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1 Justification 

There is a need for a primitive stream cipher construction that is fast (faster than a block cipher in 

counter mode), easy to use correctly, well understood, freely available, and secure. SOBER-128 has 

been designed to meet these requirements, by being based entirely on a well-studied primitive in a 

manner that preserves the existing analyses. 

Additionally, SOBER-128 introduces functionality to enable simultaneous calculation of a Message 

Authentication Code, and allows integrity checking of partially encrypted messages.  

2 Description of SOBER-128 

2.1 Introduction 

SOBER-128 is a synchronous stream cipher designed for a secret key that is up to 128 bits in length. 

The cipher outputs the key stream in 32-bit blocks. SOBER-128 is a software-oriented cipher based on 

32-bit operations (such as 32-bit XOR and addition modulo 232), and references to small fixed arrays. 

Consequently, SOBER-128 is at home in many computing environments, from smart cards to large 

computers. Source code for SOBER-128 is freely available and use of this source code, or independent 

implementations, is allowed free for any purpose. 

2.1.1 History: The SOBER Family of Stream Ciphers 

SOBER-128 was developed from SOBER [32], proposed by Rose in 1998. The algorithm for SOBER 

is based on 8-bit operations, versus the 32-bit operations used in SOBER-128. SOBER was superseded 

by SOBER-II [33] when various weaknesses were found in the original design. S16 was proposed as 

16-bit extension of SOBER-II: S16 copies the structure of SOBER-II and uses 16-bit operations. 

However, there were opportunities for strengthening SOBER-II and S16 that could not be ignored. 

Consequently, replacements for SOBER-II, S16 and a 32-bit version were created. These replacements 

were called the t-class of SOBER ciphers [22]. The t-class contains three ciphers based on 8-bit, 16-bit 

and 32-bit operations. The ciphers SOBER-t16 and SOBER-t32 were submitted to the NESSIE 

program [31]; SOBER-t16 as a stream cipher for 128-bit key strength and SOBER-t32 as a stream 

cipher with 256-bit key strength. SOBER-t16 and SOBER-t32 proved to be among the strongest stream 

cipher submissions to NESSIE. However, both ciphers were found to fall short of the stringent NESSIE 

requirements.   

SOBER-128 is an improved version of SOBER-t32. The modifications directly address the concerns 

arising in the analyses of the t-class ciphers. The 128-bit key strength proposed for SOBER-128 is 

reduced from the 256-bit key strength proposed for SOBER-t32 to ensure that SOBER-128 provides 

far in excess of the stated security level.  
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2.1.2 Transition between SOBER-t32 and SOBER-128 

In designing SOBER-128 our goal was to ensure that as much as possible of the analyses of SOBER-

t32 remained applicable to it. The changes made are easily identifiable, and fall into three categories: 

1. Implementation changes that increase efficiency but do not affect cryptographic security: 

• Restructuring the S-Box so that the same transformation is done with less computer 

instructions 

• Changing the structure of the LFSR to increase the efficiency of updating it and reduce 

the size of the multiplication table; the new implementation is isomorphic to the old 

• Where possible, data is processed in 17-word units allowing significant compiler 

optimisation through instruction parallelism, loop unrolling and constant offsets 

• SOBER-128 only supports keys and IVs (Initialisation Vectors) that are multiples of 4 

bytes; support for odd-length keys and IVs significantly complicated the code and has 

been deleted. Keys and IVs can always be padded by the user 

• SOBER-128 adopts “little-endian” byte ordering since Intel platforms seem to be of 

interest to more people these days 

2. Changes that alter the cryptanalysis of the stream cipher: 

• “Stuttering”, one of the fundamentals of the SOBER family, has been deleted. This 

mechanism added some security, but at high cost; it was computationally very expensive 

and exposed the cipher to side-channel attacks 

• The nonlinear transformation has been strengthened, in particular by adding a fixed 

rotation and a second s-box transformation 

• “Konst” has a non-zero value during key loading, and is derived in a manner that ensures 

that the most significant byte is non-zero after key loading 

3. Addition of message authentication functionality. 

2.1.3 Usage and threat model 

SOBER-128 may be used to generate a single encryption keystream of arbitrary length. In this mode it 

would be possible to use SOBER-128 as a replacement for the commonly deployed RC4 cipher in, for 

example, SSL/TLS. In this mode, no IV is necessary. 

In practice though, much communication is done in messages, where it is desirable to provide message 

integrity for the whole message, and privacy (encryption) for all or part of the message. The same 
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secret key should be usable for the entire (multi-message) communication, using an Initialisation 

Vector or Nonce to distinguish individual messages. SOBER-128 supports this model of use. Section 9 

below describes the recommended interface. 

SOBER-128 is intended to provide security under the condition that no IV is ever reused, that no more 

than 280 words of data are processed with one key, and that no data failing authentication checks will be 

further processed (in particular, that the result of decrypting a message that fails authentication will not 

be revealed). There is no requirement that IVs be random, which makes guaranteeing uniqueness much 

easier. The sender and recipient of secure data must agree on which parts of the data are encrypted, and 

which parts are authenticated, for correct operation, as the encryption operation is plaintext-aware 

when message authentication is being performed. Section 9 describes the recommended interface calls. 

2.2 Outline of this Document 

Section 3 contains a description of SOBER-128. An analysis of the security characteristics of SOBER-

128 is found in Section 4. Section 5 outlines the strengths and advantages of SOBER-128 while Section 

6 states the design rationale. Computational efficiency is discussed in Section 7. Appendices provide a 

recommended C-language interface and the entries of the multiplication table and the substitution box 

used in the non-linear function. 

3 Description 

3.1 Overview 

SOBER-128 is constructed from a linear feedback shift register (LFSR), a non-linear filter (NLF) and 

a nonlinear plaintext feedback function (PFF). Figure 1 contains a graphical representation of the 

keystream generator structure. Figure 2 contains a graphical representation of the Message 

Authentication Code accumulation structure. The primitive is based on 32-bit operations and 32-bit 

blocks: each 32-bit block is called a word. The LFSR produces a stream {s[t]} of words using 

operations over the Galois field of order 232: this field is denoted by GF(232). The vector σt = (s[t], … , 

s[t+16]) is known as the state of the LFSR at time t, and the state σ0 =(s[0], … , s[16]) is called the 

initial state. The key state and a 32-bit, key-dependent word called Konst are initialised from the secret 

key by the key loading. The key state can be used directly or can be further perturbed by the 

Initialisation Vector loading process to form the initial state. 

In the absence of message authentication, successive states σt from the LFSR are then fed through the 

NLF to produce 32-bit keystream words denoted vt. These combine to form the keystream {vt}. Each 

keystream word vt is obtained as  

vt = NLF(σt) = F(s[t], s[t+1], s[t+6], s[t+13], s[t+16], Konst) . 

The function F is described in Sect. 3.3.  
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Figure 1. The structure of SOBER-128 stream cipher NLF 
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Figure 2. The structure of SOBER-128 MAC accumulator PFF 

When message authentication codes are being used, plaintext words pt are incorporated into the LFSR 

in a nonlinear fashion. Strictly speaking, the LFSR can no longer be considered linear, but we will 

continue to refer to it as “the LFSR”. One word s[t+4] is replaced by 

  s[t+4] = PFF(s[t+4], pt, Konst) . 

3.1.1 Byte ordering 

SOBER-128 is entirely based on 32-bit word operations internally, but the external interface is 

specified in terms of arrays of bytes. Conversion between 4-byte chunks and 32-bit words is always 

done in “little-endian” fashion irrespective of the byte ordering of the underlying machine. This is a 

break with the tradition of previous members of the SOBER family. 
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3.2 The Linear Feedback Shift Register 

Binary Linear Feedback Shift Registers can be extremely inefficient in software on general-purpose 

microprocessors. LFSRs can operate over any finite field, so an LFSR can be made more efficient in 

software by utilizing a finite field more suited to the processor. Particularly good choices for such a 

field are the Galois Field with 2w elements (GF(2w)), where w is related to the size of items in the 

underlying processor, in this case 32-bit words. The elements of this field and the coefficients of the 

recurrence relation occupy exactly one unit of storage and can be efficiently manipulated in software. 

The standard representation of an element A in the field GF(2w) is a w-bit word with bits (aw-1, aw-

2,…,a1,a0),  which represents the polynomial aw-1z
w-1 + … + a1z + a0. Elements can be added and 

multiplied: addition of elements in the field is equivalent to XOR. To multiply two elements of the 

field we multiply the corresponding polynomials modulo 2, and then reduce the resulting polynomial 

modulo a chosen irreducible polynomial of degree w.  

It is also possible to represent GF(2w) using a subfield. For example, rather than representing elements 

of GF(2w) as degree-31 polynomials over GF(2), SOBER-128 uses 8-bit bytes to represent elements of  

a subfield GF(28), and 32-bit words to represent degree-3 polynomials over GF(28). This is isomorphic 

to the standard representation, but not identical. The subfield B= GF(28) of bytes is represented in 

SOBER-128  modulo the irreducible polynomial z8 + z6 + z3 + z2 + 1.  Bytes represent degree-7 

polynomials over GF(2); the constant β0 = 0x67 below represents the polynomial z6 + z5 + z2 + z + 1 for 

example. The Galois finite field W=B4 = GF((28)4) of words can now be represented using degree-3 

polynomials where the coefficients are bytes (subfield elements of B). For example, the word 

0xD02B4367 represents the polynomial 0xD0y3 + 0x2By2+ 0x43y + 0x67. The field W can be 

represented modulo an irreducible polynomial y4 + β3y
3 + β2y

2 + β1y + β0. The specific coefficients βi 

used in SOBER-128 are best given after describing the LFSR of SOBER-128. 

An LFSR of order k over the field GF(2w) generates a stream of w-bit words {s[t]} using a register of k 

memory elements (R[0],R[1],...,R[n-1]). The register stores the values of k successive 

LFSR words so after i clocks the register stores the values of σt = (s[t], s[t+1], ..., s[t+n-1]). At each 

clock, the LFSR computes the next word s[t+k] in the sequence using a GF(2w) recurrence relation 

s[t+k]  = α0 s[t] + α1 s[t+1] + … + αk-1 s[t+n-1], 

and updates the register (here new contains the value of s[i+k]): 

R[0] = R[1]; R[1] = R[2]; ...; R[15] = R[16]; R[16] = new; 

The register now contains σt+1 = (s[(t+1)], s[(t+1)+1], ... , s[(t+1)+n-1]). The linear recurrence above is 

commonly represented by the characteristic polynomial p(X) = Xn - ∑j=0..(n-1) αj X j. 

In the case of SOBER-128, the LFSR consists of n = 17 words of state information with w = 32-bit 

words. The LFSR was developed in three steps. First, the characteristic polynomial of the SOBER-128 
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LFSR was chosen to be of the form p(X) = X17 + X15 + X4 + α, over GF(232). The exponents {17, 15, 4, 

0} were chosen because they provide good security; the use of these exponents dates back to the design 

of SOBER-t16 and SOBER-t32 [22]. Next, the coefficient α = 0x00000100 ≈ 0x00⋅y3 + 0x00⋅y2 + 

0x01⋅y + 0x00 = y, was chosen because it allows an efficient software implementation: multiplication 

by α consists of retrieving a pre-computed constant from a table indexed by the most significant 8 bits, 

shifting the input word to the left by 8 bits, and then adding (XORing) the resulting words together. 

This is essentially the field multiplication used in SNOW[14] and is exactly that used in Turing [25]. 

The Multab for SOBER-128 is shown in Appendix B. In C code, the new word to be inserted in the 

LFSR is calculated: 

new = R[15] ^ R[4] ^ (R[0] << 8) ^ Multab[(R[0]>>24) & 0xFF]; 

where ^ is the XOR operation; << is the left shift operation; and >> is the right shift operation. Finally, 

the irreducible polynomial defining the representation of the Galois field W was chosen to be y4 + 

0xD0⋅y3 + 0x2B⋅y2 + 0x43⋅y + 0x67, for reasons explained in Section 6.  

The LFSR is stepped once before generation of each keystream word and/or accumulation of each 

plaintext word for MAC calculation. 

 

3.3 The S-Box Function f 

Notation: The most significant 8 bits of 32-bit word a is denoted aH. 

The function f employs XOR, and an 8 × 32-bit substitution box (S-box) denoted SBox. For a 32-bit 

value a, the function is defined as f(a) = SBox[aH] ⊕ a. 

The S-box is a combination of the Skipjack [17] S-box (called “F-table” in the definition of Skipjack) 

and an S-box tailor-designed by the Information Security Research Centre (ISRC) at the Queensland 

University of Technology [10]. The ISRC S-box was constructed as 24 mutually uncorrelated, balanced 

and highly non-linear single bit functions. Suppose that the S-box has the input aH. The eight most 

significant bits (MSBs) of the output of the S-box, XORed with aH, are equal to the output of the 

Skipjack S-box, given the input aH. The 24 least significant bits (LSBs) of the output of the S-box are 

the output of the S-box constructed by the ISRC, given the input aH. The entire S-box is given in 

Appendix A of this document. (Note: the SOBER-128 f yields the same output as the SOBER-t32 f, but 

does not require a masking operation. The SBox[] table differs only in the high byte of each word.) 

Thus, the eight most significant bits of the output of f is the output of the Skipjack S-box, while the 24 

LSBs are obtained by XORing the 24 bits of the output of the ISRC S-box with the 24 LSBs of the 

input (see Figure 2). The function f is defined this way to ensure that it is one-to-one and highly non-
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linear, while using only a single, small S-box. The function f also serves to transfer the non-linearity 

from the high bits of its input to the low bits of its output.  

32-bit Input

8 bits 24 bits

Partition the input

SBOX

Skipjack
S-box

ISRC, QUT
 S-box

8 bits 24 bits

32-bit Output
 

Figure 3 . The structure of the function f used in SOBER-128 

3.4 Keystream generation and The Non-Linear Filter 

The NLF employs the operations of XOR, addition modulo 232, shifting, and the nonlinear S-box 

function above. 

The NLF is defined by: 

vt = F(s[t], s[t+1], s[t+6], s[t+13], s[t+16], Konst)   

= f(((f(s[t] + s[t+16])>>>8 + s[t+1]) ⊕ Konst) + s[t+6]) + s[t+13],  

where the function f(⋅) using the S-box is defined above, “>>>” is a cyclic rotation and  “+” denotes 

addition modulo 232. The generated keystream words are combined with plaintext words using XOR: 

 ct = pt ⊕ vt, or for decryption, pt = ct ⊕ vt 

3.5 Message Authentication Codes 

SOBER-128 calculates MACs in two phases, accumulation and finalisation. 

3.5.1 MAC Accumulation 

In the accumulation phase, input plaintext words (or the results of decryption) pt are combined with the 

LFSR in a nonlinear fashion: 
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 s[t+4] = PFF(s[t+4], pt, Konst) = f((f(s[t+4] + pt) >>> 8) ⊕ Konst) 

The Plaintext Feedback Function PFF employs the operations of XOR, addition modulo 232, shifting, 

and the nonlinear S-box function above. 

MAC accumulation and generation of a keystream word depend on different register elements and can 

be calculated in either order. Whether encrypting or decrypting, though, it is always plaintext words 

that are accumulated. 

3.5.2 MAC Finalisation 

Generating an output MAC, once all accumulation and encryption for a given message has been 

completed, is done in the following manner. Reference is made to operations “Include” and “Diffuse”, 

defined below. 

1. Include(0x6996c53a) – (adds INITKONST to r15; similar to keyloading with 4 byte key). 

2. Apply Diffuse() 18 times – (one to process the above include; 17 for diffusion). 

3. Generate the desired number of words of keystream, which constitute the MAC. 

3.6 The Key and IV Loading 

SOBER-128 is keyed and re-keyed by using operations that transform the values in the register under 

the influence of key material. Two principle operations are employed: 

Include(X): this operation adds the word X to r[15] modulo 232.  

Diffuse(): this operation clocks the register, obtains the output v of the NLF and replaces the 

value of  r[4] with the value of  (r[4] ⊕ v).  

The main function used to load the key and IV is the Loadkey(k[], keylen) operation, where k[] 

is an array containing the keylen bytes of the key with one byte stored in each entry of k[].  The 

Loadkey() operation uses the values in k[] to transform the current state of the register. 

Algorithm for Loadkey(k[], keylen ): 

All keys must be a multiple of 4 bytes in length; keylen is the length of the key in bytes. 

1. Convert k[] into kwl = keylen/4 words and store in an array kw[] of kwl “big-endian” words 

2. For each i, 0 ≤  i  ≤ (kwl –1), Include( kw[i] ) and apply Diffuse().1 

3. Include( keylen ). 
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4. Apply Diffuse() 17 more times. n 

The 17 applications of Diffuse() are designed to ensure that every bit of input affects every bit of the 

resulting register state in a nonlinear fashion, as discussed in Section 4.4.6. Including keylen ensures 

that keys and IVs of different lengths result in distinct initial states. 

SOBER-128 is keyed using a secret, t-byte session key K[0], … , K[t-1] as follows:  

1. The 17 words of state information are initialized to the first 17 Fibonacci numbers2 by setting 

R[0] = R[1] = 1, and computing R[i] = R[i-1] + R[i-2], for 2 ≤ i ≤ 16. The value of 

Konst is set to the word 0x6996c53a (called INITKONST). 

2. The cipher applies Loadkey(K[],t) which includes the key bytes and key length into the register, 

and diffuses the information throughout the register.  

3. The LFSR is clocked and the NLF output is calculated and stored in a temporary variable. This 

process is iterated until the value calculated has a non-zero most significant byte. Konst is then set 

to the resulting value. 

4. If the cipher is going to be used for multiple messages, then the 17 word state of the register, 

(R[0],…,R[16]), (which we call the key state) can be saved at this point for later use, and the 

key discarded. However, for shorter keys, the key could be saved and the keying procedure 

repeated as necessary, trading additional computation time for some extra memory. 

5. If the cipher is not being used with IVs, then the cipher produces a key stream with the register 

starting in the key state. That is, the key state is used as the initial state. However, if the cipher uses 

IVs, then the cipher first resets the register state to the saved initial key state, and loads the m-byte 

IV IV[0], … , IV[m-1] using Loadkey(IV[],m). The state of the register following the re-keying is 

taken as the initial state, and the cipher produces a key stream with the register starting in this 

state. Note that a zero-length IV is allowed, and is distinct from all other IVs and also distinct from 

the key state. 

 

4 Security Analysis of SOBER-128 

We are fortunate that almost all analyses of older versions of SOBER concentrated on “SOBER with 

the stuttering omitted”, and then extended the attacks to SOBER with stuttering. This means that we 

are able to look at existing attacks and apply them to SOBER-128, below. 

                                                                                                                                                                                     
1 Note that this means each Include() in Step 2 is followed by a Diffuse(). 
2 There is no particular significance to these numbers being used, except for the ease of generating them. 
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4.1 Security Requirements 

SOBER-128 is intended to provide 128-bit security. The base attack on SOBER-128 is an exhaustive 

key search, which has a computational complexity of 2128 (see Sect. 4.4.3)3. In all attacks, it is assumed 

that the attacker observes a certain amount of keystream produced by one or more secret keys, and the 

attacker is assumed to know the corresponding plaintext and IVs. SOBER-128 is considered to resist 

an attack if either the attack requires the owner of the secret key(s) to generate more than 280 key 

stream words, or the computational complexity of the attack is equivalent to the attacker rekeying the 

cipher 2128 times and generating at least 5 words of output each time. We claim that SOBER-128 fulfils 

the following security requirements, when used subject to the condition that no key/IV pair is ever 

reused, and no more than 280 words are processed with one key: 

1. Key/State Recovery Attacks: SOBER-128 must resist attacks that either determine the secret key, 

or determine the values of Konst and the state at any specified time. 

2. Keystream Recovery Attacks: SOBER-128 must resist attacks that accurately predict unknown 

values of the keystream without determining information about the LFSR state or the secret key. 

3. Distinguishing attacks: SOBER-128 should resist attacks that distinguish a SOBER-128 

keystream from random bit stream. 

4. Related-Key or related IV Attacks: SOBER-128 should resist attacks of the above form that use 

keystream generated from one or more secret keys that are related in some manner known to the 

attacker. 

5. MAC forgery attacks: SOBER-128 should resist attacks that allow a forger to create or modify a 

message that subsequently passes verification of the associated MAC. 

SOBER-128 will be considered broken if an attacker can perform any of these attacks. Keystream 

recovery attacks seem unlikely, as the output sequence relies heavily on the state of the LFSR, so any 

likely keystream recovery attack will probably also allow the stronger key/state recovery attack. Most 

attacks concentrate on the first option of determining the values of Konst and the state. Related-key 

attacks are of less concern, since most security systems ensure that attackers cannot predict 

relationships between secret keys. However, it is still preferable that SOBER-128 resists such attacks. 

MAC forgery attacks seem to require that the adversary be able to predict the LFSR state at the time 

the MAC is generated, and so are also thought to be subordinate to the key/state recovery attacks. 

A comment on distinguishing attacks. There is currently some debate regarding the complexity of 

distinguishing attacks on stream ciphers. Some members of the cryptologic community claim that a 

stream ciphers cannot be secure when the data complexity and computational complexity for a 

successful distinguishing attack is less than the key space. For example, these people would say that 

                                                           
3 Unless, of course, a shorter secret key is used. We assume use of a 128-bit secret key in this section. 
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SOBER-128 is not secure if there is a distinguishing attack requiring 280 key stream words and 2100 

computations. Other members of the cryptologic community claim that a stream ciphers can still be 

secure when the data complexity and computational complexity for a successful distinguishing attack is 

less than the limits imposed on other types of attacks. These parties would say that SOBER-128 is still 

secure even if there is a distinguishing attack requiring 264 key stream words and 280 computations. 

Although the designers hold the second view (that stream ciphers can still be secure even when the 

complexities of distinguishing attacks fall below the bounds of the keyspace), the intention of the 

design is to ensure that there are no distinguishing attacks on SOBER-128 requiring less than 280 key 

stream words and less than 2128 computations. Since we do not allow SOBER-128 to be used to process 

more than 280 words, such an attack would not break SOBER-128 used correctly. By comparison, AES-

128 in counter mode has a distinguishing attack requiring 266 keystream words, and AES-128 in CBC-

MAC mode has a forgery attack of approximately the same complexity and data requirements. 

4.2 Security Claims 

We believe that any attack on SOBER-128 has a complexity exceeding that of an exhaustive key 

search. We do not claim any mathematical proof of security. Our analysis of SOBER-128 can be 

summarized thus: 

• Guess-and-determine (GD) attacks appear to have a computational complexity in excess of 2250 

(see [24,1]), although research in this area is ongoing.  

• Algebraic attacks [8] appear to be infeasible.  

• Correlation-based attacks [6] appear to be resisted by the LFSR and NLF. 

• Timing attacks and power attacks can be mitigated in standard ways; there is no conditional 

execution after initial keying.  

• We are unaware of any ways in which the key loading can be exploited. 

• We are unaware of any weak keys or weak-key classes. It is theoretically possible for the initial 

state to be entirely zero, but we believe that this cannot occur when using 128-bit secret keys and 

128-bit IVs. It is possible for the LFSR to enter the all-zero state during MAC computation, but it 

is extremely unlikely that it would remain in such a state. 

4.3 A Summary of Previous Analyses of SOBER-t32 

Guess and Determine (GD) attacks. The analysis by the designers [22] concluded that the best attack 

on un-stuttered SOBER-t32 would have a computational complexity of O(2320). This analysis assumed 

that GD attacks required the attacker to guess all the bits of words, rather than a subset of the bits. De 

Canniere [5] showed that it was possible to improve the attack by guessing a subset of bits of words, 

resulting in an attack of complexity O(2304). Babbage et al [1] further reduced the complexity to 

O(2252). The analysis by Babbage et al is discussed in further detail below. 
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Analysis of the S-box: In an initial analysis of SOBER-t16 and SOBER-t32 for the NESSIE project, 

Schafheutle [34] examined linear and differential properties of the function S-boxes used in SOBER-

t16 and SOBER-t32.  

Analysis of the Key Loading: In determining the amount of mixing required for the key loading, the 

analysis by the designers [22] concluded that full diffusion was achieved after 17 rounds of the 

Diffuse() operation after the key material has been included into the register. This analysis was based 

on the NLF providing good diffusion across the entire output word (that is, every bit of the output word 

depends on every input bit). An initial statistical evaluation by Schafheutle [35] did not reveal any 

weakness in the key loading.  A later analysis by Ditchl and Schafheutle [13] found an undesirable 

property of the key loading. They showed that with high probability (close to 100%) there are linear 

combinations of the initial state bits that do not change when single bits of the key are changed. Their 

analysis suggested that such linear properties will disappear when more rounds of the Diffuse() 

operation are applied (as is the case in SOBER-128). Our analysis suggests that the poor diffusion is 

also because Konst was set to zero during the key loading operation. We have addressed this by using a 

non-zero Konst during key loading, and a better NLF function. 

Distinguishing Attacks: Ekdahl and Johansson [15] found distinguishing attacks on unstuttered 

SOBER-t32. The distinguishing attack on unstuttered SOBER-t32 required around 287 output words 

from the NLF function. The attack stems from the low non-linearity of the NLF. The new NLF 

function in SOBER-128 increases the complexity of the corresponding attack on SOBER-128 to more 

than 2128 words. Babbage et al. [1] extended the attack of Ekdahl and Johansson on full SOBER-t16 to 

an attack on SOBER-t32. The attack on un-stuttered SOBER-t32 has a complexity of around 2128 

outputs. 

4.4 Analysis of SOBER-128 

This analysis concentrates on vulnerability of SOBER-128 to known-plaintext attacks. An unknown-

plaintext attack on a stream cipher uses statistical abnormalities of the output stream to recover 

plaintext, or to attack the cipher. The underlying LFSR has very good statistical properties (see Sect. 

4.4.4.1), which are preserved and enhanced by the subsequent operations, so there is no significant risk 

of an unknown-plaintext attack.  

This analysis is arranged as follows. Section 4.4.1 outlines a heuristic argument for the strength of 

SOBER-128. Section 4.4.2 describes the results of statistical analyses conducted on key streams 

generated by SOBER-128. Properties of the LFSR are analysed in Sect. 4.4.4. The security offered by 

the combination of the LFSR and NLF is considered in Sect. 4.4.5. The key loading is analysed in Sect. 

4.4.6. 

4.4.1 A Heuristic Argument for the Security of SOBER-128 

SOBER-128 is constructed from components that combine to form a secure cipher: each component 

contributes different security characteristics. 
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• The LFSR provides a sequence of states with good statistical properties. However, an LFSR by 

itself is too weak because as few as 17 L-words can be used to reconstruct a state, due to the linear 

relationship between L-words. 

• The NLF ensures that there is no linear relationship between the outputs and the L-stream. This is 

required so that an attacker cannot exploit the linearity inherent in the LFSR. Our analysis 

indicates that the combination of the LFSR and NLF appears to be sufficient to resist GD attacks. 

Heuristic arguments suggest that the LFSR and NLF also resist correlation-based attacks (see Sect. 

4.4.5.2).  

• The NLF has a very high algebraic order, and SOBER-128 does not appear to be vulnerable to 

algebraic attacks. 

• The key loading is designed to ensure that every bit of the initial state is a complex function of 

every bit of the session key and IV. This would appear to be sufficient to resist attacks exploiting 

the key loading, such as related-key attacks.  

• Finally, because SOBER-128 is based on a single shift register, general divide-and-conquer attacks 

do not seem to be applicable. 

4.4.2 Statistical Analysis 

Key streams generated by SOBER-128 have been analysed using the CRYPTX’98 statistical analysis 

program [9]. This program performs various statistical tests. Some tests measure if the pattern has 

properties of a random bit stream. CRYPTX’98 reported that the SOBER-128 key streams tested have 

the properties of random bit streams. Other CRYPTX’98 tests look for a class of statistical properties 

than can be exploited by various classes of attacks. The analysis reported that SOBER-128 key streams 

had none of these properties. This encourages us to believe that SOBER-128 has no glaring 

weaknesses. 

4.4.3 Exhaustive State Search 

For any t ≥ 0, we define a candidate word ut to be a guess for the value of the LFSR state word s[t], and 

define a candidate state µt = ( ut, … , ut+16) to be a guess for the values of the state σt. SOBER-128 can 

be considered broken once the initial state of the LFSR has been determined as then it is possible for an 

attacker to reconstruct the entire key stream. One method by which a stream cipher can be attacked is 

to search through every candidate state µt until the value of σt is found. This process of searching 

through every candidate for a certain value is commonly known as guessing. In this case the attack 

guesses candidates for the value of the state. A candidate state µt is tested (to see if it is correct) by 

constructing a key stream using this value µt, and comparing the resulting key stream with the observed 

key stream. If the two streams match, then the candidate is correct.  
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This attack (guessing every possible candidate state and testing each candidate state) is an exhaustive 

state search. In SOBER-128, the large size of the register (544 bits) and the corresponding large 

number of possible candidate states (there is total of (2544-1) states) makes any such attack prohibitive. 

4.4.4 Analysis of the LFSR 

Consider the linear recurrence for SOBER-128: s[t+17] = s[t+15] ⊕ s[t+4] ⊕ α s[t]. The characteristic 

polynomial is the polynomial p(x) = x17 + x15 + x4 + α, where multiplication and addition is performed 

over GF(232). Each polynomial uniquely defines a linear recurrence, so the characteristic polynomial, 

rather than the linear recurrence, is often used to define an LFSR. Using GF(232) instead of GF(2) in 

the shift register has very little effect on the properties of the register itself. The linear recursion over 

GF(232) can be shown to be equivalent to implementing 32 parallel bit-wise LFSRs, each of length 17 · 

32 = 544 (see [26]). These linear recurrences are all the same, represented by a polynomial p2(x) over 

GF(2) (shown in binary, with the first bit being the constant term and increasing exponent):  

1000000000000000010101010101011101110111011000110110001111100011 

0110011010110011100100011110010111110011110110011110011001001100 

0011110001101011011111010101110010001001111001110111101001110111 

0101111001000000000101100001001011101101111110100000111010000111 

1000111101011100001110000001000000101111110100011100000000101011 

0111011100100011110000101111111010110011101100011111000110010100 

1010111101011111110000011110111101110010001100000010110111000010 

1000101111000111111100001010100111100001110011110111100010100000 

001000011100000000001000100000001 

That is, p2(x) = 1 + x17 + x19 + x21 + x23 + x25 + x27 + x29 + x30 + … + x520 + x521 + x532 + x536 + x544. This 

polynomial has 273 nonzero terms. 

The period of the LFSR, hence the period of SOBER-128, is 2544-1 output words (when the effect of 

MAC accumulation is ignored). 

4.4.4.1 Properties of the L-Stream 

Properties of the word-oriented LFSR over GF(232) can be deduced from the bit-wise LFSR over 

GF(2). The connection polynomial for the bit-wise LFSR is primitive: that is, it is irreducible (has no 

factors) and it divides (xd + 1) for d = 2544-1, but not for any d that divides (2544-1). The statistical 

properties of the sequence output by such an LFSR (M-sequence) are well known. 

• The period of the output bit-sequence (also known as the sequence length) of p2(x) is known to be 

(2544-1): this is the maximum sequence length for a 544-bit LFSR. Consequently, the sequence 

output by the SOBER-128 LFSR must have a period of at least (2544-1) words. It is impossible for 

the sequence to have a length of more than (2544-1) states as there are only (2544-1) possible states. 
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Therefore, the sequence output by the SOBER-128 LFSR must have a sequence length of exactly 

(2544-1) words. 

• The bit stream generated by the bit-wise LFSR has many statistical properties expected for a 

random bit stream. See Definition 5.28 (p180) and Fact 6.14 (p197) of [30] for further details. The 

linear recurrence used to generate the L-stream results in many linear relationships between L-

words. These linear relationships correspond to multiples of the connection polynomial. That is, 

for every such linear relationship Σ ai s[t+i] = 0, the polynomial r(x) = Σ ai x
i is a multiple of the 

connection polynomial p(x). 

4.4.5 Analysis of the combination of the LFSR and NLF 

The LFSR provides the statistical properties essential for a good stream cipher. However, the LFSR 

itself is not cryptographically strong. Every output bit is a linear function of the initial state. Thus 

recovering any linearly independent set of enough L-stream bits, or linear functions thereof, from any 

known positions in the output sequence yields the state of the register. The NLF “hides” the linearity so 

output bits are not linear functions of the initial state, while also maintaining the good statistical 

properties of the L-stream. 

The combination of the LFSR and NLF is very strong. To date, the most successful attacks on this 

combination appears to be the GD attacks. The combination of the LFSR and NLF appears to provide 

sufficient resistance to GD attacks, as the best such attack has a complexity of 2252 (see Sect. 4.4.5.4), 

significantly larger than the complexity of 2128 for an exhaustive key search. However, research in this 

area is ongoing. 

The LFSR and NLF might be susceptible to correlation-based or distinguishing attacks, but it would 

seem unlikely (see Sect. 4.4.5.2). We are aware of an attack that exploited the near-linearity of the least 

significant bits (LSBs) in the original SOBER design to recover the initial state from a few more than 

136 consecutive octets. However, this attack relied on NLF output bits that exhibit high correlation to 

the input (the output bits of SOBER-128 do not exhibit any high correlation).  

4.4.5.1 Some Comments on the NLF 

Statistical Properties. Note that the NLF is constructed from group operations (modular addition and 

XOR), bit rotation and the fixed one-to-one mapping f. This construction of the NLF ensures that the 

keystream exhibits the good statistical properties of the L-stream. In particular, the sequence length of 

the keystream is (2544-1). 

Non-linearity. The carry bits in the word addition, and the nonlinear S-box account for most of the 

nonlinear behavior in the NLF. As there are five quantities being added, carries from lower bits add 

quite complicated functions of many other bits. If the elements were simply added, there would be no 

carry input to the LSB of the sum. The LSB of the output would be the XOR of the LSBs of the inputs: 
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an entirely linear function of the L-stream. To defeat this, the non-linear S-box brings in a bit with a 

high degree of non-linearity to disguise the linearity of the least significant bit of the remaining sum. 

The S-box also contributes non-linearity into other bits. XORing the Konst destroys commutation 

between the middle two modular additions in the NLF. The second pass through the S-box, after 

rotation, significantly reduces overall biases. None of the NLF operations commute, since Konst cannot 

be zero. The high byte of Konst is nonzero, ensuring that at least the second S-box operation introduces 

some degree of unpredictability to the output. 

Algebraic Degree: Each bit in a keystream word can be expressed as a multivariate polynomial 

function of bits of the corresponding LFSR state: this multivariate polynomial is the algebraic normal 

form (ANF). A typical definition of the algebraic degree is the minimum degree of the 32 ANFs.  An 

alternate definition is the minimum degree of the (232-1) non-trivial linear combinations of the 32 

ANFs. To the best of our knowledge, the algebraic degree (according to either definition) is large. We 

have not done a detailed study, but as first approximation, the input to the S-box in the last instance of 

the f function depends on least 48 bits of the state: the most significant bytes of s[t], s[t+16], s[t+1], and 

s[t+6]; and the least significant bytes of s[t] and s[t+16]. As a conservative estimate, we believe the 

algebraic degree will exceed 48/2 = 24. Research in this area is ongoing. 

Linear Span: The linear span is the length of the smallest LFSR that can generate the key stream. Key 

[27] showed that if the underlying LFSR of the cipher is of length n the algebraic degree is d then the 

linear span is likely to be N = ∑1≤ i ≤ d 
nCi, where nCi is the value of “n choose i”. In the case of SOBER-

128, n = 544 and we estimate d > 24. These figures result in a linear span N of 4.55× 1041 = 2138.4 that 

far exceeds our bound on the data complexity of 280.  

Analysis of the Function f and the S-box: The function f serves three purposes.  

1. The function f ensures that the addition of st and st+16 does not commute with the addition of st+1 

and st+6, and st+13.  

2. The function f ensures that every bit of the output of the NLF depends algebraically on every bit of 

st and st+16. 

3. The function f “carries” nonlinearity from high order bits of sums to low order bits. 

The S-box used in SOBER-128 was designed to have good non-linearity properties. The S-box is 

restricted to 256 entries to reduce memory requirements. The S-box uses the eight most significant bits 

of (st + st+16) as input to ensure that even the least significant bits of st and st+16 can affect the input to 

the S-box (through carry propagation). In this way, every bit of st and st+16 can affect every bit of the 

output of f. 
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4.4.5.2 Correlation Attacks  

Two conditions are required for a cipher to be susceptible to a correlation-based attack. First, there 

must be a significant correlation between the NLF outputs and the L-stream. Second, there must be a 

multiple of the bit-wise connection polynomial of low weight (low number of terms) and low degree. 

Neither of these conditions appears to be satisfied in SOBER-128. 

• Due to the word-oriented nature of the cipher, it would appear very difficult to determine a high 

correlation between the bits output by the NLF and bits in the L-stream. It would seem that any 

such relationship has low correlation, due largely to the highly non-linear S-box. 

• The word-oriented connection polynomial over GF(232) may have low weight, but the 

corresponding bit-wise connection polynomial has very high weight: p2(x) has 272 non-zero 

coefficients. This leads us to assume that there are no low-degree, low-weight multiples (we have 

not yet confirmed that this is true). This, in combination with low correlation, leads us to believe 

that a correlation attack will have a very large complexity.  

4.4.5.3 Inversion Attacks 

Inversion attacks [19] are so named because they “invert” the operations of the NLF: rather than using 

the inputs to determine the NLF output, an input is determined from the NLF output and the remaining 

inputs. The attacks were initially conceived as attacks on bit-wise LFSR-based ciphers with an NLF. 

The NLF had to be a linear function in the first or last input; for example, vt = NLF(σt) = g(s[t], …, 

s[t+x-1]) + s[t+x] (mod 2). In this case, the L-words are single bits, with s[t+x] denoting the last input 

to the NLF. 

Suppose that the values ut, …, ut+x-1, are candidates for the L-words/bits s[t], …, s[t+x-1]. If these 

candidates were correct then this would imply that:  

ut+x    = vt + g(ut, …, ut+x-1) (mod 2), 

ut+x+1 = vt+1 + g(ut+1, …, ut+x) (mod 2), 

ut+x+2 = vt+2 + g(ut+2, …, ut+x+1) (mod 2), 

and so-forth. We say that the candidates ut+x, ut+x+1
 and so forth have been determined. In an inversion 

attack, the attacker guesses the values for the candidates ut, …, ut+x-1, and “inverts” the NLF to 

determine further candidates until a full candidate state µt has been determined. This state is then 

tested. Provided x is less than the register length, such an approach can offer a significantly lower 

complexity than an exhaustive state search. 

The inversion attack can be easily extended to word-oriented stream ciphers. The attacker guesses the 

values of ut, …, ut+x-1, (these values are words) and inverts the NLF to determine ut+x, ut+x+1 and so 
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forth. In the case of SOBER-128, the attacker would guess values for the candidates u1, …, u16 and 

Konst. Then the attacker determines the candidate u17 from the keystream word v1 by inverting the 

NLF: 

u17 =  f-1( ( (  f-1 (vt – u[t+13]) – u[t+6]) ⊕ konst) – u[t+1]) <<< 8 ) – u[t], 

where “+” denotes addition modulo 232 and “-” denotes subtraction modulo 232. The attacker now has a 

full candidate state µ1. This state is then tested.  

Unfortunately for the attacker, this attack requires guessing 544 bits of information. There is no 

advantage to performing such an attack on SOBER-128: an exhaustive key search has a considerably 

lower complexity. Hence, SOBER-128 is resistant to the inversion attack. 

4.4.5.4 Guess-and-Determine Attacks 

The inversion attack is based on exploiting the NLF to determine candidate L-words from a smaller set 

of candidate words (although this proves to be of no advantage in the case of SOBER-128). Guess-and-

determine attacks (GD-attacks) are “smart” inversion attacks that not only exploit the NLF: these 

attacks also exploit the LFSR. There are linear relationships between certain sets of L-words which are 

a result of producing the L-stream using a linear recurrence (recall that this linear recurrence is s[t+17] 

= s[t+15] ⊕ s[t+4] ⊕ α s[t]). These relationships can be exploited to determine additional candidate L-

words from guessed and determined candidate L-words. For example, suppose that the candidate L-

words ut, ut+4 and ut+17 have been guessed or determined. Assuming that these candidates are correct, 

this would imply that: 

ut+15 =  ut+17 ⊕ ut+4 ⊕ α  ut. 

In this case, the candidate ut+15 can be determined by exploiting the linear recurrence directly. An 

attacker can also exploit other linear relationships between L-words (corresponding to multiples of the 

connection polynomial, as noted in Sect. 4.4.5.2).  

Given a suitable portion of the keystream, a guess-and-determine attack is based on: guessing 

candidates for a small set of L-words; exploiting the NLF, linear recurrence and other linear 

relationships to determine a full candidate state; and then testing the candidate state. Examples of GD-

attacks can be found in [1,3,4,21,22,33].  

Recall that SOBER-II, SOBER-t32 and SOBER-128 have the same overall structure. SOBER-128 can 

be attacked by extending the known attacks on SOBER-II and S16 (such as [4,21]). These attacks, 

when applied to SOBER-128, have a computational complexity of approximately 2320 and require a 

small number of keystream words. We developed an attack search program that looked for 

improvements on these attacks. The search examined every GD-attack exploiting linear relationships 

corresponding to polynomials of degree 34 or less, and with 10 or fewer terms. No attacks on SOBER-

128 were found that improved on the previous attacks.  More details are provided in [24].   
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Babbage et al. [1] found a GD attack on un-stuttered SOBER-t32 that exploited the fact that the most 

significant byte of a keystream word depended only on the most significant byte of the state L-words 

and some carries propagated by the addition operation. The computational complexity of the attack is 

approximately 2252. Babbage et al. noted, “… a cyclic shift at the end of the S-box would have 

destroyed the attack”. SOBER-128 incorporates this change, and is thought to resist this, and similar, 

attacks. Research regarding this type of analysis is ongoing. 

4.4.5.5 Timing Attacks and Power Attacks 

In this analysis, we consider only components of the algorithm where there is a variation in the 

“atomic” operations performed (such as XOR, addition and table lookups). All of the components in 

SOBER-128 require the same atomic operations, and there are no conditional executions other than in 

selection of Konst during key setup. We do not believe that SOBER-128 is vulnerable to timing 

attacks.  

We have not examined the ramifications of Simple Power Analysis attacks, in which the power 

consumption of operations is related to the Hamming weight of the operands. Differential Power 

Analysis and fault analysis would seem to be precluded under the requirement that IVs (and hence 

initial states) are not repeated. 

4.4.5.6 Algebraic Attacks 

Courtois and Meier [8] introduced algebraic attacks on stream ciphers. The feasibility of the attack 

depends on the algebraic degree (see Section 4.4.5.1). The attack is based on expressing the key stream 

bits as a multivariate polynomial function of the bits in the initial state. If the algebraic degree is d then 

the number of possible monomials in these polynomials is N = ∑1≤ i ≤ d 
nCi, where nCi is the value of “n 

choose i”. These monomials can be treated considered independent variables, so each output bit is a 

linear combination of N variables. If an attacker obtains N key stream bits, then they have a solvable 

system of equations. The solution reveals the initial state. This process of replacing the monomials with 

independent variables is called linearization. 

Further extensions of the attack can be found in [7,8]. The attack can be extended by finding 

multivariate functions in which the monomials are a product of both bits of the initial state and bits of 

the keystream.  If the monomials are of degree d in the initial state bits, then (after substitution of the 

keystream bits) the attacker has equations that are a linear combination of N possible monomials. The 

initial state can then be determined through linearization as above. This extension of the attack reduces 

the complexity significantly, since it was shown that if output bits depend on D bits of the LFSR state, 

then there exist such multivariate equations of degree d = D/2 in the initial state bits. Notice that there 

is a close relationship between the linear span (Section 4.4.5.1) and this attack. 

The data complexity of the attack is lower bounded by N. The process complexity is dominated by the 

time required to solve the linear system in N variables. In practice, this complexity is around 7⋅N 2.8. 
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In the case of SOBER-128, n = 544 and we predict that D > 48 and d > 24 (see Section 4.4.5.1). This 

corresponds to a data complexity of 4.56 × 1041 = 2138.3 and process complexity of around 2390. These 

complexities greatly exceed our bounds; consequently, we believe SOBER-128 resists algebraic 

attacks. 

4.4.5.7 Distinguishing Attacks 

Ekdahl and Johansson [15] found distinguishing attacks on both SOBER-t16 and unstuttered SOBER-

t32. The distinguishing attack on unstuttered SOBER-t32 requires around 287 output words from the 

NLF function. The attack exploits a correlation between (1) the XOR of adjacent bits of the NLF 

stream and (2) the XOR of corresponding bits of the state values.  The stronger NLF in SOBER-128 

significantly reduce the biases observed in [15], so that no bias (averaged over all possible Konst 

values) exceeds 0.000345, at which point the data complexity of the attack is greater than 2128 words. 

We have used specialised tools to further examine biases in the NLF output. No single-bit bias, or bias 

with consecutive pairs of bits, is large enough to allow the attack in [1] with less than 2128 words. We 

have found biases in the function: 

 F(X, Y) = NLF(X) ⊕ NLF(Y) ⊕ NLF(X⊕Y) 

(where X and Y are pseudorandom sets of 5 input words). These biases are on the edge of statistical 

significance with 244 inputs. This leads us to believe there might be a distinguishing attack requiring 

somewhat more than 2100 words, based on the 6-term recurrence relationship in [1]. 

 Research in this area is ongoing. 

Babbage et al. [1] extended the attack of Ekdahl and Johansson on unstuttered SOBER-t32 to an attack 

on full SOBER-t32. This attack does not concern SOBER-128. Babbage et al. also extended the attack 

of Ekdahl and Johansson on full SOBER-t16 to an attack on SOBER-t32. This attack exploits the non-

uniform distribution of  

wt = vt ⊕ ( s[t] ⊕ s[t+1] ⊕ s[t+6] ⊕ s[t+13] ⊕ s[t+16]). 

Over GF(232) given random inputs s[t], s[t+1], s[t+6], s[t+13], and s[t+16]. The attacker combine vt, 

vt+4 ,  vt+15,  vt+17,  to eliminate the L-words: 

Wt = α⋅vt ⊕  vt+4   ⊕   vt+15 ⊕   vt+17  = α⋅wt ⊕  wt+4   ⊕   wt+15 ⊕   wt+17. 

If the sequence {vt} is random, then the distribution of Wt will also be random. However, Babbage et 

al. noted that when {vt} is produced by un-stuttered SOBER-t32, then the distribution for Wt can be 

detected using around 2128 outputs.  
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Since SOBER-128 includes a stronger NLF incorporating a cyclic rotation, the non-uniformity of Wt 

for SOBER-128 may differ from the non-uniformity of Wt above. If there is any change in non-

uniformity, it is anticipated that the non-uniformity will be less rather than more, and so it is reasonable 

to predict that 2128 is a lower bound on the complexity of a similar distinguishing attack on SOBER-

128.  

4.4.6 Analysis of the MAC construction 

The MAC construction, although it is modeled after that of Helix [16], is entirely new to SOBER-128, 

so we cannot say with certainty that it does not introduce weaknesses. 

Clearly, with nonlinear plaintext feedback, the “LFSR” is no longer linear. Consequently the guarantee 

of a long period no longer applies; nevertheless, the state space is sufficiently large, and the linear 

diffusion good enough, that we believe this does not weaken the operation of the cipher. 

We make the following observations to justify the security of the MAC output: 

The MAC output is generated by the stream cipher operation after a process that is equivalent to 

loading an IV. Therefore any attack that uses the MAC to recover information about the LFSR state 

would be equivalent to a known-plaintext state recovery on the stream cipher component. 

Differential attacks on the stream cipher output after MAC accumulation are forbidden by the threat 

model, that is, reuse of the cipher for the same key/IV pair is forbidden. This was already a security 

requirement for safe use of the stream cipher (equally for all modes of use of a block cipher that require 

an IV), so we feel this is reasonable. 

The remaining avenue of attack would seem to be to exploit correlations between input plaintext and 

resulting ciphertext. We attempt to counter this by performing the feedback function in a manner that 

depends on unknown state and with very high nonlinearity, at the same time ensuring high diffusion of 

the result through the LFSR, by the placement of the feedback with respect to the characteristic 

polynomial. 

4.4.7 Analysis of the Key Loading  

The key loading was designed to ensure that (after all key material has been included), the following 

properties hold: 

• Every bit of the initial state is a non-linear function of every bit of the key and IV. 

• For any session key, the set of initial states corresponding to the IV cannot be restricted to a linear 

subspace of (GF(232))17. If the initial states could be restricted to a linear subspace, then the 

linearity of the LFSR would ensure that every state of the register is always in some linear 

subspace, and this may yield an attack.  
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• No word of the initial state is algebraically related to any subset of other words. 

• The key length is included to ensure that there are no equivalent secret keys or equivalent IVs.  

• No two secret keys (up to 128-bits in length) can result in the same initial key state. Also, given a 

key state, no two IVs (up to 128-bits in length) can result in the same initial state. 

We believe that these properties ensure that the key loading cannot be exploited. The key loading in 

previous SOBER proposals did have weaknesses. In [4], Bleichenbacher, Patel and Meier discuss 

weaknesses in IV setting in SOBER-II (assuming correctly that analogous problems appeared in S16). 

The results demonstrated that there is correlation between related messages generated from the same 

initial key material for SOBER-II. However, we note that no actual attack based on this correlation is 

proposed. Nevertheless, we agree with the conclusion that the correlation is undesirable, and this was 

fixed in the t-class SOBER ciphers. 

4.4.7.1 Weak Keys  

If the initial state is entirely zero then the algorithm will cycle forever producing the same NLF output: 

f(f(0) ⊕ Konst). The probability that a random state is entirely zero is 2-544. There are a maximum of 

2128+128 = 2256 possible initial states derived from the 2128 keys and 2128 IVs. Thus, the probability that 

any of these initial states is entirely zero is less than 2-288. In addition, we believe that the all zero state 

cannot occur using the stated key and IV sizes.  

5 Strengths and Advantages of SOBER-128 

SOBER-128 has the following strengths and advantages. 

• Speed: SOBER-128 is fast, and in particular, compared to RC4, key loading is quite fast. 

• SOBER-128 allows simultaneous encryption and message integrity 

• Requires a small amount of memory. 

• Flexibility in the processor size and implementation. 

• The design allows for the use of a secret key and non-secret IV.  

• LFSR-based (the properties of LFSRs are well-known). 

• Utilises an NLF in a manner that has been well studied. 

• Appears to provide more than adequate security. 
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6 Design Rationale of SOBER-128 

The design rationale fall under the following subheadings: 

1. The choice of LFSR and NLF taps. 

2. The choice of LFSR multiplication constants. 

3. The design criteria for the NLF, PFF, the function f and the S-box. 

4. The design criteria for the key loading. 

6.1 The LFSR and NLF Taps 

The set of exponents of the connection polynomial with non-zero coefficients is called the LFSR tapset, 

denoted T = {0,4,15,17}. Note that the LFSR tapset contains the indices for inputs to the linear 

recurrence, combined with the register length. The NLF tapset Γ = {0,1,6,13,16}, contains the inputs to 

the NLF. The values in a tapset are called taps. Given a tapset S, we define the positive difference set 

∆(S) to be the set of positive differences between the taps in that set. Consequently, 

∆(T)={2,4,11,13,15,17}, while ∆(Γ)={1,3,5,6,7,10,12,13,15,16}. Each of the tapsets is a full positive 

difference set (FPDS), meaning that no positive difference is repeated. Full positive difference sets are 

highly recommended for LFSR-based ciphers (see [18,28]). 

The first step in designing SOBER-128 was to choose the LFSR and NLF tapsets. The existence of GD 

attacks relies on the tapsets, rather than the individual operations with the NLF and LFSR. So it was 

possible to choose the tapsets for the resistance to GD attacks, and then consider the details of the 

LFSR and NLF. The tapsets were chosen using the following criteria: 

1. There must be four LFSR taps (including the feedback tap), and they form an FPDS. 

2. There must be five NLF taps and they form an FPDS. 

3. The sets ∆(T) and ∆(Γ) should share only a small number of differences. 

4. The choice of tapsets should provide good resistance to all GD attacks. 

It was decided to use the tapsets from SOBER-II and S16, also used in the t-class ciphers and Turing 

[25]. These tapsets have been well analysed and appear to provide good resistance against GD attacks.  

6.2 The Multiplication Constants in the LFSR 

Given the LFSR taps, it remains to determine what multiplication constants to use. There were three 

criteria used to select the multiplication constants: computation considerations, sequence period 

considerations and bit-wise polynomial weight considerations. 
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1. Computation considerations. The computation required to clock the LFSR is dominated by the 

computation required to perform the field multiplication operations. However, multiplication by 

one is performed for free as 1⋅x = x in GF(232). The first design criterion for the choice of 

multiplication constants is that two multiplication constants should be 1.  

2. Sequence length considerations. If the connection polynomial p(x) is primitive, then p2(x) is 

primitive and the L-stream has maximal sequence length. The second design criterion for the 

choice of multiplication constants is that the connection polynomial must be primitive.  

3. Bit-wise polynomial weight considerations. Several papers have shown that low-weight 

polynomials over GF(2) can be exploited in correlation-based attacks [6,18,29]. The third design 

criterion for the choice of multiplication constants is that the bit-wise connection polynomial has 

half the coefficients equal to one (excluding the leading coefficient).  

4. Implementation: Following the design of SNOW[14], we realise GF(232) as GF((28)4) for 

implementation efficiency. 

6.3 The Non-Linear Filter 

The following criteria were applied when designing the NLF. 

1. Memory Constraints. The processors for which SOBER-128 is designed are likely to have 

restrictions on the amount of ROM available. The design was restricted to a single S-box was 

containing only 256 entries where each entry is a 32-bit word.  

2. Balanced Output. To preserve the statistical properties of the L-stream, the NLF should be 

balanced (that is, every output word occurs with equal probability assuming that the state is 

uniformly distributed). Furthermore, we place an additional requirement that if any five of the six 

inputs (including Konst) are fixed then every value for the remaining input corresponds to a unique 

output. 

3. The Function f. The function f has a 32-bit input and a 32-bit output. The S-box in the function f is 

restricted to an 8-bit input (due to memory constraints on the NLF). We desired the output of f to 

be a non-linear function of all bits of st and st+16. This is achieved by using the eight MSBs of (st + 

st+16) as the input to the S-box. Thus, even the 24 LSBs of st and st+16 can affect (through carry 

propagation) the input to the S-box, and thus affect every output bit. To ensure that the “balanced 

output” criterion is satisfied, the function f was also required to be a one-to-one mapping (or 

permutation). Given the structure of f, this requirement is satisfied when the 8 MSBs output from 

the S-box form an 8-bit one-to-one function of the 8-bit input to the S-box. 

4. The S-box. The main criteria for the S-box are that it be non-linear, and that the 8 MSBs must 

form an 8-bit one-to-one function. The Skipjack S-box was used for the eight MSBs for three 

reasons. First, the Skipjack S-box is one-to-one; second, it is highly non-linear; and third, we 
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wished to avoid suspicion that we had designed a trapdoor in the S-box. The ISRC portion of the 

S-box was constructed as 24 mutually-uncorrelated, balanced and highly non-linear single bit 

functions of the 8-bit input. We specified the requirements for the S-box, and then selected the best 

conforming S-box from external sources. We believe that any S-box selected with the 

requirements would be equally secure, but are specifying the particular one given. 

6.4 The Key Loading 

The key loading was designed to be an efficient method of combining key material into the LFSR state 

without requiring much additional coding. The key loading utilises the LFSR and NLF, combining the 

output from the NLF back into a certain position in the register to provide non-linearity. The variables 

in the construction of the key loading were: 

• The position in the register to which key material is added in the Include() operation (the input 

position). 

• The position in the register to which the NLF output is XORed in the Diffuse() operation (the 

feedback position). 

• The number of Diffuse() operations applied after all key material has been included (the diffusion 

number). 

The input position and feedback position were chosen to minimise the number of Diffuse() operations 

required  to ensure that (after all key material has been included), the following properties hold: 

• Every bit of the initial state is a non-linear function of every bit of the key and IV. 

• For any session key, the set of initial states corresponding to the IV cannot be restricted to a linear 

subspace of (GF(232))17. 

• No word of the initial state is algebraically related to any subset of other words. 

Our analysis of SOBER-t32 revealed that the minimum diffusion number was 17, and this applied 

when the input position is r15 and the feedback position is r4 . Further analysis by Ditchl and 

Schafheutle [13] revealed a weakness when using 17 Diffuse() operations and when Konst = 0, 

although this weakness disappeared when 21 Diffuse() operations are used. SOBER-128 uses a 

stronger NLF and non-zero Konst during key loading to avoid this weakness. 

7 Performance 

Table 1 and Table 2 contain performance figures for SOBER-128. The figures are for optimized C-

language code and were obtained on a 2.8GHz Xeon running Linux and compiled with the command 

line gcc –O3 –march=i586. Assembler code can be expected to perform significantly better. 
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Keys and IVs are each 128 bits. MACs are 64 bits. These figures are for the “s128fast.c” source code 

available at our web site http://www.qualcomm.com.au . 

Key Loading IV Loading
MKeys/s cycles/key M IVs/s cycles/IV

2.05 1363.60 2.47 1134.00  

Table 1. Computation required for key loading and IV loading of SOBER-128. 
These results were obtained by averaging the measurements for a large number of 
keys.  

 

Length Operation Mbyte/second cycles/byte 

Continuous Stream encryption 572.2 4.89 

Stream encryption 476.2 5.87 

MAC generation 363.6 7.71 

MAC generation and encryption 259.7 10.78 

 

1600-byte 

blocks 

 Decryption and MAC generation 277.8 10.07 

Table 2. Performance figures for encryption, decryption and MAC generation. The 
block figures include the time for IV loading. 

 

The implementation requires 140 bytes of RAM. This accounts for: 

• the register and key state (34 words  or 136 bytes),  

• Konst (four bytes).  

Small memory implementation would omit the key state and just re-key the cipher for each IV; in this 

case 72 bytes of RAM are required. 

ROM memory is required for the field multiplication table (used in the LFSR), and the non-linear S-

box (used in the NLF); all these arrays are fixed. The multiplication table contains 256 words. The non-

linear S-box also contains 256 words. Thus 2048 bytes of ROM are required. 
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9 Appendix: Recommended C-language interface 

typedef struct { 

    WORD R[N];  /* Working storage for the shift register */ 

    WORD initR[N]; /* saved post-key register contents */  

    WORD konst;  /* key dependent constant */ 

} s128_ctx; 

 

/* interface definitions */ 

void s128_key(s128_ctx *c, UCHAR key[], int keylen);  /* set key */ 

void s128_IV(s128_ctx *c, UCHAR iv[], int ivlen);  /* set Init Vector */ 

void s128_stream(s128_ctx *c, UCHAR *buf, int nbytes); /* stream cipher */ 

void s128_maconly(s128_ctx *c, UCHAR *buf, int nbytes); /* accumulate MAC */ 

void s128_encrypt(s128_ctx *c, UCHAR *buf, int nbytes);  /* encrypt + MAC */ 

void s128_decrypt(s128_ctx *c, UCHAR *buf, int nbytes);  /* decrypt + MAC */ 
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void s128_finish(s128_ctx *c, UCHAR *buf, int nbytes); /* finalise MAC */ 

Calls to stream, maconly, encrypt and decrypt may be arbitrarily mixed (although we don’t recommend 

only encrypting data when other parts of the message are being authenticated). For correct operation, 

the sender and recipient must agree on which parts of the message receive which treatment. However, 

the buffering within segments doesn’t matter; a long message could be encrypted in a single buffer at 

the sender, and then the receiver could call decrypt many times, once for each word of data. 

For completely synchronous operation as a basic stream cipher, it suffices to call key, then stream as 

required. For all other operations, the communication should be broken into messages, and IV should 

be called at the beginning of each message, finish at the end of the message, and the other four calls 

made in an appropriate application-defined sequence in between. IVs should never be reused, but IVs 

are otherwise opaque to the system, and could easily be based on counters, timestamps, or whatever. 

Our reference implementation for these primitives requires that nbytes be a multiple of four for all of 

these calls. It is straightforward to take any odd bit or byte lengths and define a method to handle them 

correctly, though. We choose not to specify such an interface here, because it almost invariably ends up 

being byte- or bit- order specific. 

We recommend the following pseudocode for encryption of individual plaintext words p that are to be 

partially authenticated and partially encrypted (to form ciphertext c) under control of bitmasks Ma and 

Me respectively: 

1. zero a 4-byte buffer z, and call stream to generate encryption keystream bytes zi, where (0 ≤ i 

≤ 3). 

2. set ci = pi ⊕ (zi ∧ (Me)i) , which is the output ciphertext. 

3. set zi = pi ∧ (Ma)i, then call maconly to incorporate z into the MAC. 

For decryption, just reverse the roles of c and p in step 2 above. This procedure is only slightly less 

efficient than processing the data word-at-a-time, because it steps the LFSR twice instead of once, but 

it allows arbitrary mixing of encryption and authentication, and can be used to handle any length of 

input data. 

10 Appendix: The S-box Entries 

The entries in the NLF S-box are given below in hexadecimal form. 

    unsigned long SBox[256] = { 
    0xa3aa1887, 0xd65e435c, 0x0b65c042, 0x800e6ef4, 
    0xfc57ee20, 0x4d84fed3, 0xf066c502, 0xf354e8ae, 
    0xbb2ee9d9, 0x281f38d4, 0x1f829b5d, 0x735cdf3c, 
    0x95864249, 0xbc2e3963, 0xa1f4429f, 0xf6432c35, 
    0xf7f40325, 0x3cc0dd70, 0x5f973ded, 0x9902dc5e, 
    0xda175b42, 0x590012bf, 0xdc94d78c, 0x39aab26b, 
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    0x4ac11b9a, 0x8c168146, 0xc3ea8ec5, 0x058ac28f, 
    0x52ed5c0f, 0x25b4101c, 0x5a2db082, 0x370929e1, 
    0x2a1843de, 0xfe8299fc, 0x202fbc4b, 0x833915dd, 
    0x33a803fa, 0xd446b2de, 0x46233342, 0x4fcee7c3, 
    0x3ad607ef, 0x9e97ebab, 0x507f859b, 0xe81f2e2f, 
    0xc55b71da, 0xd7e2269a, 0x1339c3d1, 0x7ca56b36, 
    0xa6c9def2, 0xb5c9fc5f, 0x5927b3a3, 0x89a56ddf, 
    0xc625b510, 0x560f85a7, 0xace82e71, 0x2ecb8816, 
    0x44951e2a, 0x97f5f6af, 0xdfcbc2b3, 0xce4ff55d, 
    0xcb6b6214, 0x2b0b83e3, 0x549ea6f5, 0x9de041af, 
    0x792f1f17, 0xf73b99ee, 0x39a65ec0, 0x4c7016c6, 
    0x857709a4, 0xd6326e01, 0xc7b280d9, 0x5cfb1418, 
    0xa6aff227, 0xfd548203, 0x506b9d96, 0xa117a8c0, 
    0x9cd5bf6e, 0xdcee7888, 0x61fcfe64, 0xf7a193cd, 
    0x050d0184, 0xe8ae4930, 0x88014f36, 0xd6a87088, 
    0x6bad6c2a, 0x1422c678, 0xe9204de7, 0xb7c2e759, 
    0x0200248e, 0x013b446b, 0xda0d9fc2, 0x0414a895, 
    0x3a6cc3a1, 0x56fef170, 0x86c19155, 0xcf7b8a66, 
    0x551b5e69, 0xb4a8623e, 0xa2bdfa35, 0xc4f068cc, 
    0x573a6acd, 0x6355e936, 0x03602db9, 0x0edf13c1, 
    0x2d0bb16d, 0x6980b83c, 0xfeb23763, 0x3dd8a911, 
    0x01b6bc13, 0xf55579d7, 0xf55c2fa8, 0x19f4196e, 
    0xe7db5476, 0x8d64a866, 0xc06e16ad, 0xb17fc515, 
    0xc46feb3c, 0x8bc8a306, 0xad6799d9, 0x571a9133, 
    0x992466dd, 0x92eb5dcd, 0xac118f50, 0x9fafb226, 
    0xa1b9cef3, 0x3ab36189, 0x347a19b1, 0x62c73084, 
    0xc27ded5c, 0x6c8bc58f, 0x1cdde421, 0xed1e47fb, 
    0xcdcc715e, 0xb9c0ff99, 0x4b122f0f, 0xc4d25184, 
    0xaf7a5e6c, 0x5bbf18bc, 0x8dd7c6e0, 0x5fb7e420, 
    0x521f523f, 0x4ad9b8a2, 0xe9da1a6b, 0x97888c02, 
    0x19d1e354, 0x5aba7d79, 0xa2cc7753, 0x8c2d9655, 
    0x19829da1, 0x531590a7, 0x19c1c149, 0x3d537f1c, 
    0x50779b69, 0xed71f2b7, 0x463c58fa, 0x52dc4418, 
    0xc18c8c76, 0xc120d9f0, 0xafa80d4d, 0x3b74c473, 
    0xd09410e9, 0x290e4211, 0xc3c8082b, 0x8f6b334a, 
    0x3bf68ed2, 0xa843cc1b, 0x8d3c0ff3, 0x20e564a0, 
    0xf8f55a4f, 0x2b40f8e7, 0xfea7f15f, 0xcf00fe21, 
    0x8a6d37d6, 0xd0d506f1, 0xade00973, 0xefbbde36, 
    0x84670fa8, 0xfa31ab9e, 0xaedab618, 0xc01f52f5, 
    0x6558eb4f, 0x71b9e343, 0x4b8d77dd, 0x8cb93da6, 
    0x740fd52d, 0x425412f8, 0xc5a63360, 0x10e53ad0, 
    0x5a700f1c, 0x8324ed0b, 0xe53dc1ec, 0x1a366795, 
    0x6d549d15, 0xc5ce46d7, 0xe17abe76, 0x5f48e0a0, 
    0xd0f07c02, 0x941249b7, 0xe49ed6ba, 0x37a47f78, 
    0xe1cfffbd, 0xb007ca84, 0xbb65f4da, 0xb59f35da, 
    0x33d2aa44, 0x417452ac, 0xc0d674a7, 0x2d61a46a, 
    0xdc63152a, 0x3e12b7aa, 0x6e615927, 0xa14fb118, 
    0xa151758d, 0xba81687b, 0xe152f0b3, 0x764254ed, 
    0x34c77271, 0x0a31acab, 0x54f94aec, 0xb9e994cd, 
    0x574d9e81, 0x5b623730, 0xce8a21e8, 0x37917f0b, 
    0xe8a9b5d6, 0x9697adf8, 0xf3d30431, 0x5dcac921, 
    0x76b35d46, 0xaa430a36, 0xc2194022, 0x22bca65e, 
    0xdaec70ba, 0xdfaea8cc, 0x777bae8b, 0x242924d5, 
    0x1f098a5a, 0x4b396b81, 0x55de2522, 0x435c1cb8, 
    0xaeb8fe1d, 0x9db3c697, 0x5b164f83, 0xe0c16376, 
    0xa319224c, 0xd0203b35, 0x433ac0fe, 0x1466a19a, 
    0x45f0b24f, 0x51fda998, 0xc0d52d71, 0xfa0896a8, 
    0xf9e6053f, 0xa4b0d300, 0xd499cbcc, 0xb95e3d40, 
    }; 
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11 Appendix: The Multiplication Table 

The entries in the multiplication table Multab[]are given below in hexadecimal form. 

 
    unsigned long Multab[256] = { 
    0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9, 
    0x97AC41D1, 0x478702B6, 0x7AFAC71F, 0xAAD18478, 
    0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746, 
    0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697, 
    0xC62A4993, 0x16010AF4, 0x2B7CCF5D, 0xFB578C3A, 
    0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB, 
    0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5, 
    0x32938AAD, 0xE2B8C9CA, 0xDFC50C63, 0x0FEE4F04, 
    0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2, 
    0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613, 
    0xA2411084, 0x726A53E3, 0x4F17964A, 0x9F3CD52D, 
    0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC, 
    0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51, 
    0x90D29A29, 0x40F9D94E, 0x7D841CE7, 0xADAF5F80, 
    0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE, 
    0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F, 
    0xCFA869D6, 0x1F832AB1, 0x22FEEF18, 0xF2D5AC7F, 
    0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE, 
    0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90, 
    0x3B11AAE8, 0xEB3AE98F, 0xD6472C26, 0x066C6F41, 
    0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC, 
    0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D, 
    0x6A97A2AA, 0xBABCE1CD, 0x87C12464, 0x57EA6703, 
    0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2, 
    0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14, 
    0x9950BA6C, 0x497BF90B, 0x74063CA2, 0xA42D7FC5, 
    0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB, 
    0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A, 
    0xC8D6B22E, 0x18FDF149, 0x258034E0, 0xF5AB7787, 
    0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656, 
    0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568, 
    0x3C6F7110, 0xEC443277, 0xD139F7DE, 0x0112B4B9, 
    0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748, 
    0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699, 
    0xB008500E, 0x60231369, 0x5D5ED6C0, 0x8D7595A7, 
    0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476, 
    0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB, 
    0x829BDAA3, 0x52B099C4, 0x6FCD5C6D, 0xBFE61F0A, 
    0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34, 
    0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5, 
    0x1249408A, 0xC26203ED, 0xFF1FC644, 0x2F348523, 
    0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2, 
    0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC, 
    0xE6F083B4, 0x36DBC0D3, 0x0BA6057A, 0xDB8D461D, 
    0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0, 
    0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61, 
    0xB7768BF6, 0x675DC891, 0x5A200D38, 0x8A0B4E5F, 
    0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E, 
    0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E, 
    0x8B19FAE6, 0x5B32B981, 0x664F7C28, 0xB6643F4F, 
    0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71, 
    0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0, 
    0xDA9FF2A4, 0x0AB4B1C3, 0x37C9746A, 0xE7E2370D, 
    0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC, 
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    0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2, 
    0x2E26319A, 0xFE0D72FD, 0xC370B754, 0x135BF433, 
    0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5, 
    0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24, 
    0xBEF4ABB3, 0x6EDFE8D4, 0x53A22D7D, 0x83896E1A, 
    0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB, 
    0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566, 
    0x8C67211E, 0x5C4C6279, 0x6131A7D0, 0xB11AE4B7, 
    0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789, 
    0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658, 
}; 


