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Abstract

We present a simple, natural random oracle (RO) model scheme, for a practical goal, that is un-
instantiable, meaning is proven in the RO model to meet its goal yet admitsno standard-model instan-
tiation that meets this goal. The goal in question isIND-CCA-preserving asymmetric encryptionwhich
formally captures security of the most common practical usage of asymmetric encryption, namely to
transport a symmetric key in such a way that symmetric encryption under the latter remains secure.
The scheme is an ElGamal variant, called Hash ElGamal, that resembles numerous existing RO-model
schemes, and on the surface shows no evidence of its anomalous properties.

We believe these results deepen our understanding of the nature and extent of the gap between the
standard and RO models, and bring concerns raised by previous work closer to practice by indicating that
the problem of RO-model schemes admitting no secure instantiation is a very real one that can and does
arise in domains where RO schemes are commonly designed.

Keywords: Random-Oracle Model, asymmetric encryption, symmetric encryption, chosen-ciphertext at-
tacks.



1 Introduction

A random oracle (RO) model scheme is one whose algorithms have oracle access to a random function. (Its
security is evaluated with respect to an adversary with oracle access to the same function.) An “instantiation”
of such a scheme is the standard-model scheme obtained by replacing this function with a member of a
polynomial-time computable family of functions, described by a short key. (The security of the scheme is
evaluated with respect to an adversary given the same key.) In the random-oracle paradigm, as enunciated by
Bellare and Rogaway [5], one first designs and proves secure a scheme in the RO model, and then instantiates
it to get a (hopefully still secure) standard-model scheme.

The RO model has proven quite popular and there are now numerous practical schemes designed and
proven secure in this model. But the important issue of whether such schemes can be securely instantiated,
and, if so, how, remains less clear.

This paper adds to existing concerns in this regard via a new example of an “un-instantiable” RO-model
scheme. The interest of this example, compared to previous ones, is that the scheme is simple and natural,
resembling RO-model schemes typically being designed, and the goal is a practical one, related to popular
targets for RO-model schemes. This indicates that the problem of RO-model schemes admitting no secure
instantiation is a very real one that can and does arise in domains where RO schemes are commonly designed.

We also prove a more general result that identifies a goal achievable in the RO model but not the standard
model.

Below we begin with some background and then describe our contributions in more detail.

1.1 Previous work

Let us call a RO-model schemeun-instantiable, with respect to some underlying cryptographic goal, if the
scheme can be proven to meet this goal in the random-oracle model, butno instantiation of this scheme
meets the goal in question. Canetti, Goldreich and Halevi [7] provided the first examples of un-instantiable
schemes, the goals in question being IND-CPA-secure asymmetric encryption and digital signatures secure
against chosen-message attacks. Further examples followed: Nielsen [18] presented an un-instantiable RO-
model scheme for the goal of non-interactive, non-committing encryption [6], and Goldwasser and Taumann
[16] showed the existence of a 3-move protocol which, when collapsed via a RO as per the Fiat-Shamir
heuristic [13], yields an un-instantiable RO-model signature scheme.

The results of [7] indicate that it is possible for the RO paradigm to fail to yield secure “real-world”
schemes. The example schemes provided by [7], however, are complex and contrived ones that do not
resemble the kinds of RO schemes typically being designed. (Their schemes are designed to return the secret
key depending on the result of some test applied to an output of the oracle, and they use diagonalization and
CS proofs [17].) The same is true of the scheme of [16]. In contrast, the scheme of [18] is simple, but the
goal, namely non-interactive, non-committing encryption, is somewhat distant from ones that are common
practical targets of RO-model designs. Accordingly, based on existing work, one might be tempted to think
that “in practice,” or when confined to “natural” schemes for practical problems commonly being targeted by
RO-scheme designers, the RO paradigm is sound.

This paper suggests that even this might not always be true. For a practical cryptographic goal, we present
an un-instantiable RO-model scheme that is simple and natural, closely resembling the types of schemes
being designed in this domain. We begin below by discussing the goal, which we call IND-CCA-preserving
asymmetric encryption and which arises in the domain of hybrid encryption.

1.2 IND-CCA-preserving asymmetric encryption

In practice, the most common usage of asymmetric encryption is to transport a symmetric key that is later
used for symmetric encryption of the actual data. The notion of an asymmetric encryption schemeAS being
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IND-CCA-preserving, that we introduce, captures the security attribute thatAS must possess in order to
render this usage ofAS secure. We now elaborate.

Encryption, in practice, largely employs the “hybrid” paradigm. The version of this paradigm that we
consider here is quite general. In a first phase, the sender picks at random a “session” keyK for a sym-
metric encryption scheme, encryptsK asymmetrically under the receiver’s public key to get a ciphertext
Ca, and transfersCa to the receiver. In a second phase, it can encrypt messages of its choice symmetrically
underK and transfer the corresponding ciphertexts to the receiver. We call this multi-message (mm) hybrid
encryption.1

A choice of an asymmetric encryption schemeAS and a symmetric encryption schemeSS gives rise to a
particular mm-hybrid scheme. We introduce in Section 2 a definition of the IND-CCA security of this mm-
hybrid scheme which captures the privacy of the encrypted messages even in the presence of an adversary
allowed chosen-ciphertext attacks on both component schemes and allowed to choose the messages to be
encrypted adaptively and as a function of the asymmetric ciphertext, denotedCa above, that transports the
symmetric key.

Now let us say that an asymmetric encryption schemeAS is IND-CCA preservingif the mm-hybrid
associated toAS and symmetric encryption schemeSS is IND-CCA secure foreveryIND-CCA secureSS.
This notion of security for an asymmetric encryption scheme captures the security attribute of its being able
to securely transport a session key for the purpose of mm-hybrid encryption. The goal we consider is IND-
CCA-preserving asymmetric encryption.

It is easy to see that any IND-CCA-secure asymmetric encryption scheme is IND-CCA preserving. (For
completeness, this is proved in Appendix C.1.) IND-CCA preservation, however, is actually a weaker re-
quirement on an asymmetric encryption scheme than IND-CCA security itself, hence there might be IND-
CCA-preserving asymmetric encryption schemes that are simpler and more efficient than IND-CCA-secure
ones. In particular, it is natural to seek an efficient IND-CCA-preserving scheme in the RO model along the
lines of existing hybrid encryption schemes such as those of [8, 9, 14, 19].

1.3 The Hash ElGamal scheme and its security

It is easy to see that the ElGamal encryption scheme [12] is not IND-CCA preserving. An effort to strengthen
it to be IND-CCA preserving lead us to a variant that we call the Hash ElGamal scheme. It uses the idea un-
derlying the Fujisaki-Okamoto [14] transformation, namely to encrypt under the original (ElGamal) scheme
using coins obtained by applying a random oracleH to the message. Specifically, encryption of a message
K under public key(q, g,X) in the Hash ElGamal scheme is given by

AEG,H((q, g,X),K) = (gH(K) , G(XH(K))⊕K) , (1)

whereG,H are random oracles,q, 2q + 1 are primes,g is a generator of the orderq cyclic subgroup of
Z
∗
2q+1, and the secret key is(q, g, x) wheregx = X. Decryption is performed in the natural way as detailed

in Figure 1.
The Hash ElGamal scheme is very much like practical RO-model schemes presented in the literature. In

fact, it is a particular case of an asymmetric encryption scheme proposed by Baek, Lee and Kim [2, 3].
We note that the Hash ElGamal asymmetric encryption scheme is not IND-CCA secure, or even IND-

CPA secure, in particular because the encryption algorithm is deterministic. But Theorem 3.1 guarantees
that the Hash ElGamal asymmetric encryption scheme is IND-CCA-preserving in the RO model, if the
Computational Diffie-Hellman (CDH) problem is hard in the underlying group.

1 The term multi-message refers to the fact that multiple messages may be encrypted, in the second phase, under the same
session key. The main reason for using such a hybrid paradigm, as opposed to directly encrypting the data asymmetrically under the
receiver’s public key, is that the number-theoretic operations underlying popular asymmetric encryption schemes are computationally
more expensive than the block-cipher operations underlying symmetric encryption schemes, so hybrid encryption brings significant
performance gains.
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We follow this with Theorem 4.1, however, which says that the Hash ElGamal scheme is un-instantiable.
In other words, the standard-model asymmetric encryption scheme obtained by instantiating the RO-model
Hash ElGamal scheme is not IND-CCA preserving, regardless of the choice of instantiating functions.2 (We
allow these to be drawn from any family of polynomial-time computable functions.)

1.4 A closer look

We remark that in our proof that the Hash ElGamal scheme is IND-CCA preserving in the RO model, we do
not “program” the random oracle(s), meaning that we only need to be able to “watch” the adversary’s oracle
queries. (That is, Theorem 3.1 holds in what Nielsen calls the “non-programmable” RO model [18].) This
indicates that the security of the scheme relies on relatively weak properties of the RO, and, since we show
the scheme is nonetheless un-instantiable, strengthens the impact of our result.

As noted above, we show that no instantiation of the Hash ElGamal scheme is IND-CCA-preserving. The
way we establish this is the following. We letAS be some (any) instantiation of the Hash ElGamal scheme.
Then, we construct a particular IND-CCA-secure symmetric encryption schemeSS such that the mm-hybrid
associated toAS andSS is not IND-CCA secure. The latter is proven by presenting an explicit attack on the
mm-hybrid. We clarify that the symmetric schemeSS constructed in this proof is not a natural one. (It is
not a particularly complex one either.) We do not view this as subtracting much from the value of our result,
which lies rather in the nature of the Hash ElGamal scheme itself and the practicality of the underlying goal.

What we suggest is interesting about the result is that the Hash ElGamal scheme, on the surface, seems
innocuous enough. It does not seem to be making any “peculiar” use of its random oracle that would lead us
to think it is “wrong.” (Indeed, it uses random oracles in ways they have been used previously, in particular by
[14, 2, 3].) The scheme is simple, efficient, and similar to other RO-model schemes out there. In addition, we
contend that the definition of IND-CCA-preserving asymmetric encryption is natural and captures a practical
requirement. The fact that the Hash ElGamal scheme is un-instantiable thus points to the difficulty of being
able to distinguish un-instantiable RO-model schemes from ones that at leastmaybe securely instantiable,
even in the context of natural and practical goals.

1.5 Generalizations

Next we provide some results that generalize the above. We consider the class of IND-CCA-preserving
asymmetric encryption schemes that possess a pair of properties that we callkey verifiabilityandciphertext
verifiability. Key verifiability means there is a way to recognize valid public keys in polynomial time. Ci-
phertext verifiability means there is a polynomial-time procedure to determine whether a given ciphertext is
an encryption of a given message under a given valid public key.

Theorem B.2 points out that the goal of key-verifiable, ciphertext-verifiable IND-CCA-preserving asym-
metric encryption is achievable in the RO model, by the Hash El Gamal scheme in particular, assuming the
CDH problem is hard in the underlying group. Theorem B.3, however, says that this goal is not achievable
in the standard model. In other words, there exist RO-model schemes meeting this goal, but there exist no
standard-model schemes meeting it. Theorem B.3 generalizes Theorem 4.1 because any instantiation of the
Hash ElGamal is key-verifiable and ciphertext-verifiable, and hence cannot be IND-CCA-preserving.

Theorem B.3 lifts our results from being about a particular scheme to being about a primitive, or class
of schemes. The generalization also helps better understand what aspects of the Hash ElGamal scheme lead
to its admitting no IND-CCA-preserving instantiation. In particular, we see that this is not due to some
“peculiar” use of random oracles but rather due to some simply stated properties of the resulting asymmetric
encryption scheme itself.

2 This result is based on the assumption that one-way functions exist (equivalently, IND-CCA-secure symmetric encryption
schemes exist), since, otherwise, by default,any asymmetric encryption scheme is IND-CCA preserving, and, indeed, the entire
mm-hybrid encryption problem we are considering is vacuous. This assumption is made implicitly in all results in this paper.
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1.6 Related work

In the cryptographic community, the term “hybrid encryption” seems to be used quite broadly, to refer to a
variety of goals or methods in which symmetric and asymmetric primitives are combined to achieve privacy.
We have considered one goal in this domain, namely mm-hybrid encryption. We now discuss related work
that has considered other goals or problems in this domain.

Works such as [8, 9, 14, 19, 11, 20] provide designs of IND-CCA-secure asymmetric encryption schemes
that are referred to as “hybrid encryption schemes” because they combine the use of asymmetric and symmet-
ric primitives. (Possible goals of such designs include gaining efficiency, increasing the size of the message
space, or reducing the assumptions that must be made on the asymmetric component in order to guaran-
tee the IND-CCA security of the construction.) The schemes of [8, 9, 14, 19] are in the RO model and,
although addressing a different goal, form an important backdrop for our work because the Hash ElGamal
scheme is based on similar techniques and usage of random oracles. We stress, however, that we have no
reason to believe that any of these schemes, or that of [2, 3] of which Hash ElGamal is a special case, are
un-instantiable.

2 Definitions

NOTATION AND CONVENTIONS. If S is a randomized algorithm, then[S(x, y, . . .)] denotes the set of all
points having positive probability of being output byS on inputsx, y, . . .. If x is a binary string, then|x|
denotes its length, and ifn ≥ 1 is an integer, then|n| denotes the length of its binary encoding, meaning the
unique integer̀ such that2`−1 ≤ n < 2`. The string-concatenation operator is denoted “‖”.

Formal definitions in the RO model provide as an oracle, to the algorithms and the adversary, a single
random functionR mapping{0, 1}∗ to {0, 1}. Schemes might, however, use and refer to multiple random
functions of different domains and ranges. These can be derived fromR via standard means [5].

SYMMETRIC ENCRYPTION. A symmetric encryption schemeSS = (SK,SE,SD) is specified by three

polynomial-time algorithms: viaK
$← SK(1k) one can generate a key; viaC

$← SE(K,M) one can encrypt
a messageM ∈ {0, 1}∗; and viaM ← SD(K,C) one can decrypt a ciphertextC. It is required that
SD(K,SE(K,M)) = M for all K ∈ [SK(1k)] and allM ∈ {0, 1}∗. We assume (without loss of generality)
that[SK(1k)] ⊆ {0, 1}k. In the RO model, all algorithms have access to the RO.

We define security following [4] and addressing the possibility of the symmetric scheme being in the RO
model. Associate toSS, an adversaryS, andk ∈ N, the following experiment:

ExperimentExpind-cca
SS,S (k)

Randomly choose RORs : {0, 1}∗ → {0, 1}
K

$← SKRs(1k) ; b $← {0, 1}
RunS with input1k and oraclesSERs(K,LR(·, ·, b)), SDRs(K, ·),Rs
Let d denote the output ofS
If d = b then return1 else return 0.

Above,LR(M0,M1, b) = Mb if M0,M1 are strings of equal length, and⊥ otherwise. We say that adversary
S is legitimate if it never queriesSDRs(K, ·) with a ciphertext previously returned bySERs(K,LR(·, ·, b)).
Symmetric encryption schemeSS is said to be IND-CCA secure if the function

Advind-cca
SS,S (k) = 2 · Pr

[
Expind-cca

SS,S (k) = 1
]
− 1

is negligible for all legitimate polynomial-time adversariesS.

ASYMMETRIC ENCRYPTION. An asymmetric encryption schemeAS = (AK,AE,AD) is specified by three

polynomial-time algorithms: via(pk, sk) $← AK(1k) one can generate keys; viaC
$← AE(pk,K) one can
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encrypt a messageK ∈ {0, 1}k; and viaK ← AD(sk, C) one can decrypt a ciphertextC. (We denote
the message byK because we will set it to a key for a symmetric encryption scheme.) It is required that
AD(sk,AE(pk,K)) = K for all (pk, sk) ∈ [AK(1k)] and allK ∈ {0, 1}k. In the RO model, all algorithms
have access to the RO.

Discussions and peripheral results in this paper sometimes refer to standard notions of security for such
schemes like IND-CPA and IND-CCA, but these are not required for the main results and accordingly are
not defined here but recalled in Appendix C.1.

IND-CCA-PRESERVING ASYMMETRIC ENCRYPTION. We provide the formal definitions first and ex-
planations later. Amulti-message hybrid (mm-hybrid) encryption schemeis simply a pair(AS,SS) con-
sisting of an asymmetric encryption schemeAS = (AK,AE,AD) and a symmetric encryption scheme
SS = (SK,SE,SD). We associate to(AS,SS), a hybrid adversaryH , andk ∈ N, the following experi-
ment:

ExperimentExpind-cca
AS,SS,H (k)

Randomly choose ROR: {0, 1}∗ → {0, 1}
Define ROsRs(·) = R(0‖·) andRa(·) = R(1‖·)
(pk, sk) $← AKRa(1k) ; K $← SKRs(1k) ; b $← {0, 1}
Ca

$← AERa(pk,K)
RunH with inputspk, Ca and oraclesSERs(K,LR(·, ·, b)), SDRs(K, ·), ADRa(sk, ·),R
Let d denote the output ofH
If d = b then return1 else return 0.

We say that adversaryH is legitimate if it does not querySDRs(K, ·) on a ciphertext previously returned by
SERs(K,LR(·, ·, b)), and it does not queryADRa(sk, ·) onCa. Mm-hybrid encryption scheme(AS,SS) is
said to be IND-CCA secure if the function

Advind-cca
AS,SS,H (k) = 2 · Pr

[
Expind-cca

AS,SS,H (k) = 1
]
− 1

is negligible for all legitimate polynomial-time adversariesH .
Finally, we say that an asymmetric encryption schemeAS is IND-CCA preservingif the mm-hybrid

encryption scheme(AS,SS) is IND-CCA secure forall IND-CCA-secure symmetric encryption schemes
SS. Here, the set of symmetric encryption schemes over which we quantify includes RO-model ones ifAS is
a RO-model scheme, and includes only standard-model ones ifAS is a standard-model scheme.

Let us now explain the ideas behind these formalisms. Recall that we are modelling the security of the
following two-phase scenario: in phase one, the sender picks a keyK for symmetric encryption, asymmetri-
cally encrypts it under the receiver’s public key to get a ciphertextCa, and sendsCa to the receiver; in phase
two, the sender symmetrically encrypts messages of its choice underK and transmits the resulting cipher-
texts to the receiver. The definition above captures the requirement of privacy of the symmetrically encrypted
data under a chosen-ciphertext attack. Privacy is formalized in terms of indistinguishability via left-or-right
oracles, and the chosen-ciphertext attack is formalized via the adversary’s access to decryption oracles for
both the symmetric and asymmetric schemes. The legitimacy requirement, as usual, disallows decryption
queries on challenge ciphertexts since they would lead to trivial adversary victory. The experiment reflects
the possibility thatSS andAS are RO-model schemes by picking random oracles for their encryption and
decryption algorithms. The standard model is the special case where the algorithms of the schemes do not
refer to any oracles, and thus the definition above covers security in both models. The notion ofAS being
IND-CCA preserving reflects a valuable pragmatic requirement, namely that one may use, in conjunction
with AS, any symmetric encryption scheme and be guaranteed security of the mm-hybrid under the minimal
assumption that the symmetric scheme itself was secure.
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AK(1k)
(q, g) $← CG(1k)
x

$← Zq

X ← gx

Return((q, g,X), (q, g, x))

AEG,H((q, g,X),K)
y ← H(K)
Y ← gy

T ← G(Xy)
W ← T ⊕K
Return(Y,W )

ADG,H((q, g, x), (Y,W ))
T ← G(Y x)
K ← T ⊕W
If gH(K) = Y then

ReturnK
else Return⊥ EndIf

Figure 1: Algorithms of the RO-model asymmetric encryption schemeHEG[CG] = (AK,AE,AD) associated
to cyclic-group generatorCG. HereG: 〈g〉 → {0, 1}k andH : {0, 1}k → Zq are random oracles.

Note that inExpind-cca
AS,SS,H the random oracles forAS andSS are defined via the main random oracleR in

such a way that they areindependentrandom functions of{0, 1}∗ to {0, 1}. The correctness of the principle
of independently choosing random oracles of different RO-model schemes in a common context (as opposed
to having them use the same oracle) should hopefully be clear. This independence turns out to be important
in relation to Theorem 4.1, but for reasons that are not apparent until we see the proof of this theorem, and,
accordingly, we postpone further discussion until Remark 4.4.

The existence of IND-CCA-preserving asymmetric encryption schemes is easy to establish since, as
Theorem C.1 indicates, any IND-CCA-secure asymmetric encryption scheme is IND-CCA preserving. The
interesting question is to find IND-CCA-preserving asymmetric encryption schemes that are more efficient
than existing IND-CCA-secure asymmetric encryption schemes. Hash El Gamal is one such scheme.

3 The HEG scheme and its security in the RO model

In this section we introduce a variant of the ElGamal encryption scheme of [12] that, although not IND-CCA
secure, is IND-CCA preserving in the RO model under a standard assumption. In Section 4, we will show
that this scheme admits no IND-CCA-preserving instantiation.

PRELIMINARIES. A cyclic-group generatoris a randomized, polynomial-time algorithmCG which on input
1k outputs a pair(q, g), whereq is a prime such thatp = 2q+ 1 is also a prime,g is a generator of the cyclic,
orderq subgroup〈g〉 of Z∗p, and|p| = k. Recall that the Computational Diffie-Hellman (CDH) problem is
said to be hard forCG if the function

Advcdh
CG,C(k) = Pr

[
(q, g) $← CG(1k) ; x, y $← Zq : C(q, g, gx, gy) = gxy

]
is negligible for all polynomial-timecdh adversariesC.

SCHEME AND RESULT STATEMENT. To any cyclic-group generatorCG we associate the RO-model asym-
metric encryption schemeHEG[CG] = (AK,AE,AD) whose constituent algorithms are depicted in Figure 1.
(The scheme makes reference to two ROs, namelyG: 〈g〉 → {0, 1}k andH : {0, 1}k → Zq, while the
formal definition of an asymmetric encryption scheme provides a single ROR: {0, 1}∗ → {0, 1}, butG,H
may be implemented viaR in standard ways [5].) We call this variant of the ElGamal encryption scheme
theHash ElGamalencryption scheme associated toCG. Our result about its security in the RO model is the
following:

Theorem 3.1 If the CDH problem is hard for cyclic-group generatorCG, then the associated Hash ElGamal
asymmetric encryption schemeHEG[CG] is IND-CCA preserving in the RO model.

For the definition of what it means to be IND-CCA preserving, we refer the reader to Section 2.
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REMARKS. We note that the encryption algorithmAE of HEG[CG] is deterministic. For this reason alone,
HEG[CG] is not an IND-CCA secure, or even IND-CPA secure, asymmetric encryption scheme. Nonetheless,
Theorem 3.1 says that it is IND-CCA preserving as long as the CDH problem is hard forCG. This is not a
contradiction. Very roughly, the reasonHEG[CG] can preserve IND-CCA while not itself being even IND-
CPA is that the former notion considers the use of the scheme only for the encryption of messages that are
symmetric keys, which (as long as the associated symmetric encryption scheme is secure) have relatively high
entropy, and the entropy in these messages compensates for the lack of any introduced byAE. We add that
previous work [8, 9, 14, 19] has shown that in the RO model, relatively weak asymmetric components suffice
to ensure strong security properties of the hybrid based on them. Thus, it is not surprising that, although
HEG[CG] is not secure with respect to standard measures like IND-CPA and IND-CCA, it is secure enough
to permit its use for transport of a symmetric encryption key as indicated by Theorem 3.1.

The full proof of Theorem 3.1 is in Appendix A. Below we provide an intuitive overview that highlights
the main areas of novelty.

PROOF SETUP. Let AS = HEG[CG] and letAK,AE,AD denote its constituent algorithms. LetSS = (SK,
SE,SD) be any IND-CCA-secure symmetric encryption scheme. We need to show that(AS,SS) is an IND-
CCA-secure mm-hybrid encryption scheme.

Let H be a polynomial-time hybrid adversary attacking(AS,SS). We will construct polynomial-time
adversariesS andC such that

Advind-cca
AS,SS,H (k) ≤ poly(k) · poly

(
Advind-cca

SS,S (k) , Advcdh
CG,C(k)

)
+

poly(k)
2k

. (2)

SinceSS is assumed IND-CCA secure and the CDH problem is hard forCG, the advantage functions related
to S andC above are negligible, and thus so is the advantage function related toH . To complete the proof,
we need to specify adversariesS,C for which Equation (2) is true. Below we letGH be the event that there
is a time at whichgxy is queried toG butK has not been queried toH; HG the event that there is a time at
whichK is queried toH but gxy has not been queried toG; andSucc(H) the event thatH is successful at
guessing the value of its challenge bitb. We will constructC so that

Pr [ GH ] ≤ poly(k) · Advcdh
CG,C(k) +

poly(k)
2k

,

and we will constructS so that

Pr [ HG ∨ (Succ(H) ∧ ¬GH ∧ ¬HG) ] ≤ Advind-cca
SS,S (k) +

poly(k)
2k

. (3)

Equation (2) follows.

THE ADVERSARIES. The design ofC relies mostly on standard techniques, and so we leave it to
Appendix A. We turn toS. The latter gets input1k and oraclesSERs(K,LR(·, ·, b)), SDRs(K, ·), Rs,
and begins with the initializations

((q, g,X), (q, g, x)) $← AK(1k) ; y $← Zq ; Y ← gy ; W $← {0, 1}k ; Ca ← (Y,W ) , (4)

and then runsH on inputs(q, g,X), Ca, itself responding to the oracle queries of the latter. Its aim is to do
this in such a way that the keyK underlyingS’s oracles plays the role of the quantity of the same name for
H . Eventually, it will output whatH outputs. The difficulty faced by this adversary is thatH might query
K to H. (Other oracle queries are dealt with in standard ways.) In that case,H expects to be returnedy.
(And it cannot be fooled since, knowingY = gy, it can verify whether or not the value returned isy.) The
difficulty for S is not that it does not know the right answer (via Equation (4), it actually knowsy), but rather
that it is not clear how it would know that a query being made toH equals the keyK underlying its oracles,
so that it would knowwhento returny as the answer to a query toH.

In order to “detect” when queryK is made, we would, ideally, like a test that can be performed on a
valueL, accepting ifL = K and rejecting otherwise. However, it is not hard to see that, in general, such a
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test does not exist.3 Instead, we introduce a test that has a weaker property and show that it suffices for us.
Our testKeyTest takes inputL and has access toS’s SERs(K,LR(·, ·, b)) oracle. It returns a pair

(dec, gs) such that: (1) IfL = K then(dec, gs) = (1, b), meaning in this case it correctly computes the
challenge bitb, and (2) IfL 6= K then, with overwhelming probability, eitherdec = 0 (the test is saying
L 6= K) or (dec, gs) = (1, b) (the test is saying it does not know whether or notL = K, but it has suc-
cessfully calculated the challenge bit anyway). WithKeyTest in hand,S can answer a queryL made toH
as follows. It runs(dec, gs) $← KeyTest(L). If dec = 0, it can safely assumeL 6= K and return a random
answer, while ifdec = 1, it can outputgs as its guess to challenge bitb and halt.

A precise description and analysis ofKeyTest are in Appendix A, but we briefly sketch the ideas here.
The algorithm has two phases. In the first phase, it repeatedly tests whether or not

SDRs(L,SERs(K,LR(T0, T0, b))) = T0 and SDRs(L,SERs(K,LR(T1, T1, b))) = T1 ,

whereT0, T1 are some distinct “test” messages. If any of these checks fails, it knows thatL 6= K and
returns(0, 0). (However, the checks can succeed with high probability even ifL 6= K.) In the next phase,
it repeatedly computesSDRs(L,SERs(K,LR(T0, T1, b))) and, ifall these computations yieldTgs for some
bit gs, it returns(1, gs). The analysis shows that, conditional on the first phase not returning(0, 0), the bitgs
from the second stage equalsb with overwhelming probability.

A subtle point arises with relation to the test. Recall thatH is making queries toSDRs(K, ·). S will
answer these via its own oracle of the same name. Now, consider the event thatH queries toSDRs(K, ·) a
ciphertextC generated in some execution ofKeyTest. If S callsSDRs(K,C) to obtain the answer, it would
immediately become an illegitimate adversary and thus forgo its advantage, sinceC is a result of a call to
SERs(K,LR(·, ·, b)) made byS via subroutineKeyTest. There are a few ways around this, and the one we
use is to choose the initial “test” messages randomly so thatH has low probability of being able to query a
ciphertextC generated in some execution ofKeyTest.

This is all put together in Appendix A to show that Equation (3) holds.
We note that one might consider an alternative solution toS’s problem of wanting to “detect” queryK

toH. Namely, reply to queries toH at random, then, afterH terminates, pick one such queryL at random,
decrypt a challenge ciphertext viaL, and use that to predict the challenge bit. Unfortunately, even though
L = K with probability1/poly(k), the advantage over one-half obtained byS via the strategy just outlined
could be negligible because the wrong answers from the wrong random choices could overwhelm the right
answer that arises whenK is chosen.

4 Un-instantiability of the Hash ElGamal scheme

In this section we show (cf. Theorem 4.1) that the RO-model Hash ElGamal scheme admits no IND-CCA-
preserving instantiation. Below we begin by detailing what we mean by instantiation of a RO-model asym-
metric encryption scheme. This will refer to a RO-model scheme which, as per the formal definitions in
Section 2, uses a single random oracle mapping{0, 1}∗ to {0, 1}.
INSTANTIATING RO-MODEL ASYMMETRIC ENCRYPTION SCHEMES. A poly-time family of functionsF

associates to security parameterk ∈ N and keyfk ∈ {0, 1}fkl(k) a mapF
k
fk : {0, 1}∗ → {0, 1}. Thekey

lengthfkl of the family of functions is a polynomial ink. We require that there exist a polynomialt such

thatF
k
fk(x) is computable int(k + |x|) time for allk ∈ N, fk ∈ {0, 1}fkl(k) andx ∈ {0, 1}∗.

3 Suppose, for example, that algorithmsSE,SD only depend on the first half of the bits of theirk-bit key. This is consistent with
their being IND-CCA secure (in the sense that, if there exists an IND-CCA-secure symmetric encryption scheme, there also exists
one with this property), but now, any test has probability at most2−k/2 of being able to differentiate betweenK and a keyL 6= K
that agrees withK in its first half.
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AK(1k)
fk

$← {0, 1}fkl(k)

(pk, sk) $← AKF
k
fk (1k)

Return((pk, fk), (sk, fk))

AE((pk, fk),K)

C
$← AEF

k
fk (pk,K)

ReturnC

AD((sk, fk), C)

K ← ADF
k
fk (sk, C)

ReturnK

Figure 2: Algorithms of the standard-model asymmetric encryption schemeAS = (AK,AE,AD) obtained
by instantiating RO-model asymmetric encryption schemeAS = (AK,AE,AD) via poly-time family of
functionsF .

An instantiationof a RO-model asymmetric encryption schemeAS = (AK,AE,AD) via family F is
the standard-model asymmetric encryption schemeAS = (AK,AE,AD) whose constituent algorithms are
illustrated in Figure 2. As these indicate, the public and secret keys of the original scheme are enhanced

to also include a keyfk specifying the functionF
k
fk , and calls to the random oracle are then replaced by

evaluations of this function in all algorithms.

THE UN-INSTANTIABILITY RESULT . The formal statement of the result is the following:

Theorem 4.1 Let HEG[CG] = (AK,AE,AD) be the RO-model Hash ElGamal scheme associated to a cyclic-
group generatorCG. Let HEG[CG] = (AK,AE,AD) beany instantiation ofHEG[CG] via a poly-time family
of functions. ThenHEG[CG] is not IND-CCA preserving.

PROOF OFTHEOREM 4.1. We will construct an IND-CCA-secure symmetric encryption schemeSS such
that the mm-hybrid encryption scheme(HEG[CG],SS) is not IND-CCA secure. This proves the theorem.

Let us say that a valuepk is an(AS, k)-valid public key if there exists a valuesk such that(pk, sk) ∈
[AK(1k)]. We first define two polynomial-time algorithmsVfPK andVfCtxt which are used bySS.

Algorithm VfPK, which we call akey verifier, takes inputs1k andpk, and outputs 1 if and only ifpk is
a (HEG[CG], k)-valid public key. The algorithm works by parsingpk as(q, g,X, fk), wherefk ∈ {0, 1}fkl,
and then returning 1 if and only ifq and2q+1 are primes,g is a generator of the orderq cyclic subgroup〈g〉 of
Z
∗
2q+1, |2q+1| = k, andX ∈ 〈g〉. This algorithm can be implemented in polynomial-time based on standard

facts from computational number theory, and even deterministically, given the existence of polynomial-time
primality tests [1]. We omit the details.

Algorithm VfCtxt, which we call aciphertext verifier, takes inputs1k,pk,K,C, where pk is a
(HEG[CG], k)-valid public key andK ∈ {0, 1}k. It runsAE(pk,K) and outputs 1 if the result isC, and 0
otherwise. In other words,VfCtxt verifies whetherC is indeed an encryption of messageK under the given
public keypk. This is possible because the encryption algorithmAE of HEG[CG] (cf. Figure 1), and hence
the encryption algorithmAE of HEG[CG], is deterministic.

Let SS′ = (SK′,SE′,SD′) be any standard-model IND-CCA-secure symmetric encryption scheme. (Re-
call an implicit assumption is that some such scheme exists, since otherwiseall asymmetric encryptions
schemes are by default IND-CCA preserving and the entire problem we are considering is moot.) The con-
struction ofSS is in terms ofSS′ and algorithmsVfPK andVfCtxt. We use the notation〈(·, ·)〉 to denote
an injective, polynomial-time computable encoding of pairs of strings as strings such that given〈(M1,M2)〉,
M1 andM2 can be recovered in polynomial time. Ifs is a string anda ≤ b are integers thens[a . . . b] denotes
the string consisting of bit positionsa throughb of s. The algorithms constitutingSS = (SK,SE,SD) are
depicted in Figure 3. To conclude the proof, we need only establish the following:

Claim 4.2 Symmetric encryption schemeSS is IND-CCA secure.
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SK(1k)
K ′

$← SK′(1dk/2e)
K2

$← {0, 1}bk/2c
ReturnK ′||K2

SE(K,M)
k ← |K|
K ′ ← K[1 . . . dk/2e]
K2 ← K[1 + dk/2e . . . k]
C ′ ← SE′(K ′,M)
ParseM as〈(M1,M2)〉
If the parsing fails then

ReturnC ′||1 EndIf
p← VfPK(1k,M1)
c← VfCtxt(1k,M1,K,M2)
If (p = 1 andc = 1) then

ReturnC ′||0
else ReturnC ′||1 EndIf

SD(K,C)
k ← |K|
K ′ ← K[1 . . . dk/2e]
K2 ← K[1 + dk/2e . . . k]
ParseC asC ′||d, whered ∈ {0, 1}
M ′ ← SD′(K ′, C ′)
ParseM ′ as〈(M1,M2)〉
If the parsing fails then

If d = 1 then ReturnM ′

else Return⊥ EndIf
p← VfPK(1k,M1)
c← VfCtxt(1k,M1,K,M2)
If (d = 0 andp = 1 andc = 1) then

ReturnM ′ EndIf
If (d = 1 and (p 6= 1 or c 6= 1)) then

ReturnM ′ EndIf
Return⊥

Figure 3: Algorithms of the symmetric encryption schemeSS = (SK,SE,SD) for the proof of Theorem 4.1.
Above,〈(M1,M2)〉 denotes an encoding of the pair of strings(M1,M2) as a string.

Claim 4.3 Multi-message hybrid encryption scheme(HEG[CG],SS) is not IND-CCA secure.

Proof of Claim 4.2: Let us first provide some intuition. Note that on inputM , encryption algo-
rithm SE(K ′1||K2, ·) uses the encryption algorithmSE′ of an IND-CCA-secure scheme to computeC ′

$←
SE′(K ′1,M) and outputsC ′||0 or C ′||1, depending on whetherM has some “special” form or not. The ci-
phertext ends with 0 ifM parses as a pair(M1,M2) such that algorithmsVfPK,VfCtxt indicate thatM1 is
a (HEG[CG], k)-valid public key andM2 ∈ [AE(M1,K

′
1||K2)]. The decryption algorithmSD(K ′1||K2, ·) on

inputC ′||d, whered is a bit, computesM ′ ← SD′(K ′1, C
′) and returnsM ′ only if eitherM ′ is of the special

form andd = 0, orM ′ is not of this form andd = 1. Therefore, an obvious strategy for an adversary against
SS is to query its oracleSE(K,LR(·, ·, b)) on a pair of messages such that one of them is of this special
form and the other is not. Using the unique decryptability ofAE and the fact thatK2 is chosen at random,
independently from the adversary’s view, we show that it cannot find such queries except with negligible
probability. Moreover, we show that any strategy for the adversary can be employed by an attacker against
schemeSS′ to win its game. Details follow.

Let S be a legitimate polynomial-time adversary attackingSS. We will construct a legitimate polynomial-
time adversaryS′ such that

Advind-cca
SS,S (k) ≤ Advind-cca

SS′,S′ (dk/2e) +
O(Q(k))

2bk/2c
, (5)

whereQ is a polynomial upper bounding the total number of queries made byS to its different oracles. Since
SS′ is assumed IND-CCA secure, the advantage function associated toS′ above is negligible, and thus so is
the advantage function associated toS. To complete the proof, we need to specify adversaryS′ and prove
Equation (5).

AdversaryS′ is given input1dk/2e and has access to oraclesSE′(K ′1,LR(·, ·, b)) andSD′(K ′1, ·). Its goal is
to guess the bitb. It runsS on input1k. In this process,S will query its two oraclesSE(K,LR(·, ·, b))
and SD(K, ·). To answer a query to the first of these oracles,S′ forwards the query to its oracle
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SE′(K ′1,LR(·, ·, b)), appends 1 to the oracle’s reply and returns the result toS. To answer a query to the
second oracle,S′ checks the last bit of the query. If it is 0,S′ returns⊥ to S. Otherwise, it removes the last
bit, forwards the result to its oracleSD′(K ′1, ·), and returns the answer toS. WhenS outputs its guessb′, S′

returnsb′.

We now analyzeS′. Consider the experiment in whichS′ attacksSS′. We define the following events.

Succ(S′) : S′ is successful, meaning its output equals the challenge bitb
BadE : S makes a query to oracleSE(K,LR(·, ·, b)) in which one of the messages can be

parsed as〈(M1,M2)〉 such thatM1 is a(HEG[CG], k)-valid public key and
M2 ∈ [AE(M1,K)]

BadD : S makes a query to oracleSD(K, ·) that can be parsed asC ′||d, whered is a bit, such that
SD′(K ′1, C

′) = 〈(M1,M2)〉, whereM1 is a(HEG[CG], k)-valid public key and
M2 ∈ [AE(M1,K)]

For the experiment in whichS attacksSS, we define the following event.

Succ(S) : S is successful, meaning its output equals the challenge bitb

We claim that if eventsBadE andBadD do not occur, thenS′ simulates perfectly the environment provided
to S in its attack againstSS. First, note that answers to queries to oracleSE(K,LR(·, ·, b)) can only be off
by the last bit. In the absence of the “bad” events, each ciphertext returned toS as a reply to a query to oracle
SE(K,LR(·, ·, b)) has 1 as the last bit. This is also the case inS’s real attack. IfS queriesSD(K, ·) with a
ciphertextC ′||0, assuming eventsBadE andBadD do not occur,S′ givesS the response it would get in the
real attack, namely⊥. SinceS is legitimate, if it queries oracleSD(K, ·) with a ciphertextC ′||1, thenC ′

must not have previously been returned by oracleSE′(K ′1,LR(·, ·, b)). ThusS′ can legitimately make query
C ′ to its oracleSD′(K ′1, ·). If M is the response, then, assuming that eventsBadE andBadD do not occur,
the answerS expects is exactlyM . Therefore,

Pr
[

Succ(S′)
]
≥ Pr

[
Succ(S′) | ¬BadE ∧ ¬BadD

]
− Pr [ BadE ∨ BadD ]

≥ Pr [ Succ(S) ]− Pr [ BadE ∨ BadD ] .

We now provide an upper bound for the probability of eventBadE∨BadD. Letqe(k) andqd(k) be the number
of queriesS makes to oraclesSE(K,LR(·, ·, b)) andSD(K, ·), respectively, on input1k. We observe that if
M1 is a(HEG[CG], k)-valid public key, then for anyM2 ∈ {0, 1}∗, there exists a uniqueK ′ ∈ [SK(1k)] such
thatM2 ∈ [AE(M1,K

′)]. Recall that the key for oraclesSE(K,LR(·, ·, b)) andSD(K, ·) isK = K ′1||K2,
whereK2 is chosen uniformly at random from{0, 1}bk/2c and is independent fromS’s view. Therefore,
for any query made byS to oracleSE(K,LR(·, ·, b)), the probability that one of the messages in the query
parses as〈(M1,M2)〉 such thatM1 is a (HEG[CG], k)-valid public key andM2 ∈ [AE(M1,K)] is at most
2/2bk/2c. Similarly, for any queryC ′||d, whered is a bit, made byS to oracleSD(K, ·), the probability
that SD′(K ′1, C

′) = M ′, whereM ′ parses as〈(M1,M2)〉, M1 is a (HEG[CG], k)-valid public key and
M2 ∈ [AE(M1,K)] is at most1/2bk/2c. Therefore,

Pr [ BadE ∨ BadD ] ≤ 2qe(k) + qd(k)
2bk/2c

≤ 2 ·Q(k)
2bk/2c

,

whereQ(k) = qe(k) + qd(k). Hence

Advind-cca
SS′,S′ (dk/2e) = 2 · Pr

[
Succ(S′)

]
− 1 ≥ 2 ·

(
Pr [ Succ(S) ]− O(Q(k))

2bk/2c

)
− 1

= Advind-cca
SS,S (k)− O(Q(k))

2bk/2c
.
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Rearranging terms gives Equation (5).

Proof of Claim 4.3: We define a hybrid adversaryH attacking(HEG[CG],SS). H is given inputspk =
(q, g,X, fk) andCa and has access to oraclesSE(K,LR(·, ·, b)), SD(K, ·), and AD(sk, ·), wheresk =
(q, g, x, fk). Its goal is to guess the challenge bitb. By the definition of experimentExpind-cca

HEG[CG],SS,H
(k), pk

is a(HEG[CG], k)-valid public key andCa ∈ [AE(pk,K)]. Therefore,〈(pk, Ca)〉 is a message which, when
encrypted withSE(K, ·), yields a ciphertext that has last bit 0. We observe that for any stringC chosen at
random from{0, 1}|Ca| \ {Ca}, the probability thatK = AD(sk, C) is 0 (sinceAE(pk,K) = Ca andAE
is deterministic), i.e., the probability thatC ∈ [AE(pk,K)] is 0. Hence〈(pk, C)〉 is a message which, when
encrypted withSE(K, ·), yields a ciphertext that has last bit 1. (IfC /∈ [AE(pk,K)], then the last bit will be
1.) Thus, adversaryH can construct two messages for which it can guess with probability 1 the last bit of
the corresponding ciphertext. Using this information it can then guess the challenge bit. Details follow.

AdversaryH choosesC at random from{0, 1}|Ca| \ {Ca}, makes a query〈(pk, Ca)〉, 〈(pk, C)〉 to oracle
SE(K,LR(·, ·, b)), parses the response asC ′||d, whered is a bit, and returnsd. The running time ofH is
clearly polynomial ink. We claim thatAdvind-cca

HEG[CG],SS,H
(k) = 1. To prove this, we consider the event

Succ(H) : H is successful, meaning its output equals the challenge bitb

If challenge bitb is 0, then the response toH ’s query is a ciphertext that has last bit 0. If bitb is 1, then the
response is a ciphertext that has last bit 1. Thus

Pr [ Succ(H) ] =
1
2

+
1
2

= 1 .

Hence

Advind-cca
HEG[CG],SS,H

(k) = 2 · Pr [ Succ(H) ]− 1 = 1 ,

as desired.

Notice that the adversary constructed in the proof of Claim 4.3 does not make any queries to its oracles
SD(K, ·) andAD(sk, ·).

Remark 4.4 An interesting question at this point may be why the proof of Theorem 4.1 fails for the RO-
model Hash ElGamal schemeHEG[CG] associated to a cyclic-group generatorCG —it must, since otherwise
Theorem 3.1 would be contradicted— but succeeds for any instantiation of this scheme. The answer is that
symmetric encryption schemeSS, depicted in Figure 3 runs a ciphertext verifierVfCtxt for the asymmetric
encryption scheme in question. In the case of the RO-model schemeHEG[CG], any ciphertext verifier must
query random oraclesG andH. But as we clarified in Section 2,SS does not have access to these oracles
(although it might have access to its own, independently chosen oracleRs), and so cannot run such a cipher-
text verifier. The adversary of course does have access toG,H, but has no way to “pass” these objects to the
encryption algorithm of the symmetric encryption scheme. On the other hand, in the instantiated scheme,
the keys describing the functions instantiating the random oracles may be passed by the adversary to the
encryption algorithm ofSS in the form of a message containing the public key, givingSS the ability to run
the ciphertext verifier.

This might lead one to ask whySS does not have oracle access toG,H. The answer is that in general,
when several RO-model schemes are being executed in a common context, their random oracles should be
chosen independently of each other. In this case, RO-model schemesSS andAS are being executed in a
common context inExpind-cca

AS,SS,H (k) which, correctly, chose their random oracles independently, and thus the
algorithms ofSS do not have access to the oracle ofAS.

As we discussed in Section 1, in Appendix B we provide a more general impossibility result.
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SubroutineGSim(Z)
If GT[Z] is not defined thenGT[Z] $← {0, 1}k EndIf
ReturnGT[Z]

SubroutineHSim(L)
If HT[L] is defined then return it as the answer EndIf

(dec, gs) $← KeyTest(L) ; HT[L] $← Zq

If dec = 0 then returnHT[L] as the answer EndIf
If dec = 1 then outputgs (as a guess to the value of challenge bitb) and halt EndIf

SubroutineKeyTest(L)
dec← 1
For i = 1, . . . , k do

Ci0[L] $← SERs(K,LR(T0, T0, b)) ; If SDRs(L,Ci0[L]) 6= T0 thendec← 0 EndIf

Ci1[L] $← SERs(K,LR(T1, T1, b)) ; If SDRs(L,Ci1[L]) 6= T1 thendec← 0 EndIf
EndFor
If dec = 0 return(0, 0) EndIf

For i = 1, . . . , k doCi[L] $← SERs(K,LR(T0, T1, b)) ; T i ← SDRs(L,Ci[L]) EndFor
If T 1 = T 2 = · · · = T k = T0 then return(1, 0) EndIf
If T 1 = T 2 = · · · = T k = T1 then return(1, 1) EndIf
Return(0, 0)

Figure 4: Subroutines defined byS and used to simulateH ’s oracles.
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A Proof of Theorem 3.1

We explained the ideas behind this proof in Section 3. Here we provide the full adversary constructions and
analyses.

PROOF SETUP. Let H be a polynomial-time hybrid adversary attacking(AS,SS). We will construct
polynomial-time adversariesS andC such that

Advind-cca
AS,SS,H (k) ≤ Advind-cca

SS,S (k) +O(Q(k)) · Advcdh
CG,C(k) +

O(Q(k)2)
2k

, (6)

whereQ(k) is a polynomial upper bounding the number of queries made byH to theG andH oracles.
(This includes queries made directly byH and those made indirectly as a consequence ofH ’s queries to its
ADG,H((q, g, x), ·) oracle.) SinceSS is assumed IND-CCA secure and the CDH problem is hard forCG, the
advantage functions related toS andC above are negligible, and thus so is the advantage function related to
H . To complete the proof, we need to specify the adversariesS,C and prove Equation (6).
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SubroutineGSim(Z)
If GT[Z] is not defined thenGT[Z] $← {0, 1}k EndIf
ReturnGT[Z]

SubroutineHSim(L)
If HT[L] is not defined thenHT[L] $← Zq EndIf
ReturnHT[L]

SubroutineADSim(Y ′,W ′)
If there is noL such thatgHT[L] = Y ′ then return⊥ EndIf
LetL be such thatgHT[L] = Y ′

Z ′ ← XHT[L] ; T ′ ← GSim(Z ′) ; K ′ ← T ′ ⊕W ′ ; ReturnK ′

Figure 5: Subroutines defined byC and used to simulateH ’s oracles.

DESCRIPTION OF S. AdversaryS is given input1k and has access to oraclesSERs(K,LR(·, ·, b)),
SDRs(K, ·), andRs. Its goal is to guess the bitb. It begins with the following initializations:

((q, g,X), (q, g, x)) $← AK(1k) ; y $← Zq ; Y ← gy ; W $← {0, 1}k ; Ca ← (Y,W ) ;

T0
$← {0, 1}k ; T1

$← {0, 1}k − {T0}.

Then it runsH on inputs public key(q, g,X) and ciphertextCa. In the processH will query its oracles

G, H, Rs, SERs(K,LR(·, ·, b)), SDRs(K, ·), ADG,H((q, g, x), ·) . (7)

S will answer these queries. To that end, it defines the subroutines shown in Figure 4. It answers a queryZ to
G by runningGSim(Z) and returning the answer toH . It answers a queryL toH by runningHSim(L) and
returning the answer toH . It answers queries to theSERs(K,LR(·, ·, b)) andRs oracles via its own oracles
of the same name. It answers each queryC to theSDRs(K, ·) oracle using its own decryption oracle, unless
there existi, j andL such thatL was queried toH and eitherC = Cij [L] or C = Ci[L]. In that case,S

aborts. SinceS possesses the secret key(q, g, x), it can answer queries toADG,H((q, g, x), ·) by performing
the computation of the decryption algorithm, replacing calls that the latter makes toG or H by calls to the
relevant subroutines just mentioned. IfH runs to completion (S can output its guess as to the value ofb, and
halt, before this), thenS outputs whateverH outputs.

DESCRIPTION OFC . AdversaryC is given inputsq, g,X, Y , whereX,Y ∈ 〈g〉 have been chosen uniformly
at random. Its goal is to computegxy wheregx = X andgy = Y . Let k ← |〈2q + 1〉|. C begins with the
following initializations:

K
$← SK(1k) ; b $← {0, 1} ; W $← {0, 1}k ; Ca ← (Y,W ) .

Then it runsH on inputs public key(q, g,X) and ciphertextCa. In the processH will query the oracles
listed in Equation (7).C will answer these queries. Queries toRs are simulated the standard way, by
returning a random value for each new query and the previously returned value for each repeated query. To
simulate the rest of the oracles it defines the subroutines shown in Figure 5. It answers a queryZ to G by
runningGSim(Z) and returning the answer toH . It answers a queryL to H by runningHSim(L) and
returning the answer toH . Since it possessesK andb, it can answer queries to theSERs(K,LR(·, ·, b)) or
SDRs(K, ·) oracles by simply performing the relevant computation and returning the answer. It answers a
query(Y ′,W ′) to ADG,H((q, g, x), ·) by runningADSim(Y ′,W ′) and returning the answer. WhenH has
terminated,C picksZ at random from the set{Z : GT[Z] is defined} and outputsZ.
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ANALYSIS. For the analysis, define the following experiment:

Expcdh
CG,C(k) : (q, g) $← CG(1k) ; x, y $← Zq ; Z ← C(q, g, gx, gy)

If Z = gxy then return 1 else return 0

We letPrC [ · ], PrS [ · ], andPrH [ · ] denote the probabilities in experimentsExpcdh
CG,C(k), Expind-cca

SS,S (k),
andExpind-cca

AS,SS,H (k), respectively.
Let ((q, g,X), (q, g, x)) ∈ [AK(1k)] andK ∈ [SK(1k)]. We define the following events relating toH ’s

execution on inputs public key(q, g,X) and ciphertextCa = (Y,W ) wheregy = Y . These events are
defined in any of the three experiments we are considering:

GH : There exists a time at whichgxy is queried toG butK has not been queried toH
HG : There exists a time at whichK has been queried toH butgxy has not been queried

toG
Succ(H) : H is successful, meaning its output equals the challenge bitb.

We clarify that the queries referred to above include both direct and indirect queries ofH , but, in the
case ofExpind-cca

AS,SS,H (k), they donot include the queries toG andH made by the computationCa ←
AEG,H((q, g,X), ·) that initializes the experiment. (We are only considering queries toG,H resulting from
the execution ofH .) The main claims related to the analysis are:

PrH [ HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) ] ≤ PrS

[
Expind-cca

SS,S (k) = 1
]

+
O(Q(k))

2k
(8)

PrH [ GH ] ≤ Q(k) · PrC

[
Expcdh

CG,C(k) = 1
]

+
O(Q(k)2)

2k
. (9)

Let us see how these enable us to conclude the proof, and then return to prove them. We have:

1
2
· Advind-cca

AS,SS,H (k) +
1
2

= PrH

[
Expind-cca

AS,SS,H (k) = 1
]

= PrH [ Succ(H) ]
= PrH [ (Succ(H) ∧ HG) ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) ] + PrH [ Succ(H) ∧ GH ]
≤ PrH [ HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) ] + PrH [ GH ]

≤ PrS

[
Expind-cca

SS,S (k) = 1
]

+
O(Q(k))

2k
+Q(k) · PrC

[
Expcdh

CG,C(k) = 1
]

+
O(Q(k)2)

2k

=
1
2
· Advind-cca

SS,S (k) +
1
2

+Q(k) · Advcdh
CG,C(k) +

O(Q(k)2)
2k

.

Re-arranging terms and simplifying, we get Equation (6). To complete the proof, we must establish Equa-
tions (8) and (9).

PROOF OFEQUATION (8). An important ingredient in this proof is the following lemma that characterizes
what SubroutineKeyTest accomplishes:

Lemma A.1 If L = K thenKeyTest(L) returns(1, b), while if L 6= K then

Pr
[

(dec, gs) $← KeyTest(L) : (dec, gs) = (1, 1− b)
]
≤ 4−k .
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In other words, ifL 6= K, then with high probability either the test indicates this by returningdec = 0 or it
successfully computes the value of the challenge bitb. Above, the probability is over the coin tosses made
by theSERs(K,LR(·, ·, b)) oracle called inKeyTest, withK andb fixed.

Proof of Lemma A.1: The fact thatKeyTest(L) returns(1, b) whenL = K is a consequence merely of
the unique decrytability ofSS, namely the fact that for allK ∈ [SK(1k)] and allM ∈ {0, 1}∗ we have
SDRs(K,SERs(K,M)) = M with probability one, the probability being over the coin tosses ofSE.

Now assumeL 6= K. Let Pr [ · ] denote the probability taken over the coin tosses ofSERs(K, ·), with K
fixed. Let

P0 = Pr
[

SDRs(L,SERs(K,T0)) = T0

]
and

P1 = Pr
[

SDRs(L,SERs(K,T1)) = T1

]
.

The probability thatdec = 1 at the end of the first For loop in subroutineKeyTest isP k0 P
k
1 and the probability

thatT 1 = · · · = T k = T1−b is at most(1− Pb)k. So we have

Pr
[

(dec, gs) $← KeyTest(L) : (dec, gs) = (1, 1− b)
]

= P k0 P
k
1 · (1− Pb)k

≤ P kb · (1− Pb)k

= [Pb(1− Pb)]k

≤ 4−k .

The last line is true because the functionf : [0, 1]→ R defined byf(x) = x(1− x) attains its maximum at
x = 1/2 and the value of this maximum is1/4. This concludes the proof.

Returning to the proof of Equation (8), we define the following events inExpind-cca
SS,S (k):

FailTest : There existsL 6= K such thatL was queried toH
andKeyTest(L) returned(1, 1− b) in subroutineHSim(L)

Illegit : There existi, j andL such thatL was queried toH
and eitherCij [L] orCi[L] was queried byH to SDRs(K, ·).

We obtain Equation (8) as shown below. Justifications follow the formulas:

PrH [ HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) ]
≤ PrS [ HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) | ¬FailTest ] + PrS [ FailTest ] (10)

≤ PrS

[
Expind-cca

SS,S (k) = 1
]

+ PrS [ Illegit ] + PrS [ FailTest ] (11)

≤ PrS

[
Expind-cca

SS,S (k) = 1
]

+ PrS [ Illegit | ¬FailTest ] + 2 · PrS [ FailTest ]

≤ PrS

[
Expind-cca

SS,S (k) = 1
]

+
O(Q(k))

2k
. (12)

To justify Equation (10), observe that if eventFailTest does not happen, then the simulation ofH done by
S is correct. (IfHG occurs, then prior to thisgxy was not a query toG, so the simulation of theG oracle
is correct. If¬HG ∧ ¬GH occurs, then alsogxy was not a query toG, so the simulation of theG oracle is
correct. IfFailTest does not occur, then the replies to queries toH are correct.)

To justify Equation (11), first note that if eventHG occurs, then theL = K case of Lemma A.1 tells us
thatS halts with correct output. On the other hand, if neitherHG nor GH occur, thenS halts with correct
output as long asH does. ButExpind-cca

SS,S (k) can still fail to return 1 becauseS aborted due to the occurrence
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of Illegit. (When the latter occurs,S aborts to avoid calling its oracleSDRs(K, ·) on a ciphertext returned by
its SERs(K,LR(·, ·, b)) oracle.)

To justify Equation (12), first note that Lemma A.1 together with the fact that the total number of queries
is at mostQ(k) implies thatPrS [ FailTest ] ≤ Q(k)/4k. Next, we observe that ifFailTest does not occur,
thenH gets no information aboutT0, T1 other than that they are random distinctk-bit strings. The unique de-
cryptability ofSS then tells us thatPrS [ Illegit | ¬FailTest ] is bounded above by the probability of guessing
eitherT0 or T1 in Q(k) tries, and this isO(Q(k)/2k).

PROOF OFEQUATION (9). We define the following event inExpcdh
CG,C(k):

FailDec : There exist timest1 < t2 andY ′,W ′, L such that all the following hold:

– query(Y ′,W ′) was made toADG,H((q, g, x), ·) at timet1 andADSim(Y ′,W ′) returned⊥
– queryL was made toH at timet2
– gHT[L] = Y ′.

The answers provided byADSim(·, ·) are correct exactly when this event does not occur. Furthermore, if
there is a time at which querygxy to G occurs andGH is true, then queryK to H has not occurred at this
time, and thus the answers to queries toH have been correct. Hence

PrC

[
Expcdh

CG,C(k) = 1
]
≥ PrH [ GH ]− PrC [ FailDec ]

Q(k)
.

Re-arranging, we get

PrH [ GH ] ≤ Q(k) · PrC

[
Expcdh

CG,C(k) = 1
]

+ PrC [ FailDec ] . (13)

At any point in time, a queryL toH has probability at most̀/q of makingFailDec happen, wherè is the
number of queries that have been made toADG,H((q, g, x), ·) at this time. Recall thatk = |〈2q + 1〉| and
thusq ≥ 2k−2. Putting these observations together we get

PrC [ FailDec ] ≤ Q(k)2

q
≤ Q(k)2

2k−2
=

O(Q(k)2)
2k

.

Putting this together with Equation (13) completes the proof of Equation (9).

B A generalization

In this section, we identify a subclass of IND-CCA-preserving asymmetric encryption schemes that we call
key-verifiable, ciphertext-verifiable IND-CCA-preserving asymmetric encryption schemes. We show that
such schemes exist in the RO model, but do not exist in the standard model. We then discuss how this
generalizes our results about the Hash El Gamal scheme. We begin by defining the two properties mentioned
above, namely, key verifiability and ciphertext verifiability.

Let AS = (AK,AE,AD) be an asymmetric encryption scheme. We say thatAS is key verifiableif there
exists a polynomial-time, possibly randomized algorithmVfPK (called thekey verifier) and a negligible
functionν (called theerror probability of VfPK) such thatVfPK(1k,pk) returns 1 with probability at least
1− ν(k) if pk is an(AS, k)-valid public key, and returns 1 with probability at mostν(k) otherwise.

We say that asymmetric encryption schemeAS = (AK,AE,AD) is ciphertext verifiableif there exists
a polynomial-time, possibly randomized algorithmVfCtxt (called theciphertext verifier) and a negligible
functionν (called theerror probability of VfCtxt) such that, ifVfCtxt is run on inputs1k,pk,K,C, where
pk is an(AS, k)-valid public key andK ∈ {0, 1}k, thenVfCtxt returns 1 with probability at least1 − ν(k)
if C ∈ [AE(pk,K)], and returns 1 with probability at mostν(k) otherwise. IfAE or AD access a random
oracle, thenVfCtxt is given access to the same random oracle.

The following will be used later:
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Proposition B.1 SupposeAS is a RO-model asymmetric encryption scheme that is both key verifiable and
ciphertext verifiable. LetAS be any instantiation ofAS via a poly-time family of functions. ThenAS is also
both key verifiable and ciphertext verifiable.

Proof of Proposition B.1: Let VfPK andVfCtxt be a key verifier and a ciphertext verifier forAS, respec-
tively. Let F be the poly-time family of functions used inAS to replace the random oracle. Recall that a
public key ofAS contains a public keypk of AS and also a keyfk specifying an instance ofF . We define
algorithmsVfPK andVfCtxt.

On inputs1k, s, VfPK attempts to parses as a pair(pk, fk). If it fails, it returns 0. Otherwise, it runs
VfPK(1k,pk). If the result is 0, it returns 0. Otherwise, it verifies thatfk ∈ {0, 1}fkl(k). If so, it returns 1, if
not it returns 0. Clearly,VfPK is a key verifier forAS.

VfCtxt is identical toVfCtxt except that the random oracle is replaced with the same instance ofF used in
AS to replace the oracle.

We now observe that, in the RO model, there exist key-verifiable, ciphertext-verifiable IND-CCA-preserving
asymmetric encryption schemes, meaning the goal of key-verifiable, ciphertext-verifiable asymmetric en-
cryption is achievable in this model.

Theorem B.2 Suppose there exists a cyclic-group generator for which the CDH problem is hard. Then there
exists a key-verifiable, ciphertext-verifiable RO-model asymmetric encryption scheme that is IND-CCA-
preserving in the RO model.

Proof of Theorem B.2: If the CDH problem is hard for cyclic-group generatorCG, then Theorem 3.1
guarantees that the associated Hash ElGamal asymmetric encryption schemeHEG[CG], defined in Section 3,
is IND-CCA preserving in the RO model. The proof of Theorem 3.1 defines a key verifierVfPK and a
ciphertext verifierVfCtxt for HEG[CG], each having error probability 0.

Next, we show that in the standard model, there donot exist key-verifiable, ciphertext-verifiable IND-CCA-
preserving asymmetric encryption schemes, meaning the goal of key-verifiable, ciphertext-verifiable asym-
metric encryption isnot achievable in this model.

Theorem B.3 Let AS be a standard-model asymmetric encryption scheme that is both key verifiable and
ciphertext verifiable. ThenAS is not IND-CCA preserving.

Theorem B.3 is proved below. We first state and prove our final result.

Theorem B.4 Let AS be a RO-model asymmetric encryption scheme that is both key verifiable and cipher-
text verifiable. LetAS be any instantiation ofAS via a poly-time family of functions. ThenAS is not
IND-CCA preserving.

Proof of Theorem B.4: AS is a standard-model asymmetric encryption scheme. Proposition B.1 implies
that it inherits the key verifiability and ciphertext verifiability ofAS. Theorem B.3 then implies that it is not
IND-CCA preserving.

Note that Theorem B.4 implies Theorem 4.1 because Hash El Gamal scheme is a RO model scheme that
is key verifiable and ciphertext verifiable. Theorem B.4 is, however, more general, and shows that the un-
instantiability of the Hash El Gamal scheme arises not due to some “peculiar” use of random oracles, but due
to the fact that the scheme possesses the properties of key verifiability and ciphertext verifiability.

PROOF OFTHEOREM B.3. The proof is almost identical to the proof of Theorem 4.1. Accordingly, we use
the same notation and the previous results, and only indicate the differences. LetVfPK andVfCtxt be a key
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verifier and a ciphertext verifier forAS, respectively. The main difference is that nowVfPK andVfCtxt can
be randomized algorithms with non-zero error probabilities.

We present an IND-CCA-secure symmetric encryption schemeSS such that the mm-hybrid encryption
scheme(AS,SS) is not IND-CCA secure. This proves the theorem.

Let SS′ = (SK′,SE′,SD′) be any standard-model IND-CCA-secure symmetric encryption scheme. The
construction ofSS is in terms ofSS′ and algorithmsVfPK and VfCtxt, and is exactly as in the proof of
Theorem 4.1. See Figure 3. To conclude the proof, we need only establish the following:

Claim B.5 Symmetric encryption schemeSS is IND-CCA secure.

Claim B.6 Multi-message hybrid encryption scheme(AS,SS) is not IND-CCA secure.

Proof of Claim B.5: Let S be a legitimate polynomial-time adversary attackingSS. We will construct a
legitimate polynomial-time adversaryS′ such that

Advind-cca
SS,S (k) ≤ Advind-cca

SS′,S′ (dk/2e) +
O(Q(k))

2bk/2c
+O(Q(k)) · ν(k) , (14)

whereQ is a polynomial upper bounding the total number of queries made byS to its different oracles, and
ν is a negligible function related to the error probabilities of algorithmsVfPK andVfCtxt. Note that the last
term is the only difference with Equation (5). SinceSS′ is assumed IND-CCA secure, the advantage function
associated toS′ above is negligible, and thus so is the advantage function associated toS. To complete the
proof, we need to specify adversaryS′ and prove Equation (14).

AdversaryS′ is identical to the adversary in the proof of Claim 4.2. The analysis ofS′ is similar, but we need
to take into account the possibility that algorithmsVfPK andVfCtxt err. For this reason, for the experiment
in whichS attacksSS, we define the following additional event.

Crct : Every time algorithmsVfPK andVfCtxt are invoked, they return the correct value

We claim that if eventsBadE andBadD do not occur, thenS′ simulates perfectly the environment provided
to S in its attack againstSS when algorithmsVfPK andVfCtxt never err. First, note that answers to queries to
oracleSERs(K,LR(·, ·, b)) can only be off by the last bit. In the absence of the “bad” events, each ciphertext
returned toS as a reply to a query to oracleSERs(K,LR(·, ·, b)) has 1 as the last bit. This is also the
case inS’s real attack when algorithmsVfPK andVfCtxt are always correct. IfS queriesSD(K, ·) with
a ciphertextC ′||0, assuming eventsBadE andBadD do not occur,S′ givesS the response it would get in
the real attack when algorithmsVfPK andVfCtxt are always correct, namely⊥. SinceS is legitimate, if it
queries oracleSD(K, ·) with a ciphertextC ′||1, thenC ′ must not have previously been returned by oracle
SE′(K ′1,LR(·, ·, b)). ThusS′ can legitimately make queryC ′ to its oracleSD′(K ′1, ·). If M is the response,
then, assuming that eventsBadE andBadD do not occur, the answerS expects when algorithmsVfPK and
VfCtxt are always correct is exactlyM . Therefore,

Pr
[

Succ(S′)
]
≥ Pr

[
Succ(S′) | ¬BadE ∧ ¬BadD

]
− Pr [ BadE ∨ BadD ]

≥ Pr [ Succ(S) | Crct ]− Pr [ BadE ∨ BadD ]
≥ Pr [ Succ(S) ]− Pr [ ¬Crct ]− Pr [ BadE ∨ BadD ] .

We now provide an upper bound for the probability of event¬Crct. (The bound forBadE∨BadD is identical
to the one in the proof of Claim 4.2.) Letqe(k) andqd(k) be the number of queriesS makes to oracles
SERs(K,LR(·, ·, b)) andSD(K, ·), respectively, on input1k. Let ν1 be the error probability of key verifier
VfPK, andν2 the error probability of ciphertext verifierVfCtxt. Then

Pr [ ¬Crct ] ≤ qe(k) · (ν1(k) + ν2(k)) + qd(k) · (ν1(k) + ν2(k)) = Q(k) · ν(k) ,
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whereQ(k) = qe(k) + qd(k) andν(k) = ν1(k) + ν2(k).

Hence

Advind-cca
SS′,S′ (dk/2e) = 2 · Pr

[
Succ(S′)

]
− 1 ≥ 2 ·

(
Pr [ Succ(S) ]−Q(k) · ν(k)− O(Q(k))

2bk/2c

)
− 1

= Advind-cca
SS,S (k)−O(Q(k)) · ν(k)− O(Q(k))

2bk/2c
.

Rearranging terms gives Equation (14).

Proof of Claim B.6: We define a hybrid adversaryH attacking(AS,SS) exactly as in the proof of Claim 4.3.
We claim thatAdvind-cca

AS,SS,H (k) ≥ 1 − 2−k − ν(k), whereν is a negligible function related to the error
probabilities of algorithmsVfPK andVfCtxt. The analysis is similar to the one in the proof of Claim 4.3, but
we need to take into account the additional event

Crct : Every time algorithmsVfPK andVfCtxt are invoked, they return the correct value,

and the possibility thatK = AD(sk, C), whereC is chosen at random from{0, 1}|Ca| \ {Ca}. The latter
can happen with probability at most2−k. I.e., the probability thatC ∈ [AE(pk,K)] is at most2−k. Hence
〈(pk, C)〉 is a message which, when encrypted withSE(K, ·), yields a ciphertext that with overwhelming
probability has last bit 1. (IfC /∈ [AE(pk,K)], then the last bit will be 1.) Assume that eventCrct occurs. If
challenge bitb is 0, then the response toH ’s query is a ciphertext that has last bit 0. If bitb is 1, then with
probability at least1− 2−k, the response is a ciphertext that has last bit 1. Thus

Pr [ Succ(H) ] ≥ Pr [ Succ(H) | Crct ]− Pr [ ¬Crct ] ≥ 1
2
·
(

1− 1
2k

)
+

1
2
− Pr [ ¬Crct ]

If ν1 is the error probability of key verifierVfPK, andν2 is the error probability of ciphertext verifierVfCtxt,
thenPr [ ¬Crct ] ≤ ν1(k) + ν2(k). Hence

Advind-cca
AS,SS,H (k) = 2 · Pr [ Succ(H) ]− 1 ≥ 1− 2−k − 2 · (ν1(k) + ν2(k)) = 1− 2−k − ν(k) ,

whereν(k) = 2 · (ν1(k) + ν2(k)).

C Any IND-CCA-secure scheme is IND-CCA preserving

We remarked in Section 1.2 that any asymmetric encryption scheme that is IND-CCA secure is also IND-
CCA preserving. (The interesting thing about the Hash ElGamal scheme is that it is not IND-CCA secure
but is still IND-CCA preserving.) For completeness, we state and and prove this formally here. We begin by
recalling the definition of IND-CCA security of an asymmetric encryption scheme.

DEFINITION. This follows [4]. Associate toAS, an adversaryA, andk ∈ N, the following experiment:

ExperimentExpind-cca
AS,A (k)

Randomly choose RORa : {0, 1}∗ → {0, 1}
(pk, sk) $← AKRa(1k) ; b $← {0, 1}
RunA with input1k,pk and oraclesAERa(pk,LR(·, ·, b)), ADRa(sk, ·),Ra
Let d denote the output ofA
If d = b then return1 else return 0.
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We say that adversaryA is legitimate if it never queriesADRa(sk, ·) with a ciphertext previously returned
by AERs(pk,LR(·, ·, b)). Asymmetric encryption schemeAS is said to be IND-CCA secure if the function

Advind-cca
AS,A (k) = 2 · Pr

[
Expind-cca

AS,A (k) = 1
]
− 1

is negligible for all legitimate polynomial-time adversariesA. IND-CPA security is defined similarly, except
the adversary is not given access to oracleADRa(sk, ·).
RESULT. The following holds in both the standard and the RO models.

Theorem C.1 Let AS be an IND-CCA-secure asymmetric encryption scheme. ThenAS is IND-CCA pre-
serving.

Proof of Theorem C.1: Let AS = (AK,AE,AD) be an IND-CCA-secure asymmetric encryption scheme
and letSS = (SK,SE,SD) be an IND-CCA-secure symmetric encryption scheme. We will show that for
any polynomial-time legitimate hybrid adversaryH attacking mm-hybrid encryption scheme(AS,SS) there
exist polynomial-time legitimate adversariesA andS such that for anyk ∈ N

Advind-cca
AS,SS,H (k) ≤ 2Advind-cca

AS,A (k) + Advind-cca
SS,S (k) . (15)

SinceAS and SS are assumed IND-CCA secure, the advantage functions related toA and S above are
negligible, and thus so is the advantage function related toH . To complete the proof, we need to specify the
adversariesA,S and prove Equation (15).

We first associate to(AS,SS), H , andk ∈ N, the following experiments, fori ∈ {1, 2, 3, 4}:

ExperimentExpiAS,SS,H (k)
Randomly choose ROR: {0, 1}∗ → {0, 1}
Define ROsRs(·) = R(0‖·) andRa(·) = R(1‖·)
(pk, sk) $← AKRa(1k) ; K $← SKRs(1k) ; K ′ $← SKRs(1k)

If i = 1 or i = 4 thenCa
$← AERa(pk,K) elseCa

$← AERa(pk,K ′) EndIf
If i = 1 or i = 2 then runH with inputspk, Ca and oracles

SERs(K,LR(·, ·, 0)), SDRs(K, ·), ADRa(sk, ·),R
Else runH with inputspk, Ca and oracles

SERs(K,LR(·, ·, 1)), SDRs(K, ·), ADRa(sk, ·),R
EndIf
Let d denote the output ofH
Returnd.

For i ∈ {1, 2, 3, 4}, letPi denote the probability thatExpiAS,SS,H (k) returns 1. It is easy to see that

Advind-cca
AS,SS,H (k) = P4 − P1 = (P4 − P3) + (P3 − P2) + (P2 − P1) .

We will show that there exist legitimate polynomial-time adversariesA′, S, andA′′ such that

P4 − P3 = Advind-cca
AS,A′ (k) , P3 − P2 = Advind-cca

SS,S (k) , and P2 − P1 = Advind-cca
AS,A′′ (k) . (16)

We obtain Equation (15) from the above by settingA = A′ if Advind-cca
AS,A′ (k) ≥ Advind-cca

AS,A′′ (k), andA = A′′

otherwise. We now define adversariesA′, A′′, S and prove Equation (16).

DESCRIPTION OFA′. AdversaryA′ is given inputs1k,pk and has access to oraclesAERa(pk,LR(·, ·, b)),
ADRa(sk, ·), andRa. Its goal is to guess the bitb. It begins with the following initializations:
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K
$← {0, 1}k ; K ′ $← {0, 1}k ; Make query(K ′,K) to AERa(pk,LR(·, ·, b)), and letCa be the response

Then it runsH on inputs public keypk and ciphertextCa. In the processH will query its oracles

Ra, Rs, SERs(K,LR(·, ·, b)), SDRs(K, ·), ADRa(sk, ·) . (17)

A′ will answer these queries. Queries toRs are simulated the standard way, by returning a random value
for each new query and the previously returned value for each repeated query.A′ answers queries to the
ADRa(sk, ·) andRa oracles via its own oracles of the same name. Since it possessesK, it can answer
queries toSDRs(K, ·) by simply performing the computation of the decryption algorithm, replacing calls
that the latter makes toRs by the above-mentioned simulation, and returning the answer.A′ answers queries
to SERs(K,LR(·, ·, b)) by usingK to simulate oracleSERs(K,LR(·, ·, 1)). WhenH halts and outputsd,
A′ outputsd.

DESCRIPTION OFA′′. AdversaryA′′ is identical to adversaryA′, except that it makes query(K,K ′) to
oracleAERa(pk,LR(·, ·, b)) and it answers queries toSERs(K,LR(·, ·, b)) by usingK to simulate oracle
SERs(K,LR(·, ·, 0)).

DESCRIPTION OF S. AdversaryS is given input1k and has access to oraclesSERs(K,LR(·, ·, b)),
SDRs(K, ·), andRs. Its goal is to guess the bitb. It begins with the following initializations:

K ′
$← {0, 1}k ; (pk, sk) $← AKRa(1k) ; Ca

$← AEpk(K ′)

Then it runsH on inputs public keypk and ciphertextCa. In the processH will query the oracles listed
in Equation (17).S will answer these queries. Queries toRa are simulated the standard way, by returning
a random value for each new query and the previously returned value for each repeated query.S answers
queries to theSERs(K,LR(·, ·, b)), SDRs(K, ·), andRs oracles via its own oracles of the same name. Since
it possesses the secret keysk, it can answer queries toADRa(sk, ·) by simply performing the computation of
the decryption algorithm, replacing calls that the latter makes toRa by the above-mentioned simulation, and
returning the answer. WhenH halts and outputsd, S outputsd.

ANALYSIS. Clearly, if H is polynomial-time and legitimate, so areA′, A′′, andS. It is easy to see that
Equation (16) holds.
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