perform with SHA-1.

Let SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 denote the function that returns the t1-th through t2-th
output bits of SHAn. We ask what exactly is the balance of SHA32;t1...t2 when t2−t1+1 ∈ {8, 16, 24}.
And we ask whether the functions SHAm;t1...t2 , m ∈ {160, 256, 1024, 2048}, appear regular when
t2− t1 +1 ∈ {8, 16, 24}. (Note that SHA256 is SHA-1 restricted to the domain {0, 1}256, not NIST’s
SHA-256 hash algorithm.)

Balance of SHA32;t1...t2. We calculate the balance of SHA32;t1...t2 for all pairs t1, t2 such that
t2 − t1 + 1 ∈ {8, 16, 24} and t1 begins on a byte boundary (ie. we look at all 1-, 2-, and 3-byte
portions of the SHA-1 output). The calculated values are shown below. These values indicate that,
for the specified values of t1, t2, the balance of SHA32;t1...t2 is high.

t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
µ(SHA32;1...8) = 0.99999998893 µ(SHA32;1...16) = 0.999998623 µ(SHA32;1...24) = 0.99976567
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t2 − t1 + 1 = 8 t2 − t1 + 1 = 16 t2 − t1 + 1 = 24
µ(SHA32;9...16) = 0.99999998941 µ(SHA32;9...24) = 0.999998604 µ(SHA32;9...32) = 0.99976548
µ(SHA32;17...24) = 0.99999998972 µ(SHA32;17...32) = 0.999998620 µ(SHA32;17...40) = 0.99976553
µ(SHA32;25...32) = 0.99999998884 µ(SHA32;25...40) = 0.999998627 µ(SHA32;25...48) = 0.99976561
µ(SHA32;33...40) = 0.99999999079 µ(SHA32;33...48) = 0.999998641 µ(SHA32;33...56) = 0.99976582
µ(SHA32;41...48) = 0.99999998909 µ(SHA32;41...56) = 0.999998620 µ(SHA32;41...64) = 0.99976559
µ(SHA32;49...56) = 0.99999998912 µ(SHA32;49...64) = 0.999998626 µ(SHA32;49...72) = 0.99976558
µ(SHA32;57...64) = 0.99999999083 µ(SHA32;57...72) = 0.999998625 µ(SHA32;57...80) = 0.99976581
µ(SHA32;65...72) = 0.99999998923 µ(SHA32;65...80) = 0.999998627 µ(SHA32;65...88) = 0.99976575
µ(SHA32;73...80) = 0.99999999083 µ(SHA32;73...88) = 0.999998637 µ(SHA32;73...96) = 0.99976577
µ(SHA32;81...88) = 0.99999998925 µ(SHA32;81...96) = 0.999998622 µ(SHA32;81...104) = 0.99976558
µ(SHA32;89...96) = 0.99999998987 µ(SHA32;89...104) = 0.999998617 µ(SHA32;89...112) = 0.99976554
µ(SHA32;97...104) = 0.99999998862 µ(SHA32;97...112) = 0.999998624 µ(SHA32;97...120) = 0.99976567
µ(SHA32;105...112) = 0.99999998826 µ(SHA32;105...120) = 0.999998626 µ(SHA32;105...128) = 0.99976562
µ(SHA32;113...120) = 0.99999998959 µ(SHA32;113...128) = 0.999998616 µ(SHA32;113...136) = 0.99976566
µ(SHA32;121...128) = 0.99999998999 µ(SHA32;121...136) = 0.999998634 µ(SHA32;121...144) = 0.99976556
µ(SHA32;129...136) = 0.99999999052 µ(SHA32;129...144) = 0.999998636 µ(SHA32;129...152) = 0.99976563
µ(SHA32;137...144) = 0.99999998916 µ(SHA32;137...152) = 0.999998615 µ(SHA32;137...160) = 0.99976554
µ(SHA32;145...152) = 0.99999998769 µ(SHA32;145...160) = 0.999998626
µ(SHA32;153...160) = 0.99999998993

These results do not imply that the functions SHAn;t1...t2 or SHAn, n > 32 and t1, t2 as before, are
regular. But it is encouraging that µ(SHA32;t1...t2) are high, since a small value for µ(SHA32;t1...t2)
for any of the specified t1, t2 pairs might indicate some unusual property of the SHA-1 hash function.
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A The expected number of trials to find a collision

There is another metric related to the birthday attack that is of interest. Suppose we do not fix
the number of trials a priori, but rather run the attack until it succeeds. We call this the extended
birthday attack, and it is depicted in Figure 4. We record the number of trials q taken to find a
collision. This is now a random variable, and we are interested in its expectation. The latter is the
expected number of trials to find a collision. We denote it by Eh.

Given Theorem 6.3, we would expect that Eh = Θ(rµ(h)/2). The following confirms this, pro-
viding both upper and lower bounds. The proof is in Section A.1.
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i← 0 ; found← FALSE

While (found = FALSE) do

i← i + 1 ; xi
$← D ; yi ← h(xi)

If (∃j : j < i & yi = yj & xi 6= xj)
then found← TRUE ; q ← i

EndIf
EndWhile
Return xi, xj

Figure 4: Extended birthday attack on a hash function h: D → R. The attack continues until a
collision is found. The number of trials q is now a random variable.

Theorem A.1 Let h: D → R be a hash function. Let d = |D| and r = |R| and assume d ≥ 2r ≥ 4.
Assume ((

√
7− 2)/3) · rµ(h)/2 ≥ 2. Then

(1/2) · rµ(h)/2 ≤ Eh ≤ 72 · rµ(h)/2 . (32)

We note however that the bounds are not very good. This metric appears to be harder to analyze,
or obtain good bounds for, as compared to the metrics we have considered in Section 6.

A.1 Proof of Theorem A.1

We begin by proving the lower bound. Let the random variable Y denote the number of trials
to collision. Let Dh(q) denote the probability of finding the first collision on the q-th trial. Let
Q = rµ(h)/2. From the definition of Y :

E [Y ] =
∞∑

x=1

x ·Dh(x) ≥ Q ·
∞∑

x=Q

Dh(x) = Q · (1− Ch(Q− 1)) .

We claim that

Ch(Q− 1) <
1

2
. (33)

It follows that

E [Y ] ≥ Q · 1
2
≥ 1

2
· rµ(h)/2 ,

as desired. We now justify Equation (33). From the upper bound of Equation (9) of Corollary 6.2
we know that

Ch(Q− 1) ≤
(

Q− 1

2

)

· 1

rµ(h)
=

1

2
·
(

(Q− 1)2 − (Q− 1)
)

· 1

rµ(h)
.

Since Q = rµ(h)/2 ≥ 2 by assumption,

(Q− 1)2 − (Q− 1) = Q2 − 3 ·Q + 2 < Q2 = rµ(h)

and

Ch(Q− 1) <
1

2
· rµ(h) · 1

rµ(h)
=

1

2

as desired.
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For the upper bound, we must be careful since there is an upper restriction on q in Equation (9)
and Equation (7). Fix α = (2

√
7− 4)/3 and q = (α/2) · rµ(h)/2. First note that

q =
α

2
· rµ(h)/2 ≤ α ·

(

1− r

d

)

· rµ(h)/2

since we assume that d ≥ 2r and therefore that 1 − r/d ≥ 1/2. This means that we can use
Theorem 6.1 with α and q defined as above. Combining Theorem 6.1 with Lemma 5.3 and the
assumptions that d ≥ 2r and q = (α/2) · rµ(h)/2 ≥ 2, we have

Ch(q) ≥
(

1− α2

4
− α

)

·
(

q

2

)

· 1
2
· 1

rµ(h)
≥
(

1− α2

4
− α

)

· q2 · 1
8
· 1

rµ(h)
.

Replacing q with (α/2) · rµ(h)/2 we get

Ch(q) ≥
(

1− α2

4
− α

)

·
(α

2
· rµ(h)/2

)2
· 1
8
· 1

rµ(h)
=

1

32
·
(

α2 − α4

4
− α3

)

. (34)

Now consider the following experiment that repeatedly runs the birthday attack, using q = (α/2) ·
rµ(h)/2 trials, until a collision is found:

For j = 1, 2, . . . do
For i = 1, . . . , q do

Pick xq(j−1)+i at random from the domain of h

yq(j−1)+i ← h(xq(j−1)+i)

If ∃k such that q(j − 1) < k < q(j − 1) + i and yq(j−1)+i = yk but xq(j−1)+i 6= xk then

return xq(j−1)+i, xk // collision found in this block of q trials

EndIf
EndFor

EndFor

Let the random variable A denote the number of trials to success in the above experiment. We
claim that

E [Y ] ≤ E [A] (35)

and

E [A] ≤ q

Ch(q)
, (36)

and combining with Equation (34), it follows that

E [Y ] ≤ q

Ch(q)
≤ (α/2) · rµ(h)/2

(1/32) · (α2 − (α4/4)− α3)
< 72 · rµ(h)/2 ,

giving the upper bound in the theorem statement.
To prove Equation (35) it is sufficient to note that, for any random tape T ,

Y (T ) ≤ A(T )

since any collision in the above experiment is immediately a collision for the birthday attack in
Figure 1.

To prove Equation (36), consider each inner loop of the above experiment an independent
Bernoulli trial, and let Z denote the expected number of Bernoulli trials (inner loop executions) to
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collision. Since each inner loop has a success probability Ch(q), standard results tell us that

E [Z] ≤ 1

Ch(q)
. (37)

Let F (i) denote the probability that the first collision in the above experiment occurs on the i-th
trial. Let G(j) denote the probability that the first collision is found in the j-th execution of the
inner loop in the above experiment. Then

E [A] =
∞∑

i=1

i · F (i)

=
∞∑

j=1

q
∑

i=1

(q · (j − 1) + i) · F (q · (j − 1) + i)

≤ q ·
∞∑

j=1

(

j ·
q
∑

i=1

F (q · (j − 1) + i)

)

Since, by the definition of G(j), for any j ≥ 1

q
∑

i=1

F (q · (j − 1) + i) = G(j) ,

it follows that

E [A] ≤ q ·
∞∑

j=1

j ·G(j) = q ·E [Z] . (38)

Combining Equation (37) with Equation (38) yields Equation (36), completing the proof.
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