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Abstract

We present a simple, natural random oracle (RO) model scheme, for a practical goal, that is un-
instantiable, meaning is proven in the RO model to meet its goal yet admigndard-model instan-
tiation that meets this goal. The goal in questiotN®-CCA-preserving asymmetric encryptiamich
formally captures security of the most common practical usage of asymmetric encryption, namely to
transport a symmetric key in such a way that symmetric encryption under the latter remains secure.
The scheme is an ElGamal variant, called Hash ElGamal, that resembles numerous existing RO-model
schemes, and on the surface shows no evidence of its anomalous properties.

We believe these results deepen our understanding of the nature and extent of the gap between the
standard and RO models, and bring concerns raised by previous work closer to practice by indicating that
the problem of RO-model schemes admitting no secure instantiation is a very real one that can and does
arise in domains where RO schemes are commonly designed.

Keywords: Random-Oracle Model, asymmetric encryption, symmetric encryption, chosen-ciphertext at-
tacks.



1 Introduction

A random oracle (RO) model scheme is one whose algorithms have oracle access to a random function. (lts
security is evaluated with respect to an adversary with oracle access to the same function.) An “instantiation”
of such a scheme is the standard-model scheme obtained by replacing this function with a member of a
polynomial-time computable family of functions, described by a short key. (The security of the scheme is
evaluated with respect to an adversary given the same key.) In the random-oracle paradigm, as enunciated by
Bellare and Rogaway [5], one first designs and proves secure a scheme in the RO model, and then instantiates
it to get a (hopefully still secure) standard-model scheme.

The RO model has proven quite popular and there are now numerous practical schemes designed and
proven secure in this model. But the important issue of whether such schemes can be securely instantiated,
and, if so, how, remains less clear.

This paper adds to existing concerns in this regard via a new example of an “un-instantiable” RO-model
scheme. The interest of this example, compared to previous ones, is that the scheme is simple and natural,
resembling RO-model schemes typically being designed, and the goal is a practical one, related to popular
targets for RO-model schemes. This indicates that the problem of RO-model schemes admitting no secure
instantiation is a very real one that can and does arise in domains where RO schemes are commonly designed.

We also prove a more general result that identifies a goal achievable in the RO model but not the standard
model.

Below we begin with some background and then describe our contributions in more detail.

1.1 Previous work

Let us call a RO-model schemum-instantiable with respect to some underlying cryptographic goal, if the
scheme can be proven to meet this goal in the random-oracle modealp ligtantiation of this scheme

meets the goal in question. Canetti, Goldreich and Halevi [7] provided the first examples of un-instantiable
schemes, the goals in question being IND-CPA-secure asymmetric encryption and digital signatures secure
against chosen-message attacks. Further examples followed: Nielsen [18] presented an un-instantiable RO-
model scheme for the goal of non-interactive, non-committing encryption [6], and Goldwasser and Taumann
[16] showed the existence of a 3-move protocol which, when collapsed via a RO as per the Fiat-Shamir
heuristic [13], yields an un-instantiable RO-model signature scheme.

The results of [7] indicate that it is possible for the RO paradigm to fail to yield secure “real-world”
schemes. The example schemes provided by [7], however, are complex and contrived ones that do not
resemble the kinds of RO schemes typically being designed. (Their schemes are designed to return the secret
key depending on the result of some test applied to an output of the oracle, and they use diagonalization and
CS proofs [17].) The same is true of the scheme of [16]. In contrast, the scheme of [18] is simple, but the
goal, namely non-interactive, non-committing encryption, is somewhat distant from ones that are common
practical targets of RO-model designs. Accordingly, based on existing work, one might be tempted to think
that “in practice,” or when confined to “natural” schemes for practical problems commonly being targeted by
RO-scheme designers, the RO paradigm is sound.

This paper suggests that even this might not always be true. For a practical cryptographic goal, we present
an un-instantiable RO-model scheme that is simple and natural, closely resembling the types of schemes
being designed in this domain. We begin below by discussing the goal, which we call IND-CCA-preserving
asymmetric encryption and which arises in the domain of hybrid encryption.

1.2 IND-CCA-preserving asymmetric encryption

In practice, the most common usage of asymmetric encryption is to transport a symmetric key that is later
used for symmetric encryption of the actual data. The notion of an asymmetric encryption schbéiag



IND-CCA-preserving, that we introduce, captures the security attributeAtBanust possess in order to
render this usage &S secure. We now elaborate.

Encryption, in practice, largely employs the “hybrid” paradigm. The version of this paradigm that we
consider here is quite general. In a first phase, the sender picks at random a “sessiéhfdeg sym-
metric encryption scheme, encryphs asymmetrically under the receiver’s public key to get a ciphertext
C,, and transferg’, to the receiver. In a second phase, it can encrypt messages of its choice symmetrically
underK and transfer the corresponding ciphertexts to the receiver. We call this multi-message (mm) hybrid
encryptiont

A choice of an asymmetric encryption scheAfeand a symmetric encryption sche$® gives rise to a
particular mm-hybrid scheme. We introduce in Section 2 a definition of the IND-CCA security of this mm-
hybrid scheme which captures the privacy of the encrypted messages even in the presence of an adversary
allowed chosen-ciphertext attacks on both component schemes and allowed to choose the messages to be
encrypted adaptively and as a function of the asymmetric ciphertext, defigtadove, that transports the
symmetric key.

Now let us say that an asymmetric encryption schéxfeis IND-CCA preservingf the mm-hybrid
associated té&\S and symmetric encryption scherfi§ is IND-CCA secure foreveryIND-CCA secureSS.

This notion of security for an asymmetric encryption scheme captures the security attribute of its being able
to securely transport a session key for the purpose of mm-hybrid encryption. The goal we consider is IND-
CCA-preserving asymmetric encryption.

It is easy to see that any IND-CCA-secure asymmetric encryption scheme is IND-CCA preserving. (For
completeness, this is proved in Appendix C.1.) IND-CCA preservation, however, is actually a weaker re-
guirement on an asymmetric encryption scheme than IND-CCA security itself, hence there might be IND-
CCA-preserving asymmetric encryption schemes that are simpler and more efficient than IND-CCA-secure
ones. In particular, it is natural to seek an efficient IND-CCA-preserving scheme in the RO model along the
lines of existing hybrid encryption schemes such as those of [8, 9, 14, 19].

1.3 The Hash ElGamal scheme and its security

Itis easy to see that the EIGamal encryption scheme [12] is not IND-CCA preserving. An effort to strengthen

it to be IND-CCA preserving lead us to a variant that we call the Hash EIGamal scheme. It uses the idea un-
derlying the Fujisaki-Okamoto [14] transformation, namely to encrypt under the original (EIGamal) scheme

using coins obtained by applying a random oradléo the message. Specifically, encryption of a message

K under public key(q, g, X) in the Hash EIGamal scheme is given by

AESH((q,9,X). K) = ("), a(x" M) k), (1)

whereG, H are random oracleg, 2¢ + 1 are primesg is a generator of the ordercyclic subgroup of
Z3,+1, and the secret key g, g, z) whereg® = X. Decryption is performed in the natural way as detailed
in Figure 1.

The Hash ElGamal scheme is very much like practical RO-model schemes presented in the literature. In
fact, it is a particular case of an asymmetric encryption scheme proposed by Baek, Lee and Kim [2, 3].

We note that the Hash ElGamal asymmetric encryption scheme is not IND-CCA secure, or even IND-
CPA secure, in particular because the encryption algorithm is deterministic. But Theorem 3.1 guarantees
that the Hash ElGamal asymmetric encryption scheme is IND-CCA-preserving in the RO model, if the
Computational Diffie-Hellman (CDH) problem is hard in the underlying group.

! The term multi-message refers to the fact that multiple messages may be encrypted, in the second phase, under the same
session key. The main reason for using such a hybrid paradigm, as opposed to directly encrypting the data asymmetrically under the
receiver’s public key, is that the number-theoretic operations underlying popular asymmetric encryption schemes are computationally
more expensive than the block-cipher operations underlying symmetric encryption schemes, so hybrid encryption brings significant
performance gains.



We follow this with Theorem 4.1, however, which says that the Hash EIGamal scheme is un-instantiable.
In other words, the standard-model asymmetric encryption scheme obtained by instantiating the RO-model
Hash ElGamal scheme is not IND-CCA preserving, regardless of the choice of instantiating fuh¢tidas.
allow these to be drawn from any family of polynomial-time computable functions.)

1.4 A closer look

We remark that in our proof that the Hash ElIGamal scheme is IND-CCA preserving in the RO model, we do
not “program” the random oracle(s), meaning that we only need to be able to “watch” the adversary’s oracle
queries. (That is, Theorem 3.1 holds in what Nielsen calls the “non-programmable” RO model [18].) This
indicates that the security of the scheme relies on relatively weak properties of the RO, and, since we show
the scheme is nonetheless un-instantiable, strengthens the impact of our result.

As noted above, we show that no instantiation of the Hash EIGamal scheme is IND-CCA-preserving. The
way we establish this is the following. We l&6 be some (any) instantiation of the Hash ElGamal scheme.
Then, we construct a particular IND-CCA-secure symmetric encryption scE&mach that the mm-hybrid
associated t&S andSS is not IND-CCA secure. The latter is proven by presenting an explicit attack on the
mm-hybrid. We clarify that the symmetric schei®® constructed in this proof is not a natural one. (It is
not a particularly complex one either.) We do not view this as subtracting much from the value of our result,
which lies rather in the nature of the Hash EIGamal scheme itself and the practicality of the underlying goal.

What we suggest is interesting about the result is that the Hash ElIGamal scheme, on the surface, seems
innocuous enough. It does not seem to be making any “peculiar” use of its random oracle that would lead us
to think itis “wrong.” (Indeed, it uses random oracles in ways they have been used previously, in particular by
[14, 2, 3].) The scheme is simple, efficient, and similar to other RO-model schemes out there. In addition, we
contend that the definition of IND-CCA-preserving asymmetric encryption is natural and captures a practical
requirement. The fact that the Hash EIGamal scheme is un-instantiable thus points to the difficulty of being
able to distinguish un-instantiable RO-model schemes from ones that ainagbe securely instantiable,
even in the context of natural and practical goals.

1.5 Generalizations

Next we provide some results that generalize the above. We consider the class of IND-CCA-preserving
asymmetric encryption schemes that possess a pair of properties that weycadrifiabilityandciphertext
verifiability. Key verifiability means there is a way to recognize valid public keys in polynomial time. Ci-
phertext verifiability means there is a polynomial-time procedure to determine whether a given ciphertext is
an encryption of a given message under a given valid public key.

Theorem B.2 points out that the goal of key-verifiable, ciphertext-verifiable IND-CCA-preserving asym-
metric encryption is achievable in the RO model, by the Hash El Gamal scheme in particular, assuming the
CDH problem is hard in the underlying group. Theorem B.3, however, says that this goal is not achievable
in the standard model. In other words, there exist RO-model schemes meeting this goal, but there exist no
standard-model schemes meeting it. Theorem B.3 generalizes Theorem 4.1 because any instantiation of the
Hash ElGamal is key-verifiable and ciphertext-verifiable, and hence cannot be IND-CCA-preserving.

Theorem B.3 lifts our results from being about a particular scheme to being about a primitive, or class
of schemes. The generalization also helps better understand what aspects of the Hash ElGamal scheme lead
to its admitting no IND-CCA-preserving instantiation. In particular, we see that this is not due to some
“peculiar” use of random oracles but rather due to some simply stated properties of the resulting asymmetric
encryption scheme itself.

2 This result is based on the assumption that one-way functions exist (equivalently, IND-CCA-secure symmetric encryption
schemes exist), since, otherwise, by defaaty asymmetric encryption scheme is IND-CCA preserving, and, indeed, the entire
mm-hybrid encryption problem we are considering is vacuous. This assumption is made implicitly in all results in this paper.



1.6 Related work

In the cryptographic community, the term “hybrid encryption” seems to be used quite broadly, to refer to a
variety of goals or methods in which symmetric and asymmetric primitives are combined to achieve privacy.
We have considered one goal in this domain, namely mm-hybrid encryption. We now discuss related work
that has considered other goals or problems in this domain.

Works such as [8, 9, 14, 19, 11, 20] provide designs of IND-CCA-secure asymmetric encryption schemes
that are referred to as “hybrid encryption schemes” because they combine the use of asymmetric and symmet-
ric primitives. (Possible goals of such designs include gaining efficiency, increasing the size of the message
space, or reducing the assumptions that must be made on the asymmetric component in order to guaran-
tee the IND-CCA security of the construction.) The schemes of [8, 9, 14, 19] are in the RO model and,
although addressing a different goal, form an important backdrop for our work because the Hash EIGamal
scheme is based on similar techniques and usage of random oracles. We stress, however, that we have no
reason to believe that any of these schemes, or that of [2, 3] of which Hash ElGamal is a special case, are
un-instantiable.

2 Definitions

NOTATION AND CONVENTIONS. If S is a randomized algorithm, thg§(z, y, . ..)] denotes the set of all
points having positive probability of being output ISyon inputsz, y, . ... If z is a binary string, thefz|
denotes its length, andif > 1 is an integer, thein| denotes the length of its binary encoding, meaning the
unique integef such tha’~! < n < 2¢. The string-concatenation operator is denot¢d *

Formal definitions in the RO model provide as an oracle, to the algorithms and the adversary, a single
random function? mapping{0, 1}* to {0, 1}. Schemes might, however, use and refer to multiple random
functions of different domains and ranges. These can be derivedRreia standard means [5].

SYMMETRIC ENCRYPTION. A symmetric encryption schem&S = (SK,SE,SD) is specified by three

polynomial-time algorithms: vid < SK(1*) one can generate a key; Wi SE(K, M) one can encrypt
a messagé/ € {0,1}*; and viaM «— SD(K,C) one can decrypt a ciphertegt. It is required that
SD(K,SE(K,M)) = M for all K € [SK(1¥)] and allM € {0,1}*. We assume (without loss of generality)
that[SK(1%)] C {0, 1}*. In the RO model, all algorithms have access to the RO.

We define security following [4] and addressing the possibility of the symmetric scheme being in the RO
model. Associate t6S, an adversary, andk € N, the following experiment:

ExperimentExpgs's e (k)
Randomly choose R@;: {0,1}* — {0,1}
K & SsKEs(1%) ;b & {0,1}
Run S with input 1* and oracleSE": (K, LR(-, -, b)), SD® (K, -), R,
Let d denote the output o
If d = bthen returnl else return 0.

Above,LR(My, My,b) = M, if My, M; are strings of equal length, andotherwise. We say that adversary
S is legitimate if it never querieSD (K, -) with a ciphertext previously returned ISE’ (K, LR(-, -, b)).
Symmetric encryption schens is said to be IND-CCA secure if the function

AV (k) = 2 Pr | Expllger(k) = 1] -1
is negligible for all legitimate polynomial-time adversarigs

ASYMMETRIC ENCRYPTION An asymmetric encryption schemd = (AK, AE, AD) is specified by three
polynomial-time algorithms: viépk, sk) & AK(1%) one can generate keys; wia < AE(pk, K) one can
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encrypt a messagi ¢ {0,1}*; and viaK « AD(sk,C) one can decrypt a cipherte&t. (We denote
the message b because we will set it to a key for a symmetric encryption scheme.) It is required that
AD(sk,AE(pk, K)) = K for all (pk, sk) € [AK(1%)] and allK € {0, 1}*. In the RO model, all algorithms
have access to the RO.

Discussions and peripheral results in this paper sometimes refer to standard notions of security for such
schemes like IND-CPA and IND-CCA, but these are not required for the main results and accordingly are
not defined here but recalled in Appendix C.1.

IND-CCA-PRESERVING ASYMMETRIC ENCRYPTION We provide the formal definitions first and ex-
planations later. Amulti-message hybrid (mm-hybrid) encryption schesneimply a pair(AS, SS) con-
sisting of an asymmetric encryption sche®®& = (AK,AE,AD) and a symmetric encryption scheme
SS = (SK,SE,SD). We associate t0AS,SS), a hybrid adversaryH, andk € N, the following experi-
ment:

ExperimentExp e <& (k)
Randomly choose R@&: {0,1}* — {0,1}
Define ROSR;(-) = R(0]|-) andR,(-) = R(1]|)
(pk, sk) & AKTa(1%); K & SKEs(1%) ;b & {0,1}
C, & AERa(pk, K)
Run H with inputspk, C, and oracleSE”™: (K, LR(-, -, b)), SD®* (K, -), AD®(sk, ), R
Let d denote the output off
If d = bthen returnl else return 0.

We say that adversatif is legitimate if it does not quergD’® (K, -) on a ciphertext previously returned by
SE®:(K,LR(-,-,b)), and it does not querkD%« (sk, -) on C,. Mm-hybrid encryption schem@S, SS) is
said to be IND-CCA secure if the function
AVRSES (k) = 2 Pr | BxpRdsi (k) = 1] - 1

is negligible for all legitimate polynomial-time adversarés

Finally, we say that an asymmetric encryption scheifeis IND-CCA preservingf the mm-hybrid
encryption scheméAS, SS) is IND-CCA secure forall IND-CCA-secure symmetric encryption schemes
SS. Here, the set of symmetric encryption schemes over which we quantify includes RO-modelAfiés if
a RO-model scheme, and includes only standard-model oAési#f a standard-model scheme.

Let us now explain the ideas behind these formalisms. Recall that we are modelling the security of the
following two-phase scenario: in phase one, the sender picks &Key symmetric encryption, asymmetri-
cally encrypts it under the receiver’s public key to get a ciphe&xtand sendg’, to the receiver; in phase
two, the sender symmetrically encrypts messages of its choice dih@ded transmits the resulting cipher-
texts to the receiver. The definition above captures the requirement of privacy of the symmetrically encrypted
data under a chosen-ciphertext attack. Privacy is formalized in terms of indistinguishability via left-or-right
oracles, and the chosen-ciphertext attack is formalized via the adversary’s access to decryption oracles for
boththe symmetric and asymmetric schemes. The legitimacy requirement, as usual, disallows decryption
gueries on challenge ciphertexts since they would lead to trivial adversary victory. The experiment reflects
the possibility thaSS andAS are RO-model schemes by picking random oracles for their encryption and
decryption algorithms. The standard model is the special case where the algorithms of the schemes do not
refer to any oracles, and thus the definition above covers security in both models. The na&t®beaihg
IND-CCA preserving reflects a valuable pragmatic requirement, namely that one may use, in conjunction
with AS, any symmetric encryption scheme and be guaranteed security of the mm-hybrid under the minimal
assumption that the symmetric scheme itself was secure.



AK(1) AE“H (4,9, X), K) | ADS (g, g, ). (V. W)
(¢,9) & CG(1%) y — H(K) T —GY?)
T & Z, Y — ¢ K—~TeW
X — g* T — G(XY) If g1(5) =Y then
Return((q, g9, X), (¢, 9, ) W—ToeK ReturnK
Return(Y, W) else ReturnL EndIf

Figure 1: Algorithms of the RO-model asymmetric encryption scheB@|[CG] = (AK, AE, AD) associated
to cyclic-group generatdG. HereG: (g) — {0,1}* andH: {0,1}* — Z, are random oracles.

Note that inExpi,fg{'SCSCj{ the random oracles fakS andSS are defined via the main random oraéien
such a way that they aiedependentandom functions of0, 1}* to {0, 1}. The correctness of the principle
of independently choosing random oracles of different RO-model schemes in a common context (as opposed
to having them use the same oracle) should hopefully be clear. This independence turns out to be important
in relation to Theorem 4.1, but for reasons that are not apparent until we see the proof of this theorem, and,
accordingly, we postpone further discussion until Remark 4.4.

The existence of IND-CCA-preserving asymmetric encryption schemes is easy to establish since, as
Theorem C.1 indicates, any IND-CCA-secure asymmetric encryption scheme is IND-CCA preserving. The
interesting question is to find IND-CCA-preserving asymmetric encryption schemes that are more efficient
than existing IND-CCA-secure asymmetric encryption schemes. Hash El Gamal is one such scheme.

3 TheHEG scheme and its security in the RO model

In this section we introduce a variant of the EIGamal encryption scheme of [12] that, although not IND-CCA
secure, is IND-CCA preserving in the RO model under a standard assumption. In Section 4, we will show
that this scheme admits no IND-CCA-preserving instantiation.

PRELIMINARIES. A cyclic-group generatois a randomized, polynomial-time algorith@& which on input

1* outputs a paitq, g), whereg is a prime such that = 2¢ + 1 is also a primeg is a generator of the cyclic,
orderq subgroup(g) of Z;, and|p| = k. Recall that the Computational Diffie-Hellman (CDH) problem is
said to be hard fo€G if the function

AdvER c(k) = Pr|(q,9) < CG(1*); 2,y < Z, : Clg,9,9%,9") 29”]
is negligible for all polynomial-timedh adversarie.

SCHEME AND RESULT STATEMENT To any cyclic-group generat@G we associate the RO-model asym-
metric encryption schemi¢EG[CG] = (AK, AE, AD) whose constituent algorithms are depicted in Figure 1.
(The scheme makes reference to two ROs, naraely(g) — {0,1}* and H: {0,1}* — Z,, while the
formal definition of an asymmetric encryption scheme provides a singl&R@0, 1}* — {0, 1}, butG, H

may be implemented vi& in standard ways [5].) We call this variant of the ElIGamal encryption scheme
theHash ElGamakncryption scheme associatedd@. Our result about its security in the RO model is the
following:

Theorem 3.1 If the CDH problem is hard for cyclic-group generafds, then the associated Hash ElGamal
asymmetric encryption scheriE=G[CG] is IND-CCA preserving in the RO modell

For the definition of what it means to be IND-CCA preserving, we refer the reader to Section 2.



REMARKS. We note that the encryption algorithAt of HEG[CG] is deterministic. For this reason alone,
HEG|CG] is not an IND-CCA secure, or even IND-CPA secure, asymmetric encryption scheme. Nonetheless,
Theorem 3.1 says that it is IND-CCA preserving as long as the CDH problem is hat&forhis is not a
contradiction. Very roughly, the reasétEG[CG] can preserve IND-CCA while not itself being even IND-
CPA is that the former notion considers the use of the scheme only for the encryption of messages that are
symmetric keys, which (as long as the associated symmetric encryption scheme is secure) have relatively high
entropy, and the entropy in these messages compensates for the lack of any introdd&ed\Neyadd that
previous work [8, 9, 14, 19] has shown that in the RO model, relatively weak asymmetric components suffice
to ensure strong security properties of the hybrid based on them. Thus, it is not surprising that, although
HEG|CG] is not secure with respect to standard measures like IND-CPA and IND-CCA, it is secure enough
to permit its use for transport of a symmetric encryption key as indicated by Theorem 3.1.

The full proof of Theorem 3.1 is in Appendix A. Below we provide an intuitive overview that highlights
the main areas of novelty.

PROOF SETUP Let AS = HEG[CG] and letAK, AE, AD denote its constituent algorithms. L% = (SK,
SE, SD) be any IND-CCA-secure symmetric encryption scheme. We need to shopABie8S) is an IND-
CCA-secure mm-hybrid encryption scheme.

Let H be a polynomial-time hybrid adversary attackiffS, SS). We will construct polynomial-time
adversarie$ and C such that

poly (k)
ok -

AdVRESER (k) < poly(k) - poly (AdVEEF™ (k) , Advelo(k) ) + 2)
SinceSS is assumed IND-CCA secure and the CDH problem is hard €grthe advantage functions related
to S and C above are negligible, and thus so is the advantage function relatdd T@ complete the proof,
we need to specify adversarigsC for which Equation (2) is true. Below we I&H be the event that there
is a time at whichy™ is queried toG but K has not been queried fd; HG the event that there is a time at
which K is queried toH but g*¥ has not been queried ®; andSucc(H) the event thaH is successful at
guessing the value of its challenge hitWe will constructC so that
poly (k)

2k ’

Pr[GH] < poly(k) - Advig (k) +
and we will construcS so that

: 1
Pr[HG V (Succ(H) A —=GH A =HG) ] < AdvZ&ge (k) + 22 v(k)

9ok

3
Equation (2) follows.

THE ADVERSARIES The design ofC relies mostly on standard techniques, and so we leave it to
Appendix A. We turn toS. The latter gets input” and oraclesSE® (K, LR(-,-,b)), SD®(K,-), Rs,
and begins with the initializations
(09, X), (¢.9:7)) & AK(1F) 4y £ 23 YV = gV s W E{0,1}F 5 Cy — (V. W), 4)

and then rund on inputs(q, g, X), C,, itself responding to the oracle queries of the latter. Its aim is to do
this in such a way that the kely underlyingS’s oracles plays the role of the quantity of the same name for
H. Eventually, it will output whatH outputs. The difficulty faced by this adversary is tii&tmight query
K to H. (Other oracle queries are dealt with in standard ways.) In that #sexpects to be returneg
(And it cannot be fooled since, knowig = ¢¥, it can verify whether or not the value returnedyiy The
difficulty for S is not that it does not know the right answer (via Equation (4), it actually kngwaut rather
that it is not clear how it would know that a query being madé/tequals the keyK< underlying its oracles,
so that it would knowwhento returny as the answer to a query 1é.

In order to “detect” when query is made, we would, ideally, like a test that can be performed on a
value L, accepting ifL. = K and rejecting otherwise. However, it is not hard to see that, in general, such a
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test does not existinstead, we introduce a test that has a weaker property and show that it suffices for us.
Our testKeyTest takes inputL and has access t8's SEf(K,LR(-,-,b)) oracle. It returns a pair
(dec, gs) such that: (1) IfL = K then(dec,gs) = (1,b), meaning in this case it correctly computes the
challenge bith, and (2) If L # K then, with overwhelming probability, eithelec = 0 (the test is saying
L # K) or (dec,gs) = (1,b) (the test is saying it does not know whether or Aot K, but it has suc-
cessfully calculated the challenge bit anyway). WAty Test in hand,S can answer a querf made toH
as follows. It rung(dec, gs) < KeyTest(L). If dec = 0, it can safely assumé # K and return a random
answer, while ifdec = 1, it can outpulgs as its guess to challenge biand halt.
A precise description and analysisl®éyTest are in Appendix A, but we briefly sketch the ideas here.
The algorithm has two phases. In the first phase, it repeatedly tests whether or not

SD®: (L, SE®: (K, LR(Ty, Ty, b))) = Ty and SD?:(L,SE™(K,LR(Ty,T1,b))) = Ti,

whereT), T; are some distinct “test” messages. If any of these checks fails, it knowd.tkatK and
returns(0, 0). (However, the checks can succeed with high probability evéns# K.) In the next phase,
it repeatedly computeSD”: (L, SE' (K, LR(Tp, T1,b))) and, ifall these computations yielfl, for some
bit gs, it returns(1, gs). The analysis shows that, conditional on the first phase not retuf®ing, the bitgs
from the second stage equélwith overwhelming probability.

A subtle point arises with relation to the test. Recall tRhis making queries t6D (K, ). S will
answer these via its own oracle of the same name. Now, consider the eveHt thagries taSD%: (K, ) a
ciphertextC' generated in some executionkéy Test. If S callsSD’ (K, C) to obtain the answer, it would
immediately become an illegitimate adversary and thus forgo its advantage (sisce result of a call to
SE®:(K,LR(-,-,b)) made byS via subroutineKeyTest. There are a few ways around this, and the one we
use is to choose the initial “test” messages randomly sokhgs low probability of being able to query a
ciphertextC' generated in some executionkéy Test.

This is all put together in Appendix A to show that Equation (3) holds.

We note that one might consider an alternative solutiof’sgproblem of wanting to “detect” queriK’
to H. Namely, reply to queries t& at random, then, aftefl terminates, pick one such quekyat random,
decrypt a challenge ciphertext via and use that to predict the challenge bit. Unfortunately, even though
L = K with probability1/ poly(k), the advantage over one-half obtained$yia the strategy just outlined
could be negligible because the wrong answers from the wrong random choices could overwhelm the right
answer that arises wheki is chosen.

4 Un-instantiability of the Hash EIGamal scheme

In this section we show (cf. Theorem 4.1) that the RO-model Hash ElIGamal scheme admits no IND-CCA-
preserving instantiation. Below we begin by detailing what we mean by instantiation of a RO-model asym-
metric encryption scheme. This will refer to a RO-model scheme which, as per the formal definitions in
Section 2, uses a single random oracle mapging }* to {0, 1}.

INSTANTIATING RO-MODEL ASYMMETRIC ENCRYPTION SCHEMES A poly-time family of functiong’
associates to security parametee N and keyfk € {0,1}™ ¥ a mapffk: {0,1}* — {0,1}. Thekey
lengthrkL of the family of functions is a polynomial ik. We require that there exist a polynomiaduch
that 7'}, () is computable irt(k + |z|) time for allk € N, fk € {0, 1}*®) andz € {0, 1}*.

3 Suppose, for example, that algorithSi, SD only depend on the first half of the bits of théibit key. This is consistent with
their being IND-CCA secure (in the sense that, if there exists an IND-CCA-secure symmetric encryption scheme, there also exists
one with this property), but now, any test has probability at raot2 of being able to differentiate betweéfi and a keyl # K
that agrees withi in its first half.



AK(1F) AE((pk, fk), K) AD((sk, k), C)
fic & {0,1}m®) C & AETR(pk,K) | K « ADT*(sk,C)
(pk, sk) & AKF#x(1F) ReturnC Returnk
Return((pk, tk), (sk, tk))

Figure 2: Algorithms of the standard-model asymmetric encryption sciSne (AK, AE, AD) obtained
by instantiating RO-model asymmetric encryption schekSe= (AK, AE,AD) via poly-time family of
functionsF.

An instantiationof a RO-model asymmetric encryption schei® = (AK, AE, AD) via family F is
the standard-model asymmetric encryption sché&®e= (AK, AE, AD) whose constituent algorithms are
illustrated in Figure 2. As these indicate, the public and secret keys of the original scheme are enhanced

to also include a keyk specifying the functiorﬁfk, and calls to the random oracle are then replaced by
evaluations of this function in all algorithms.

THE UN-INSTANTIABILITY RESULT. The formal statement of the result is the following:

Theorem 4.1 LetHEG[CG] = (AK, AE, AD) be the RO-model Hash ElIGamal scheme associated to a cyclic-
group generato€G. LetHEG[CG] = (AK, AE, AD) beanyinstantiation oHEG[CG] via a poly-time family
of functions. TherHEG[CG] is not IND-CCA preserving. I

PROOF OFTHEOREM4.1. We will construct an IND-CCA-secure symmetric encryption sch&fsuch
that the mm-hybrid encryption scherfleEG[CG], SS) is not IND-CCA secure. This proves the theorem.

Let us say that a valugk is an(AS, k)-valid public key if there exists a valug such thatpk, sk) €
[AK(1%)]. We first define two polynomial-time algorithni§PK andVfCtxt which are used b§S.

Algorithm VfPK, which we call skey verifiey takes inputd* andpk, and outputs 1 if and only ipk is
a (HEG[CG], k)-valid public key. The algorithm works by parsing as(q, g, X, fk), wherefk € {0, 1},
and then returning 1 if and only4fand2q+1 are primesg is a generator of the ordercyclic subgrougg) of
L4415 12¢+1] = k,andX € (g). This algorithm can be implemented in polynomial-time based on standard
facts from computational number theory, and even deterministically, given the existence of polynomial-time
primality tests [1]. We omit the details.

Algorithm VfCtxt, which we call aciphertext verifier takes inputsl®, pk, K,C, where pk is a
(HEG[CG], k)-valid public key andi’ € {0, 1}*. It runsAE(pk, K) and outputs 1 if the result i§, and 0
otherwise. In other word4/fCtxt verifies whether” is indeed an encryption of messal§eunder the given
public keypk. This is possible because the encryption algorithitnof HEG[CG] (cf. Figure 1), and hence
the encryption algorithrAE of HEG[CG], is deterministic.

LetSS’ = (SK’,SE’, SD’) be any standard-model IND-CCA-secure symmetric encryption scheme. (Re-
call an implicit assumption is that some such scheme exists, since othetesgymmetric encryptions
schemes are by default IND-CCA preserving and the entire problem we are considering is moot.) The con-
struction ofSS is in terms ofSS’ and algorithmsVfPK and VfCtxt. We use the notatiof-, -)) to denote
an injective, polynomial-time computable encoding of pairs of strings as strings such that(givgn\/s)),

M, and M- can be recovered in polynomial time.slfs a string and:. < b are integers thesla . . . b] denotes
the string consisting of bit positionsthroughb of s. The algorithms constitutin§S = (SK, SE,SD) are
depicted in Figure 3. To conclude the proof, we need only establish the following:

Claim 4.2 Symmetric encryption schen$s is IND-CCA secure. |l



SK(1¥)
K’ & SK/(1Tk/21)
Ky & {0, 1}1+/2]
ReturnK'|| K

SE(K, M)

K — KJ[1...[k/2]]

Ky — K[1+ [k/2] ...k

C' «+ SE'(K', M)

ParseM as((M, Ms))

If the parsing fails then
ReturnC’||1 Endlf

p «— VFPK(1*, M)

¢« VfCixt(1¥, My, K, M)

If (p =1 andc = 1) then
ReturnC’||0

else ReturrC’||1 EndIf

SD(K, C)

K' — KJ[1...[k/2]]
Ky — K[1+[k/2]... K]
ParseC' asC’||d, whered € {0,1}
M' — SD'(K',C")
ParseM’ as((M, Ms))
If the parsing fails then
If d = 1 then ReturnM’
else ReturnL Endlf
p «— VIPK(1%, M)
C VfCtXt(lk, Z\/[l, K, ]\/[2)
If (d =0andp = 1andc = 1) then

ReturnM’ Endlf

If (d=1and p # 1orc=# 1)) then
ReturnM’ Endlf

Return_L

Figure 3: Algorithms of the symmetric encryption sche$Se= (SK, SE, SD) for the proof of Theorem 4.1.
Above, ((M1, M>)) denotes an encoding of the pair of striridd;, M») as a string.

Claim 4.3 Multi-message hybrid encryption scheifi¢EG[CG], SS) is not IND-CCA secure.l

Proof of Claim4.2: Let us first provide some intuition. Note that on inplf, encryption algo-

rithm SE(K!|| K>, -) uses the encryption algorith6E’ of an IND-CCA-secure scheme to computé <-
SE'(K{, M) and outputg”’||0 or C'||1, depending on whethe¥/ has some “special” form or not. The ci-
phertext ends with O ift/ parses as a pafi\/;, M>) such that algorithm¥fPK, VfCtxt indicate thatM; is

a (HEG[CG], k)-valid public key and\/; € [AE(M, K}||K2)]. The decryption algorithrSD(K/ || K>, -) on
inputC’||d, whered is a bit, computed/’ < SD'(K,C") and returns\!’ only if either M" is of the special

form andd = 0, or M’ is not of this form andl = 1. Therefore, an obvious strategy for an adversary against
SS is to query its oraclSE (K, LR(-,-, b)) on a pair of messages such that one of them is of this special
form and the other is not. Using the unique decryptabilitA&fand the fact thaf, is chosen at random,
independently from the adversary’s view, we show that it cannot find such queries except with negligible
probability. Moreover, we show that any strategy for the adversary can be employed by an attacker against
schemesS' to win its game. Details follow.

Let S be a legitimate polynomial-time adversary attackiify We will construct a legitimate polynomial-
time adversans’ such that
0(Q(k))

olk/2] 7 )
where() is a polynomial upper bounding the total number of queries madetbyits different oracles. Since
SS’ is assumed IND-CCA secure, the advantage function associafédctmve is negligible, and thus so is
the advantage function associatedStoTo complete the proof, we need to specify adverss{rand prove
Equation (5).

AdVESS (k) < Advisg™([k/2]) +

AdversaryS' is given inputl*/2] and has access to oract& (K, LR(-,-,b)) andSD’(K7,-). Its goal is
to guess the bib. It runs S on input1”. In this processS will query its two oraclesSE (K, LR(-, -, b))
and SD(K,-). To answer a query to the first of these oracl®$,forwards the query to its oracle
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SE'(K{,LR(-,-,b)), appends 1 to the oracle’s reply and returns the result tdo answer a query to the
second oracleS’ checks the last bit of the query. If it is 8] returnsL to S. Otherwise, it removes the last
bit, forwards the result to its orac&D’(K7, -), and returns the answer £ WhenS outputs its guess’, S’
returnsb’.

We now analyzes’. Consider the experiment in whif attacksSS’. We define the following events.

Succ(S’) : S’is successful, meaning its output equals the challende bit

BadE S makes a query to oraclE (K, LR(-, -, b)) in which one of the messages can be
parsed ag(M;, M,)) such thatV/; is a(HEG[CG], k)-valid public key and
M, € [AE(My, K))

BadD : S makes a query to oracED(K, -) that can be parsed &@%||d, whered is a bit, such that
SD'(K{,C") = ((My, M3)), whereM; is a(HEG[CG], k)-valid public key and
M, € [AE(My, K)]

For the experiment in whicl attacksSS, we define the following event.
Succ(S) : Sis successful, meaning its output equals the challende bit

We claim that if event8adE andBadD do not occur, thei$’ simulates perfectly the environment provided
to S in its attack agains$S. First, note that answers to queries to or&#g K, LR(-, -, b)) can only be off
by the last bit. In the absence of the “bad” events, each ciphertext returSeakta reply to a query to oracle
SE(K,LR(-,-,b)) has 1 as the last bit. This is also the cas&'mreal attack. IfS queriesSD(K, -) with a
ciphertextC’||0, assuming event8adE andBadD do not occur,S’ givesS the response it would get in the
real attack, namely.. SinceS is legitimate, if it queries oracl8D (K, -) with a ciphertextC’||1, thenC’
must not have previously been returned by or&@l€ K|, LR(-, -, b)). ThusS’ can legitimately make query
C' to its oracleSD’ (K7, -). If M is the response, then, assuming that evBattE andBadD do not occur,
the answesS expects is exactly/. Therefore,

Pr[Succ(S')] > Pr[Succ(S’) | -BadE A —~BadD | — Pr[BadE Vv BadD ]
> Pr[Succ(S)] —Pr[BadEVvBadD] .

We now provide an upper bound for the probability of ev@sdE Vv BadD. Letq. (k) andg, (k) be the number

of queriesS makes to oracleSE (K, LR(-, -, b)) andSD(K, -), respectively, on input*. We observe that if
M; is a(HEG[CG], k)-valid public key, then for any/, € {0, 1}*, there exists a uniqui’ € [SK(1*)] such
that My € [AE(M;, K')]. Recall that the key for oraclé&E (K, LR(, -, b)) andSD(K, -) is K = K}||Ka,
where K; is chosen uniformly at random frof0, 1}1%/2] and is independent fror’s view. Therefore,

for any query made b to oracleSE (K, LR(-, -, b)), the probability that one of the messages in the query
parses a$(M;, Ms)) such thatM/; is a(HEG[CG], k)-valid public key andV, € [AE(M;, K)] is at most
2/2k/2] - Similarly, for any queryC’||d, whered is a bit, made byS to oracleSD(K, -), the probability
that SD'(K1,C’) = M’, where M’ parses ag(Mi, Ms)), M, is a (HEG|CG], k)-valid public key and
M, € [AE(My, K)] is at mostl /21%/2) Therefore,

2ge(k) +qa(k) _ 2-Q(k)

Pr[BadEV BadD] <

S S o
whereQ(k) = q.(k) + ga(k). Hence
AdVisnsq,'é‘fa((k/ﬂ) = 2-Pr[Succ(S)] -1 > 2- (Pr[Succ(S)] _ %) 1
ind- OQ(k
—  AdVESE (k) — % .
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Rearranging terms gives Equation (5.

Proof of Claim 4.3: We define a hybrid adversa# attacking(HEG[CG],SS). H is given inputspk =
(¢,9,X,fk) and C, and has access to oracl®E(K,LR(-,-,b)), SD(K,-), and AD(sk, -), wheresk =

(¢,9,, k). Its goal is to guess the challenge hiBy the definition of experimerExp%c[?G] <5 (k). Pk

is a(HEG[CG], k)-valid public key and”, € [AE(pk, K)]. Therefore{(pk, C,)) is a message which, when
encrypted withSE(K, -), yields a ciphertext that has last bit 0. We observe that for any striesgosen at
random from{0, 1}/ \ {C,}, the probability that" = AD(sk, C) is 0 (sinceAE(pk, K) = C, andAE

is deterministic), i.e., the probability that € [AE(pk, K)] is 0. Hence/(pk, C)) is a message which, when
encrypted WitlSE( K, -), yields a ciphertext that has last bit 1. (f¢ [AE(pk, K)], then the last bit will be

1.) Thus, adversar#l can construct two messages for which it can guess with probability 1 the last bit of
the corresponding ciphertext. Using this information it can then guess the challenge bit. Details follow.

AdversaryH chooseg”' at random from{0, 1}/ \ {C,}, makes a query(pk, C,)), {(pk, C)) to oracle

SE(K,LR(,-,b)), parses the response @§|d, whered is a bit, and returng. The running time oft{ is

clearly polynomial ink. We claim thamdv%c[‘&] s5 H(k:) = 1. To prove this, we consider the event
Succ(H) : H is successful, meaning its output equals the challenge bit

If challenge bith is 0, then the response H’s query is a ciphertext that has last bit 0. If bits 1, then the
response is a ciphertext that has last bit 1. Thus

1 1
P H)| =-+-=1.
r[Succ(H) ] 515
Hence
Adv%c[zz],ss,ﬂ(k) = 2-Pr[Succ(H)| -1 =1,
as desired.l

Notice that the adversary constructed in the proof of Claim 4.3 does not make any queries to its oracles
SD(K,-) andAD(sk, -).

Remark 4.4 An interesting question at this point may be why the proof of Theorem 4.1 fails for the RO-
model Hash ElGamal scheriiEG[CG] associated to a cyclic-group generaf@r —it must, since otherwise
Theorem 3.1 would be contradicted— but succeeds for any instantiation of this scheme. The answer is that
symmetric encryption schen$S, depicted in Figure 3 runs a ciphertext verifigiCtxt for the asymmetric
encryption scheme in question. In the case of the RO-model scH&GECG], any ciphertext verifier must
qguery random oracle§ and H. But as we clarified in Section 3S does not have access to these oracles
(although it might have access to its own, independently chosen dkgiland so cannot run such a cipher-
text verifier. The adversary of course does have accaSs kb, but has no way to “pass” these objects to the
encryption algorithm of the symmetric encryption scheme. On the other hand, in the instantiated scheme,
the keys describing the functions instantiating the random oracles may be passed by the adversary to the
encryption algorithm ofS in the form of a message containing the public key, giiSgthe ability to run
the ciphertext verifier.

This might lead one to ask w5 does not have oracle access¥oH. The answer is that in general,
when several RO-model schemes are being executed in a common context, their random oracles should be
chosen independently of each other. In this case, RO-model sci&Srasd AS are being executed in a
common context irExpi,fgl,‘chf‘H(k) which, correctly, chose their random oracles independently, and thus the
algorithms ofSS do not have access to the oracleAs. |

As we discussed in Section 1, in Appendix B we provide a more general impossibility result.
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SubroutineGSim(Z)

If GT[Z] is not defined the®T[Z] < {0, 1}* EndIf
ReturnGT[Z]

SubroutinedSim(L)
If HT[L] is defined then return it as the answer EndIf
(dec, gs) < KeyTest(L) ; HT[L] & Z,
If dec = 0 then returrHT|[L] as the answer EndIf
If dec = 1 then outpugs (as a guess to the value of challengebpiand halt EndIf

SubroutineKeyTest(L)

dec 1

Fori=1,...,kdo
Ci[L] & SE" (K, LR(Ty, To, b)) ; If SD®< (L, Ci[L]) # T, thendec — 0 EndIf
Ci[L] & SER«(K,LR(Ty,Ty,b)) ; If SD™(L, Ci[L]) # T} thendec — 0 EndIf

EndFor

If dec = 0 return(0, 0) Endlf

Fori=1,...,kdoC?[L] & SE®(K,LR(Tp, T1,b)) ; T* « SD" (L, C?[L]) EndFor

If 71 =T%=... =T* = Ty then return(1, 0) EndIf

If 71 =T%=... =T% = T) then return(1, 1) EndIf

Return(0, 0)

Figure 4: Subroutines defined I9yand used to simulatEl’s oracles.

[18] J. B. NIELSEN “Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing
Encryption Case,’Advances in Cryptology — CRYPTO °’02, Lecture Notes in Computer Science Vol. 2442 ,
M. Yung ed., Springer-Verlag, 2002.

[19] T. OkAMOTO AND D. PoINTCHEVAL “REACT: Rapid Enhanced-security Asymmetric Cryptosystem Trans-
form,” Topics in Cryptology — CT-RSA 01, Lecture Notes in Computer Science Vol. 2020, D. Naccache ed.,
Springer-Verlag, 2001.

[20] V. SHoOuP, “A proposal for an ISO standard for public key encryption”, IACR ePrint archive Record 2001/112,
2001, http://eprint.iacr.org/

A Proof of Theorem 3.1

We explained the ideas behind this proof in Section 3. Here we provide the full adversary constructions and
analyses.

PROOF SETUP Let H be a polynomial-time hybrid adversary attacki(@S,SS). We will construct
polynomial-time adversarieS and C such that

2

AVREES (k) < AdVESE(K) + O(QUR) - Advell (k) + 2GS, ©)
whereQ(k) is a polynomial upper bounding the number of queries madéibtp the G and H oracles.
(This includes queries made directly B and those made indirectly as a consequendd 'sfqueries to its
AD%!((q,g,),-) oracle.) Sincé&S is assumed IND-CCA secure and the CDH problem is har@ @rthe
advantage functions related $oand C above are negligible, and thus so is the advantage function related to
H. To complete the proof, we need to specify the advers&j&s and prove Equation (6).
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SubroutineGSim(Z2)

If GT[Z] is not defined the®T[Z] < {0, 1}* EndIf
ReturnGT[Z]

SubroutineSim(L)

If HT[L] is not defined the®T[L] < Z, EndIf
ReturnHT[L]

SubroutineADSim(Y’, W)
If there is noL such thayTIE] = Y7 then returnl Endlf
Let L be such thag"TIE = y”
7' — XHTIL . 7' GSim(Z'); K «— T' @ W' ; Returnk’

Figure 5: Subroutines defined l6y and used to simulatE'’s oracles.

DESCRIPTION OFS. Adversary S is given input1® and has access to oracl6&”: (K, LR(,-,b)),
SDfs (K, .), andR,. Its goal is to guess the Hit It begins with the following initializations:

(9,9, X), (q,9,7)) & AK(1F) 3 y & Zy 3 YV = g¥ s W & {0,1}F; Cp — (Y, W) ;
To & {0,1}%; Ty & {0, 1} — {Ty).

Then it runsH on inputs public keyq, g, X) and ciphertext’,,. In the proces# will query its oracles
G, H, Ry, SE™(K,LR(,,-,0)), SD™ (K., ), AD“"((¢,9,2),") . (7)

S will answer these queries. To that end, it defines the subroutines shown in Figure 4. It answerszatquery
G by runningGSim(Z) and returning the answer #d. It answers a query, to H by runningHSim (L) and
returning the answer t#l. It answers queries to tHfE" (K, LR(-, -, b)) and R, oracles via its own oracles
of the same name. It answers each quény theSD%: (K, -) oracle using its own decryption oracle, unless
there existi, j and L such thatL was queried ta{ and eitherC' = C;i [L] or C = C*[L]. In that caseS

aborts. SinceS possesses the secret Kayg, ), it can answer queries D% ((q, g, x), -) by performing
the computation of the decryption algorithm, replacing calls that the latter make®tdd by calls to the
relevant subroutines just mentioned Hfruns to completion§ can output its guess as to the valuégdnd
halt, before this), theS outputs whateveH outputs.

DESCRIPTION OFC. AdversaryC is given inputsy, g, X, Y, whereX,Y € (g) have been chosen uniformly
at random. Its goal is to compugé? whereg® = X andg? = Y. Letk «— [(2¢ + 1)|. C begins with the
following initializations:

K& SKAR) ;b & {01} W & {0,1}F; €, — (Y, W) .
Then it runsH on inputs public key(q, g, X) and ciphertexC,. In the procesd will query the oracles
listed in Equation (7). C will answer these queries. Queries & are simulated the standard way, by
returning a random value for each new query and the previously returned value for each repeated query. To
simulate the rest of the oracles it defines the subroutines shown in Figure 5. It answers Z quérnby
running GSim(Z) and returning the answer . It answers a query to H by runningHSim(L) and
returning the answer t&I. Since it possessds andb, it can answer queries to & (K, LR(-, -, b)) or
SD¥s (K, .) oracles by simply performing the relevant computation and returning the answer. It answers a
query(Y’, W’) to AD“ ((¢, g, z),-) by runningADSim(Y”, W’) and returning the answer. Whdi has
terminated,C picks Z at random from the s€tZ : GT[Z] is defined} and outputsZ.
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ANALYSIS. For the analysis, define the following experiment:

$ $
ExpCo(k) : (¢,9) = CG(1"); @,y < Zy; Z — Clg,9.9%, )
If Z = ¢g™¥ then return 1 else return O

We letPr¢ [ -], Prg [ -], andPry [ - ] denote the probabilities in experime®sp{  (k), Explsse (k),

andExpj¢ 5% (k), respectively.

Let ((q,9, X), (¢,9,2)) € [AK(1%)] andK € [SK(1*)]. We define the following events relating i’s
execution on inputs public kefy, g, X) and ciphertextC, = (Y, W) whereg? = Y. These events are
defined in any of the three experiments we are considering:

GH : There exists a time at whigjt¥ is queried to& but K has not been queried @
HG : There exists a time at whicK has been queried t but ¢*¥ has not been queried
toG

Succ(H) : H is successful, meaning its output equals the challende bit

We clarify that the queries referred to above include both direct and indirect querils blt, in the
case ofExpglggcg%(k), they donot include the queries t6; and H made by the computatio6', «
AESH ((q,9,X),-) that initializes the experiment. (We are only considering queri€s t resulting from
the execution ofH.) The main claims related to the analysis are:

Prar [HGV (Succ(H) A ~HGA~GH)| < Prs | Explely™(k) = 1] + 70(%(’“)) (8)
2
Prg[GH] < Q(k)-Prc [Expcc%lfc(k) = 1] + O(QTSZ“)) . (9)

Let us see how these enable us to conclude the proof, and then return to prove them. We have:

% - AdvVRS SE5 (k) + %

— Prr | ExpREEH () = 1]

= Pry[Succ(H) |

Prg [ (Succ(H) AHG) V (Succ(H) A —=HG A =GH) | 4+ Prgr [ Succ(H) A GH ]
[

< Prg[HGV (Succ(H) A—=HG A =GH) | 4+ Prgg [ GH ]
2
< Pro [Baplifzt) = 1]+ DU 1 00 - Prc [ Brpiliot = 1] + AL
2
= 5 AT+ 5+ Q) - Advili(h) + LA

Re-arranging terms and simplifying, we get Equation (6). To complete the proof, we must establish Equa-
tions (8) and (9).

PROOF OFEQUATION (8). An important ingredient in this proof is the following lemma that characterizes
what Subroutinéey Test accomplishes:

LemmaA.l If L = K thenKeyTest(L) returns(1, b), while if L # K then
(dec, gs) < KeyTest(L) : (dec,gs) = (1,1 —b) | < 47 1|
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In other words, ifL. # K, then with high probability either the test indicates this by returmieg= 0 or it
successfully computes the value of the challengé.bAbove, the probability is over the coin tosses made
by theSE” (K, LR(, -, b)) oracle called irkeyTest, with K andb fixed.

Proof of Lemma A.1: The fact thateyTest(L) returns(1,b) whenL = K is a consequence merely of
the unique decrytability 08S, namely the fact that for alk ¢ [SK(1¥)] and allM ¢ {0,1}* we have
SDPs (K, SE®s (K, M)) = M with probability one, the probability being over the coin tosseSkf

Now assumel, # K. Let Pr|[-] denote the probability taken over the coin tosseSEf: (K, -), with K
fixed. Let

Py = Pr[SD™(L,SE"(K,Ty))=1T,y] and
P, = Pr[SD™(L,SE™(K.Ty))=T1] .
The probability thatlec = 1 at the end of the first For loop in subroutiiey Test is Pé“Pf and the probability
thatT' = ... = TF = T,_, is at most(1 — P,)*. So we have
Pr | (dec, gs) < KeyTest(L) : (dec,gs) = (1,1 — b)] = PrpPF.(1-p)*
< B -(1-p)t
= [P(1- P
< 47k,

The last line is true because the functipn [0, 1] — R defined byf(z) = z(1 — z) attains its maximum at
x = 1/2 and the value of this maximum i54. This concludes the proofl

Returning to the proof of Equation (8), we define the following evenEmpiS“S%“a(k):

FailTest : There existd, # K such thatl, was queried tad
andKeyTest(L) returned(1, 1 — b) in subroutinedSim(L)

Illegit . There exist, j and L such thatl, was queried td{
and eitheiC’[L] or C*[L] was queried byH to SD™* (K, ).

We obtain Equation (8) as shown below. Justifications follow the formulas:

Prir [HG V (Succ(H) A —=HG A —GH) |

< Prg[HGV (Succ(H) A =HG A =GH) | —FailTest | 4+ Prg [ FailTest ] (10)
< Prg [Expisns%'sm(k) - 1} + Prg [ lllegit ] + Prg [ FailTest ] (11)
< Prg [Expgg{;ma(k) - 1} + Prg | lllegit | —FailTest] + 2 - Prg [ FailTest]

ind-cca O Q k

To justify Equation (10), observe that if evefdilTest does not happen, then the simulationFfdone by
S is correct. (IfHG occurs, then prior to thig*¥ was not a query td~, so the simulation of thé&' oracle
is correct. If-HG A =GH occurs, then alsg™ was not a query t@-, so the simulation of thé& oracle is
correct. IfFailTest does not occur, then the replies to queriegitare correct.)

To justify Equation (11), first note that if eveHi{G occurs, then thé, = K case of Lemma A.1 tells us
that S halts with correct output. On the other hand, if neithi& nor GH occur, thenS halts with correct
output as long a# does. BuExping‘f'Scca(k) can still fail to return 1 becausgaborted due to the occurrence
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of lllegit. (When the latter occurs aborts to avoid calling its orackD (K, -) on a ciphertext returned by
its SETs (K, LR(-, -, b)) oracle.)

To justify Equation (12), first note that Lemma A.1 together with the fact that the total number of queries
is at mostQ (k) implies thatPrg [ FailTest] < Q(k)/4*. Next, we observe that FailTest does not occur,
thenH gets no information abodf, 77 other than that they are random distikebit strings. The unique de-
cryptability of SS then tells us thaPrg [ lllegit | —FailTest | is bounded above by the probability of guessing
eitherTy or T in Q(k) tries, and this i€(Q (k) /2%).

PROOF OFEQUATION (9). We define the following event Bxpg ¢ (k):

FailDec : There existtimes$; < t; andY”’, W', L such that all the following hold:
— query(Y’,W’) was made tAD% " ((q, g, z), ) at timet; andADSim(Y", W’) returned.L

— queryL was made td{ at timets
— gHTH =y,

The answers provided b¥DSim(-, -) are correct exactly when this event does not occur. Furthermore, if
there is a time at which query*? to G occurs andGH is true, then querys to H has not occurred at this
time, and thus the answers to queriesftdave been correct. Hence
Prg [GH | — Prc | FailDec |

Q(k)

Pro | Expglo(k) = 1}
Re-arranging, we get
Prg[GH] < Qk)-Prc [Expg(gjc(k) =1 + Prc| FailDec] . (13)

At any point in time, a query. to H has probability at most/q of makingFailDec happen, wheré is the
number of queries that have been mad&BS** ((q, g, ), -) at this time. Recall that = |(2¢ + 1)| and
thusq > 2#~2. Putting these observations together we get

Pre | FailDec] < Q(f)2 < %,(f); _ O(QQECk)Q)_

Putting this together with Equation (13) completes the proof of Equation (9).

B A generalization

In this section, we identify a subclass of IND-CCA-preserving asymmetric encryption schemes that we call
key-verifiable, ciphertext-verifiable IND-CCA-preserving asymmetric encryption schemes. We show that
such schemes exist in the RO model, but do not exist in the standard model. We then discuss how this
generalizes our results about the Hash El Gamal scheme. We begin by defining the two properties mentioned
above, namely, key verifiability and ciphertext verifiability.

Let AS = (AK, AE, AD) be an asymmetric encryption scheme. We say Alsais key verifiablef there
exists a polynomial-time, possibly randomized algoritifi*K (called thekey verifiej and a negligible
functionv (called theerror probability of VfPK) such thatvfPK (1%, pk) returns 1 with probability at least
1 —v(k) if pkis an(AS, k)-valid public key, and returns 1 with probability at megt) otherwise.

We say that asymmetric encryption scheAfe = (AK, AE, AD) is ciphertext verifiablef there exists
a polynomial-time, possibly randomized algorithffiCtxt (called theciphertext verifiey and a negligible
function (called theerror probability of VfCtxt) such that, ifVfCtxt is run on inputsl®, pk, K, C, where
pk is an(AS, k)-valid public key andk € {0, 1}*, thenVfCtxt returns 1 with probability at leagt— v/(k)
if C' € [AE(pk, K)], and returns 1 with probability at mostk) otherwise. IfAE or AD access a random
oracle, then/fCtxt is given access to the same random oracle.

The following will be used later:
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Proposition B.1 SupposeAS is a RO-model asymmetric encryption scheme that is both key verifiable and
ciphertext verifiable. LeAS be any instantiation oAS via a poly-time family of functions. TheAS is also
both key verifiable and ciphertext verifiabld.

Proof of Proposition B.1: Let VfPK andVfCixt be a key verifier and a ciphertext verifier fas, respec-
tively. Let I’ be the poly-time family of functions used &S to replace the random oracle. Recall that a
public key ofAS contains a public keypk of AS and also a keyk specifying an instance df. We define
algorithmsVfPK andVfCtxt.

On inputs1®, s, VfPK attempts to parse as a pair(pk, fk). If it fails, it returns 0. Otherwise, it runs
VfPK (1%, pk). If the result is 0, it returns 0. Otherwise, it verifies tiflatc {0, 1}"<“(%) If so, it returns 1, if
not it returns 0. Clearlyy/fPK is a key verifier forAS.

VfCtxt is identical toVfCtxt except that the random oracle is replaced with the same instariceiséd in
AS to replace the oraclel

We now observe that, in the RO model, there exist key-verifiable, ciphertext-verifiable IND-CCA-preserving
asymmetric encryption schemes, meaning the goal of key-verifiable, ciphertext-verifiable asymmetric en-
cryption is achievable in this model.

Theorem B.2 Suppose there exists a cyclic-group generator for which the CDH problem is hard. Then there
exists a key-verifiable, ciphertext-verifiable RO-model asymmetric encryption scheme that is IND-CCA-
preserving in the RO modell

Proof of Theorem B.2: If the CDH problem is hard for cyclic-group generato6, then Theorem 3.1
guarantees that the associated Hash EIGamal asymmetric encryption $tB6fA&], defined in Section 3,
is IND-CCA preserving in the RO model. The proof of Theorem 3.1 defines a key vevifit X and a
ciphertext verifieNfCtxt for HEG[CG], each having error probability Ol

Next, we show that in the standard model, therendtexist key-verifiable, ciphertext-verifiable IND-CCA-
preserving asymmetric encryption schemes, meaning the goal of key-verifiable, ciphertext-verifiable asym-
metric encryption isiot achievable in this model.

Theorem B.3 Let AS be a standard-model asymmetric encryption scheme that is both key verifiable and
ciphertext verifiable. TheAS is not IND-CCA preserving. I

Theorem B.3 is proved below. We first state and prove our final result.

Theorem B.4 Let AS be a RO-model asymmetric encryption scheme that is both key verifiable and cipher-
text verifiable. LetAS be any instantiation ofAS via a poly-time family of functions. TherS is not
IND-CCA preserving. |

Proof of Theorem B.4: AS is a standard-model asymmetric encryption scheme. Proposition B.1 implies
that it inherits the key verifiability and ciphertext verifiability A5. Theorem B.3 then implies that it is not
IND-CCA preserving. |

Note that Theorem B.4 implies Theorem 4.1 because Hash El Gamal scheme is a RO model scheme that
is key verifiable and ciphertext verifiable. Theorem B.4 is, however, more general, and shows that the un-
instantiability of the Hash El Gamal scheme arises not due to some “peculiar” use of random oracles, but due
to the fact that the scheme possesses the properties of key verifiability and ciphertext verifiability.

PROOF OFTHEOREMB.3. The proof is almost identical to the proof of Theorem 4.1. Accordingly, we use
the same notation and the previous results, and only indicate the differenc&§PkeandVfCtxt be a key
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verifier and a ciphertext verifier fokS, respectively. The main difference is that n&fiPK andVfCtxt can
be randomized algorithms with non-zero error probabilities.

We present an IND-CCA-secure symmetric encryption sch&nsuch that the mm-hybrid encryption
schemgAS, SS) is not IND-CCA secure. This proves the theorem.

LetSS’ = (SK’,SE’, SD’) be any standard-model IND-CCA-secure symmetric encryption scheme. The
construction ofSS is in terms ofSS’ and algorithmsVfPK and VfCtxt, and is exactly as in the proof of
Theorem 4.1. See Figure 3. To conclude the proof, we need only establish the following:

Claim B.5 Symmetric encryption schen% is IND-CCA secure. 1

Claim B.6 Multi-message hybrid encryption scherf#5, SS) is not IND-CCA secure.l

Proof of Claim B.5: Let S be a legitimate polynomial-time adversary attackiity We will construct a
legitimate polynomial-time adversas/ such that

ind-cca ind-cca O Q k
AdVSSd,S (k) < AdeSC{S, ([k/2]) + % +0(Q(k)) - v(k), (14)
where( is a polynomial upper bounding the total number of queries made tayits different oracles, and
v is a negligible function related to the error probabilities of algorithffidK andV{Ctxt. Note that the last
term is the only difference with Equation (5). Sir® is assumed IND-CCA secure, the advantage function
associated t&’ above is negligible, and thus so is the advantage function associasedltocomplete the

proof, we need to specify adversa$and prove Equation (14).

AdversaryS’ is identical to the adversary in the proof of Claim 4.2. The analys& & similar, but we need
to take into account the possibility that algorithm® K andV{Ctxt err. For this reason, for the experiment
in which S attacksSS, we define the following additional event.

Crct : Every time algorithm&/fPK andVfCtxt are invoked, they return the correct value

We claim that if event8adE andBadD do not occur, thet$’ simulates perfectly the environment provided
to S in its attack agains§S when algorithm&/fPK andVfCtxt never err. First, note that answers to queries to
oracleSE" (K, LR(-, -, b)) can only be off by the last bit. In the absence of the “bad” events, each ciphertext
returned toS as a reply to a query to orackE?: (K, LR(-,-,b)) has 1 as the last bit. This is also the
case inS’s real attack when algorithmgfPK and VfCtxt are always correct. I§ queriesSD(K,-) with

a ciphertextC’||0, assuming event8adE andBadD do not occur,S’ gives S the response it would get in
the real attack when algorithm&PK andVfCixt are always correct, namely. SinceS is legitimate, if it
queries oracl&D(K, -) with a ciphertextC’||1, thenC’ must not have previously been returned by oracle
SE'(K{,LR(-,-,b)). ThusS’ can legitimately make quer§y’ to its oracleSD’(K7,-). If M is the response,
then, assuming that everBadE andBadD do not occur, the answet expects when algorithmégfPK and
VfCtxt are always correct is exactly/. Therefore,

Pr [ Succ(S") | Pr [ Succ(S’) | -BadE A —BadD | — Pr[BadE v BadD |
Pr[Succ(S) | Crct] — Pr[BadE Vv BadD |

Pr[Succ(S) ] — Pr[—Crct ] — Pr[BadE Vv BadD |.

AVARAVARIY

We now provide an upper bound for the probability of eve6tct. (The bound foBadEV BadD is identical
to the one in the proof of Claim 4.2.) Let(k) andgy(k) be the number of querieS makes to oracles
SE®:(K,LR(-,-,b)) andSD(K, -), respectively, on input®. Let v, be the error probability of key verifier
VfPK, andwvs the error probability of ciphertext verifiéfCtxt. Then

Pri=Cret] < qe(k) - (vi(k) +v2(k)) + qa(k) - (i (k) +r2(k)) = Q(k) - v(k),
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whereQ (k) = qe(k) + qa(k) andv (k) = v1(k) + va(k).
Hence

AdVES S ([k/2]) = 2-Pr[Succ(S)] -1 = 2 <pr[5ucc(s) 1= Q) - v(k) - O(Q(k))> B

9[k/2]
O(Q(K))

= AdvssE (k) — O(Q(R)) - v(k) = = 757" -

Rearranging terms gives Equation (14).

Proof of Claim B.6: We define a hybrid adversa#{ attacking(AS, SS) exactly as in the proof of Claim 4.3.
We claim thatAdvi,ilg{'SCSC}I(k) > 1-—27% —u(k), wherev is a negligible function related to the error
probabilities of algorithm¥fPK andVfCtxt. The analysis is similar to the one in the proof of Claim 4.3, but
we need to take into account the additional event

Crct : Every time algorithm&/fPK andVfCtxt are invoked, they return the correct value,

and the possibility thalk = AD(sk, C'), whereC' is chosen at random frof0, 1}/ \ {C,}. The latter
can happen with probability at maat”. I.e., the probability tha€® € [AE(pk, K)] is at mos2—. Hence
((pk,C)) is a message which, when encrypted w8t K, -), yields a ciphertext that with overwhelming
probability has last bit 1. (I ¢ [AE(pk, K )], then the last bit will be 1.) Assume that evéntt occurs. If
challenge bib is 0, then the response H's query is a ciphertext that has last bit 0. If biis 1, then with
probability at least — 2%, the response is a ciphertext that has last bit 1. Thus

Pr[Succ(H)] > Pr[Succ(H) | Cret] — Pr[~Crct] > % (1 - 2—1;3) + % — Pr[~Cret]
If 11 is the error probability of key verifie?fPK, andvs is the error probability of ciphertext verifigffCtxt,
thenPr [ —Crct] < wvy(k) + 12(k). Hence

AdVAS S (k) = 2-Pr[Succ(H)]—1 > 1—-27F =2 (vi(k) + 1a(k)) = 1 -2 —w(k),
wherev(k) = 2 - (v1(k) + va(k)). |

C Any IND-CCA-secure scheme is IND-CCA preserving

We remarked in Section 1.2 that any asymmetric encryption scheme that is IND-CCA secure is also IND-
CCA preserving. (The interesting thing about the Hash ElGamal scheme is that it is not IND-CCA secure
but is still IND-CCA preserving.) For completeness, we state and and prove this formally here. We begin by
recalling the definition of IND-CCA security of an asymmetric encryption scheme.

DEFINITION. This follows [4]. Associate té\S, an adversary, andk € N, the following experiment:

ExperimentExpje 4 (k)
Randomly choose R@,: {0,1}* — {0,1}
(pk, sk) & AKTa(1%); b & 10,1}
Run A with input 1%, pk and oracleAE" (pk, LR(-, -, b)), ADf(sk, -), R,
Let d denote the output oA
If d = bthen returnl else return 0.
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We say that adversangd is legitimate if it never querieaD’% (sk, -) with a ciphertext previously returned

by AETs (pk, LR(-, -, b)). Asymmetric encryption schen&s is said to be IND-CCA secure if the function
AVRER (k) = 2+ Pr | ExpREge(k) = 1] -1

is negligible for all legitimate polynomial-time adversari¢s IND-CPA security is defined similarly, except

the adversary is not given access to orad¥ (sk, -).

RESULT. The following holds in both the standard and the RO models.

Theorem C.1 Let AS be an IND-CCA-secure asymmetric encryption scheme. Wteis IND-CCA pre-
serving. 1

Proof of Theorem C.1: Let AS = (AK, AE,AD) be an IND-CCA-secure asymmetric encryption scheme
and letSS = (SK,SE,SD) be an IND-CCA-secure symmetric encryption scheme. We will show that for
any polynomial-time legitimate hybrid adversaty attacking mm-hybrid encryption scher(®S, SS) there
exist polynomial-time legitimate adversaridsandS such that for any: € N

AdvRSSET (k) < 2AdVRSTE™ (k) + Adves S (k) . (15)

Since AS andSS are assumed IND-CCA secure, the advantage functions relatédaod S above are
negligible, and thus so is the advantage function relatdd .tdo complete the proof, we need to specify the
adversarieA, S and prove Equation (15).

We first associate toAS, SS), H, andk € N, the following experiments, fare {1, 2, 3, 4}:

ExperimentExp)s ss g (k)

Randomly choose R@&: {0,1}* — {0,1}

Define ROsSR;(-) = R(0]|-) andR,(-) = R(1]|)

(pk, sk) <& AKFa(1%); K & SKEs(1F) ; K7 & SKFs(1F)

If i = 1o0ri=4thenC, <& AEfa(pk, K) elseC, <~ AE"(pk, K') Endlf

If i =1 ori = 2then runH with inputspk, C, and oracles
SE®s(K,LR(.,-,0)),SD¥(K,.), ADFa(sk, ), R

Else runH with inputspk, C, and oracles
SE®s(K,LR(.,-,1)),SD¥(K,-), AD®(sk, ), R

EndIf

Let d denote the output off

Returnd.

Fori € {1,2, 3,4}, let P, denote the probability thdixp}'\&SS’H(k) returns 1. It is easy to see that
AdvRSSsy (k) = Py— Py = (P —P3)+ (Ps— Py) + (P, — P1) .
We will show that there exist legitimate polynomial-time adversaAésS, andA” such that
Py—P; = AdvAS 5%(k), Ps— Py = Advass™(k), and P, — P = Advas 47(k) . (16)

We obtain Equation (15) from the above by settifig= A’ if Advixs 57 (k) > Adva< 7 (k), andA = A"
otherwise. We now define adversarié§ A”, S and prove Equation (16).

DESCRIPTION OFA’. AdversaryA’ is given inputsl®, pk and has access to orackE " (pk,LR(-,-,0)),
AD®e(sk, .), andR,. Its goal is to guess the Hit It begins with the following initializations:
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K& {01} K& {0,1}* ; Make query(K’, K) to AE"(pk, LR(-, -, b)), and letC, be the response

Then it runsH on inputs public keypk and ciphertextC,. In the procesdd will query its oracles
Ra, Rs, SET (K LR(-,-,b)), SDT(K,-), AD"a(sk, ). (17)

A’ will answer these queries. QueriesR are simulated the standard way, by returning a random value
for each new query and the previously returned value for each repeated g\feapswers queries to the
AD®e(sk,-) and R, oracles via its own oracles of the same name. Since it posségsiscan answer
queries toSD?: (K, -) by simply performing the computation of the decryption algorithm, replacing calls
that the latter makes tB; by the above-mentioned simulation, and returning the ansd/esinswers queries

to SE®: (K, LR(, -, b)) by usingK to simulate oracl&E”: (K, LR(-,-,1)). WhenH halts and outputsd,

A’ outputsd.

DESCRIPTION OFA”. AdversaryA” is identical to adversanA’, except that it makes quey, K') to
oracleAE” (pk,LR(-,-,b)) and it answers queries & (K, LR(-,-,b)) by usingK to simulate oracle
SE®s (K, LR(,-,0)).

DESCRIPTION OFS. Adversary S is given inputl® and has access to oracl6&”: (K, LR(,-,b)),
SDs(K,.), andR,. Its goal is to guess the Hit It begins with the following initializations:

K' & {0,1}%; (pk,sk) & AKRa(1%); €, & AE,(K)

Then it runsH on inputs public keypk and ciphertextC,. In the procesd# will query the oracles listed

in Equation (17).S will answer these queries. QueriesRy are simulated the standard way, by returning
a random value for each new query and the previously returned value for each repeatedScareswers
queries to th&E": (K, LR(-, -, b)), SD¥* (K, -), and R, oracles via its own oracles of the same name. Since
it possesses the secret kgy it can answer queries D't (sk, -) by simply performing the computation of
the decryption algorithm, replacing calls that the latter makds,tby the above-mentioned simulation, and
returning the answer. WheH halts and outputg, S outputsd.

ANALYSIS. Clearly, if H is polynomial-time and legitimate, so as¥, A”, andS. It is easy to see that
Equation (16) holds.I
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