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Abstract. We propose a simple algorithm to select group generators
suitable for pairing-based cryptosystems. The selected parameters are
shown to favor implementations of the Tate pairing that are at once con-
ceptually simple and very efficient, with an observed performance about
2 to 10 times better than previously reported implementations.
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1 Introduction

Pairing-based cryptosystems are currently one of the most active areas of re-
search in elliptic curve cryptography, as we see from the abundance of recent
literature on the subject. Computation of the Tate pairing over certain elliptic
curve groups is a central operation — and often a bottleneck — in such systems.

A subgroup G of (the group of points of) an elliptic curve E(Fq) is said to
have embedding degree k if its order r divides qk − 1, but does not divide qi − 1
for all 0 < i < k. Given a curve E(Fq) known to contain a subgroup of prime
order r with embedding degree k, we investigate the problem of finding suitable
points P ∈ E(Fq) of order r and Q ∈ E(Fqk) linearly independent from P , such
that the restricted Tate pairing e : 〈P 〉 × 〈Q〉 → F∗qk is efficiently computable.

Efficient algorithms for supersingular curves have been proposed [1, 8, 11].
However, there is a widespread feeling that supersingular curves should be
avoided whenever possible, as they may be more susceptible to attacks than
ordinary curves. Additionally, choices of k are very limited for supersingular
curves, and the larger values only occur over fields of small characteristic [15,
section 5.2.2], which are more vulnerable to Coppersmith’s discrete logarithm at-
tack [6]. Protecting against this attack increases bandwidth requirements (larger
fields), and while this may not be an issue in some situations, it is a central con-
cern in many cases (e.g. short BLS signatures [5]). Thus we would like to find



similar optimizations for ordinary curves over fields of large characteristics con-
taining subgroups of manageable embedding degree [2, 7, 17].

We show how to select groups in nonsupersingular curves where many opti-
mizations proposed for supersingular curves [1] have a counterpart. In particular,
we show how to perform elimination of irrelevant factors and denominators dur-
ing the computation of the Tate pairing, which is rendered conceptually simpler
and substantially more efficient.

This paper is organized as follows. Section 2 recalls some concepts essential
to the discussion of pairings. Section 3 describes our group selection algorithm.
Section 4 examines how the selected groups lead to efficient implementation of
the Tate pairing. We present our results in section 5.

2 Preliminaries

We briefly review the most relevant concepts underlying pairing-based cryptog-
raphy. In what follows, let E(Fq) be a curve containing a subgroup of prime
order r with embedding degree k.

2.1 The Frobenius endomorphism

The Frobenius endomorphism is the mapping Φ : E(Fqk) → E(Fqk), (X, Y ) 7→
(Xq, Y q). Thus a point P ∈ E(Fqk) is defined over Fqi if and only if Φi(P ) = P ;
in particular, Φk(P ) = P for any P ∈ E(Fqk).

The characteristic polynomial of the Frobenius endomorphism is the polyno-
mial π(u) = u2−tu+q. The value t is called the trace of the Frobenius endomor-
phism, not to be confused with the trace map defined below. The polynomial π
factorizes as π(u) = (u−1)(u−q) (mod r), so the Frobenius admits an eigenvec-
tor Q of order r associated to q (mod r), i.e. Φ(Q) = [q]Q and [r]Q = O. Since,
by definition, r | qk−1 but r - qi−1 for any 0 < i < k, clearly r | (qk−1)/(q−1)
and hence [(qk − 1)/(q − 1)]Q = O.

2.2 The trace map

The trace map is the mapping tr : E(Fqk) → E(Fq) defined as tr(P ) = P +
Φ(P ) + Φ2(P ) + · · · + Φk−1(P ). We have tr(Φ(P )) = Φ(tr(P )) = tr(P ) for any
P ∈ E(Fqk), (which shows that the the range of the map is indeed E(Fq)).

Lemma 1. If k is coprime to the order of E(Fqk), E(Fq) is the eigenspace of
the trace map with eigenvalue k.

Proof. Clearly, all points R ∈ E(Fqk) defined over Fq satisfy tr(R) = [k]R, hence
we only need to show that all points R ∈ E(Fqk) such that tr(R) = [k]R are
defined over Fq. Indeed, if tr(R) = [k]R, then Φ(tr(R)) = Φ([k]R) = [k]Φ(R),
but since Φ(tr(R)) = tr(R), it follows that [k]Φ(R) = tr(R) = [k]R and thus
[k](Φ(R)−R) = O. As k is coprime to the order of R, necessarily Φ(R)−R = O,
hence R must be defined over Fq, that is, R ∈ E(Fq). Therefore, E(Fq) is the
eigenspace of the trace map with eigenvalue k. ut
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For an eigenvector Q of order r associated to the eigenvalue q (mod r) of the
Frobenius, the trace map satisfies tr(Q) = Q + [q]Q + [q2]Q + · · · + [qk−1]Q =
[(qk − 1)/(q − 1)]Q = O, as we pointed out above.

2.3 The twist of a curve

The twist of a curve given in short Weierstraß form E : y2 = x3 + ax + b is the
curve E′ : y2 = x3 + a′x + b′ with a′ = v2a and b′ = v3b for some quadratic
non-residue v ∈ Fq. The orders of the groups of rational points of these curves
satisfy the relation #E(Fq) + #E′(Fq) = 2q + 2 [3, section III.3].

2.4 Divisors and the Tate pairing

Let E(Fq) be an elliptic curve containing a subgroup of prime order r with
embedding degree k. A divisor4 on E is a formal sum D =

∑
P∈E(Fqk ) nP (P )

where nP ∈ Z.
The set of points P ∈ E(Fqk) such that nP 6= 0 is called the support of D.

The degree of D is the value deg(D) =
∑

P nP . The null divisor, denoted 0, has
all nP = 0. The sum of two divisors D =

∑
P nP (P ) and D′ =

∑
P n′P (P ) is the

divisor D + D′ =
∑

P (nP + n′P )(P ).
Given a rational function f : E(Fqk) → Fqk , the divisor of f is the divisor

(f) =
∑

P ordP (f)(P ) where ordP (f) is the multiplicity of f at P . It follows
from this definition that (fg) = (f) + (g) and (f/g) = (f) − (g) for any two
functions f and g defined on E; moreover, (f) = 0 if and only if f is a nonzero
constant.

We say two divisors D and D′ are equivalent, D′ ∼ D, if there exists a
function g such that D′ = D + (g). For any function f and any divisor D =∑

P nP (P ) of degree zero, we define f(D) =
∏

P f(P )nP .
The Tate pairing is a bilinear, non-degenerate mapping e : E(Fq)×E(Fqk)→

F∗qk . Specifically, let P ∈ E(Fq) be a point of order r, let fr be a function whose
divisor satisfies (fr) ∼ r(P ) − r(O), let Q ∈ E(Fqk), and let D ∼ (Q) − (O)
be a divisor whose support is disjoint from the support of (fr). We define the
(reduced) Tate pairing as

e(P,Q) = fr(D)(q
k−1)/r.

One can show [10] that this mapping is indeed bilinear, and also non-degenerate
for linearly independent P and Q.

The Tate pairing is usually defined as simply fr(D), but this is only defined
up to r-th powers. Raising f(D) to (qk − 1)/r not only produces a unique value
in F∗qk , it also ensures that the result is either 1 or an element of order r. This
property is useful in efficiently preventing small subgroup attacks [14]. Indeed,

4 Divisors are usually defined over the algebraic closure Fq of Fq subject to additional
condition that only finitely many nP are nonzero. However, we restrict our attention
to divisors defined over Fqk , so the total number of nP coefficients is itself finite.
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in several protocols Q is computed as the hash of some data and thus its order
is a priori unknown. In general this would necessitate multiplying Q by a large
cofactor to avoid small subgroup attacks. However, checking the pairing value
alone is sufficient.

3 Parameter Generation

The method we propose to select pairing-friendly groups is based upon the fol-
lowing observation.

Theorem 1 (Group selection). Suppose E(Fq) has a subgroup of prime order
r > 2 with even embedding degree k = 2d for some d > 0, such that r and k are
coprime. Let R be a random point of order r on E(Fqk) such that tr(R) 6= O,
and let Q = [k]R − tr(R), so that tr(Q) = O. If Q = (X, Y ), then Xqd−1 = 1
(i.e. X ∈ Fqd) and Y qd−1 = −1.

Proof. Our strategy is to compute and analyze the properties of the eigenvalues
and eigenvectors of the Frobenius endomorphism Φ.

As we saw in section 2.1, the characteristic polynomial of the Frobenius π
factorizes mod r as π(u) = (u − 1)(u − q) (mod r). Let P0 be a point of order
r over Fq and let Q0 be a point of order r over Fqk such that Φ(P0) = P0 and
Φ(Q0) = [q]Q0. The points P0 and Q0 form a basis for E(Fqk)[r]. As we saw in
section 2.2, tr(P0) = [k]P0 and tr(Q0) = O.

Now let R = [m1]P0 + [m2]Q0. Then tr(R) = [m1] tr(P0) + [m2] tr(Q0) =
[m1][k]P0, and [k]R − tr(R) = [k][m1]P0 + [k][m2]Q0 − [m1][k]P0 = [k][m2]Q0.
In other words, {tr(R), [k]R− tr(R)} is a basis equivalent to {P0, Q0}.

Finally, qd ≡ −1 (mod r), because q2d ≡ 1 (mod r) and 2d = k is the
smallest integer for which this holds. Thus Φd(Q0) = −Q0, and for Q = [k]R −
tr(R) it follows that Φd(Q) = Φd([k][m2]Q0) = −[k][m2]Q0 = −Q. Writing
Q = (X, Y ) so that −Q = (X,−Y ) for a suitable Weierstraß form, we conclude
that Φd(X, Y ) = (Xqd

, Y qd

) = (X,−Y ). Therefore, Xqd−1 = 1 (i.e. X ∈ Fqd)
and Y qd−1 = −1. ut

Theorem 1 suggests this algorithm:

Group selection algorithm:

1. Randomly generate a point R ∈ E(Fqk) of order r.
2. Compute P ← tr(R).
3. Compute Q← [k]R− P .
4. If P = O or Q = O, goto step 1.

We view the domain of the Tate pairing as 〈P 〉 × 〈Q〉. Notice that P = O or
Q = O occurs in step 4 with negligible probability, so for curves used in practice
it may be safe to skip this step. We note that Boneh and Franklin [4] also propose
hashing to points of trace zero according to the formula in step 3.
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An efficiency bottleneck seems to arise in step 1 of algorithm 3, in that the
point R must be of order r. This usually means that a random point on E(Fqk)
must be multiplied by a large cofactor h = #E(Fqk)/r2 ≈ qk−2. In fact, in most
cases a much smaller cofactor can be be used, as established by the following
theorem.

Theorem 2 (Small cofactors). Let R0 be a random point on E(Fqk) where
k = 2d, and let h′ = #E(Fqd)/r. Assume that gcd(r, h′) = 1. Then R′ = [h′]R0

can be used instead of a random point R ∈ E(Fqk) of order r in step 1 of
algorithm 3.

Proof. Let tm = αm + βm, where α and β satisfy α + β = t, αβ = q (t being
the trace of the Frobenius, defined below). It is known [15, Theorem 2.15] that
#E(Fqm) = qm + 1− tm for any m > 0. A simple inspection shows that t2m =
t2m−2qm and thus #E(Fqk) = (qd+1−td)(qd+1+td). Therefore any R0 ∈ E(Fqk)
can be written as R0 = U + V , where U is in a subgroup of order qd + 1 − td
and V is in a subgroup of order qd + 1 + td.

The Frobenius equation for Φm is [3, section III.3]:

Φ2m − [tm]Φm + [qm] = [0],

meaning that, for any point P ∈ E(Fq), Φ2m(P ) − [tm]Φm(P ) + [qm]P = O.
Hence for k = 2d the Frobenius equation is Φk − [td]Φd + [qd] = [0], which, since
Φk(Q) = Q for all Q ∈ E(Fqk), reduces to:

[td]Φd = [qd + 1].

In other terms, [td](Φd(Q)±Q) = [qd+1±td]Q for any Q ∈ E(Fqk). Therefore
Φd(U) = U and Φd(V ) = −V , given the orders of their respective subgroups, so
we can write U = (XU , YU ) and V = (XV , iYV ), where XU , YU , XV , YV ∈ Fqd

and i2 ∈ Fqd is a quadratic non-residue in Fqd (and thus satisfies Φd(i) = −i).
Notice that tr(V ) = O.

Let h′ = #E(Fqd)/r = (qd + 1− td)/r, and let R′ = [h′]R0 = [h′]U + [h′]V .
This establishes that U ′ = [h′]U is an element of order r, and thus either Φ(U ′) =
U ′ or Φ(U ′) = [q]U ′. But Φd([h′]U) = [h′]U , so necessarily Φ(U ′) = U ′, that is,
U ∈ E(Fq), which implies that tr(U ′) = [k]U ′. Notice that V ′ = [h′]V satisfies
Φd(V ′) = −V ′.

Therefore, Q′ = [k]R′− tr(R′) = [k]U ′− tr(U ′) + [k]V ′− tr(V ′) = [k]V ′, and
hence Φd(Q′) = −Q′. Besides, [r]Q′ 6= O unless Q′ = O. This establishes that
Q′ is a suitable replacement for Q in algorithm 3; equivalently, R′ is a suitable
replacement for R as defined in step 1 of that algorithm. ut

According to this result, the actual cofactor can be h′ ≈ qk/2−1, thus halving
the cofactor multiplication time as compared to the full h = #E(Fqk) ≈ qk−2.

A nice observation is that, if d is odd (so that a quadratic non-residue chosen
from Fq exists in Fqd), multiplication by h′ maps onto a group isomorphic to
the twist E′(Fqd). This suggests the strategy of creating and manipulating Q′
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directly as a point on E′(Fqd) for operations like key pair generation and point
transmission over a communications channel, and mapping back to a pair of
coordinates in Fqk for immediate consumption by the pairing algorithm. This
avoids E(Fqk) arithmetic altogether and halves bandwidth requirements. For in-
stance, if k = 2 pairing-based protocols can be implemented using only standard
E(Fq) arithmetic, readily available in optimized form in many program libraries,
plus support for simple Fq2 arithmetic.

We note that although we see no potential weakness in the derivation of both
generators from a single parameter R, if this is a concern any other P ′ such that
e(P ′, Q) 6= 1 can be used in step 2.

4 Tate Pairing Computation

We now review Miller’s algorithm [16] for computing the Tate pairing and de-
scribe how to optimize it for the subgroups constructed according to our algo-
rithm.

Assume that curve E(Fq) has a subgroup of prime order r and embedding
degree k > 1. Let P ∈ E(Fq)[r] and Q ∈ E(Fqk) be linearly independent points.
The Tate pairing of order r is defined as e(P,Q) = f(D)(q

k−1)/r, where D ∼
(Q)− (O) and (f) = r(P )− r(O). Computation of the Tate pairing is helped by
the following observations.

Lemma 2. For any d > 1 such that d | k, qk/d − 1 is a factor of (qk − 1)/r.

Proof. We start with the factorization qk − 1 = (qk/d − 1)
∑d−1

i=0 qik/d. Since the
embedding degree is k > 1,we have r | qk−1 and r - qk/d−1. Thus r |

∑d−1
i=0 qik/d,

and hence qk/d − 1 survives as a factor of (qk − 1)/r. ut

The next theorem generalizes a result originally established only for certain
supersingular curves [1, Theorem 1]:

Theorem 3. e(P,Q) = f(Q)(q
k−1)/r for Q 6= O.

Proof. Suppose R 6∈ {O,−P} is some point on the curve. Let f ′ be a func-
tion with divisor (f ′) = r(P + R) − r(R) ∼ (f), so that e(P,Q) = f ′((Q) −
(O))(q

k−1)/r. Since P has coordinates in Fq, and because f ′ does not have a zero
or pole at O, we know that f ′(O) ∈ F∗q . Thus f ′((Q)− (O)) = f ′(Q)/f ′(O). By
Fermat’s Little Theorem for finite fields [13, lemma 2.3], f ′(O)q−1 = 1. Lemma 2
then ensures that f ′(O)(q

k−1)/r = 1. Hence, f ′(O) is an irrelevant factor and can
be omitted from the Tate pairing computation, i.e. e(P,Q) = f ′(Q)(q

k−1)/r. Now
consider P,Q to be fixed and R to be variable. Since the above statement holds
for all R 6∈ {O,−P} we have that f ′(Q) is a constant when viewed as a function
of R, coinciding with the value of f(Q). Therefore, e(P,Q) = f(Q)(q

k−1)/r. ut

Notice that the special case Q = O where theorem 3 does not apply is trivially
handled, since e(P,O) = 1. But of greater importance is the next corollary:
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Corollary 1 (Irrelevant factors). One can freely multiply or divide f(Q) by
any nonzero Fqk/d factor without affecting the pairing value.

In what follows, which we quote directly from Barreto et al. [1, Theorem 2],
for each pair U, V ∈ E(Fq) we define gU,V : E(Fqk) → Fqk to be (the equation
of) the line through points U and V (if U = V , then gU,V is the tangent to the
curve at U , and if either one of U, V is the point at infinity O, then gU,V is the
vertical line at the other point). The shorthand gU stands for gU,−U . In affine
coordinates, for U = (xU , yU ), V = (xV , yV ) and Q = (x, y), we have:

gU,V (O) = 1.

gU,U (Q) = λ1(x− xU ) + yU − y, Q 6= O.

gU,V (Q) = λ2(x− xU ) + yU − y, Q 6= O, U 6= V.

gU (Q) = x− xU , Q 6= O.

where

λ1 =
3x2

U + a

2yU
, λ2 =

yV − yU

xV − xU
.

Lemma 3 (Miller’s formula). Let P be a point on E(Fq) and fc be a function
with divisor (fc) = c(P )− (cP )− (c− 1)(O), c ∈ Z. For all a, b ∈ Z, fa+b(Q) =
fa(Q) · fb(Q) · gaP,bP (Q)/g(a+b)P (Q).

Proof. See Barreto et al. [1, Theorem 2]. ut

Notice that (f0) = (f1) = 0, so that by corollary 1 we can set f0(Q) =
f1(Q) = 1. Furthermore, fa+1(Q) = fa(Q) · gaP,P (Q)/g(a+1)P (Q) and f2a(Q) =
fa(Q)2 · gaP,aP (Q)/g2aP (Q). Recall that r > 0 is the order of P . Let its binary
representation be r = (rt, . . . , r1, r0) where ri ∈ {0, 1} and rt 6= 0. Miller’s
algorithm computes f(Q) = fr(Q), Q 6= O by coupling the above formulas with
the double-and-add method to calculate rP :

Miller’s algorithm:

set f ← 1 and V ← P
for i← t− 1, t− 2, . . . , 1, 0 do {

set f ← f2 · gV,V (Q)/g2V (Q) and V ← 2V
if ri = 1 then set f ← f · gV,P (Q)/gV +P (Q) and V ← V + P

}
return f

Miller’s algorithm can be simplified even further if k is even, as established
by the following generalization of a previous result [1, Theorem 2]:

Theorem 4 (Denominator elimination). If k is even and coprime to r and
P ∈ E(Fq)[r], the g2V and gV +P denominators in Miller’s algorithm can be
discarded altogether without changing the value of e(P,Q) for any Q ∈ E(Fqk)
such that Φk/2(Q) = −Q and r divides the order of Q.
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Proof. We will show that the denominators become unity at the final powering
in the Tate pairing. The denominators in Miller’s formula have the form gU (Q) ≡
x−u, where x ∈ Fqk/2 (Theorem 1) is the abscissa of Q and u ∈ Fq is the abscissa
of U . Hence gU (Q) ∈ Fqk/2 . These denominators are raised to the exponent
(qk − 1)/r at the final powering. But by Lemma 2, this exponent contains a
factor qk/2 − 1, causing all denominators to become unity. Therefore, they can
be discarded without changing the pairing value. ut

To illustrate the effectiveness of our method for the computation of the
Tate pairing, we compare our results with those of Izu and Takagi [12] for non-
supersingular curves with k = 2 and k = 6.

The computation of e(P,Q) requires all of the intermediate points computed
during the scalar multiplication [r]P . If P is fixed, these can be precalculated
and stored, with considerable savings. In this case affine coordinates are faster,
and require less storage. Otherwise we follow [12] and use projective coordinates.
Additional savings could be obtained with the method of Eisentraeger et al. [9],
but we have not implemented it.

Table 1 summarizes the results, where M denotes the computing time of a
multiplication in Fq, and assuming that the time taken by one squaring is about
0.8M .

Table 1. Complexity of computing the Tate pairing.

algorithm coordinates k = 2, |q| = 512 k = 6, |q| = 171

[12] projective 20737.6M 33078.3M

ours, w/o precomp. projective 4153.2M 15633.0M

ours, with precomp. projective 2997.6M 14055.4M

ours, with precomp. affine 1899.6M 11110.2M

5 Conclusions

We have shown how to select cryptographically significant groups where the Tate
pairing can be efficiently implemented. Our algorithm is faster than previously
reported implementations [12] by a factor of 2 to 10.

Specifically, we have argued that the Tate Pairing e(P,Q) is most efficiently
calculated when P ∈ E(Fq)[r] and Q ∈ E(Fk

q ) satisfies Φk/2(Q) = −Q. We
have also provided an algorithm to choose such P and Q so that e(P,Q) is
non-degenerate.

An interesting line of further research is the extension of our methods to
hyperelliptic curves, possibly with enhancements. This has already been done
for the supersingular case [8].

We wish to thank Florian Heß for suggesting the elegant proof of theorem 1,
and Steven Galbraith for his valuable comments about this work.
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