
A Separation between the

Random-Oracle Model and the Standard Model

for a Hybrid-Encryption Problem

Mihir Bellare
∗

Alexandra Boldyreva
†

Adriana Palacio
‡

February 10, 2003

Abstract

We present a simple, practical, natural RO-model scheme that is proven in the RO model
to meet its goal and yet admits no standard-model instantiation that meets this goal. The goal
in question is IND-CCA-preserving asymmetric encryption which formally captures security of
the most common practical usage of asymmetric encryption, namely to transport a symmetric
key in such a way that symmetric encryption under the latter remains secure. The scheme is an
El Gamal variant, called Hash El Gamal, that resembles numerous existing RO-model schemes,
and on the surface shows no evidence of its anomalous properties.

We obtain these results as a consequence of a more general one showing that a certain type
of IND-CCA-preserving asymmetric encryption is impossible to achieve in the standard model
but is achievable (by Hash El Gamal in particular) in the RO model. This helps us better
understand the source of the anomalies in Hash El Gamal and also lifts separation results from
being about specific, example schemes to being about entire goals.

We believe these results deepen our understanding of the nature and extent of the gap
between the standard and RO models, and bring concerns raised by previous work closer to
practice by indicating that the problem of RO-model schemes admitting no secure instantiation
is a very real one that can and does arise in domains where RO schemes are commonly designed.

Keywords: Random-Oracle Model, asymmetric encryption, hybrid encryption, foundations.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF grant CCR-0098123, NSF grant ANR-0129617 and an IBM Faculty Partnership Development Award.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. E-Mail: aboldyre@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/aboldyre.
Supported in part by above-mentioned grants of first author.

‡Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. E-Mail: apalacio@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/apalacio.
Supported by a National Science Foundation Graduate Research Fellowship.

1

Contents

1 Introduction 3

2 Definitions 5

3 The HEG scheme and its security in the RO model 7

4 Impossibility results 9

References 16

A Proof of Theorem 3.1 17

2

1 Introduction

A random oracle (RO) model scheme is one whose algorithms have oracle access to one or more
public random functions. (Its security is evaluated with respect to an adversary with oracle access
to the same functions.) An “instantiation” of such a scheme is the standard-model scheme obtained
by replacing this function with a polynomial-time computable function having a public description.
(Its security is evaluated with respect to an adversary given the description of the same function.)
In the random-oracle paradigm, as enunciated by Bellare and Rogaway [2], one first designs and
proves secure a scheme in the RO model, and then instantiates it to get a (hopefully still secure)
standard-model scheme.

The RO model has proven quite popular and there are now numerous practical schemes designed
and proven secure in this model. But the important issue of how such schemes can be securely
instantiated, and whether this is even possible, remains less clear.

This paper adds to existing concerns in this regard via new “separation” results. We present
a simple, natural RO-model scheme, proven in the RO model to meet an eminently practical goal.
Yet we show that no instantiation of this scheme results in a standard-model scheme meeting the
goal in question.

This is not the first separation result (cf. [6, 17]), but the nature of the scheme and goal in
our case bring the concerns raised by the previous results closer to practice and indicate that the
problem of RO-model schemes admitting no secure instantiation is a very real one that can and
does arise in domains where RO schemes are commonly designed.

We also prove further and stronger results that lift separations from being about specific schemes
to being about primitives. Below we begin with some background and then describe our contribu-
tions in more detail.

Separation results. A separation result for some cryptographic goal is an example of a RO-
model scheme provably meeting the goal in question but admitting no instantiation that meets
the goal. The first such results are due to Canetti, Goldreich and Halevi [6], the goals in question
being IND-CPA-secure asymmetric encryption and digital signatures secure against chosen-message
attack. Nielsen [17] followed with a separation result for the goal of non-interactive, non-committing
encryption (NCE) [5].

However, the schemes of [6] are somewhat artificial (meaning, not like practical schemes one
typically encounters) and also complex through the use of CS proofs [16]. The scheme of [17], on
the other hand, is natural but the goal considered (namely, non-interactive NCE) is not as practical
as the one we consider.1

In recent work that is independent of and concurrent to ours, Goldwasser and Taumann [15]
present a separation result about the Fiat-Shamir transform, showing the existence of a 3-move
protocol which when collapsed via a hash function yields a signature that is secure in the RO model
but possesses no secure instantiation. This result addresses an important practical problem but
their example protocol, like those of [6], is a comparitively artificial and complex CS-proof based
one.

In our separation results, both the scheme and the goal are natural and practical. Let us begin
by describing the goal.

1An additional concern is that Nielsen’s separation [17] might be the result of having incorrectly lifted the standard-
model definition of the NCE goal [5] to the random-oracle model. We recall that the definition of NCE is in Canetti’s
multi-party computation framework [4], which uses the notion of an “environment.” In moving to the RO model,
Nielsen denies the random oracle to the environment. But the definition of the RO model is that all parties, including
the adversary, have access to the random oracle, and in [4] the environment is an adversary. If one does provide the
random oracle to the environment, however, the separation result in [17] vanishes.

3

IND-CCA-preserving asymmetric encryption. We consider the use of an asymmetric en-
cryption scheme for the purpose for which it is overwhelmingly employed in practice, namely to
transport a key that is later used for the symmetric encryption of one or more messages. Such a
“hybrid” scheme is secure if symmetric encryption under the transported key remains as secure as if
this key had been distributed to the parties magically and out-of-band. Based on this intuition, we
present in Section 2 a natural formalization of the IND-CCA security of the multi-message (mm)
hybrid scheme associated to an asymmetric encryption scheme AS and a symmetric encryption
scheme SS.2

Good cryptographic-engineering practice suggests that one require the asymmetric encryption
scheme to have the property that security of the mm-hybrid relies only on the assumption that
the underlying symmetric encryption scheme is itself secure. This leads to our saying that an
asymmetric encryption scheme AS is IND-CCA preserving if the mm-hybrid associated to AS and
symmetric encryption scheme SS is IND-CCA secure for every IND-CCA secure SS. The goal we
consider is IND-CCA-preserving asymmetric encryption.

Note that any IND-CCA-secure asymmetric encryption scheme is IND-CCA preserving (cf. [10,
19]). However IND-CCA preservation is actually a weaker requirement on an asymmetric encryption
scheme than IND-CCA security itself, leading researchers to seek IND-CCA-preserving asymmetric
encryption schemes that are more efficient than existing IND-CCA secure ones. These designs tend
to be in the RO model. We now consider one such design.

The Hash El Gamal scheme and its security. It is easy to see that the El Gamal encryption
scheme [11] is not IND-CCA preserving. An effort to strengthen it to be IND-CCA preserving lead
us to a variant that we call the Hash El Gamal scheme. It uses the idea underlying the Fujisaki-
Okamoto [12] transformation, namely to encrypt under the original (El Gamal) scheme using coins
obtained by applying a random oracle H to the message. Specifically, encryption of a message K
under public key (q, g,X) in the Hash El Gamal scheme is given by

AEG,H((q, g,X),K) = (gH(K) , G(XH(K))⊕K) , (1)

where G,H are random oracles, q, 2q +1 are primes, g is a generator of the order q cyclic subgroup
of Z

∗
2q+1, and the secret key is (q, g, x) where gx = X. Decryption is performed in the natural way

as detailed in Figure 1.
The transformation turns out to “work” in the sense that we are able to prove Theorem 3.1,

which says that the Hash El Gamal scheme is IND-CCA preserving in the RO model, assuming the
CDH problem is hard in the underlying group. (The proof, which is not entirely straightforward,
is outlined briefly in Section 3 and detailed in Appendix A.)

However, we follow this with Theorem 4.5 which says that the Hash El Gamal scheme admits
no IND-CCA-preserving instantiation. In other words, the standard-model asymmetric encryption
scheme obtained by instantiating the RO-model Hash El Gamal is not IND-CCA preserving,3

regardless of the choice of instantiating functions. (We allow these to be drawn from any family of
polynomial-time computable functions.)

Discussion. What we find scary about the above is that, on the surface of it, the Hash El Gamal
scheme seems innocuous enough. It does not seem to be making any “peculiar” use of its random

2 The term “hybrid encryption” in the literature seems to cover a large body of goals and techniques. We are
interested in a particular sub-class of these, and to avoid confusion provide a distinguishing name and definition of
security. The term mm-hybrid reflects the fact that multiple messages may be symmetrically encrypted under a single
transported symmetric key.

3 This is under the assumption that IND-CCA-secure symmetric encryption schemes exist, since, otherwise, by
default, any asymmetric encryption scheme is IND-CCA preserving, and, indeed, the entire hybrid encryption problem
we are considering is vacuous. This assumption is made implicitly in all results in this paper.

4

oracle that would lead us to think it is “wrong;” indeed, it uses random oracles in ways they have
been used previously, in particular by [12]. The scheme is simple, efficient, and similar to other
RO-model schemes out there. The fact that this scheme is in some very real sense “wrong” points
to the difficulty of being able to distinguish such RO-model schemes from ones that at least may
be securely instantiable.

The bulk of papers that use the RO model stop at the point of proving that their scheme is
secure in this model, with little or no attention to instantiation, barring perhaps a line saying it
should be done using SHA-1 or other cryptographic hash functions as suggested in [2]. (As an
exception we note [13].) The above results suggest that after having proven a scheme secure in the
RO model, designers should look more closely at the possibility of secure instantiation.

Generalizations. Underlying Theorem 4.5 (recall this is the result that says that the Hash El
Gamal asymmetric encryption scheme admits no IND-CCA-preserving instantiation) are stronger
and more general results from which it follows. These are of independent interest. They provide a
deeper indication of the nature and extent of the gap between the standard and RO models, and
they help pinpoint the source of the anomalous behavior of the Hash El Gamal scheme.

The first of these results is Theorem 4.4, which says that no RO-model asymmetric encryption
scheme possessing a pair of properties that we call key verifiability and ciphertext verifiability admits
an IND-CCA-preserving instantiation. (Key verifiability means there is a way to recognize valid
public keys in polynomial time. Ciphertext verifiability means there is a polynomial-time procedure
to determine whether a given ciphertext is an encryption of a given message under a given valid
public key.) Theorem 4.5 follows once we observe (cf. Proposition 4.1) that the Hash El Gamal
scheme has the two properties in question.

This helps to better understand what aspects of the Hash El Gamal scheme lead to its admitting
no IND-CCA-preserving instantiation. In particular we see that this is not due to some “peculiar”
use of random oracles but rather due to some simply stated properties of the resulting asymmetric
encryption scheme itself.

Theorem 4.4 is itself a corollary of a yet stronger and more general result, namely Theorem 4.3.
The latter is an “impossibility” result purely in the standard model. It says that, in this model,
there simply do not exist asymmetric encryption schemes that are all of the following: IND-
CCA preserving, key verifiable and ciphertext verifiable. Theorem 4.5 follows once we observe
(cf. Proposition 4.2) that the key verifiability and ciphertext verifiability of a RO-model asymmet-
ric encryption scheme are inherited by its standard-model instantiations.

Theorem 4.3 lifts separation results from being about specific, example schemes to being about
entire goals. It says that a certain goal (namely IND-CCA-preserving, key-verifiable and ciphertext-
verifiable asymmetric encryption) is unachievable in the standard model. Yet, as a consequence
of Theorem 3.1 and Proposition 4.1, we know that this goal is achievable in the RO model under
standard computational assumptions. This points to a broader gap between the RO and standard
models, and says that the RO model can at times lead us not just to “wrong” schemes, but even
to “wrong” goals.

Related work. The large body of work on hybrid encryption in the RO model [7, 8, 12, 18]
is an important backdrop for our work, and in particular the Hash El Gamal scheme is based on
RO-model schemes and techniques from this literature. We stress, however, that we have no reason
to believe that any of these schemes fail to be securely instantiable.

2 Definitions

Notation. If S is a randomized algorithm, then [S(x, y, . . .)] denotes the set of all points having

5

positive probability of being output by S on inputs x, y, If n is an integer, then 〈n〉 is its
representation as a binary string. If x is a binary string, then |x| denotes its length.

Symmetric encryption. A symmetric encryption scheme SS = (SK,SE,SD) is specified by three
polynomial-time algorithms: via K

$← SK(1k) one can generate a key; via C
$← SE(K,M) one

can encrypt a message M ∈ {0, 1}∗; and via M ← SD(K,C) one can decrypt a ciphertext C. We
assume (without loss of generality) that [SK(1k)] ⊆ {0, 1}k. Following [1], SS is said to be IND-CCA
secure if the function

Advind-cca
SS,S (k) = 2 · Pr

[
K

$← SK(1k) ; b
$← {0, 1} : S SE(K,LR(·,·,b)), SD(K,·)(1k) = b

]
− 1

is negligible for all legitimate polynomial-time adversaries S, where LR(M0,M1, b) = Mb for all
messages M0,M1 of equal length, and S is legitimate if it never queries SD(K, ·) with a ciphertext
previously returned by SE(K,LR(·, ·, b)). We do not consider symmetric encryption schemes in the
RO model (both for simplicity and because public random oracles are of little pragmatic value in
this setting), but our results extend to cover them.

Asymmetric encryption. An asymmetric encryption scheme AS = (AK,AE,AD) is specified
by three polynomial-time algorithms: via (pk, sk) $← AK(1k) one can generate keys; via C

$←
AE(pk,K) one can encrypt a message K ∈ {0, 1}k ; and via K ← AD(sk, C) one can decrypt a
ciphertext C. (We denote the message by K because we will set it to a key for a symmetric
encryption scheme.) In the RO model, the encryption and decryption algorithms have access
to one or more oracles, of appropriate domains and ranges that might depend on the public key.
Discussions in this paper might refer to standard notions of security for such schemes like IND-CPA
and IND-CCA but, since our results do not require them, we do not recall the formal definitions.

IND-CCA-preserving asymmetric encryption. We provide the formal definitions first and ex-
planations later. A multi-message hybrid (mm-hybrid) encryption scheme is simply a pair (AS,SS)
consisting of an asymmetric encryption scheme AS = (AK,AE,AD) and a symmetric encryption
scheme SS = (SK,SE,SD). We say that mm-hybrid scheme (AS,SS) is IND-CCA secure if the
function

Advind-cca
AS,SS,H (k) = 2 · Pr

[
Expind-cca

AS,SS,H(k) = 1
]
− 1

is negligible for all legitimate polynomial-time hybrid adversaries H , where the experiment in
question is:

(pk, sk) $← AK(1k) ; K
$← SK(1k) ; b

$← {0, 1}
Pick random oracles G,H, . . . with appropriate domains and ranges
Ca

$← AEG,H,...(pk,K)
Run H with inputs pk, Ca and oracles SE(K,LR(·, ·, b)), SD(K, ·), ADG,H,...(sk, ·), G,H, . . .
Let d denote the output of H
If b = d then return 1 else return 0.

The adversary is legitimate if it does not query SD(K, ·) on a ciphertext previously returned by
SE(K,LR(·, ·, b)), and it does not query AD(sk, ·) on Ca. We say that AS is IND-CCA preserving if
the mm-hybrid encryption scheme (AS,SS) is IND-CCA secure for all IND-CCA-secure symmetric
encryption schemes SS.

Let us now explain the ideas behind these formalisms. Recall that we are modelling the security
of the following two-phase scenario: in phase one, the sender picks a key K for symmetric encryp-
tion, asymmetrically encrypts it under the receiver’s public key to get a ciphertext Ca, and sends Ca

to the receiver; in phase two, the sender symmetrically encrypts messages of its choice under K and

6

AK(1k)
(q, g) $← CG(1k)
x

$← Zq

X ← gx

Return ((q, g, X), (q, g, x))

AEG,H((q, g, X), K)
y ← H(K)
Y ← gy

T ← G(Xy)
W ← T ⊕K
Return (Y, W)

ADG,H((q, g, x), (Y, W))
T ← G(Y x)
K ← T ⊕W
If gH(K) = Y then

Return K
else Return ⊥ EndIf

Figure 1: Algorithms of the RO-model asymmetric encryption scheme HEG[CG] = (AK,AE,AD)
associated to cyclic-group generator CG. Here G: 〈g〉 → {0, 1}k and H : {0, 1}k → Zq are random
oracles.

transmits the resulting ciphertexts to the receiver. The definitions above capture the requirement
of privacy of the symmetrically encrypted data under a chosen-ciphertext attack. Privacy is for-
malized in terms of indistinguishability via left-or-right oracles, and the chosen-ciphertext attack is
formalized via the adversary’s access to decryption oracles for both the symmetric and asymmetric
schemes. The legitimacy requirement, as usual, disallows decryption queries on challenge cipher-
texts since they would lead to trivial adversary victory. The experiment reflects the possibility that
AS is a RO-model scheme by picking random oracles for AE and AD. (For maximum generality, the
oracles are chosen after key generation since in many practical RO-model schemes, including Hash
El Gamal, their domains and ranges depend on pk.) The standard model is the special case where
the algorithms of AS do not refer to any oracles, and thus the definition above covers security in
both models. The notion of AS being IND-CCA preserving reflects a valuable pragmatic require-
ment, namely that one may use, in conjunction with AS, any symmetric encryption scheme and be
guaranteed security of the mm-hybrid under the minimal assumption that the symmetric scheme
itself was secure.

3 The HEG scheme and its security in the RO model

We introduce a variant of the El Gamal encryption scheme [11] that we show is IND-CCA preserving
in the RO model under a standard assumption, but which, in Section 4, we will show to admit no
IND-CCA-preserving instantiation.

Preliminaries. A cyclic-group generator is a randomized, polynomial-time algorithm CG which
on input 1k outputs a pair (q, g), where q is a prime such that p = 2q + 1 is also a prime, g is a
generator of the cyclic, order q subgroup 〈g〉 of Z

∗
p, and |〈p〉| = k. Recall that the Computational

Diffie-Hellman (CDH) problem is said to be hard for CG if the function

Advcdh
CG,C(k) = Pr

[
(q, g) $← CG(1k) ; x, y

$← Zq : C(q, g, gx, gy) = gxy
]

is negligible for all polynomial-time cdh adversaries C.

Scheme and result statement. To any cyclic-group generator CG we associate the RO-model
asymmetric encryption scheme HEG[CG] = (AK,AE,AD) whose constituent algorithms are depicted
in Figure 1. We call this variant of the El Gamal encryption scheme the Hash El Gamal encryption
scheme associated to CG. The main result about its security in the RO model is the following:

Theorem 3.1 If the CDH problem is hard for cyclic-group generator CG, then the associated Hash
El Gamal asymmetric encryption scheme HEG[CG] is IND-CCA preserving in the RO model.

7

For the definition of what it means to be IND-CCA preserving, we refer the reader to Section 2.

Remarks. We note that the encryption algorithm AE of HEG[CG] is deterministic. For this reason
alone, HEG[CG], as a stand-alone asymmetric encryption scheme, is not IND-CCA secure or even
IND-CPA secure in the RO model. Nonetheless, the above says that it is IND-CCA preserving as
long as the CDH problem is hard for CG. This is not a contradiction. Very roughly, the reason
HEG[CG] can preserve IND-CCA while not itself being even IND-CPA is that the former notion
considers the use of the scheme only for the encryption of messages that are symmetric keys, which
(as long as the associated symmetric encryption scheme is secure) have relatively high entropy, and
the entropy in these messages compensates for the lack of any introduced by AE. Furthermore, the
HEG[CG] scheme and Theorem 3.1 are in line with previous work [7, 8, 12, 18] where also relatively
weak asymmetric components suffice to ensure strong security properties of the hybrid based on
them.

The full proof of Theorem 3.1 is quite technical and is in Appendix A. Below we provide an
intuitive overview that highlights the main areas of novelty.

Proof setup. Let AS = HEG[CG] and let AK,AE,AD denote its constituent algorithms. Let
SS = (SK,SE,SD) be any IND-CCA-secure symmetric encryption scheme. We need to show that
(AS,SS) is an IND-CCA-secure mm-hybrid encryption scheme.

Let H be a polynomial-time hybrid adversary attacking (AS,SS). We will construct polynomial-
time adversaries S,C such that

Advind-cca
AS,SS,H (k) ≤ poly(k) · poly

(
Advind-cca

SS,S (k) , Advcdh
CG,C(k)

)
+

poly(k)
2k

. (2)

Since SS is assumed IND-CCA secure and the CDH problem is hard for CG, the advantage functions
related to S,C above are negligible, and thus so is the advantage function related to H . To complete
the proof, we need to specify adversaries S,C for which Equation (2) is true. Below we let GH
be the event that there is a time at which gxy is queried to G but K has not been queried to H;
HG the event that there is a time at which K is queried to H but gxy has not been queried to G;
and Succ(H) the event that H is successful at guessing the value of its challenge bit b. We will
construct C so that

Pr [GH] ≤ poly(k) · Advcdh
CG,C(k) +

poly(k)
2k

,

and we will construct S so that

Pr [HG ∨ (Succ(H) ∧ ¬GH ∧ ¬HG)] ≤ Advind-cca
SS,S (k) +

poly(k)
2k

. (3)

Equation (2) follows.

The adversaries. The design of C relies mostly on standard techniques, and so we leave it to
Appendix A. We turn to S. The latter gets input 1k and oracles SE(K,LR(·, ·, b)),SD(K, ·), begins
with the initializations

((q, g,X), (q, g, x)) $← AK(1k) ; y
$← Zq ; Y ← gy ; W

$← {0, 1}k ; Ca ← (Y,W) , (4)

and then runs H on inputs (q, g,X), Ca, itself responding to the oracle queries of the latter. Its
aim is to do this in such a way that the key K underlying S’s oracles plays the role of the quantity
of the same name for H . Eventually, it will output what H outputs. The difficulty faced by this
adversary is that H might query K to H. (Other oracle queries are dealt with in standard ways.)
In that case, H expects to be returned y. (And it cannot be fooled since, knowing Y = gy, it can
verify whether or not the value returned is y.) The difficulty for S is not that it does not know the
right answer (via Equation (4), it actually knows y), but rather that it is not clear how it would

8

know that a query being made to H equals the key K underlying its oracles, so that it would know
when to return y as the answer to a query to H.

In order to “detect” when query K is made, we would, ideally, like a test that can be performed
on a value L, accepting if L = K and rejecting otherwise. However, it is not hard to see that, in
general, such a test does not exist.4 Instead, we introduce a test that has a weaker property and
show that it suffices for us.

Our test KeyTest takes input L and has access to S’s SE(K,LR(·, ·, b)) oracle. It returns a pair
(dec, gs) such that: (1) If L = K then (dec, gs) = (1, b), meaning in this case it correctly computes
the challenge bit b, and (2) If L 6= K then, with overwhelming probability, either dec = 0 (the test
is saying L 6= K) or (dec, gs) = (1, b) (the test is saying it does not know whether or not L = K,
but it has successfully calculated the challenge bit anyway). With KeyTest in hand, S can answer
a query L made to H as follows. It runs (dec, gs) $← KeyTest(L). If dec = 0, it can safely assume
L 6= K and return a random answer, while if dec = 1, it can output gs as its guess to challenge bit
b and halt.

A precise description and analysis of KeyTest are in Appendix A, but we briefly sketch the ideas
here. The algorithm has two phases. In the first phase, it repeatedly tests whether or not

SD(L,SE(K,LR(T0, T0, b))) = T0 and SD(L,SE(K,LR(T1, T1, b))) = T1 ,

where T0, T1 are some distinct “test” messages. If any of these checks fails, it knows that L 6= K
and returns (0, 0). (However, the checks can succeed with high probability even if L 6= K.) In the
next phase, it repeatedly computes SD(L,SE(K,LR(T0, T1, b))) and, if all these computations yield
Tgs for some bit gs, it returns (1, gs). The analysis shows that, conditional on the first phase not
returning (0, 0), the bit gs from the second stage equals b with overwhelming probability.

A subtle point arises with relation to the test. Recall that H is making queries to SD(K, ·). S
will answer these via its own oracle of the same name. Now, consider the event that H queries to
SD(K, ·) a ciphertext C generated in some execution of KeyTest. If S calls SD(K,C) to obtain the
answer, it would immediately become an illegitimate adversary and thus forgo its advantage, since
C is a result of a call to SE(K,LR(·, ·, b)) made by S via subroutine KeyTest. There are a few ways
around this, and the one we use is to choose the initial “test” messages randomly so that H has
low probability of being able to query a ciphertext C generated in some execution of KeyTest.

This is all put together in Appendix A to show that Equation (3) holds.
We note that one might consider an alternative solution to S’s problem of wanting to “detect”

query K to H. Namely, reply to queries to H at random, then, after H terminates, pick one such
query L at random, decrypt a challenge ciphertext via L, and use that to predict the challenge
bit. Unfortunately, even though L = K with probability 1/poly(k), the advantage over one-half
obtained by S via the strategy just outlined could be negligible because the wrong answers from
the wrong random choices could overwhelm the right answer that arises when K is chosen.

4 Impossibility results

In this section we show (cf. Theorem 4.5) that the RO-model Hash El Gamal scheme admits no
IND-CCA-preserving instantiation. However, rather than prove this directly, we obtain it as a
consequence of stronger and more general results that are of interest in their own right. These are
Theorem 4.3 and its corollary Theorem 4.4.

4 Suppose, for example, that algorithms SE, SD only depend on the first half of the bits of their k-bit key. This
is consistent with their being IND-CCA secure (in the sense that, if there exists an IND-CCA-secure symmetric
encryption scheme, there also exists one with this property), but now, any test has probability at most 2−k/2 of being
able to differentiate between K and a key L 6= K that agrees with K in its first half.

9

AK(1k)
((q, g, X), (q, g, x)) $← AK(1k)
gk

$← {0, 1}gkl(k)

hk
$← {0, 1}hkl(k)

Return ((q, g, X, gk, hk),
(q, g, x, gk, hk))

AE((q, g, X, gk, hk), K)
k ← |〈2q + 1〉|
y ← Hk,(q,g)(hk, K)
Y ← gy

T ← Gk,(q,g)(gk, Xy)
W ← T ⊕K
Return (Y, W)

AD((q, g, x, gk, hk), (Y, W))
k ← |〈2q + 1〉|
T ← Gk,(q,g)(gk, Y x)
K ← T ⊕W

If gHk,(q,g)(hk,K) = Y
then Return K

else Return ⊥ EndIf

Figure 2: Algorithms of the standard-model asymmetric encryption scheme HEG[CG] = (AK,AE,
AD) obtained by instantiating RO-model asymmetric encryption scheme HEG[CG] via poly-time
function families G,H.

Theorem 4.3 is an impossibility result in the standard model. It says that, in this model,
there simply do not exist asymmetric encryption schemes that are all of the following: IND-CCA
preserving, key verifiable and ciphertext verifiable. (The last two properties are defined below.)
Via Proposition 4.2 this yields Theorem 4.4, a general result about the possibility of instantiating
certain RO-model schemes. It says that no RO-model key-verifiable and ciphertext-verifiable asym-
metric encryption scheme admits an IND-CCA-preserving instantiation. Theorem 4.5 follows once
we observe (cf. Proposition 4.1) that the Hash El Gamal scheme has the verifiability properties in
question.

Although Theorem 4.5 is of most direct interest due to the results in Section 3 above, we believe
that the more general results are deeper indications of the source of the gaps between RO-model
security and standard-model security.

Below we begin by detailing what we mean by instantiation of a RO-model asymmetric en-
cryption scheme because our notion is slightly more general than standard ones: in order to cover
RO-model schemes (like Hash El Gamal) in which the domains and ranges of the oracles depend on
the public key, we allow the families of functions used to instantiate the oracles to have domains and
ranges depending on an auxiliary parameter a that, upon instantiation, can be chosen to depend
on the public key. Then we will define the above-mentioned verifiability properties and move to
the results.

Instantiating RO-model asymmetric encryption schemes. A poly-time family of functions
F associates to security parameter k and auxiliary parameter a ∈ {0, 1}∗ a map

F k,a: {0, 1}fkl(k) ×Dom(a)→ Rng(a)

where Dom(a) and Rng(a) are sets depending on a. The key-length fkl of the scheme is a poly-
nomial in k. We require that there exist a polynomial t such that F k,a(fk, x) is computable in
t(k + |x|) time for all k ∈ N, a ∈ {0, 1}∗, fk ∈ {0, 1}fkl(k) and x ∈ Dom(a). An instantiation of
a RO-model asymmetric encryption scheme AS = (AK,AE,AD) is a standard-model asymmetric
encryption scheme AS = (AK,AE,AD) obtained by replacing each random oracle used by AE(pk, ·)
or AD(sk, ·) with an instance F k,a(fk, ·) of an appropriate poly-time family of functions F (here
a might depend on pk), having first enhanced the public and secret keys to include the key fk
specifying this instance.

To illustrate, consider the RO-model Hash El Gamal scheme HEG[CG] = (AK,AE,AD) associ-
ated to cyclic-group generator CG. Let G,H be poly-time families such that for for each k ∈ N and

10

each (q, g) ∈ [CG(1k)]:

Gk,(q,g): {0, 1}gkl(k) × 〈g〉 → {0, 1}k and Hk,(q,g): {0, 1}hkl(k) × {0, 1}k → Zq .

Here the auxiliary parameter is a = (q, g). Then an instantiation of HEG[CG] via G,H is the
standard-model asymmetric encryption scheme HEG[CG] = (AK,AE,AD) whose constituent algo-
rithms are depicted in Figure 2.

The two properties. We now define the above-mentioned key-verifiability and ciphertext-
verifiability properties of asymmetric encryption schemes.

Let AS = (AK,AE,AD) be an asymmetric encryption scheme. We say that pk is (AS, k)-valid
if there exists sk such that (pk, sk) ∈ [AK(1k)]. We say that AS is key verifiable if there exists
a polynomial-time, possibly randomized algorithm VfPK (called the key verifier) and a negligible
function ν (called the error probability of VfPK) such that VfPK(1k,pk) returns 1 with probability
at least 1− ν(k) if pk is (AS, k)-valid, and returns 1 with probability at most ν(k) otherwise.

Let AS = (AK,AE,AD) be an asymmetric encryption scheme. We say that AS = (AK,AE,AD) is
ciphertext verifiable if there exists a polynomial-time, possibly randomized algorithm VfCtxt (called
the ciphertext verifier) and a negligible function ν (called the error probability of VfCtxt) such that,
if VfCtxt is run on inputs 1k,pk,K,C, where pk is (AS, k)-valid and K ∈ {0, 1}k , then VfCtxt
returns 1 with probability at least 1− ν(k) if C ∈ [AE(pk,K)], and returns 1 with probability at
most ν(k) otherwise. If AE or AD access any random oracles, then VfCtxt is given access to the
same random oracles.

Results. We show that the Hash El Gamal scheme possesses the two properties defined above,
and that if a RO-model scheme possesses these properties then any instantiation inherits them.
Then we state the main result of this section and several corollaries.

Proposition 4.1 The RO-model Hash El Gamal scheme HEG[CG] associated to a cyclic-group
generator CG is both key verifiable and ciphertext verifiable.

Proof of Proposition 4.1: We note that (q, g,X) is (HEG[CG], k)-valid if and only if q, 2q + 1
are primes, g is a generator of the order q cyclic subgroup 〈g〉 of Z

∗
2q+1, |〈2q +1〉| = k, and X ∈ 〈g〉.

The key verifier VfPK, given inputs 1k, (q, g,X), can thus verify that (q, g,X) is (HEG[CG], k)-valid
based on standard facts from computational number theory. We omit the details.

Ciphertext verifiability is a consequence of the fact that the encryption algorithm AEG,H(·, ·)
of HEG[CG] (cf. Figure 1) is deterministic. Ciphertext verifier VfCtxt, given oracles G,H and
inputs 1k, (q, g,X),K,C, where (q, g,X) is (HEG[CG], k)-valid and K ∈ {0, 1}k , simply runs
AEG,H((q, g,X),K) and checks whether or not the result is C.

Proposition 4.2 Suppose AS is a RO-model asymmetric encryption scheme that is both key
verifiable and ciphertext verifiable. Let AS be any instantiation of AS via poly-time families of
functions. Then AS is also both key verifiable and ciphertext verifiable.

Proof of Proposition 4.2: For simplicity, we assume that only one random oracle is queried
by the encryption and decryption algorithms of AS. The argument can be easily extended to the
case of multiple random oracles. Let VfPK and VfCtxt be a key verifier and a ciphertext verifier
for AS, respectively. Let F be the poly-time family of functions used in AS to replace the random
oracle. Recall that a public key of AS contains a public key pk of AS and also a key fk specifying
an instance of F . We define algorithms VfPK and VfCtxt.

On inputs 1k, s, VfPK attempts to parse s as a pair (pk, fk). If it fails, it returns 0. Otherwise, it
runs VfPK(1k,pk). If the result is 0, it returns 0. Otherwise, it verifies that fk ∈ {0, 1}fkl(k). If so,

11

it returns 1, if not it returns 0. Clearly, VfPK is a key verifier for AS.

VfCtxt is identical to VfCtxt except that the random oracle is replaced with the same instance of
F used in AS to replace the oracle.

The main result of this section is the following:

Theorem 4.3 Let AS be a standard-model asymmetric encryption scheme that is both key veri-
fiable and ciphertext verifiable. Then AS is not IND-CCA preserving.

The proof is postponed in favor of deriving corollaries of interest:

Theorem 4.4 Let AS be a RO-model asymmetric encryption scheme that is both key verifiable
and ciphertext verifiable. Let AS be any instantiation of AS via poly-time families of functions.
Then AS is not IND-CCA preserving.

Proof of Theorem 4.4: AS is a standard-model asymmetric encryption scheme. Proposition 4.2
implies that it inherits the key verifiability and ciphertext verifiability of AS. Theorem 4.3 then
implies that it is not IND-CCA preserving.

Theorem 4.5 Let HEG[CG] be the RO-model Hash El Gamal scheme associated to a cyclic-group
generator CG. Let HEG[CG] be any instantiation of HEG[CG] via poly-time families of functions.
Then HEG[CG] is not IND-CCA preserving.

Proof of Theorem 4.5: Proposition 4.1 says that HEG[CG] is key verifiable and ciphertext
verifiable. The result follows from Theorem 4.4.

It remains only to prove Theorem 4.3.

Proof of Theorem 4.3. We will construct an IND-CCA-secure symmetric encryption scheme
SS such that the mm-hybrid encryption scheme (AS,SS) is not IND-CCA secure. This proves the
theorem.

Let VfPK and VfCtxt be a key verifier and a ciphertext verifier for AS, respectively. Let
SS′ = (SK′,SE′,SD′) be any IND-CCA-secure symmetric encryption scheme. (Recall an implicit
assumption is that some such scheme exists, since otherwise all asymmetric encryptions schemes
are by default IND-CCA preserving and the entire problem we are considering is moot.) The con-
struction of SS is in terms of SS′ and algorithms VfPK and VfCtxt. We use the notation 〈(·, ·)〉 to
denote an injective, polynomial-time computable encoding of pairs of strings as strings such that
given 〈(M1,M2)〉, M1 and M2 can be recovered in polynomial time). The algorithms constituting
SS = (SK,SE,SD) are depicted in Figure 3. To conclude the proof we need only establish the
following:

Claim 4.6 Symmetric encryption scheme SS is IND-CCA secure.

Claim 4.7 Multi-message hybrid encryption scheme (AS,SS) is not IND-CCA secure.

Proof of Claim 4.6: Let us first provide some intuition. Note that on input M , encryption
algorithm SE(K ′

1||K2, ·) uses the encryption algorithm SE′ of an IND-CCA-secure scheme to com-
pute C ′ $← SE′(K ′

1,M) and outputs C ′||0 or C ′||1 depending on whether M has some “special”
form or not. The ciphertext ends with 0 if M parses as a pair (M1,M2) such that algorithms

12

SK(1k)
K ′ $← SK′(1dk/2e)
K2

$← {0, 1}bk/2c

Return K ′||K2

SE(K, M)
k ← |K|
Let K ′ be the first dk/2e bits of K,

and let K2 be the rest
C′ ← SE′(K ′, M)
Parse M as 〈(M1, M2)〉
If the parsing fails then

Return C′||1 EndIf
p

$← VfPK(k, M1)
c

$← VfCtxt(k, M1, K, M2)
If (p = 1 and c = 1) then

Return C′||0
else Return C′||1 EndIf

SD(K, C)
k ← |K|
Let K ′ be the first dk/2e bits of K,

and let K2 be the rest
Parse C as C′||d, where d ∈ {0, 1}
M ′ ← SD′(K ′, C′)
Parse M ′ as 〈(M1, M2)〉
If the parsing fails then

If d = 1 then Return M ′

else Return ⊥ EndIf
p

$← VfPK(k, M1)
c

$← VfCtxt(k, M1, K, M2)
If (d = 0 and p = 1 and c = 1) then

Return M ′ EndIf
If (d = 1 and (p 6= 1 or c 6= 1)) then

Return M ′

Return ⊥ EndIf

Figure 3: Algorithms of the symmetric encryption scheme SS = (SK,SE,SD) for the proof of
Theorem 4.3. Above, 〈(M1,M2)〉 denotes an encoding of the pair of strings (M1,M2) as a string.

VfPK,VfCtxt indicate that M1 is (AS, k)-valid and M2 ∈ [AE(M1,K
′
1||K2)]. The decryption algo-

rithm SD(K ′
1||K2, ·) on input C ′||d, where d is a bit, computes M ′ ← SD′(K ′

1, C
′) and returns M ′

only if either M ′ is of the special form and d = 0, or M ′ is not of this form and d = 1. Therefore,
an obvious strategy for an adversary against SS is to query its oracle SE(K,LR(·, ·, b)) on a pair
of messages such that one of them is of this special form and the other is not. Using the unique
decryptability of AE and the fact that K2 is chosen at random, independently from the adversary’s
view, we show that it cannot find such queries except with negligible probability. Moreover, we
show that any strategy for the adversary can be employed by an attacker against scheme SS′ to
win its game. Details follow.

Let S be a legitimate polynomial-time adversary attacking SS. We will construct a legitimate
polynomial-time adversary S′ such that

Advind-cca
SS,S (k) ≤ Advind-cca

SS′,S′ (dk/2e) + O(Q(k)) · ν(k) +
O(Q(k))
2bk/2c , (5)

where Q is a polynomial upper bounding the total number of queries made by S to its different
oracles, and ν is a negligible function related to the error probabilities of algorithms VfPK and
VfCtxt. Since SS′ is assumed IND-CCA secure, the advantage function associated to S′ above is
negligible, and thus so is the advantage function associated to S. To complete the proof we need
to specify adversary S′ and prove Equation (5).

Adversary S′ is given input 1dk/2e and has access to oracles SE′(K ′
1,LR(·, ·, b)) and SD′(K ′

1, ·). Its
goal is to guess the bit b. It runs S on input 1k. In this process, S will query its two oracles
SE(K,LR(·, ·, b)) and SD(K, ·). To answer a query to the first of these oracles, S′ forwards the
query to its oracle SE′(K ′

1,LR(·, ·, b)), appends 1 to the oracle’s reply and returns the result to S.
To answer a query to the second oracle, S′ checks the last bit of the query. If it is 0, S′ returns ⊥
to S. Otherwise, it removes the last bit, forwards the result to its oracle SD′(K ′

1, ·), and returns
the answer to S. When S outputs its guess b′, S′ returns b′.

13

We now analyze S′. Consider the experiment in which S′ attacks SS′. We define the following
events.

Succ(S′) : S′ is successful, meaning its output equals the challenge bit b.
BadE : S makes a query to oracle SE(K,LR(·, ·, b)) in which one of the messages can be

parsed as 〈(M1,M2)〉 such that M1 is (AS, k)-valid and M2 ∈ [AE(M1,K)]
BadD : S makes a query to oracle SD(K, ·) that can be parsed as C ′||d, where d is a bit,

such that SD′(K ′
1, C

′) = 〈(M1,M2)〉, where M1 is (AS, k)-valid and
M2 ∈ [AE(M1,K)]

For the experiment in which S attacks SS, we define the following events.

Succ(S) : S is successful, meaning its output equals the challenge bit b.
Crct : Every time algorithms VfPK and VfCtxt are invoked, they return the correct value

We claim that if events BadE and BadD do not occur, then S′ simulates perfectly the environment
provided to S in its attack against SS when algorithms VfPK and VfCtxt never err. First, note
that answers to queries to oracle SE(K,LR(·, ·, b)) can only be off by the last bit. In the absence
of the “bad” events, each ciphertext returned to S as a reply to a query to oracle SE(K,LR(·, ·, b))
has 1 as the last bit. This is also the case in S’s real attack when algorithms VfPK and VfCtxt are
always correct. If S queries SD(K, ·) with a ciphertext C ′||0, assuming events BadE and BadD do
not occur, S′ gives S the response it would get in the real attack when algorithms VfPK and VfCtxt
are always correct, namely ⊥. Since S is legitimate, if it queries oracle SD(K, ·) with a ciphertext
C ′||1, then C ′ must not have previously been returned by oracle SE′(K ′

1,LR(·, ·, b)). Thus S′ can
legitimately make query C ′ to its oracle SD′(K ′

1, ·). If M is the response, then, assuming that
events BadE and BadD do not occur, the answer S expects when algorithms VfPK and VfCtxt are
always correct is exactly M . Therefore,

Pr
[
Succ(S′)

] ≥ Pr
[
Succ(S′) | ¬BadE ∧ ¬BadD

]− Pr [BadE ∨ BadD]
≥ Pr [Succ(S) | Crct]− Pr [BadE ∨ BadD]
≥ Pr [Succ(S)]− Pr [¬Crct]− Pr [BadE ∨ BadD] .

We now provide upper bounds for the probabilities of events ¬Crct and BadE ∨ BadD. Let qe(k)
and qd(k) be the number of queries S makes to oracles SE(K,LR(·, ·, b)) and SD(K, ·), respectively,
on input 1k. Let ν1 be the error probability of key verifier VfPK, and ν2 the error probability of
ciphertext verifier VfCtxt. Then

Pr
[
Crct

] ≤ qe(k) · (ν1(k) + ν2(k)) + qd(k) · (ν1(k) + ν2(k)) = Q(k) · ν(k) ,

where Q(k) = qe(k) + qd(k) and ν(k) = ν1(k) + ν2(k).

We observe that if M1 is (AS, k)-valid, then for any M2 ∈ {0, 1}∗, there exists a unique K ′ ∈ [SK(1k)]
such that M2 ∈ [AE(M1,K

′)]. Recall that the key for oracles SE(K,LR(·, ·, b)) and SD(K, ·) is
K = K ′

1||K2, where K2 is chosen uniformly at random from {0, 1}bk/2c and is independent from S’s
view. Therefore, for any query made by S to oracle SE(K,LR(·, ·, b)), the probability that one of
the messages in the query parses as 〈(M1,M2)〉 such that M1 is (AS, k)-valid and M2 ∈ [AE(M1,K)]
is at most 2/2bk/2c. Similarly, for any query C ′||d, where d is a bit, made by S to oracle SD(K, ·),
the probability that SD′(K ′

1, C
′) = M ′, where M ′ parses as 〈(M1,M2)〉, M1 is (AS, k)-valid and

M2 ∈ [AE(M1,K)] is at most 1/2bk/2c. Therefore,

Pr [BadE ∨ BadD] ≤ 2qe(k) + qd(k)
2bk/2c ≤ 2 ·Q(k)

2bk/2c .

14

Hence

Advind-cca
SS′,S′ (dk/2e) = 2 · Pr

[
Succ(S′)

]− 1 ≥ 2 ·
(

Pr [Succ(S)]−Q(k) · ν(k)− O(Q(k))
2bk/2c

)
− 1

= Advind-cca
SS,S (k)−O(Q(k)) · ν(k)− O(Q(k))

2bk/2c .

Rearranging terms gives Equation (5).

Proof of Claim 4.7: We define a hybrid adversary H attacking (AS,SS). H is given inputs pk, Ca

and has access to oracles SE(K,LR(·, ·, b)), SD(K, ·), and AD(sk, ·). Its goal is to guess the challenge
bit b. By the definition of experiment Expind-cca

AS,SS,H
(k), pk is (AS, k)-valid and Ca ∈ [AE(pk,K)].

Therefore, 〈(pk, Ca)〉 is a message which, when encrypted with SE(K, ·), yields a ciphertext that
with overwhelming probability has last bit 0. (The last bit will be 0, if algorithms VfPK and VfCtxt
output the correct value.) We observe that for any string C chosen at random from {0, 1}|Ca |\{Ca},
the probability that K = AD(sk, C) is at most 2−k, i.e., the probability that C ∈ [AE(pk,K)] is at
most 2−k. Hence 〈(pk, C)〉 is a message which, when encrypted with SE(K, ·), yields a ciphertext
that with overwhelming probability has last bit 1. (If C /∈ [AE(pk,K)] and algorithms VfPK and
VfCtxt output the correct value, then the last bit will be 1.) Thus, adversary H can construct two
messages for which it can guess with high probability the last bit of the corresponding ciphertext.
Using this information it can then guess the challenge bit. Details follow.

Adversary H chooses C at random from {0, 1}|Ca| \ {Ca}, makes a query 〈(pk, Ca)〉, 〈(pk, C)〉 to
oracle SE(K,LR(·, ·, b)), parses the response as C ′||d, where d is a bit, and returns d. The running
time of H is clearly polynomial in k. We claim that Advind-cca

AS,SS,H (k) ≥ 1− 2−k − ν(k), where ν is a
negligible function related to the error probabilities of algorithms VfPK and VfCtxt. To prove this,
we consider the following events.

Succ(H) : H is successful, meaning its output equals the challenge bit b.
Crct : Every time algorithms VfPK and VfCtxt are invoked, they return the correct value

Assume that event Crct occurs. If challenge bit b is 0, then the response to H ’s query is a ciphertext
that has last bit 0. If bit b is 1, then with probability at least 1− 2−k, the response is a ciphertext
that has last bit 1. Thus

Pr [Succ(H)] ≥ Pr [Succ(H) | Crct]− Pr [¬Crct] ≥ 1
2
·
(

1− 1
2k

)
+

1
2
− Pr [¬Crct]

If ν1 is the error probability of key verifier VfPK, and ν2 is the error probability of ciphertext verifier
VfCtxt, then Pr [¬Crct] ≤ ν1(k) + ν2(k) . Hence

Advind-cca
AS,SS,H (k) = 2 · Pr [Succ(H)]− 1 ≥ 1− 2−k − 2 · (ν1(k) + ν2(k)) = 1− 2−k − ν(k) ,

where ν(k) = 2 · (ν1(k) + ν2(k)).

Notice that the adversary constructed in the proof of Claim 4.7 does not make any queries to its
oracles SD(K, ·) and AD(sk, ·). The proof thus shows that AS is not even IND-CPA preserving.

An interesting question at this point may be why the proof of Theorem 4.3 fails for the RO-
model Hash El Gamal scheme HEG[CG] associated to a cyclic-group generator CG —it must, since
otherwise Theorem 3.1 would be contradicted— but succeeds for any instantiation of this scheme.
The answer is that symmetric encryption scheme SS, depicted in Figure 3 runs a ciphertext verifier
VfCtxt for the asymmetric encryption scheme in question. In the case of the RO-model scheme

15

HEG[CG], any ciphertext verifier must query random oracles G and H. But SS does not have
access to these oracles, and so cannot run such a ciphertext verifier. The adversary of course does
have access to G,H, but has no way to “pass” these objects to the encryption algorithm of the
symmetric encryption scheme. On the other hand, in the instantiated scheme, the keys describing
the functions instantiating the random oracles may be passed by the adversary to the encryption
algorithm of SS in the form of a message containing the public key, giving SS the ability to run the
ciphertext verifier.

This might lead one to ask why SS does not have oracle access to G,H. The answer that
we are not considering symmetric encryption schemes in the random-oracle model is not the right
one, since we did that only to simplify notation, and our results should and do extend to the case
where the symmetric encryption schemes too might be in the RO model. The right answer is that
even if SS were a RO-model scheme, in a context such as Expind-cca

AS,SS,H(k) in which it is executed
in conjunction with a RO-model asymmetric encryption scheme AS, its random oracles would be
chosen independently of those used by AS. This means that the symmetric encryption scheme
above would continue to be unable to run a ciphertext verifier that depended on oracles used by
AS.

The correctness of the principle of independently choosing random oracles of different schemes
in a common context may be clarified via an analogy. Think of running two schemes, such as an
encryption scheme and a signature scheme, in a common context. This context should pick keys for
the schemes independently, not use the same key for both schemes, since each scheme is designed
and analyzed under the assumption that its key is used by it alone. Similarly, a RO-model scheme
is designed and analyzed under the assumption that its random oracles are used by it alone, and
thus in a context involving several such schemes, each would get its own random oracles. (The
adversary of course gets all the random oracles.)

References

[1] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, “A concrete security treatment of symmet-
ric encryption: Analysis of the DES modes of operation,” Proceedings of the 38th Symposium on
Foundations of Computer Science, IEEE, 1997.

[2] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient
protocols, First ACM Conference on Computer and Communications Security, ACM, 1993.

[3] R. Canetti, “Security and composition of multiparty cryptographic protocols,” Journal of Cryptology,
13(1), 2000.

[4] R. Canetti, “Universally composable security,” Proceedings of the 42nd Symposium on Foundations
of Computer Science, IEEE, 2001.

[5] R. Canetti, U. Feige, O. Goldreich and M. Naor, “Adaptively secure multi-party computa-
tion,” Proceedings of the 28th Annual Symposium on the Theory of Computing, ACM, 1996.

[6] R. Canetti, O. Goldreich, S. Halevi, “The random oracle methodology, revisited,” Proceedings
of the 30th Annual Symposium on the Theory of Computing, ACM, 1998.

[7] J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen, “GEM: A
Generic Chosen-Ciphertext Secure Encryption Method”, Topics in Cryptology – CT-RSA ’02, Lecture
Notes in Computer Science Vol. 2271 , B. Preneel ed., Springer-Verlag, 2002.

[8] J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen, “Optimal
Chosen-Ciphertext Secure Encryption of Arbitrary-Length Messages,” Proceedings of the Fifth Inter-
national workshop on practice and theory in Public Key Cryptography (PKC’02), Lecture Notes in
Computer Science Vol. 1431, D. Naccache and P. Paillier eds., Springer-Verlag, 2002.

16

[9] R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack,” Advances in Cryptology – CRYPTO ’98, Lecture Notes in Computer Science
Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

[10] R. Cramer and V. Shoup, “Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack,” IACR ePrint archive Record 2001/108, 2001, http://
eprint.iacr.org/.

[11] T. ElGamal, “A public key cryptosystem and signature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol 31, 1985.

[12] E. Fujisaki, T. Okamoto, “Secure Integration of Asymmetric and Symmetric Encryption Schemes,”
Advances in Cryptology – CRYPTO ’99, Lecture Notes in Computer Science Vol. 1666, M. Wiener
ed., Springer-Verlag, 1999.

[13] R. Gennaro, S. Halevi and T. Rabin, “Secure Hash-and-Sign Signatures without the Random
Oracle,” Advances in Cryptology – EUROCRYPT ’99, Lecture Notes in Computer Science Vol. 1592
, J. Stern ed., Springer-Verlag, 1999.

[14] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System Science,
Vol. 28, 1984, pp. 270–299.

[15] S. Goldwasser and Y. Taumann, “On the (in)security of the Fiat-Shamir paradigm,” IACR ePrint
archive Record 2003/034, 2003, http://eprint.iacr.org/.

[16] S. Micali, “Computationally sound proofs,” SIAM Journal on Computing, Vol. 30, No. 4, 2000, pp.
1253-1298. Preliminary version in FOCS’94.

[17] J. B. Nielsen “Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case,” Advances in Cryptology – CRYPTO ’02, Lecture Notes in Computer
Science Vol. 2442 , M. Yung ed., Springer-Verlag, 2002.

[18] T. Okamoto and D. Pointcheval “REACT: Rapid Enhanced-security Asymmetric Cryptosys-
tem Transform,” Topics in Cryptology – CT-RSA ’01, Lecture Notes in Computer Science Vol. 2020,
D. Naccache ed., Springer-Verlag, 2001.

[19] V. Shoup, “A proposal for an ISO standard for public key encryption”, IACR ePrint archive Record
2001/112, 2001, http://eprint.iacr.org/.

A Proof of Theorem 3.1

We have explained the ideas behind this proof in Section 3. Here we provide the full adversary
constructions and analyses.

Proof setup. Let H be a polynomial-time hybrid adversary attacking (AS,SS). We will construct
polynomial-time adversaries S,C such that

Advind-cca
AS,SS,H(k) ≤ Advind-cca

SS,S (k) + O(Q(k)) · Advcdh
CG,C(k) +

O(Q(k)2)
2k

. (6)

where Q(k) is a polynomial upper bounding the number of queries made by H to the G and H
oracles. (This includes queries made directly by H and those made indirectly as a consquence of
H ’s queries to its ADG,H((q, g, x), ·) oracle.) Since SS is assumed IND-CCA secure and the CDH
problem is hard for CG the advantage functions related to S,C above are negligible, and thus so
is the advantage function related to H . To complete the proof we need to specify the adversaries
S,C and prove Equation (6).

Description of S. Adversary S is given input 1k and has access to oracles SE(K,LR(·, ·, b)) and
SD(K, ·). Its goal is to guess the bit b. It begins with the following initializations:

17

Subroutine GSim(Z)
If GT[Z] is not defined then GT[Z] $← {0, 1}k EndIf
Return GT[Z]

Subroutine HSim(L)
If HT[L] is defined then return it as the answer EndIf
(dec, gs) $← KeyTest(L) ; HT[L] $← Zq

If dec = 0 then return HT[L] as the answer EndIf
If dec = 1 then output gs (as a guess to the value of challenge bit b) and halt EndIf

Subroutine KeyTest(L)
dec← 1
For i = 1, . . . , k do

Ci
0[L] $← SE(K, LR(T0, T0, b)) ; If SD(L, Ci

0[L]) 6= T0 then dec← 0 EndIf
Ci

1[L] $← SE(K, LR(T1, T1, b)) ; If SD(L, Ci
1[L]) 6= T1 then dec← 0 EndIf

EndFor
If dec = 0 return (0, 0) EndIf
For i = 1, . . . , k do Ci[L] $← SE(K, LR(T0, T1, b)) ; T i ← SD(L, Ci[L]) EndFor
If T 1 = T 2 = · · · = T k = T0 then return (1, 0) EndIf
If T 1 = T 2 = · · · = T k = T1 then return (1, 1) EndIf
Return (0, 0)

Figure 4: Subroutines defined by S and used to simulate H ’s oracles.

((q, g,X), (q, g, x)) $← AK(1k) ; y
$← Zq ; Y ← gy ; W

$← {0, 1}k ; Ca ← (Y,W) ;

T0
$← {0, 1}k ; T1

$← {0, 1}k − {T0}.
Then it runs H on inputs public key (q, g,X) and ciphertext Ca. In the process H will query its
five oracles

G , H , SE(K,LR(·, ·, b)) , SD(K, ·) , ADG,H((q, g, x), ·) . (7)

S will answer these queries. To that end, it defines the subroutines shown in Figure 4. It answers
a query Z to G by running GSim(Z) and returning the answer to H . It answers a query L to H
by running HSim(Z) and returning the answer to H . It answers queries to the SE(K,LR(·, ·, b))
oracle via its own oracle of the same name. It answers each query C to the SD(K, ·) oracle using
its own decryption oracle, unless there exist i, j and L such that L was queried to H and either
C = Ci

j[L] or C = Ci[L]. In that case S aborts. Since S possesses the secret key (q, g, x) it can
answer queries to ADG,H((q, g, x), ·) by performing the computation of the decryption algorithm,
replacing calls that the latter makes to G or H by calls to the relevant subroutines just mentioned.
If H runs to completion (S can output its guess as to the value of b, and halt, before this) then S
outputs whatever H outputs.

Description of C. Adversary C is given inputs q, g,X, Y , where X,Y ∈ 〈g〉 have been chosen
uniformly at random. Its goal is to compute gxy where gx = X and gy = Y . Let k ← |〈2q + 1〉|. C
begins with the following initializations:

K
$← SK(1k) ; b

$← {0, 1} ; W
$← {0, 1}k ; Ca ← (Y,W) .

Then it runs H on inputs public key (q, g,X) and ciphertext Ca. In the process H will query
the five oracles listed in Equation (7). C will answer these queries. To that end, it defines the

18

Subroutine GSim(Z)
If GT[Z] is not defined then GT[Z] $← {0, 1}k EndIf
Return GT[Z]

Subroutine HSim(L)
If HT[L] is not defined then HT[Z] $← Zq EndIf
Return HT[L]

Subroutine ADSim(Y ′, W ′)
If there is no L such that gHT[L] = Y ′ then return ⊥ EndIf
Let L be such that gHT[L] = Y ′

Z ′ ← XHT[L] ; T ′ ← GSim(Z ′) ; K ′ ← T ′ ⊕W ′ ; Return K ′

Figure 5: Subroutines defined by C and used to simulate H ’s oracles.

subroutines shown in Figure 5. It answers a query Z to G by running GSim(Z) and returning the
answer to H . It answers a query L to H by running HSim(Z) and returning the answer to H . Since
it possesses K and b it can answer queries to the SE(K,LR(·, ·, b)) or SD(K, ·) oracles by simply
performing the relevant computation and returning the answer. It answers a query (Y ′,W ′) to
ADG,H((q, g, x), ·) by running ADSim(Y ′,W ′) and returning the answer. When H has terminated,
C picks Z at random from the set { Z : GT[Z] is defined } and outputs Z.

Analysis. For the analysis, define the following experiments:

Expind-cca
SS,S (k) : K

$← SK(1k) ; b
$← {0, 1} ; d

$← S SE(K,LR(·,·,b)), SD(K,·)(1k) ;
If d = b then return 1 else return 0

Expcdh
CG,C(k) : (q, g) $← CG(1k) ; x, y

$← Zq ; Z ← C(q, g, gx, gy)
If Z = gxy then return 1 else return 0

We let PrS [·] and PrC [·] denote the probabilities in the above experiments, respectively, and we
let PrH [·] denote the probability in experiment Expind-cca

AS,SS,H(k).
Let ((q, g,X), (q, g, x)) ∈ [AK(1k)] and K ∈ [SK(1k)]. We define the following events relating

to H ’s execution on inputs public key (q, g,X) and ciphertext Ca = (Y,W) where gy = Y . These
events are defined in any of the three experiments we are considering:

GH : There exists a time at which gxy is queried to G but K has not been queried to H
HG : There exists a time at which K has been queried to H but gxy has not been queried

to G
Succ(H) : H is successful, meaning its output equals the challenge bit b.

We clarify that the queries referred to above include both direct and indirect queries of H , but, in
the case of Expind-cca

AS,SS,H (k), they do not include the queries to G and H made by the computation
Ca ← AEG,H((q, g,X), ·) that initializes the experiment. (We are only considering queries to G,H
resulting from the execution of H .) The main claims related to the analysis are:

PrH [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)] ≤ PrS
[
Expind-cca

SS,S (k) = 1
]

+
O(Q(k))

2k
(8)

PrH [GH] ≤ Q(k) · PrC
[
Expcdh

CG,C(k) = 1
]

+
O(Q(k)2)

2k
. (9)

19

Let us see how these enable us to conclude the proof, and then return to prove them. We have:

1
2
· Advind-cca

AS,SS,H(k) +
1
2

= PrH
[
Expind-cca

AS,SS,H (k) = 1
]

= PrH [Succ(H)]
= PrH [(Succ(H) ∧ HG) ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)] + PrH [Succ(H) ∧ GH]
≤ PrH [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)] + PrH [GH]

≤ PrS
[
Expind-cca

SS,S (k) = 1
]

+
O(Q(k))

2k
+ Q(k) · PrC

[
Expcdh

CG,C(k) = 1
]

+
O(Q(k)2)

2k

=
1
2
· Advind-cca

SS,S (k) +
1
2

+ Q(k) · Advcdh
CG,C(k) +

O(Q(k)2)
2k

.

Re-arranging terms and simplifying we get Equation (6). To complete the proof, we must establish
Equations (8) and (9).

Proof of Equation (8). An important ingredient in this proof is the following lemma that
characterizes what Subroutine KeyTest accomplishes:

Lemma A.1 If L = K then KeyTest(L) returns (1, b), while if L 6= K then

Pr
[

(dec, gs) $← KeyTest(L) : (dec, gs) = (1, 1 − b)
]
≤ 4−k .

In other words, if L 6= K, then with high probability either the test indicates this by returning
dec = 0 or it successfully computes the value of the challenge bit b. Above, the probability is over
the coin tosses made by the SE(K,LR(·, ·, b)) oracle called in KeyTest, with K, b fixed.

Proof of Lemma A.1: The fact that KeyTest(L) returns (1, b) when L = K is a consequence
merely of the unique decrytability of SS, namely the fact that for all K ∈ [SK(1k)] and all M ∈
{0, 1}∗ we have SD(K,SE(K,M)) = M with probability one, the probability being over the coin
tosses of SE.

Now assume L 6= K. Let Pr [·] denote the probability taken over the coin tosses of SE(K, ·), with
K fixed. Let

P0 = Pr [SD(L,SE(K,T0)) = T0] and P1 = Pr [SD(L,SE(K,T1)) = T1] .

The probability that dec = 1 at the end of the first For loop in subroutine KeyTest is P k
0 P k

1 and
the probability that T 1 = · · · = T k = T1−b is at most (1− Pb)k. So we have

Pr
[

(dec, gs) $← KeyTest(L) : (dec, gs) = (1, 1 − b)
]

= P k
0 P k

1 · (1− Pb)k

≤ P k
b · (1− Pb)k

= [Pb(1− Pb)]k

≤ 4−k .

The last line is true because the function f : [0, 1] → R defined by f(x) = x(1 − x) attains its
maximum at x = 1/2 and the value of this maximum is 1/4. This concludes the proof.

Returning to the proof of Equation (8), we define the following events in Expind-cca
SS,S (k):

20

FailTest : There exists L 6= K such that L was queried to H
and KeyTest(L) returned (1, 1− b) in subroutine HSim(L)

Illegit : There exist i, j and L such that L was queried to H
and either Ci

j[L] or Ci[L] was queried by H to SD(K, ·).
We obtain Equation (8) as shown below. Justifications follow the formulas:

PrH [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)]
≤ PrS [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) | ¬FailTest] + PrS [FailTest] (10)

≤ PrS
[
Expind-cca

SS,S (k) = 1
]

+ PrS [Illegit] + PrS [FailTest] (11)

≤ PrS
[
Expind-cca

SS,S (k) = 1
]

+ PrS [Illegit | ¬FailTest] + 2 · PrS [FailTest]

≤ PrS
[
Expind-cca

SS,S (k) = 1
]

+
O(Q(k))

2k
. (12)

To justify Equation (10), observe that if event FailTest does not happen, then the simulation of H
done by S is correct. (If HG occurs, then prior to this gxy was not a query to G, so the simulation of
the G oracle is correct. If ¬HG∧¬GH occurs then also gxy was not a query to G so the simulation
of the G oracle is correct. If FailTest does not occur then the replies to queries to H are correct.)

To justify Equation (11) first note that if event HG occurs, then the L = K case of Lemma A.1
tells us that S halts with correct output. On the other hand, if neither HG nor GH occur, then S
halts with correct output as long as H does. But Expind-cca

SS,S (k) can still fail to return 1 because S
aborted due to the occurence of Illegit. (When the latter occurs, S aborts to avoid calling its oracle
SD(K, ·) on a ciphertext returned by its SE(K,LR(·, ·, b)) oracle.)

To justify Equation (12) first note that Lemma A.1 together with the fact that the total number
of queries is at most Q(k) implies that PrS [FailTest] ≤ Q(k)/4k. Next we observe that if FailTest
does not occur then H gets no information about T0, T1 other than that they are random distinct
k-bit strings. The unique decryptability of SS then tells us that PrS [Illegit | ¬FailTest] is bounded
above by the probability of guessing either T0 or T1 in Q(k) tries, and this is O(Q(k)/2k).

Proof of Equation (9). We define the following event in Expcdh
CG,C(k):

FailDec : There exist times t1 < t2 and Y ′,W ′, L such that all the following hold:
– query (Y ′,W ′) was made to ADG,H((q, g, x), ·) at time t1 and ADSim(Y ′,W ′)

returned ⊥
– query L was made to H at time t2
– gHT[L] = Y ′.

The answers provided by ADSim(·, ·) are correct exactly when this event does not occur. Further-
more, if there is a time at which query gxy to G occurs and GH is true then query K to H has not
occured at this time, and thus the answers to queries to H have been correct. Thus

PrC
[
Expcdh

CG,C(k) = 1
]
≥ PrH [GH]− PrC [FailDec]

Q(k)
.

Re-arranging, we get

PrH [GH] ≤ Q(k) · PrC
[
Expcdh

CG,C(k) = 1
]

+ PrC [FailDec] . (13)

21

At any point in time, a query L to H has probability at most `/q of making FailDec happen, where
` is the number of queries that have been made to ADG,H((q, g, x), ·) at this time. Recall that
k = |〈2q + 1〉| and thus q ≥ 2k−2. Putting these observations together we get

PrC [FailDec] ≤ Q(k)2

q
≤ Q(k)2

2k−2
=

O(Q(k)2)
2k

.

Putting this together with Equation (13) completes the proof of Equation (9).

22

