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Abstract

Electronic voting is a prime application of cryptographic tools.
Many researches are addressing election or confidence voting in this
area. We address a new type of voting scheme “Divisible Voting
Scheme,” in which each voter has multiple ballots where the num-
ber of ballots can be different among the voters. This type of voting is
popular, however there is no secure protocol which achieves this type of
voting. We first define the divisible voting scheme and show naive pro-
tocols based on existing voting schemes. Then we propose two efficient
divisible voting schemes. The first scheme uses multisets, the second
scheme uses L-adic representation of number of ballots. The total cost
for a voter is O(M2 log(N)) in the first scheme and O(M log(N)) in
the second scheme where M is the number of candidates to vote for
and N is the number of ballots for a voter.

1 Introduction

An electronic voting system is a prime application of cryptographic tools.
Many researchers are studying on it, and many protocols have been pro-
posed. Electronic voting system should assure voters’ privacy, as well as
the correctness of the result. To achieve the privacy, some protocols such
as [1] or [2] use anonymous channels, which is also called MIX-net. On the
other hand, it is known that confidence voting can be realized by using ho-
momorphic encryption with multiple servers [3]. In confidence voting, each
voter votes “Yes” or “No.” [3] showed that the protocol can be extended
to a multi-way voting system in which each voter chooses one option from
multiple candidates.

In this paper, we focus on another type of voting system in which each
voter has multiple ballots. This type of voting is used at a general meeting of
stockholders. In such voting systems, there are multiple candidates to vote
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for and each voter has multiple ballots, where the number of ballots can be
different among the voters. Moreover, in some cases, each voter can divide
his available ballots into some parts and vote each part for each candidate.
We first define such voting system as “divisible voting,” and define secure
divisible voting scheme. Next, we give some naive divisible voting protocols.
They are easily obtained from multi-way voting protocol, however, they are
not efficient if the number of ballots each voter has is large. Finally, we
propose two efficient constructions of divisible voting. Our fist construction
uses multisets with a special property, named divisible multiset. The second
one L-adic representation of the numbers of ballots. Both of our protocols
are based on homomorphic encryption, and they do not need MIX-net.

2 Divisible voting

We define divisible voting as follows.

• There are many voters and some voting servers. Let {V1,V2, . . .} be
the set of voters.

• Each voter has multiple ballots. Let N (i) be the number of ballots Vi

has.

• There are multiple candidates to vote for. Let M be the number of
candidates.

• Each voter votes some ballots which are taken from his available ballots
for all candidates. We denote the number of ballots Vi votes for j-th
candidates by v

(i)
j . It must be

0 ≤ v
(i)
j ≤ N (i) and

M∑

j=1

v
(i)
j = N (i). (1)

The goal is to output the number of total ballots each candidate obtained
without revealing any additional information.

We can consider that divisible voting is a most general model of voting
system. When M = 2 and N (i) = 1 for all i, the system is an ordinal yes/no
voting system, in which each voter votes for “yes” or “no”. When M > 2
and N (i) = 1 for all i, the system is a multi-way voting system.

We say that a protocol is a secure divisible voting scheme if it satisfies
following requirements.
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1. The voting servers correctly output the result of voting, even if some
of voting servers are malicious, and any one can verify the validity of
the result.

2. Any voter can not vote in excess of the number of his available ballots
N (i). That is, Eq. (1) must be satisfied for all i.

3. Any one can not obtain additional information about the choice of each
voter from published information. Formally, consider an adversary
who corrupts less than t servers and all voters except two target voters.
Assume that (v(i)

j , v
(i′)
j ) which are choices of two target voters and

(v′(i)j , v
′(i′)
j ) which are other choices of them lead same results, then

the views the adversary sees in these two cases are indistinguishable.

3 Previous voting protocols based on a homomor-
phic encryption

Electronic yes/no and multi-way voting has been studied by many researchers,
and efficient schemes were already proposed [3]. In this section, we review
yes/no voting protocols based on a homomorphic encryption and the exten-
sion to multi-way voting.

3.1 Requirements of encryption schemes

Electronic voting protocols based on a homomorphic encryption use a public-
key encryption with some desirable conditions. Let E be a public-key prob-
abilistic encryption function. We denote by E(m) the set of encryptions for
a plaintext m and by e ∈ E(m) a particular encryption of m.

We assume that E satisfies following desirable properties.

Homomorphic property. There exists a polynomial time computable
operation, ⊗, as follows for a large prime q.

(e1 ∈ E(m1) ∧ e2 ∈ E(m2) ) =⇒ e1 ⊗ e2 ∈ E(m1 + m2 mod q)

For the simplicity, we write

n∏

i=1

ei = e1 ⊗ e2 ⊗ · · · ⊗ en
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and
ea = e⊗ e⊗ · · · ⊗ e︸ ︷︷ ︸

a

for a positive integer a. Then, if ei ∈ E(mi) then

n∏

i=1

(ei)ai ∈ E

(
n∑

i=1

aimi mod q

)
.

Threshold decryption. For a given ciphertext e ∈ E(m), any k out
of n players can decrypt e along with a zero-knowledge proof of the
correctness. However, any k − 1 out of n players cannot decrypt e.

Non-malleability. A public key cryptosystem is said to be non-malleable
[4] if there exists no probabilistic polynomial time adversary such that
given a challenge ciphertext e, he can output a different ciphertext e′

such that the plaintexts m,m′ for e, e′ are meaningfully related. (For
example, m′ = m + 1.)

Plaintext membership proof (PMP). There exists an efficient zero-
knowledge proof protocol, called plaintext equality test, which proves
e ∈ E(m) for given e and a known plaintext m.

Cramer et al. shows that there exists an efficient construction of
witness-indistinguishable proof to prove that

e ∈ E(m1) or e ∈ E(m2) or · · · or e ∈ E(mM )

for given ciphertext e and M known messages m1, . . . , mM , if there
exists a plaintext equality test [5]. In this paper, we denote such a
proof system “1-out-of-M plaintext membership proof (PMP).”

ElGamal cryptosystem and Paillier cryptosystem [6] satisfy these prop-
erties.

3.2 Overview of yes/no voting scheme

In an yes/no voting scheme, each voter has only one ballot, and he votes it
for ‘Yes’ or ‘No’. The protocol is summarized as follows.

1. In advance, n voting servers share a decryption key of a public-key
probabilistic encryption function E.
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2. Vi sets v(i) = 1 if he wants to vote for Yes, otherwise v(i) = 0, and
opens e(i) ∈ E(v(i)). Then he proves that e(i) ∈ E(1) or e(i) ∈ E(0)
using a 1-out-of-2 PMP.

3. After the voting period,

e(sum) 4=
∏

i

e(i)

is computed. This computation can be done by every one. Then, n
servers jointly decrypt e(sum) and obtain v(sum). v(sum) is the number
of voters who voted v(i) = 1.

In the above protocol, homomorphism of E assures that

e(sum) ∈ E

(∑

i

v(i)

)

and then
v(sum) =

∑

i

v(i).

Decryption is done correctly and public verifiably since it is done by k-out-
of-n threshold manner. Then the first condition of security is satisfied.

The second condition is assured, since each voter has to pass a 1-out-of-2
PMP.

If ElGamal encryption is used as a homomorphic encryption, the cipher-
text of no-vote is (gr, yr) and that of yes-vote is (gr, gyr), where y is a public
key and r is a random number. Then the message the servers actually obtain
is

v(sum) = g
∑

i
v(i)

.

Since
∑

i v
(i) is not more than the number of voters, servers can get

∑
i v

(i).

3.3 Multi-way voting

There are two ideas of construction of a multi-way voting scheme. In the
first one, we call combined-type, each voter opens only one ciphertext. In
the other one, separate-type, he opens one ciphertext for one candidate, then
totally M ciphertexts. (M is the number of the candidates to vote for.)
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Combined-type. Let N (sum) be the number of voters. To get a multi-
way voting for M candidates, we use M specified messages, (m1, . . . , mM )
such that mj = (N (sum) + 1)j−1. A voter who votes for ĵ-th candidate
publishes a ciphertext of mĵ , and proves that the ciphertext is valid by
using a 1-out-of-M PMP. The tallying is done as same as yes/no-voting.
The plaintext v(sum) does not specify the result explicitly, but

v(sum) = T1 + (N (sum) + 1)T2 + · · ·+ (N (sum) + 1)M−1TM ,

where Tj ’s are the results of the election. Since Tj < N (sum) + 1, Tj ’s are
determined uniquely.

Separate-type. A voter who votes for ĵ-th candidate prepares M ci-
phertexts as follows.

ej ∈
{

E(0) if j 6= ĵ

E(1) if j = ĵ

Then opens them and proves that each ciphertext is valid by using a 1-out-
of-2 PMP and

∏M
j=1 ej ∈ E(1). In this case, the tallying is very simple.

The servers combine ciphertexts for each candidate and decrypt them. The
obtained plaintexts are the results of voting.

Comparison of two types. We compare the two types of multi-way
voting protocols briefly. Column “#ciphertext” in Table 1 shows the number
of ciphertexts each voter has to compute and publish. The next column,
“PMP,” shows the number x such that each voter performs 1-out-of-x PMP
for each ciphertext. (For example, in separate-type protocol, each voter
performs 1-out-of-2 PMP for each ciphertext.) In general, a PMP costs a
few times of computation and communication costs of sending a ciphertext.
In this paper, we assume that the cost of a PMP equals τ times of that
of computing and sending a ciphertext1. Furthermore, we assume that a
1-out-of-x PMP costs x times of a PMP. Then, the total costs are estimated
such as column “Total.”

Column “#decryption” shows the number of ciphertexts the servers have
to decrypt jointly.

4 Naive divisible voting protocols

Before showing efficient protocols, we give some naive solutions. It is easy
to show they are secure protocols.

1For example, 1 < τ < 2 for ElGamal encryption.
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Table 1: Comparison of multi-way voting protocols

Type #ciphertext PMP Total #decryption
Combined 1 M τM + 1 1
Separate M 2 (2τ + 1)M M

Iteration-type. We can easily realize divisible voting in such a way that
Vi performs a multi-way voting procedure N (i) times independently. If the
multi-way voting protocol is secure, then the divisible voting protocol is also
secure. We can use both combined-type one and separate-type one.

In such protocols, the communicational and computational costs of voter
Vi are N (i) times of those in the multi-way voting protocol.

Modified separate-type. A voter who votes vj ballots for j-th candi-
date prepairs M ciphertexts as follows.

ej ∈ E(vj)

Then opens them and proves that each ciphertext is valid by using a 1-out-
of-(N (i) + 1) PMP and

∏M
j=1 ej ∈ E(N (i)).

Comparison. Table 2 shows the comparison of naive protocols. From this
table, we can say that iteration of separate-type is less efficient than others,
and the total cost is O(MN (i)) for all types.

Table 2: Comparison of naive protocols

Type #ciphertext PMP Total #decryption
Iteration+combined N (i) M (τM + 1)N (i) 1
Iteration+separate MN (i) 2 (2τ + 1)MN (i) M

Modified separate M N (i) + 1 M(τN (i) + τ + 1) M

5 Efficient divisible voting schemes

In the naive protocols, each voter’s communication and computation costs
are O(MN (i)) where N (i) is the number of ballots he has. When N (i) is
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large, it is not efficient.
In this section, we propose two efficient constructions of secure divisible

voting scheme.

5.1 Divisible voting scheme using multisets

The first construction uses multisets of positive integers, called divisible
multiset, which satisfies special conditions to reduce the number of iterations
of iteration-type naive protocols.

Definition 1 For positive integers M and N , we call a multiset X an
(M, N)-Divisible Multiset (DM) if for all sets of non-negative integers (x1, . . . , xM )
such that

∑M
i=1 xi = N , there exist multisets X1, . . . , XM ⊆ X such that


 ⊔

1≤i≤M

Xi = X


 ∧


∀i ∈ {1, . . . , M} :

∑

a∈Xi

a = xi


 . (2)

Here we define t as multiset union such that when A = {a1, . . . , an} and
B = {b1, . . . , bm}, A tB = {a1, . . . , an, b1, . . . , bm}.

For example, X = {1, 1, . . . , 1︸ ︷︷ ︸
N

} is an (M, N)-DM for any M . For a given

set of integers (x1, . . . , xM ) such that
∑

i xi = N , let Xi = {1, 1, . . . , 1︸ ︷︷ ︸
xi

}.

Then Xi’s satisfy Eq. (2).
For another example,

X = {1, 2, 4, 8, 16, 32, 37}

is a (2, 100)-DM. For x1 = 41, x2 = 59,

X1 = {1, 8, 32}, X2 = {2, 4, 16, 37}

satisfy Eq. (2).
It is clear that

∑
a∈X a = N if X is an (M,N)-DM.

Here we consider the following protocol. For a publicly known (M,N (i))-
DM X = {a1, a2, . . . , au}, voter Vi has u bundles of ballots such that the
l-th bundle consists of al ballots. So, totally he has N (i) ballots. He votes
each bundle (instead of each ballot) for one of M candidates using multi-way
voting procedure. He can vote u bundles for different candidates, but can
not divide ballots in a bundle and vote for multiple candidates. The tallying
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is done as same as the multi-way voting protocol, but a bundle of al ballots
is weighted al times.

The property of DM assures that the voter can vote v
(i)
j ballots for j-th

candidate for all (v(i)
1 , . . . , v

(i)
M ). Therefore, the above system is a divisible

voting protocol. (In fact, if X = {1, 1, . . . , 1} and u = N (i), the above
protocol is identical to the iteration-type naive protocol.)

In this protocol, the number of iterations Vi has to do is the number of
elements of the divisible multiset. Next, we show that we can construct an
(M, N)-DM that includes fewer elements. Then we can save the number of
iterations.

Theorem 1 For any positive integer N , we can construct a (2, N)-DM that
includes blog2Nc+ 1 elements.

Theorem 2 For any positive integer N and any integer M(≥ 3), we can
construct an (M, N)-DM that includes at most (M−1)

(⌊
log2

⌈
N
M

⌉⌋
+ 1

)
+1

elements.

The proofs of these theorems are shown in Appendix.

5.2 Improvement of modified separate-type

The second efficient construction can be considered as an improved one of
modified separate-type naive protocol.

Assume that a voter wants to vote vj ballots for j-th candidate. In
modified separate-type naive protocol, the voter encrypts vj for all j and
proves that Eq. (1) holds using 1-out-of-(N (i) + 1) PMP. In the second
construction, he first writes vj with L-adic representation for some L(≤
N (i) + 1). Let (bj,t, . . . , bj,1, bj,0) be the L-adic representation, that is, bj,l ∈
{0, 1, . . . , L − 1} and vj =

∑t
l=0 Ll bj,l, where t = blogL N (i)c. Then he

encrypts bj,l for all j and l and proves that bj,l ∈ {0, 1, . . . , L − 1} holds
using 1-out-of-L PMP.

Concrete protocol is described as follows.

1. In advance, n voting servers share a decryption key of a public-key
probabilistic encryption function E.

2. Let (b(i)
j,t , . . . , b

(i)
j,1, b

(i)
j,0) be a L-adic representation of v

(i)
j (1 ≤ j ≤ M).

For each j, Vi computes (e(i)
j,t , . . . , e

(i)
j,1, e

(i)
j,0) where

e
(i)
j,l ∈ E(b(i)

j,l ),

9



then opens (e(i)
j,t , . . . , e

(i)
j,0), and proves that e

(i)
j,l is valid for all l using

1-out-of-L PMP. In addition, he shows that

M∏

j=1

t∏

l=0

(
e
(i)
j,l

)Ll

∈ E(N (i)).

It is enough for the voter by publishing a random number which is
used to encrypt to show above fact.

3. After the voting period,

e
(sum)
j

4
=

∏

i

t∏

l=0

(
e
(i)
j,l

)Ll

is computed. Next n servers jointly decrypt e
(sum)
j and obtain v

(sum)
j .

v
(sum)
j is the number of ballots j-th candidate got.

It is clear that

e
(sum)
j ∈ E

(∑

i

t∑

l=0

Ll b
(i)
j,l

)
= E

(∑

i

v
(i)
j

)
.

Then
v

(sum)
j =

∑

i

v
(i)
j .

5.3 Efficiency

Table 3 shows the comparison of efficient protocols. Similar to Table 1
and 2, column “Total” shows the total complexity of each type when cost
of one PMP is τ times of that of computing and sending one plaintext,
and one 1-out-of-x PMP equals x times of one PMP. “DM+combined” and
“DM+separate” denote the first efficient construction in which combine-type
and separate-type multi-way voting protocol is used, respectively. “L-adic
separate” denotes the second construction.

Comparing with Table 2, our constructions are more efficient than naive
protocols.

The first construction with a separate-type multi-way voting protocol is
clearly inferior to the others.

Figure 1 shows that the total costs of L-adic separate construction for
L = 1, 2, 3, 4, 5, 10 where τ = 1 and M = 5. It shows that L = 3 or L = 4
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Table 3: Comparison of cost for a voter

Type Total

DM+combined (τM + 1)
(
(M − 1)

(⌊
log2

⌈
N(i)

M

⌉⌋
+ 1

)
+ 1

)

DM+separate (2τ + 1)M
(
(M − 1)

(⌊
log2

⌈
N(i)

M

⌉⌋
+ 1

)
+ 1

)

L-adic separate (τL + 1)M
(
blogL N (i)c+ 1

)

Figure 1: Cost of L-adic construction where τ = 1 and M = 5

is most efficient in most cases. Figure 2 shows that the total cost of 4-adic
separate construction and DM+combined construction where τ = 1, L = 4
and M = 5. It shows that DM+combined are more efficient only when
N = 4, 5, otherwise 4-adic separate construction is more efficient.

Next, look at the efficiency of tallying. Table 4 shows the number of
decryption procedures and maximal number of plaintexts obtained by the
decryption. Here we omit the first construction with separate-type.

Table 4: Comparison of tallying
Type #decrypt Message space

DM+combined 1 (N (sum) + 1)M

4-adic separate M N (sum)
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Figure 2: Cost comparison between L-adic construction and DM+combined
where τ = 1, L = 4 and M = 5

If Paillier cryptosystem is used, Tj ’s are easily computed from T1 +(N +
1)T2+· · ·+(N+1)M−1TM . Therefore, the first construction is more efficient.

If we use ElGamal scheme, large message space makes the tallying costly.
Then the second construction is more efficient.

References

[1] C. Park, K. Itoh and K. Kurosawa, “Efficient Anonymous Channel and
All/Nothing Election Scheme,” In Proc. of EUROCRYPT ’93, pp. 248–
259 (1993).

[2] K. Sako, “Electronic Voting Scheme Allowing Open Objection to the
Tally,” IEICE Trans. on Fundamentals, Vol.E77-A, No.1, pp.24–30
(1994).

[3] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure and Op-
timally Efficient Multi-Authority Election Scheme,” Proc. of Euro-
crypt ’97, LNCS 1233, pp. 103–118 (1997).

[4] D. Dolev, C. Dwork, M. Naor, “Non-malleable cryptography,” Proc. of
STOC ’91, pp. 542–552 (1991).

[5] R. Cramer, I. Damgard, and B. Schoenmakers, “Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols,” Proc.
of Eurocrypt ’94, LNCS 839, pp. 174–187 (1994).

[6] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” Proc. of Eurocrypt ’99, LNCS 1592, pp.223–238
(1999).

12



A Proofs of Theorem 1

When N = 1, a multiset X = {1} is obviously a (2, 1)-DM. We will prove
in N ≥ 2. For any N , following equation holds.

N =
(
2blog2Nc − 1

)
+

(
N − 2blog2Nc + 1

)

=



blog2Nc−1∑

i=0

2i


 +

(
N − 2blog2Nc + 1

)

Note that N − 2blog2Nc + 1 ≥ 1 holds from 2blog2Nc ≤ N . Let define X as

X =
{
2i | 0 ≤ i ≤ blog2Nc − 1

}
t

{
N − 2blog2Nc + 1

}
.

Then
∑

a∈X a = N . Hereafter, we prove X is a (2, N)-DM.
Let x1, x2 be integers which are not negative and satisfy x1 + x2 = N .

Here we does not lose generality when we assume that 0 ≤ x1 ≤ x2 ≤ N .
Then

x1 ≤ 2blog2Nc − 1 (3)

holds.
When x1 = 0, x2 = N , let

X1 = φ , X2 = X.

Then eq. (2) holds.
When x1 ≥ 1, let

(
βblog2x1c, . . . , β0

)
be a binary representation of x1 and

X1 =
{
2i | 0 ≤ i ≤ blog2x1c, βi = 1

}
,

X2 = X −X1.

From eq. (3), blog2x1c ≤ blog2Nc − 1. Thus,

X1 ⊆
{
2i | 0 ≤ i ≤ blog2Nc − 1

}
⊂ X.

From
∑

a∈X1

a =
blog2x1c∑

i=0

βi2i = x1

and ∑

a∈X2

a =
∑

a∈X

a−
∑

a∈X1

a = N − x1 = x2,

eq. (2) holds.
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B Proofs of Theorem 2

For any positive integer N ,

N =
M∑

i=1

(⌊
i
N

M

⌋
−

⌊
(i− 1)

N

M

⌋)

holds. Let Ni (1 ≤ i ≤ M) be

Ni =
⌊
i
N

M

⌋
−

⌊
(i− 1)

N

M

⌋
.

Then Ni is a non-negative integer and NM is a positive integer.

Lemma 1 ⌈
N

M

⌉
− 1 ≤

⌊
N

M

⌋
≤ Ni ≤

⌈
N

M

⌉
. (4)

(Proof) When we assume Ni ≤
⌊

N
M

⌋
− 1,

⌊
i N
M

⌋
≤

⌊
(i− 1) N

M

⌋
+

⌊
N
M

⌋
− 1. It

is contradict from
⌊
i N
M

⌋
> i N

M − 1 and
⌊
(i− 1) N

M

⌋
+

⌊
N
M

⌋
− 1 ≤ (i− 1) N

M +
N
M − 1 = i N

M − 1. Thus ⌊
N

M

⌋
≤ Ni. (5)

If we assume
⌈

N
M

⌉
+1 ≤ Ni,

⌊
(i− 1) N

M

⌋
+

⌈
N
M

⌉
+1 ≤

⌊
i N
M

⌋
. It is contradict

from
⌊
(i− 1) N

M

⌋
+

⌈
N
M

⌉
+1 >

(
(i− 1) N

M − 1
)
+ N

M +1 = i N
M and

⌊
i N
M

⌋
≤ i N

M .
Thus

Ni ≤
⌈

N

M

⌉
. (6)

From eq. (5) and (6),
⌈

N

M

⌉
− 1 ≤

⌊
N

M

⌋
≤ Ni ≤

⌈
N

M

⌉
. (7)

Q.E.D.

If Ni = 0 (1 ≤ i ≤ M − 1), let Yi = φ, otherwise let Yi be a (2, Ni)-DM
constructed by using Theorem 1. Let YM = {NM}. Let X be

X =
⊔

1≤i≤M

Yi.
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From lemma 1 and Theorem 1,

|X| =
M−1∑

i=1

|Yi|+ |YM | ≤ (M − 1)
(⌊

log2

⌈
N

M

⌉⌋
+ 1

)
+ 1

holds.
From now, we prove that X is an (M, N)-DM. Let xi (1 ≤ i ≤ M) be a

non-negative integer which fulfills
∑M

i=1 xi = N . Without loss of generality,
we assume that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xM ≤ N . We show that following
equation holds when j = M − 1 by using mathematical induction.

∃X1 ⊆ X · · · ∃Xj ⊆ X⊔

1≤i≤j

Xi ⊆
⊔

1≤i≤j

Yi ∧ ∀i ∈ {1, . . . , j} :
∑

a∈Xi

a = xi (8)

At first, we show that eq. (8) holds when j = 1. If N1 + 1 ≤ x1, then∑M
i=1 xi 6= N from N = M N

M < M
(⌊

N
M

⌋
+ 1

)
= M (N1 + 1) ≤ ∑M

i=1 xi.

Thus x1 ≤ N1.
When N1 = 0, eq. (8) holds with X1 = φ = Y1 from x1 = 0. When

N1 ≥ 1 there exists multiset X1 ⊆ Y1 which satisfies
∑

a∈X1
a = x1 for any

x1 (0 ≤ x1 ≤ N1), because Y1 is a (2, N1)-DM. Thus eq. (8) holds.
Next we show that if eq. (8) holds in the case of j = k, then it holds in the

case of j = k + 1, where 1 ≤ k ≤ M − 2. It is clear that
∑k+1

i=1 xi ≤
∑k+1

i=1 Ni

from 0 ≤ x1 ≤ · · · ≤ xM ≤ N and the definition of Ni. Thus, we must show
only that there exists multiset

Xk+1 ⊆
⊔

1≤i≤k+1

Yi −
⊔

1≤i≤k

Xi =


 ⊔

1≤i≤k

Zi


 t Yk+1

which satisfies
∑

a∈Xk+1
a = xk+1 for any xk+1. Note that 0 ≤ xk+1 ≤∑k+1

i=1 Ni −
∑k+1

i=1 xi. Here let multiset Zi be

Zi =





φ i = 0
Yi \

⊔
1≤l≤k Xl 1 ≤ i ≤ k

Yk+1 i = k + 1.

When xk+1 =
∑k+1

i=1 Ni −
∑k

i=1 xi holds, let

Xk+1 =
⊔

1≤i≤k+1

Yi −
⊔

1≤i≤k

Xi,
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then eq. (8) holds from

∑

a∈Xk+1

a =
k+1∑

i=1

∑

a∈Yi

a−
k∑

i=1

∑

a∈Xi

a =
k+1∑

i=1

Ni −
k∑

i=1

xi = xk+1

and ⊔

1≤i≤k+1

Xi =
⊔

1≤i≤k+1

Yi.

When xk+1 <
∑k+1

i=1 Ni −
∑k

i=1 xi, there exists d (0 ≤ d ≤ k) which
satisfies

d∑

i=0

∑

a∈Zi

a ≤ xk+1 ≤
d+1∑

i=0

∑

a∈Zi

a− 1 =
d∑

i=0

∑

a∈Zi

a +
∑

a∈Zd+1

a− 1.

Then,

0 ≤

xk+1 −

d∑

i=0

∑

a∈Zi

a


 ≤

∑

a∈Zd+1

a− 1.

On the other hand,
∑

a∈Zd+1

a− 1 ≤
∑

a∈Yd+1

a− 1 = Nd+1 − 1

from Zd+1 ⊆ Yd+1. Then.

Nd+1 − 1 ≤
⌈

N

M

⌉
− 1 ≤ Nk+1

from Lemma 1. So

0 ≤

xk+1 −

d∑

i=0

∑

a∈Zi

a


 ≤ Nk+1

holds. Therefore there exists Y ′
k+1 ⊆ Yk+1 which satisfies

∑

a∈Y ′k+1

a =


xk+1 −

d∑

i=0

∑

a∈Zi

a


 ,

because Yk+1 is a (2, Nk+1)-DM.
Here, let

Xk+1 =


 ⊔

0≤i≤d

Zi


 ∪ Y ′

k+1.
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Then eq. (8) holds from

∑

a∈Xk+1

a =
d∑

i=0

∑

a∈Zi

a +
∑

a∈Y ′
k+1

a

=
d∑

i=0

∑

a∈Zi

a +


xk+1 −

d∑

i=0

∑

a∈Zi

a




= xk+1

and

Xk+1 =


 ⊔

0≤i≤d

Zi


 ∪ Y ′

k+1

⊆

 ⊔

1≤i≤k

Zi


 ∪ Yk+1

=


 ⊔

1≤i≤k

Yi −
⊔

1≤i≤k

Xi


 ∪ Yk+1,

⊔

1≤i≤k+1

Xi ⊆
⊔

1≤i≤k+1

Yi.

Consequently, there exist X1, . . . , XM−1 which satisfy eq. (8) when j =
M − 1.

Finally, set
XM = X −

⋃

1≤i≤M−1

Xi,

then eq. (2) holds from

∑

a∈XM

a =
∑

a∈X

a−
M−1∑

i=1

∑

a∈Xi

a = N −
M−1∑

i=1

xi = xM .
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