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Abstract

We consider non-malleable (NM) and universally composable (UC)
commitment schemes in the common reference string (CRS) model.
We show how to construct non-interactive NM commitments that re-
main non-malleable even if the adversary has access to an arbitrary
number of commitments from honest players - rather than one, as in
several previous schemes. We show this is a strictly stronger security
notion. Our construction is the first non-interactive scheme achiev-
ing this that can be based on the minimal assumption of existence of
one-way functions. But it can also be instantiated in a very efficient
version based on the strong RSA assumption. For UC commitments,
we show that existence of a UC commitment scheme in the CRS model
(interactive or not) implies key exchange and - for a uniform reference
string - even implies oblivious transfer. This indicates that UC com-
mitment is a strictly stronger primitive than NM. Finally, we show
that our strong RSA based construction can be used to improve the
most efficient known UC commitment scheme so it can work with a
CRS of size independent of the number of players, without loss of
efficiency.
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1 Introduction

The notion of commitment is at the heart of cryptographic protocol design.
A commitment scheme allows a committer to release some string related to
a message m, a commitment to m. Later the committer may choose to open
the commitment thereby revealing m. The scheme must be hiding, i.e., the
commitment does not help the receiver to compute anything about m. It
must also be binding, i.e., the committer cannot produce a commitment that
he can open successfully to reveal different messages m and m′.

For some applications, extra security properties are needed. One example
of such a property is non-malleability, a concept introduced by Dolev, Dwork
and Naor [9]. As a motivating example for NM commitments, consider the
case of fair contract bidding, which can be implemented by having each par-
ticipant commit to his bid first, after which commitments can be opened and
the winner determined. The goal here is to prevent players from producing
bids that are correlated to the bids of other players. However, even though
the commitment scheme is hiding and binding, it may still be possible for an
adversary to compute, from a commitment c to m from another player, a new
commitment c′ containing a related value m′. At this point, the adversary
may not even know m or m′, but when c is opened, he may be able to open
c′ to reveal m′. It is well known that many existing commitment schemes are
malleable – in some cases, the adversary can always obtain m′ = m− 1, thus
allowing the adversary to consistently underbid the honest player.

Intuitively, a commitment scheme is non-malleable if such an attack is
infeasible. Several NM commitment schemes have been suggested. While
the first [9] was highly interactive, the scheme by Di Crescenzo, Ishai and
Ostrovsky [6] is the only previous scheme that is non-interactive and can be
based on the minimal assumption of existence of one-way functions. This
scheme, and later more efficient ones based on special assumptions [7, 11] are
all in the common reference string (CRS) model, where it is assumed that
players all have access to a string that is guaranteed to be selected with a
prescribed distribution. A special case of this is a uniformly random CRS;
we call this the uniform reference string (URS) model. It is unknown if non-
interactive NM commitment with minimal assumptions is possible without
a CRS, but since part of our goal is to look at the relation to universally
composable commitments where a CRS is necessary (see below for details)
we only consider the CRS model here.

The constructions from [6, 7, 11] were all proven secure according to a def-
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inition where the adversary sees one commitment from an honest player and
then tries to make his own (related) commitment. However, if we consider
the motivating example, it is clearly more natural to require non-malleability,
even if the adversary gets any polynomial number of commitments as in-
put (the adversary’s goal might be to underbid everyone else, for instance).
We call this notion of security reusability, referring to the fact that in the
CRS model, it means that the same CRS can be reused for several commit-
ments from any number of players. We show that reusability is a strictly
stronger notion, for both unconditionally hiding and unconditionally bind-
ing schemes. This may be slightly surprising since it was argued in [9] that
the corresponding notions for NM encryption are equivalent. Unfortunately,
the security proofs of [6, 7] break down in the more general setting, and so
it might seem that to get reusability, one would have to either use several
rounds of interaction [9] or use stronger, non-minimal, assumptions [4].

In this paper, we show a general technique for constructing reusable, non-
interactive NM commitments in the CRS model. The main new technical
idea we contribute is a way to use any digital signature scheme (even one
with rather weak security properties) as a basis for NM commitments. Our
construction can therefore be based on any one-way function, but can also be
instantiated in a very efficient version, based on the strong RSA assumption.
The version based on general one-way functions also extends to the URS
model.

Universally composable (UC) commitment schemes is a notion introduced
by Canetti in [2], with the first such scheme being suggested by Canetti
and Fischlin in [3]. An efficient scheme based on a specialized assumption
was suggested by Damg̊ard and Nielsen in [8], while a scheme based on
any trapdoor one-way permutation can be found in [4]. In a UC scheme,
making a commitment is “equivalent” to giving in private the committed
value to a trusted third party, who will then later reveal it on request from the
committer. This is a very strong security notion: it implies (reusable) non-
malleability, and also security against concurrent composition and adaptive
adversaries. In fact, there exists no 2-party UC commitment scheme in the
“bare” model where no extra resources are given a priori. However, 2-party
schemes are possible in the CRS model, and all the schemes mentioned above
work in this scenario.

It is easy to see that non-interactive UC commitment implies key ex-
change [4], but previously no consequences of UC commitments in general
were known. In this paper, we show that any 2-party UC commitment scheme
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in the CRS model (interactive or not) implies key exchange. Furthermore,
UC commitment in the URS model implies oblivious transfer. Key exchange
and OT are generally regarded as a stronger primitive than one-way func-
tions. For instance, Impagliazzo and Rudich [13] show a relativized separa-
tion between them. So, our results can be seen as an indication that UC
commitment is a strictly stronger primitive than NM commitment – even if
we require the NM scheme to be non-interactive and reusable.

Our last result is an application of our efficient NM scheme to improve the
efficient UC scheme from [8], where the size of the CRS must grow linearly
with the number of players involved. We show that by combining the two,
we obtain an equally efficient UC scheme where the size of the CRS can be
independent of the number of players. To prove this we rely on the underlying
properties of the commitment scheme that were also used in the proof of NM.

1.1 Preliminaries

Unless otherwise stated we work with probabilistic polynomial time algo-
rithms. Sometimes we talk about an adversary, typically denoted A. The
adversary is modelled by a probabilistic polynomial time interactive Turing
machine, see [12].

Both the normal algorithms and the adversary algorithms may get some
auxiliary input z. This advice is always polynomially bounded in k, the
security parameter. This means that the algorithms are non-uniform.1

We say a function f(k) is negligible if

∀c > 0∃K∀k > K : f(k) < k−c.

We write f(k) < negl(k) to indicate that f(k) is bounded by some negligible
function. We say a function is significant if it is not negligible.

We write timeA(k) to indicate an easily computable polynomial bounding
the runtime of A.

2 Commitments

Following the previous literature on non-malleability, we do not assume that
players have global unique usernames, are assigned certified public keys or

1Remove this auxiliary input to set the paper in a uniform setting.
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are even aware of each other. Making such assumptions generally makes
non-malleability problems easier to solve, but the solutions will of course be
less generally applicable. We only assume that the players have access to a
CRS.

2.1 Commitment

We explain the notation used in the paper for a standard commitment scheme
in the CRS model. A commitment scheme has a probabilistic polynomial
time key generator K, which on input 1k outputs a public key pk, the CRS.
Associated with this public key are a message space Mpk, a commitment
space Cpk and two polynomial time algorithms commitpk and decommitpk.

To commit to a message m ∈ Mpk we choose at random a random-
izer r. We give m, r as input to commitpk. The resulting output is
(c, d) = commitpk(m; r), where c belongs to Cpk, while d is the decommitment
information needed to open the commitment. Typically d = (m, r).

To open a message the sender sends d to the receiver. The receiver com-
putes decommitpk(c, d). When the commitment is constructed as above the
output of this computation is m. If something is wrong, e.g., c /∈ Cpk or d
is not a valid opening of the commitment; the output of the decommitment
algorithm is ⊥.

2.2 Equivocable Commitment

Equivocable commitment schemes are a special type of commitment schemes
where we can generate the public key in a special way getting some equivo-
cation information about the public key. This extra information, the equivo-
cation key, allows us to violate the binding property. With it we are able to
generate commitments that we can open as containing any message we wish,
without the adversary being able to notice the deceit.

We generate the public key and the equivocation key ek using a modified
key generator K̂. We create an equivocable commitment by running an algo-

rithm ̂commitpk on ek. This produces a commitment c and some associated
equivocation information e. We open c as containing any message m ∈ Mpk

by running equivpk,ek(c, e, m).
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Definition 1 We say the commitment scheme is equivocable if for any D
and auxiliary input z we have

P [(pk, ek)← K̂(1k) : DÔ(pk, z) = 1]

< P [pk ← K(1k) : DO(pk, z) = 1] + negl(k),

where

• Ô on query m ∈ Mpk returns (c, d), where (c, e)← ̂commitpk(ek) and
d← equivpk,ek(c, e, m).

• O on query m ∈ Mpk returns (c, d)← commitpk(m).

There are several ways to strengthen the notion of equivocability. We
could for instance require that the distribution of public keys is identical not
just indistinguishable. Another strengthening would be to require that we
can equivocate using just the equivocation information produced by K̂, i.e.,
that we do not need e at all. We call a commitment scheme strengthened in
this way for strongly equivocable.

2.3 Non-malleable Commitment

Non-malleability is a security notion concerned with man-in-the-middle at-
tacks. With respect to commitments, the intuition is that the execution of
some commitment protocols should not affect the execution of other commit-
ment protocols. We capture this in a notion of non-malleability where the
adversary does not get an advantage from having access to the execution of
commitment protocols compared with the case where the adversary has no
such access. In the latter case, we simply let the adversary specify the mes-
sages rather than first forming commitments and then opening them later
on.

We consider two games. In the first game, we generate a tuple of mes-
sages according to some distribution. An adversary receives commitments to
these messages and outputs a tuple of commitments himself. After receiving
openings of the original commitments, the adversary then tries to open his
own commitments in a way such that the contents are related to the original
messages. It wins if indeed the messages are related.

In the second game, we generate a tuple of messages according to the
same distribution as in the first game. However, this time we do not give the
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adversary the commitments to the messages. The adversary in the second
game must try to output related messages without knowing anything about
the original messages.

We wish that for any adversary playing the first game we can find one
that fares (almost) as well in the second game. In this case, we will consider
the commitment scheme non-malleable. In our case, the fact that we use the
CRS model allows us to give some help to the adversary in the second game
(without which we could not prove security). More specifically, the model
allows the adversary in the second game to produce the public key for the
commitment scheme himself by an algorithm that also provides some extra
information that the adversary can use to its advantage (in this paper the
extra information will enable it to equivocate commitments).

Let us describe the two games more accurately. In both games, there is
a message generator, M . The message generator receives the public key, pk,
for the commitment scheme as input and it also gets some auxiliary input
zM . M returns a value s and a vector of messages ~m. In both games, the
adversaries receive a description of M . We demand that the time complexity
of M is bounded by some polynomial in k, and that the adversaries may
depend on this polynomial. This ensures that they may have time to sample
outputs from M .

In the first game we model the adversary A as a probabilistic polynomial
time interactive Turing machine. It learns pk, M and zM . In its firsts invoca-
tion A receives a tuple of commitments ~c to the messages in ~m. It responds
with ~c ′, a tuple of elements from Cpk. We do not allow A to directly copy
any of the commitments in ~c into ~c ′. Later A is activated again, this time
receiving a tuple ~d of decommitments to the commitments in ~c. It must now
try to produce a tuple of decommitments ~d ′ to its own commitments.

In the second game, we run a modified key generator K̂ to generate the
public key pk. This key must be indistinguishable from a real key. In ad-
dition to the key pk, the modified key generator also produces some extra
information spk about the key.

The adversary in the second game B is only invoked once. Like A, it
learns pk, M, zM . It also gets spk as input. However, it will not receive any
information about the tuple of messages ~m except for the number of messages
in the tuple, t = |~m|. It returns a tuple ~m′ of messages fromMpk ∪ {⊥}.

We compare the outcome of the two games by running a polynomial
time distinguisher D. This distinguisher gets as input s, ~m, ~m′, zD, where
in the first game ~m′ is the resulting vector of messages when running the
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decommitment algorithm on the tuples ~c ′, ~d ′. Note, s contains information
from M possibly including the public key pk and the auxiliary input. The
distinguisher returns a single bit, where we interpret 1 as being a success.
We demand that the probability of D outputting 1 cannot be increased by
changing a message in ~m′ to ⊥. This way the adversary A cannot get an
advantage by deliberately refusing to open its commitments.

Let us write down the probabilities of success in the two games. For the
first game we define

SuccA,M,D(k, zM , zD) = P [pk ← K(1k); (s, ~m)←M(pk, zM );

(~c, ~d)← commitpk(~m);~c ′ ← A(pk,~c, M, zM);

~d ′ ← A(~d); ~m′ ← decommitpk(~c, ~d) :

D(s, ~m, ~m′, zD) = 1],

where we demand that neither of the commitments in ~c is contained in ~c ′.
In the second game the success probability is given by

ŜuccB,M,D(k, zM , zD) = P [(pk, spk)← K̂(1k); (s, ~m)←M(pk, zM );

~m′ ← B(pk, spk, t, M, zM) : D(s, ~m, ~m′, zD) = 1],

where t = |~m|, and where we interpret commitments and decommitments of
vectors in the natural way.

Definition 2 We say a commitment scheme is non-malleable if it has a
modified key generator K̂ such that for all A there exists a B, where for all
M and D we have

SuccA,M,D(k, zM , zD)− ŜuccB,M,D(k, zM , zD) < negl(k)

for all zM , zD with lengths bounded by some polynomial in k.
We say a commitment scheme is ε-non-malleable if for every A and ε,

there exists B running in time polynomial in k and ε−1, such that the above
difference is at most ε + negl(k).

We will later construct two ε-non-malleable commitment schemes, where
ε−1 may be any positive polynomial in k.

Remark Our definition does not allow the adversaries to receive any “his-
tory”, i.e., side information about the messages they receive commitment to.
Like [6] and [7] we do not know how to achieve such security. However, in all
cases where messages consistent with the side information can be sampled
efficiently, our security proofs remain valid.
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2.4 Comparison with Previous Definitions of Non-

malleability

As mentioned before non-malleability is a concept introduced in [9]. Their
goal is to avoid man-in-the-middle attacks. Therefore, they define a protocol
as being non-malleable if the adversary seeing a commitment cannot commit
to a related value. [11] call this non-malleability with respect to commitment.

Unfortunately, this definition does not make much sense when consider-
ing unconditionally hiding commitments since we cannot speak about the
content of such a commitment. Following the definition of [6, 7], we choose
to consider the content of a commitment as what it is opened to. Such a
definition is called non-malleability with respect to opening in [11]. We note
that for unconditionally binding commitments non-malleability with respect
to commitment is a stronger notion than non-malleability with respect to
opening.

Our definition is stronger than the one in [6, 7]. Any commitment scheme
that is non-malleable according to our definition is also non-malleable accord-
ing to their definition. The main reason for our modification, reusability, was
mentioned in the introduction: rather than just mauling one commitment the
adversary may very well be attempting to maul many commitments at the
same time. We show later that our definition is strictly stronger, there are
schemes secure according to the [6, 7] definitions that are not secure according
to our definition.

Increasing the number of commitments the adversary may see and may
produce is not the only modification we have made. We give the message
generator access to the public key for the commitment scheme. In our opin-
ion, this is reasonable since in real life messages may indeed depend on this
key. It does turn out that we pay a price for this though, since it forces us
to give B access to some side information about the public key. In [6, 7] this
was not needed since they could simply let B choose a completely new public
key and still work within the same message space since it was independent
of the key.

We have also changed the notation. [6, 7] speak of a distribution D
instead of a messages generator M , and a relation approximator R instead
of a distinguisher D. This change is purely cosmetic, but our notation seems
to be more in line with other cryptographic literature.

Other definitions [11, 1] deal with interactive commitments. Barak [1]
deals with a general method of setting up a URS interactively in a way such
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that a subsequent execution of a non-malleable commitment scheme based on
a URS will lead to a non-malleable interactive commitment. One variation of
our scheme is set in the URS model and can therefore be used with Barak’s
compiler.

We note that the most secure version of commitment is universally com-
posable commitments [3, 4, 8]. The scheme presented in [4] is both non-
interactive and universally composable. However, it is based on the assump-
tion that trapdoor permutations exist. We provide some evidence in Section
5 that UC commitment must be based on stronger assumptions than NM
commitment.

2.5 Comparison with Non-reusable NM

In this section we will be informal and call a commitment scheme (t, u)-NM
if it is non-malleable (or ε-non-malleable for small ε’s) in the case where the
message generator produces a message vector of length t and the adversary
produces a message of length u.

We will argue that (1, 1)-NM implies neither (t > 1, 1)-NM nor (1, u > 1)-
NM. We give counterexamples both in the unconditionally hiding case and
the unconditionally binding case.

Consider the unconditionally hiding commitment scheme from [7], which
was proven (1, 1)-NM. This scheme is actually (1, u)-NM for any u > 1.
However, for (t, 1)-NM the security proof fails for t > 1. It is not known
whether the scheme is even (2, 1)-NM.

We can construct a variant of the scheme that is provably not (2, 1)-NM.
We simply select two keys pk1, pk2 for the scheme, and a commitment to
a message m now consists of the pair (commitpk1(m), commitpk2(m)). By
running the proof from [7] “twice in parallel”, we can prove that this com-
mitment scheme is unconditionally hiding and (1, 1)-NM. However, consider
a message generator M that simply outputs a message vector (m, m). Given
commitments (c1, c2) and (c′1, c

′
2) to this message vector we may form the

commitment (c1, c
′
2). After seeing openings to the original commitments, it

is easy to open this commitment to the message m. In the first game, the
adversary may therefore have success probability 1 in trying to commit to
the same message. In the second game, however, we do not get any help
in producing the message, and we can only try to guess m. The scheme is
therefore not (2, 1)-NM.

All (1, 1)-NM commitment schemes we know of in the literature are in
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fact (1, u)-NM. However, we can also construct an example showing that
this need not be the case. Again, we pick two public keys pk1, pk2 for
the commitment scheme in [7]. A commitment to message m is formed
as (commitpk1(r), commitpk2(m⊕r)), where r is chosen at random. Again, it
can be shown that this scheme is an unconditionally hiding (1, 1)-NM com-
mitment scheme. Consider, however, an adversary in the first game getting
such a commitment (c1, c2). He form the commitments (commitpk1(0), c2)
and (c1, commitpk2(0)). Later when receiving an opening of (c1, c2), he can
open his commitments to m1 = r, m2 = r ⊕ m. The exclusive-OR of these
messages is m. On the other hand, any adversary in the second game has to
guess m to form a pair of messages m1, m2 with m = m1 ⊕m2.

To show that for unconditionally binding commitment schemes (1, 1)-
NM does not imply (t > 1, 1)-NM we use a semantically secure encryp-
tion scheme with errorless decryption. We construct a (1, 1)-NM commit-
ment scheme the following way. As public key, we generate 2k public keys
pk1,0, pk1,1, . . . , pkk,0, pkk,1. When having to commit to a message m the
sender selects a k-bit public key vk for a one-time signature scheme. For
each i = 1, . . . , k he encrypts m using pki,vki

, where vki is the i’th bit of vk.
The commitment now consists of the k ciphertexts, the public verification
key for the signature scheme, and a signature on all of it.

To see that this scheme is (1, 1)-NM for any u, consider an adversary A
that upon seeing a commitment to some message m generates a commitment
to a related message m′. Certainly, he cannot use the same public verification
key since he does not know how to make signatures with this key. Therefore,
he must produce at least one ciphertext with a previously unused public key.

We may now use A to break the semantic security of the cryptosystem.
Given k ciphertexts under keys pk1, . . . , pkk of a message m (this is still se-
mantically secure) we may select at random public keys pk′

1, . . . , pk
′
k, where

we know the corresponding secret keys. We then generate a key vk for the
signature scheme and arrange the keys pk1, . . . , pkk, pk

′
1, . . . , pk

′
k in a pattern

so that pki,vki
= pki, while pki,1−vki

= pk′
i. This way we can transform the

ciphertexts into what looks like a commitment. Giving the adversary the
commitment and the public key just constructed we let him form a com-
mitment. Since his commitment uses one of the keys we formed ourselves,
we may decrypt his commitment. If this commitment has any relation to
the original ciphertexts, this means that we have broken the semantic se-
curity of the cryptosystem. Therefore, the commitment scheme must be
non-malleable.
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The commitment scheme is not (k, 1)-NM though. If the message gen-
erator outputs a message vector with k identical messages, then with over-
whelming probability we will know encryptions of the message under all 2k
keys, and therefore we may easily pick a new one-time signature key our-
selves and form a commitment to the message. An adversary without access
to commitments does not have the same easy time creating a commitment
to the message in the message vector from the message generator.

Finally, we may argue as in [9] that (1, 1)-NM does not imply (1, 2)-NM
for unconditionally hiding commitment schemes. Here we simply take a non-
malleable cryptosystem with errorless encryption, pick two public keys pk1

and pk2, and form a commitment to m as (Epk1(r), Epk2(m ⊕ r)). It can be
proved that this commitment scheme is (1, 1)-NM. However, by the same
argument as in the unconditionally binding case it is not (1, 2)-NM.

3 A Framework for Constructing Non-

malleable Commitment

We present four tools that we are going to use in constructing non-malleable
commitment schemes. After that, we present the construction based on these
tools and prove that it yields an ε-non-malleable commitment scheme, for ε−1

being any positive polynomial in k. We leave constructions of the tools to
Section 4.

3.1 Honest Sender Commitment

We introduce the notion of honest sender commitments. This covers a
special type of commitment scheme with a weak binding property, it is not a
real commitment scheme. When speaking of an honest sender commitment
scheme, we do not require the commitment scheme to be binding. Instead,
we only demand that it is binding whenever a commitment has been formed
by an honest sender, i.e., when it has been formed according to the protocol.

Honest Sender Binding: For all adversaries A:

P [pk ← K(1k); m← A(pk); (c, d)← HScommitpk(m); d′ ← A(c, d);

m′ ← HSdecommitpk(c, d
′) : m′ 6=⊥ ∧m′ 6= m] < negl(k).
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3.2 Known Message Attack Secure Signature

A signature scheme consists of a key generation algorithm K outputting a
verification key vk and a signature key sk, together with algorithms signvk,sk

and verifyvk. We let Avk denote the message space for the signature scheme.
We allow some state to be kept with the signature key such that it has to be
updated after each signature. Furthermore, we demand that signatures are
bounded in length by some polynomial in k.

We will need a signature scheme that is existential forgery secure against
known message attacks. This means that to break the scheme the adversary
has to forge a signature on a message that has not been signed before. As
help, the adversary has access to a message-signature oracle O that works
like this. When queried O chooses a message m and some side information s
about this message. The adversary receives (m, s) as well as a signature on
m. In reality when speaking about known message attacks, we therefore have
to specify the distribution with which the messages and the side information
are chosen. Note that security against known message attack is weaker than
attacks where the adversary is allowed to choose the messages.

The scheme is secure against known message attacks with distribution
specified by M if for all A and auxiliary inputs zM and zA we have:

P [(vk, sk)← K(1k); (m, σ)← AO(vk, zA) :

verifyvk(m, σ) = 1] < negl(k),

where m has not been output by O, and where O outputs triplets (m, s, σ),
where (m, s) are distributed as the output of M(pk, zM ), and σ is a signature
on m.

3.3 Σ-protocol for the Signature Scheme

A Σ-protocol for relation R is a special type of a 3-move honest verifier
zero-knowledge proof. It is a protocol for two parties, the prover P and
the verifier V . P gets as input (x, w) ∈ R, V gets as input x, and the
goal is for P to convince V that he knows w such that (x, w) ∈ R, without
revealing information about w. We require that it be done using a protocol
of the following form: P first computes and sends a message a to V . Then V
returns a random challenge m of length k bits and P sends a response z to V .
Finally, V outputs accept or reject. Besides the protocol being of this form,
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we require the following properties, which correspond to basic properties of
well-known protocols of this form, e.g., Schnorr or Guillou-Quisquater:

Completeness: If (x, w) ∈ R, then the verifier accepts with overwhelming
probability.

Special soundness: There exists an algorithm, which given x, and two
accepting conversations (a, m, z) and (a, m′, z′), where m 6= m′, outputs
w such that (x, w) ∈ R.

Special honest verifier zero-knowledge: There exists an algorithm, the
honest verifier simulator S, which given instance x (where there exists
w such that (x, w) ∈ R) and any challenge m generates (a, m, z) ←
S(x, m) such that (x, a, m, z) is computationally indistinguishable from
a successful conversation where m occurs as challenge.

In our case, what we need is a Σ-protocol for proving that we know a
signature on an element α ∈ Avk, where the signature scheme is the one pre-
sented before. In other words, the relation R consists of elements ((vk, α), w),
where vk is a public key for the signature scheme, α is an element in Avk,
and w is a signature on α.

3.4 Message Authentication Code

A message authentication code is used for checking the integrity of messages.
It consists of an algorithm MAC that takes as input an authentication key
ak and some message. On basis of this one can compute a message authen-
tication code mac. Given a message and a mac for this message, anybody
who knows ak can check whether they fit together. However, without ak it
is hard to compute correct message authentication codes.

In our case, we need to authenticate the initial message of the Σ-protocol
for the signature scheme. If we assume such an initial message has at most
length k′, then we can do all operations in GF(2k′

). We pick at random
two elements r1, r2 ∈ GF(2k′

). The authentication key will be ak = (r1, r2).
When given a we then compute mac = r1a + r2. Clearly, anybody knowing
ak can verify this. However, without ak, one only has a negligible chance of
computing such a message authentication code correctly.
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3.5 A Non-malleable Commitment Scheme

We are now ready to construct an NM commitment scheme.

Key Generation: We choose a key pk for a statistically hiding honest
sender commitment scheme. Then we generate a public key vk for
the signature scheme. We select a universal one-way hash function
h : Cpk → Avk.

The signature scheme must be known message attack secure with the
message distribution given as hashes of honest sender commitments
with side information that is openings of the honest sender commit-
ments.

The public key is PK = (pk, vk, h).

Commitment: To commit to a k-bit message m we choose a key ak for
the message authentication scheme. We set (c, d) = HScommitpk(ak),
and compute α = h(c). Now we simulate a proof of knowledge of a
signature on α with challenge m. We set (a, m, z) = S((vk, α), m).
Finally, we compute mac = MACak(a).

The commitment to m is C = (c, a, mac), while the decommitment
information is D = (m, d, z).

Decommitment: We open the honest sender commitment to get the au-
thentication key. We compute α as above. We verify the message
authentication code. Finally, we verify the proof. If everything goes
well we output m. Otherwise, we output ⊥.

This commitment scheme is binding. If we could open a commitment in
two different ways, then we could by the special soundness of the Σ-protocol
find a signature on α, which is infeasible since we do not know the signature
key. The commitment scheme is also hiding. The only possible link to
information about m is a. Since the Σ-protocol is special honest verifier zero-
knowledge this a is indistinguishable from the corresponding value occurring
in a real conversation – but in real conversations, a is independent of m.

Remark The only part of the commitment scheme that can contain any
information about m is the initial message a of the simulated proof. There-
fore, if the proof system is statistically or perfectly special honest verifier
zero-knowledge then the commitment is unconditionally hiding.
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Theorem 3 The commitment scheme is equivocable.

Proof. We let the modified key generator K̂ be one that runs K but as side
information outputs the signature key sk associated with the verification key.
This means that we can sign any message.

With this information, we can of course sign any α ∈ Avk. This means,
no matter the α we can, in a real proof, answer the challenge m in the Σ-
protocol. Therefore, we simply modify the commitment procedure to pick a
according to the Σ-protocol and to return also the equivocation information
σ, a signature on α.

When having to produce the decommitment information we then open as
usual, except we compute the answer z to the challenge m with our knowledge
of the signature on α.

To see that this gives us the algorithms needed for the commitment
scheme note first that the public keys generated by K and K̂ are identi-
cally distributed.

Imagine now that we could distinguish real commitments and equivocated
commitments. By a hybrid argument, we can reduce this to distinguishing
two scenarios that only differ in one commitment being equivocated instead
of being formed and opened according to the commitment scheme.

But this means that we can distinguish simulated and real proofs using
the Σ-protocol, since this is the only difference between equivocable and real
commitments. We thus arrive at a contradiction with the special honest
verifier zero-knowledge property of the Σ-protocol. �

Remark If the initial message a in the Σ-protocol can be computed without
knowledge of the witness then the commitment scheme becomes strongly
equivocable because the witness, the signature, can just be generated when
we open the commitment.

3.6 Non-malleability

We claim that the commitment scheme in the previous section is non-
malleable.

Theorem 4 The commitment scheme is ε-non-malleable for any ε−1 poly-
nomial in k.

Proof. We let the modified key generator K̂ be the same as the modified key
generator used for equivocation. In other words along with the public key
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PK it also provides as side information the signature key sk. According to
Lemma 5 below, the adversary A cannot open commitments in two different
ways, even when seeing equivocations of other commitments. We use this
fact when constructing B and later proving that B fares as well as A.

First let us look at the real execution of the commitment scheme. We
modify this experiment by letting the public key be generated by K̂ and
forming equivocable commitments instead of real commitments. We then
use the equivocation information to open the commitments to the messages
chosen by M . According to Theorem 3 these two experiments are indistin-
guishable. Our task is therefore reduced to find an algorithm B that can
make ŜuccB,M,D at least as high as the success probability in the modified
experiment minus ε.

We now describe the algorithm B. It runs a copy of A and starts by giv-
ing t equivocable commitments to A. As a response, A produces a vector of
commitments. As mentioned. the intuition is that A cannot open the com-
mitments he produced in more than one possible way. Our goal is therefore
to find out the contents of as many of A’s commitments as possible, and we
will then submit this information to D.

To this end B runs M(pk, zM ) 4ktimeM(k)timeA(k)/ε2 times. It picks out
the first 2ktimeA(k)/ε of the message vectors that have length t. We note
that in case there is more than ε/(2 · timeM(k)) chance that M will output a
vector of length t there is also overwhelming chance that B samples enough
vectors of length t. The probability of being in a situation where B cannot
sample enough vectors of length t is therefore less than ε/2 + negl(k) since
timeM(k) is an upper bound on t. In the following, we only investigate the
experiment conditioned on having sampled enough message vectors.

For each message tuple ~m sampled from M , B now equivocates the com-
mitments it gave to (its copy of) A, such that ~m is opened. For each of its
own commitments A may or may not in each run produce an opening to a
message m′ 6=⊥. For each commitment, B takes the first opening different
from ⊥. Finally, B hands the message vector ~m∗ found to the distinguisher
(putting ⊥ in unopened positions).

This ends the description of B. We observe that A simulated by B sees
exactly the same distribution as A does in the modified real life experiment,
where we condition both experiments on M outputting a message vector
with a length t (and where t is such that the probability of getting length
t is at least ε/2timeM(k)). More precisely, the two games behave in exactly
the same way up to the point where A is about to receive the decommitment
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of ~m. At this point, we can either play the modified real-life experiment,
i.e., give A the “right” ~d and have him produce ~m′. Or we can execute B’s
algorithm producing ~m∗.

Now fix a “snapshot” of all variables known to A just after it has formed
its commitments. Consider any single commitment A made. If the prob-
ability (taken over the choice of ~m) that A will open it is smaller than
ε/(2 · timeA(k)), we say the commitment is bad, otherwise it is good. Since
timeA(k) is an upper bound on the number of commitments A can produce,
the probability that ~m′ contains non-⊥ values for any of the bad commit-
ments is at most ε/2. On the other hand, since B uses a total of 2ktimeA(k)/ε
samples of ~m-values, the probability that ~m∗ contains non-⊥ values for all
good commitments is overwhelming (it may contain more non-⊥ values, but
this does not matter since the probability of the distinguisher outputting
success cannot be decreased by replacing ⊥’s with messages).

Summarizing what we have so far, except with probability ε + negl(k),
B manages to sample enough ~m-values, A does not open any of the bad
commitments in the modified real life game, and B learns a way to open all
good commitments. Hence, the only way in which B could do worse than A
is if, even assuming all the above, D outputs 1 with significantly larger prob-
ability when seeing ~m′, than when seeing ~m∗. But this in particular means
that for at least one good commitment ~m′ contains m′, and ~m∗ contains m∗

such that m′ 6= m∗ and m′, m∗ 6=⊥. By Lemma 5 below, this occurs with
negligible probability, assuming security of the one-way hash function, the
honest sender commitments, the mac scheme and the signature scheme. This
is so since B does not use the signature key beyond what it could do with
access to an oracle as described in Lemma 5. Overall, B does worse than A
in the real experiment only in case of events that occur with total probability
at most ε + negl(k). �

Lemma 5 For any adversary A and any auxiliary input z:

P [(PK, sk)← K̂(1k); (C, D1, D2)← A
O(PK, z);

m1 ← decommitPK(C, D1); m2 ← decommitPK(C, D2) :

m1 6=⊥ ∧m2 6=⊥ ∧m1 6= m2] < negl(k).

Here O is an oracle that acts like this:

• On query (Commit) set (C, σ) ← ̂commitPK(sk). Store (C, σ) and
answer the query with C.
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• On query (Equiv, C, m) return equivPK,sk(C, σ, m).

The adversary A is restricted in the sense that its output C must not have
been produced by O.

Proof. Let us look at a commitment C = (c, a, mac) produced by A, which
is different from any commitments produced by O. We first argue that
α = h(c) must be different from the α’s of the equivocable commitments
the adversary has seen. Imagine contrarily that the adversary had seen an
equivocable commitment C ′ = (c′, a′, mac′) with h(c′) = α. When forming
c′ in an equivocable commitment it is generated independently of h. This
means that c = c′ or the adversary would have broken the universal one-
wayness of the hash. If c = c′ we recall that c′ has been computed by an
honest sender. In other words, the adversary can only open this commitment
in the same way as when equivocations are made. Since the honest sender
commitment is unconditionally hiding the adversary has no clue about the
authentication key ak. For this reason the adversary has negligible chance of
producing a′, mac′ that will be accepted with authentication key ak, unless
the adversary recycles also a and mac. But in the latter case the adversary
has just made a copy of the equivocable commitment. Left is to consider the
case where α has not been used in any of the equivocable commitments.

We are now in the case where the adversary has a different α than the
ones in the equivocable commitments. Notice that an adversary seeing many
openings of these commitments may learn signatures on the α’s used in the
equivocable commitments. However, the equivocation information is used
for nothing else so the adversary cannot learn more than these signatures.

This means the adversary has access to a known message attack. The
oracle O only uses the signature key in a way corresponding to a known
message attack, i.e., O could be implemented without the signature key but
with access to a known message attack signature oracle. If the signature
scheme is secure against known message attacks where the messages to be
signed are distributed in the way the α’s in the equivocable commitments
are, and the side information to go with these messages are openings of
the corresponding honest sender commitments, then the adversary is unable
to sign his own α. By the special soundness of the Σ-protocol this means
that the adversary cannot open his commitment to two different messages,
because this would imply answering two different challenges and thus also
the ability to extract a signature on α. �

19



4 Constructions of Non-Malleable Commit-

ment Schemes

4.1 An Implementation Based on the Strong RSA As-

sumption

Let n be an RSA modulus. The strong RSA assumption says that given
a random number y ∈ Z∗

n it is infeasible to find e > 1, x ∈ Z∗
n so that

y = xe mod n.
Based on the RSA assumption we can construct an unconditionally hiding

commitment scheme (and thereby honest sender binding) in the following
way. We select n as a k-bit RSA modulus, q as a 2k + 1-bit prime, and
y at random from Z∗

n. A commitment to an element x ∈ Zq is formed as
commit(n,q,y)(x; r) = yxrq mod n, where r is chosen at random from Z∗

n. The
decommitment information is (x, r).

We may set up a signature scheme with the same public key. Here the
public key simply consists of (n, y). The signature scheme’s message space
An consists of primes of bit-length within k+1 and 2k. We define a signature
on α ∈ An to be w, where y = wα mod n. The function h is defined to be a
function that on c ∈ Z∗

n outputs the smallest prime larger than 2kc. Under
well-established number theoretic conjectures [5], this prime is 2kc + O(k2).
This makes h injective and efficiently computable.

We define the relation R as {((n, y, α), w)|y = wα mod n}. Now, the
required Σ protocol is just the Guillou-Quisquater protocol:

1. The prover sends a = rα mod n for random r ∈ Z∗
n.

2. The verifier sends a random k-bit number m.

3. The prover sends z = rwm mod n, and the verifier checks that zα =
aym mod n.

It is easy to check (and well-known) that this protocol has the required
properties. Note that by construction of An, it is guaranteed that all values
of the challenge m are less than any α ∈ An.

Finally, there is the message authentication scheme. The authentication
key is ak = (r1, r2), where r1, r2 are picked at random from Z∗

n. The message
authentication code on an element a ∈ Z∗

n is mac = r1a + r2 mod n.
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A commitment on a k-bit message m is now C = (c, a, mac)
and the decommitment information is D = (m, d, z), where (c, d) =
commit(n,q,y)(r1, r2), (a, m, z) = S((n, y, α), m) and mac = r1a + r2 mod n.

Theorem 6 Under the strong RSA assumption and the number theoretic
conjecture the commitment scheme is unconditionally hiding, strongly equiv-
ocable and ε-non-malleable for any ε−1 polynomial in k.

Sketch of proof. We claim without proof that we have presented above the
ingredients of the construction in Section 3.5. We presented a commitment
scheme, a notion stronger than honest sender commitment schemes. We pre-
sented an injective function from such commitments, and thereby a universal
one-way hash function. We presented a signature scheme that is existential
forgery secure against known message attacks with respect to the distribu-
tion of the commitments. To see this observe that the commitments are
formed independently of w. If an adversary A could break the signature
scheme we could therefore set up timeA(k) commitments in advance and
choose y = wα1···αtimeA(k) mod n. A being able to find a new signature implies
our ability to find a non-trivial root of w; thereby violating the strong RSA
assumption. We presented a Σ-protocol for knowledge of a signature. Fi-
nally, we presented a message authentication scheme for the initial message
of the Σ-protocol.

It follows from Theorem 4 that we are dealing with a commitment scheme,
and the commitment scheme is ε-non-malleable for any ε−1 polynomial in k.

The Σ-protocol is actually perfect honest verifier zero-knowledge. This
implies that from the initial message no information is released about the
message. This shows that the commitment scheme is unconditionally hiding.

It follows from Theorem 3 that the commitment scheme is equivocable.
Since the initial message a in the Σ-protocol is created independently of the
signature the commitment scheme is strongly equivocable. �

4.2 An Implementation Based on any One-Way Func-

tion

Pick any universal one-way hash function h that compresses strings to length
k. Such universal one-way hash functions exist under the assumption of one-
way functions [15].

Signatures can also be based on one-way functions. For instance, we may
modify the Merkle one-time signature scheme the following way. We form
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a balanced binary tree of height k. Our public key consists of a key for a
one-time signature on the root of the tree. A message to be signed is placed
at a previously unused leaf, and the signature consists of one-time signatures
and public keys on the path up to the root. At all internal nodes, we sign
the public one-time signature keys of the children. Finally, for any internal
node we have used we store the public keys chosen for the two children and
always use these keys when passing by a node again. This signature scheme
is existential forgery secure against adaptive chosen message attack, more
than enough for our purpose.

A Σ-protocol exists for this signature scheme, simply because the known
zero-knowledge protocols for NP-complete problems have the right form:
since deciding validity of a signature is in NP, we can transform our prob-
lem to, say, a Hamiltonian path problem and use Blum’s zero-knowledge
interactive proof system for this language. As a building block, we need bit-
commitment, which we can get from any one-way function [14]. Although this
commitment scheme is originally interactive, it can be made non-interactive
in the CRS model, following [6]. In its basic form, this is a 3-move protocol
with soundness error 1/2, and we repeat this in parallel k times. It is easy to
see (and well-known) that this will satisfy our conditions for the Σ-protocol.

With respect to the MAC, we may use the message authentication code
mentioned in the framework. This leaves the question of how to make an
unconditionally hiding honest sender commitment scheme. We choose a
universal2-function f : {0, 1}3k+1 → {0, 1}3k+1. We also choose a univer-
sal one-way hash function g : {0, 1}3k+1 → {0, 1}k. A commitment to
a bit b is now formed by picking at random a 3k-bit string r and letting
commit(b; r) = g(f(b ‖ r)). This bit-commitment scheme is unconditionally
hiding since most elements in the commitment space have a roughly equal
number of 0‖r- and 1‖r-strings as preimage.

Theorem 7 The commitment scheme is ε-non-malleable for any ε−1 being
a positive polynomial in k. The commitment scheme is also equivocable.

Proof. We have supplied the building blocks for the construction in Section
3.5. The theorem follows from Theorem 3 and Theorem 4. �

Remark Most cryptographic tools based on simpler primitives are black-
box constructions. It is therefore worth noting that our construction is not a
black-box construction. The reason for this is that we use general reduction
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techniques to form an NP problem and then create a Σ-protocol for this.
This reduction depends on the one-way function that we use.

4.3 Unconditional Hiding, Unconditional Binding and

Uniform Random String

It is not known whether unconditionally hiding commitment schemes can
be constructed from one-way functions. Marc Fischlin has recently shown
that there is no proof of one-way functions implying unconditionally hiding
commitments that relativizes [10]. However, assuming the minimal possible,
namely that we have an unconditionally hiding bit-commitment scheme, we
note that it can be transformed into an unconditionally hiding non-malleable
and equivocable bit-commitment scheme. This is done by using the uncon-
ditionally hiding commitment scheme to make all the commitments in the
Σ-protocol in the previous section. This way, even a computationally un-
bounded adversary seeing a, has no idea about how the sender is capable of
opening the commitments, and thus no idea about the bits of m.

Since we can make unconditionally binding commitment schemes from
one-way functions, an obvious question is whether we can use our construc-
tion to get an unconditionally binding non-malleable commitment scheme.
The answer to this question is yes.2 The idea is to modify the commitment
scheme we constructed before so the public key now also includes an un-
conditionally binding commitment to a bit b = 0. We may from one-way
functions construct a Σ-protocol for proving that the commitment contains
b = 1 with challenge m in addition to the proof of knowledge of a signature.
Obviously, this is a false statement, so it is impossible for even a compu-
tationally unbounded sender to find a witness for this. Therefore, by the
special soundness of the Σ-protocol he cannot open the commitment to re-
veal two different messages. However, since the commitment to b is hiding,
there is no problem in simulating a proof for b = 1, nobody will notice that
anything is wrong. For non-malleability we let the modified key-generator
output a public key with a commitment to b = 1. Now we may equivocate
commitments and therefore the simulation proof where we use rewinding to
make the adversary open his commitments goes through.

The CRS used in the one-way function based commitment scheme is

2Of course, the non-malleability cannot hold against a computationally unbounded ad-
versary. Only the binding property holds against a computationally unbounded adversary.
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not uniformly random in its basic form, but we can modify the scheme so
it can use the URS model instead. By backtracking through the papers
constructing the tools we use we note that all of them can be built from a one-
way function and uniformly random bits. The only exception is the signature
scheme, where we do not know whether the verification key can be chosen
uniformly at random. Nevertheless, we can get by with interpreting some of
the uniformly random bits as an unconditionally binding commitment to a
verification key. We can modify the Σ-protocol to the case where we prove
that we know an opening of the bits to a public verification key and can sign
the α with this key. In reality we do not have such a key, however, since the
commitment scheme is hiding the security proof goes through.

5 UC Commitment implies Key Exchange or

Oblivious Transfer

We briefly recall how the UC framework [2] is put together: The framework
allows us to say that a protocol π securely implements an ideal functionality
F . In the case of UC commitment, F will be a trusted party that receives in
private the committed value m, and later reveals it to the receiver on request
from the sender. The real-life protocol π is attacked by an adversary A who
schedules communication and adaptively corrupts players and controls their
actions, while an attack in the ideal setting (where F is present) is limited
to corrupting players, changing the inputs they send to F and block/observe
the results coming back. Security of π now means that for every efficient
real-life adversary A, there is an efficient ideal model adversary S who can
obtain “the same” as A. To define what this means, an environment machine
Z is used. Z may communicate with the adversary (A or S) at any point
during the attack, and it may specify inputs for the honest players and see
the results they obtain. Security more precisely means that it is infeasible
for Z to tell if it is talking to A in a real-life attack, or to S in an ideal model
attack. So to prove UC security, one must construct, given A, a suitable S.
It is important to note that, in order to ensure robustness against concurrent
composition and adaptive security, the model explicitly forbids rewinding of
Z, so S is forced to go through the entire game in the same time sequence
as in real life.

Theorem 8 If there exists a non-adaptive UC commitment scheme in the
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CRS model, then there exists a key exchange protocol (secure against passive
attacks). Furthermore, if there exists a non-adaptive UC commitment scheme
in the URS model, then there exists an oblivious transfer protocol (secure
against passive attacks).

Remark Even if we start from a UC commitment scheme, the key exchange
or OT protocol we obtain are only secure against a static attack where one
of the players is corrupt from the beginning. They are not necessarily secure
against an adaptive attack and so are not necessarily universally composable.
We do not know if the construction can be improved to produce UC protocols,
but it would be interesting if the answer were affirmative. For instance, this
would mean that the implementation of any UC functionality from [4] could
be based on UC commitment only.

Sketch of proof. Assume we have a UC commitment scheme for sender C
and receiver R, and let π be the protocol used when C commits to, say, a bit
b. Let A be the adversary that first corrupts C, it then sends the CRS to Z,
and now (through its communication with Z) lets Z decide the actions of C.
Let Z be the environment that expects the behaviour we just specified for
the adversary (this means that Z gets to play C’s part of the protocol). Z
follows the honest protocol for C, in order to commit to some bit b. Once this
is over, it asks to have the commitment opened, again Z plays honestly C’s
part of the opening, and it receives as a result of this the bit that R gets as
output (which should normally be equal to b). Finally, Z tries to distinguish
whether it is in the real-life model or the ideal process by outputting a bit.

UC security guarantees that there exists a good ideal model adversary S
for this A. Of course, S must send a CRS to Z and then play in an indis-
tinguishable way R’s part of π against Z – otherwise Z could immediately
distinguish. Moreover, after completing π, S must be able to compute the bit
b that Z “committed to”, since this bit must be given to F before opening
can take place in the ideal model. If this bit is not correct, R at opening
time receive a bit different from b in the ideal model. This would allow Z to
distinguish.

This observation immediately implies a secure key exchange protocol for
parties A, B: B starts an instance of S and sends the CRS it produces to A,
who then chooses a random bit b and runs the commitment protocol acting
as the sender. B lets S play the receivers part, and can now extract b by
the observation above. An eavesdropper is clearly in a situation that is no
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better than that of an honest receiver in the non-adaptive UC commitment
scheme, and so he cannot distinguish b = 0 from b = 1.

If we are in the URS3 model, we can build an OT protocol for sender A
with input bits b0, b1 and receiver B with selection bit c. The goal is for B to
learn bc and nothing else, whereas A should learn nothing new. We assume
both A and B are “honest-but-curious”. The OT protocol goes a follows

1. B computes and sends to A strings CRS0, CRS1, where he runs S to
get CRSc and chooses CRS1−c at random.

2. A executes the commitment protocol π twice, playing the role of C
using CRS0, respectively CRS1 as reference string and b0 respectively
b1 as the bit to commit to. B follows the protocol for R in the instance
that uses CRS1−c, and lets S conduct the protocol in the other case,
i.e., he simply relays messages between A and S.

3. When S outputs a bit (to give to F), B uses this as his output.

From A’s point of view, the two instances of π are indistinguishable,
since otherwise S would not satisfy the conditions in the UC definition, as
we discussed. Hence, A learns nothing new. On the other hand, we also
argued that S must output the bit committed to, so B does indeed learn
bc. With respect to b1−c, B is in exactly the same position as party R when
receiving a commitment. Since UC commitments are hiding, B does not learn
b1−c. �

6 Application to UC Commitment

6.1 Damg̊ard-Nielsen UC Commitment

Let us briefly sketch why the scheme of [8] get a CRS that grows linearly
with the number of players.

The UC commitment scheme is based on a mixed commitment scheme.
This is a commitment scheme where we first generate a master key N that
defines the message space MN of the commitment scheme. Knowing N we
may now generate a public key K for the commitment scheme. This key

3We need to ensure that B can generate the CRS without getting any information from
the key generation that allows it to break the OT protocol. Since it is easy to generate a
URS at random, we certainly are guaranteed this in the URS model.
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will belong to a group KN . If chosen at random, this key with overwhelming
probability will be an extraction key X-key. However, we may also select the
key as an equivocation key E-key. X-keys and E-keys are indistinguishable.
Knowing a trapdoor tN associated to the master key, we may extract the
contents of commitments formed under X-keys. On the other hand, if we
use an E-key K to commit, with some associated trapdoor information tK

we may equivocate the commitment to anything.
The UC commitment scheme is interactive. The sender and receiver run

a two round coin-flip protocol to determine a public key K for the mixed
commitment scheme. For this purpose, they have an equivocable commit-
ment scheme. The sender commits to K1 ∈R KN , the receiver sends back
K2 ∈R KN , and the sender in the third round opens his initial commitment
so both the sender and receiver now knows the key K = K1 + K2. In the
third round, the sender also sends a commitment to the message m under
key K. To open the commitment the sender just has to open the mixed
commitment to m.

In the UC commitment scheme the ideal process adversary S runs a
simulated real life execution where it uses A as a black-box to produce com-
munication with Z. It faces two problems: When a message is submitted to
F it must simulate this without knowing the actual message. And when A
sends a UC commitment on behalf of a corrupted party, then it must figure
out which message to give to F . These problems can be solved if we commit
to the message using an E-key whenever sending a UC commitment on be-
half of an honest party, and force A to use an X-key whenever it makes a UC
commitment. We enable S to put itself in this situation by giving it equiv-
ocation information for the initial commitment scheme used in the coin-flip
protocols. This way it may bias the coin-flip protocols and thus always end
up with the right type of key K.

The problem in the commitment scheme above is that in [8] each player
must have an individual key for the initial commitment scheme. Otherwise,
A might be able to use the fact that S is equivocating commitments to
equivocate commitments on his own. He could possibly even select E-keys
for his own commitments and then ruin the entire simulation since S could
no longer extract messages.

This is exactly the kind of problem that the commitment schemes in this
paper can solve: they allow us to create a situation where for a fixed size
public key, a simulator can make any number of commitments and equivocate
them, while the adversary cannot do so. This is the essential property that
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implies non-malleability and is also useful here. So instead of letting each
participant have his own commitment key on the CRS, we let a public key
for the strong RSA based commitment scheme be on the CRS.

6.2 Improving the Damg̊ard-Nielsen UC Commitment

Scheme

In the following we describe the ideal functionality F , the UC commitment
scheme and the ideal process adversary S.

6.2.1 The Ideal Functionality

We label the dummy parties in the ideal process P̃1, . . . , P̃n to distinguish
them from the parties P1, . . . , Pn in the real-life model.

Generating the key: Generate a public key (pk, N) for the commitment
scheme. Send (sk, tN) to S.

Committing: On (commit, sid, cid, Pi, Pj, m) from P̃i send

(receipt, sid, cid, Pi, Pj) to S and P̃j. Ignore all subsequent
(commit, sid, cid, . . .) messages.

Opening: On (open, sid, cid, Pi, Pj) from P̃i where
(commit, sid, cid, Pi, Pj, m) has been recorded, send

(verify, sid, cid, Pi, Pj, m) to S and P̃j.

6.2.2 The Commitment Scheme4

We call the public key and equivocation key for the strong RSA based scheme
pk and sk. Like above we use N, tN , K, tK for the keys and trapdoors in the
mixed commitment scheme. The CRS for the commitment scheme is (pk, N).

Commitment: Player Pi makes a commitment to a message m and sends
it to Pj by doing the following:

4This protocol is modified slightly compared with [8], since in their proof they allowed
S to block commitments from being submitted to F , something which is not possible
under the standard UC model [2]. The idea and the proof of security is the same as in [8]
though.
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Initial Commitment: Pi selects K1 ∈ KN randomly and sets (c, d) =
compk(sid, cid, Pi, Pj, m, K1; r). He sends (init, sid, cid, Pi, Pj, c)
to Pj.

Commitment Response: Pj on incoming message
(init, sid, cid, Pi, Pj, c) selects K2 ∈ KN at random. He sends
(response, sid, cid, Pi, Pj, K2) to Pi and ignores subsequent
(init, sid, cid, . . .) messages.

Final Commitment: Pi on incoming message
(response, sid, cid, Pi, Pj, c) from Pj checks that he has sent
an initial commitment and not sent a final commitment in this
run of the protocol. In that case he sets K = K1 + K2 and
(C, D) = commitK(m). He sends (final, sid, cid, Pi, Pj, K, C) to
Pj.

Receival: Pj on (final, sid, cid, Pi, Pj, K, C) from Pi checks that he has
earlier sent out a (response, sid, cid, . . .) message to Pi. He outputs
(receipt, sid, cid, Pi, Pj). He ignores subsequent (final, sid, cid, . . .)
messages from Pi.

Opening: To open the commitment Pi sends (open, sid, cid, Pi, Pj, d, D) to
Pj.

Verification: Pj on (open, sid, cid, Pi, Pj, d, D) from Pi checks that he has
sent out a receipt (receipt, sid, cid, . . .). He sets K1 = K − K2

and checks that (sid, cid, Pi, Pj, m, K1) = decompk(c, d) and m =
decommitK(C, D). In that case, he outputs (verify, sid, cid, Pi, Pj, m).

6.2.3 The Ideal Process Adversary

S runs a copy of A trying to simulate everything A would see in a real-
life execution of the commitment protocol. Messages between A and Z are
simply forwarded.

Whenever commitments are made using F S will not know the content
but knowing the equivocation keys it can select the commitments so that
they are equivocable. This way it can make the simulation for honest parties
work out by making appropriate equivocations.

If A decides to corrupt a (simulated) party, then S corrupts the corre-
sponding ideal-process party and learns all messages it has committed to.
It can then perform suitable equivocations and give A those equivocations.
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Here it is important that both the strong RSA based commitment scheme
and the mixed-commitment scheme from [8] have decommitment information
d, D that contain all randomness r, R used in forming the commitments, so
A can see all the randomness it would when corrupting a party in the real-life
model. In case A corrupts a party after sending the initial commitment but
before sending the final commitment we equivocate to a randomly chosen
K1.

6.3 Security Proof of the UC Commitment Scheme

Theorem 9 The commitment scheme described above is universally com-
posable.

Sketch of proof. We show that Z cannot distinguish the real-life protocol
and the ideal process model. For this purpose we look at the following
distributions of Z’s (binary) output:

• REAL is the real-life execution.

• HY B1 is a modified real-life experiment: Instead of the usual CRS,
we select the CRS with equivocable keys. We then equivocate both
initial and final commitments. In particular this means that for honest
parties about to send the final commitment we equivocate the initial
commitment so K becomes an E-key.

• HY B2 is a modified ideal process. When A makes a commitment
where he is involved in both the initial phase and the final phase of
committing we do not extract the message m. Instead, we submit 0 to
F if A later opens this commitment to contain m, then we patch F by
inserting m in place of 0.5

• IDEAL is the ideal process.

REAL and HY B1 are indistinguishable. To see this let us modify the
real-life model step by step into the hybrid model. First, we select the CRS
with equivocable key pk, ek and trapdoor tN associated with N . Second
we form the initial commitments in an equivocable manner and equivocate

5Of course modifying F like this is illegal in the ideal process but those restrictions do
not apply in a hybrid model.
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when we have to open. Whenever an honest party has to make the final
commitment, we let it select K1 at random at this point and equivocate
the initial commitment to K1. By definition of equivocability, this change
cannot be noticed by Z. However, now we may instead simply choose K as
a random E-key and set K1 = K − K2. Since E-keys are indistinguishable
from random keys this change cannot be noticed. Finally, this enables us to
equivocate when the party’s commitment has to be opened without Z being
able to notice it.

HY B1 and HY B2 are the same experiment phrased in two different ways.
HY B2 and IDEAL are indistinguishable. The difference between them

consists in the opening from the adversary that is patched. There are three
possibilities for the message that is patched:

1. The final commitment uses X-key K. Then S extracts the correct
message m.

2. The final commitment uses E-key K made by S. The initial (equiv-
ocated) commitment has been opened to contain some m. Due to
the binding property A cannot open the commitment otherwise so the
patching is correct.

3. The final commitment does not use an X-key K and K has not been
selected by S.

If the initial commitment is created by A it is binding and thus the
probability of K not being an X-key is negligible.

If A copies the initial commitment formed by S on behalf of an honest
player then it is bound by any opening produced by S. Such an opening
would contain the wrong string (sid, cid, Pi, Pj, . . .) and therefore leave
A unable to use it, so we do not have to worry about this case. Of
course not seeing an opening leaves A in just as bad a situation in terms
of opening it to something else than the supposed (sid, cid, Pi, Pj, . . .)
contents.

All in all, we have negligible probability of ending up in this third
situation. �
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