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Abstract. We propose a simple algorithm to select group generators
suitable for pairing-based cryptosystems. The selected parameters are
shown to favor implementations of the Tate pairing that are at once con-
ceptually simple and efficient, with an observed performance about 2 to
10 times better than previously reported implementations, depending on
the embedding degree. Our algorithm has beneficial side effects: various
non-pairing operations become faster, and bandwidth may be saved.
Keywords: pairing-based cryptosystems, group generators, elliptic
curves, Tate pairing.

1 Introduction

Pairing-based cryptosystems are currently one of the most active areas of re-
search in elliptic curve cryptography, as we see from the abundance of recent
literature on the subject. This interest is not unfounded, as previously unsolved
problems have been cracked by using pairings.

To date, all suitable pairings are based on the Tate pairing over certain elliptic
curve groups. Unfortunately, the Tate pairing is an expensive operation and is
often the bottleneck in such systems.

Efficient pairings for supersingular curves have been proposed [1, 8, 11]. How-
ever, there is a widespread feeling that supersingular curves should be avoided
whenever possible, as they may be more susceptible to attacks than ordinary
curves. Moreover, for technical reasons, one is often forced to use fields of small
characteristic [15, section 5.2.2], which are more vulnerable to Coppersmith’s
discrete logarithm attack [6]. Protecting against this attack increases bandwidth
requirements (larger fields), and while this may not be an issue in some situa-
tions, it is a central concern in many cases (e.g. short BLS signatures [5]).

Thus we would like to find similar optimizations for ordinary curves over
fields of large characteristics containing subgroups of manageable embedding
degree [2, 7, 17].



We show how to select groups in nonsupersingular curves where many op-
timizations proposed for supersingular curves [1] have a counterpart, and ob-
tain running times that are up to ten times better than previously reported
results [12]. In particular, we show how to perform elimination of irrelevant fac-
tors and denominators during the computation of the Tate pairing, which is
rendered conceptually simpler and substantially more efficient. Additionally, it
turns out that operations of pairing-based schemes that do not rely on pairings,
such as key generation, become more efficient with our choice of groups.

This paper is organized as follows. Section 2 recalls some concepts essential
to the discussion of pairings. Section 3 describes our group selection algorithm.
Section 4 explains how the selected groups lead to efficient implementation of
the Tate pairing. We compare our results with previous work in Section 5, and
present our conclusions in Section 6.

2 Preliminaries

A subgroup G of (the group of points of) an elliptic curve E(Fq) is said to have
embedding degree k if its order r divides qk − 1, but does not divide qi − 1 for
all 0 < i < k. We assume k > 1. The group E[r] ∼= Fr×Fr of r-torsion points
lies in E(Fqk ).

In what follows, let Fq be a field of odd characteristic and E(Fq) an elliptic
curve containing a subgroup of prime order r with embedding degree k, and
assume that r and k are coprime.

2.1 The twist of a curve

The twist of a curve E(Fq) given in short Weierstraß form y2 = x3 + ax + b
is the curve E′ : y2 = x3 + v2ax + v3b for some quadratic non-residue v ∈ Fq .
The orders of the groups of rational points of these curves satisfy the relation
#E(Fq) + #E′(Fq) = 2q + 2 [3, section III.3].

In the above equation, if v is instead a quadratic residue, then it is easy to
check that an isomorphism E → E ′ given by (X, Y ) 7→ (vX, v

√
vY ) exists.

2.2 Divisors and the Tate pairing

Let E(Fq) be an elliptic curve containing a subgroup of prime order r with
embedding degree k. For our purposes, a divisor on E is a formal sum D =∑

P∈E(Fqk ) nP (P ) where nP ∈ Z.

The set of points P ∈ E(Fqk ) such that nP 6= 0 is called the support of D.
The degree of D is the value deg(D) =

∑
P nP . The null divisor, denoted 0, has

all nP = 0. The sum of two divisors D =
∑

P nP (P ) and D′ =
∑

P n′

P (P ) is the
divisor D + D′ =

∑
P (nP + n′

P )(P ).
Given a nonzero rational function f : E(Fqk ) → Fqk , the divisor of f is the

divisor (f) =
∑

P ordP (f)(P ) where ordP (f) is the multiplicity of f at P . It
follows from this definition that (fg) = (f) + (g) and (f/g) = (f)− (g) for any
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two nonzero rational functions f and g defined on E; moreover, (f) = 0 if and
only if f is a nonzero constant.

We say two divisors D and D′ are equivalent, D′ ∼ D, if there exists a
function g such that D′ = D + (g). For any function f and any divisor D =∑

P nP (P ) of degree zero, we define f(D) =
∏

P f(P )nP .
The Tate pairing is a bilinear, nondegenerate mapping e : E(Fq)×E(Fqk )→

F∗

qk . Specifically, let P ∈ E(Fq) be a point of order r, let fr be a function whose

divisor satisfies (fr) = r(P ) − r(O), let Q ∈ E(Fqk ), and let D ∼ (Q) − (O)
be a divisor whose support is disjoint from the support of (fr). We define the
(reduced) Tate pairing as

e(P, Q) = fr(D)(q
k
−1)/r.

One can show [10] that this mapping is indeed bilinear, and also nondegenerate
for linearly independent P and Q.

More generally, if D’ is a divisor satisfying D′ ∼ (P ) − (O) then we can
substitute any f ′ for f such that (f ′) = rD′, so long as the support of D′ is
disjoint to that of D.

Note that raising f(D) to (qk − 1)/r ensures that the result is either 1 or
an element of order r. This property is useful in efficiently preventing small
subgroup attacks [14]. There is no need to multiply Q by a large cofactor to
avoid these attacks, as checking the pairing value is sufficient.

2.3 The Frobenius endomorphism

The Frobenius endomorphism is the mapping Φ : E(Fqk ) → E(Fqk ), (X, Y ) 7→
(Xq, Y q). Thus a point P ∈ E(Fqk ) is defined over Fqi if and only if Φi(P ) = P ;
in particular, Φk(P ) = P for any P ∈ E(Fqk ).

2.4 The trace map

The trace map is the mapping tr : E(Fqk ) → E(Fq) defined as tr(P ) = P +
Φ(P ) + Φ2(P ) + · · ·+ Φk−1(P ). We have tr(Φ(P )) = Φ(tr(P )) = tr(P ) for any
P ∈ E(Fqk ), (which shows that the range of the map is indeed E(Fq)).

We describe the two eigenspaces of the trace map on E[r]. The eigenvalues
are k and 0.

Lemma 1. The k-eigenspace of the trace map is E(Fq)[r].

Proof. Clearly, all points R ∈ E[r] satisfy tr(R) = [k]R, hence we only need to
show that all points R ∈ E[r] such that tr(R) = [k]R are defined over Fq . Indeed,
if tr(R) = [k]R, then Φ(tr(R)) = Φ([k]R) = [k]Φ(R), but since Φ(tr(R)) = tr(R),
it follows that [k]Φ(R) = tr(R) = [k]R and thus [k](Φ(R) − R) = O. As k is
coprime to the order of R, necessarily Φ(R)−R = O, hence R must be defined
over Fq, that is, R ∈ E(Fq)[r]. ut
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Lemma 2. The 0-eigenspace of the trace map consists of all points R ∈ E[r]
satisfying tr(R) = O.

Proof. Note that the set of trace zero points form a group. Take any R ∈ E[r]
that does not lie in E(Fq). One easily verifies through direct calculation that the
point Q = R− Φ(R) must be a finite point of order r, and satisfies tr(Q) = O.

Therefore the space generated by Q is the 0-eigenspace of the trace map. In
other words, the 0-eigenspace of the trace map are all the points of order r with
trace zero. (We know that this space must be one-dimensional, since the other
dimension has been accounted for by E(Fq)[r].) ut

We now describe eigenspaces of the Frobenius map on E[r]. The characteristic
polynomial of the Frobenius endomorphism is the polynomial π(u) = u2−tu+q.
The value t is called the trace of the Frobenius endomorphism, not to be confused
with the trace map. The polynomial π factorizes as π(u) = (u−1)(u−q) (mod r),
so the eigenvalues are 1 and q.

Lemma 3. The 1-eigenspace of Φ is E(Fq)[r].

Proof. A point of E(Fqk) is fixed under Φ if and only if it lies in E(Fq). ut
Lemma 4. The q-eigenspace of Φ consists of all points R ∈ E[r] satisfying
tr(R) = O.

Proof. If a point R satisfies tr(R) = (1+Φ+ ...+Φq−1)R = O, then tr(Φ(R)) =
(Φ+...+Φq)R = O. In other words, the points of trace zero are mapped to points
of trace zero under Φ and hence must be an eigenspace. As the 1-eigenspace has
already been accounted for, the points of trace zero must be the q-eigenspace of
Φ. ut

Hence the k-eigenspace of the trace map is the 1-eigenspace of the Frobenius
map, and the 0-eigenspace of the trace map is the q-eigenspace of the Frobenius
map.

3 Parameter Generation

Assume k is even and set d = k/2. We propose a method for selecting group
generators that makes the pairing more efficient, and additionally improves the
performance of operations in pairing-based schemes that do not use the pairing,
such as key generation.

Consider a the twist of a curve E over Fqd . In other words, if E is given by
y2 = x3 + ax + b, then take any quadratic non-residue v ∈ Fqd and consider the
curve y2 = x3 + v2ax + v3b.

In Fqk , v is a quadratic residue, which means the map Ψ : (X, Y ) 7→
(v−1X, (v

√
v)−1Y ) describes how to map the group of points of E ′(Fqd) to a

subgroup of points of E(Fqk ).
Let Q′ = (X, Y ) ∈ E′(Fqd), and set Q = Ψ(Q′) = (v−1X, (v

√
v)−1Y ) ∈

E(Fqk ). The x-coordinate of Q is an element of Fqd , allowing the denominator
elimination optimization that will be described in the next section. This suggests
the following group selection algorithm.
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Group selection algorithm:

1. Randomly generate a point P ∈ E(Fq) of order r.
2. Randomly generate a point Q′ ∈ E′(Fqd).

We view the domain of the Tate pairing as 〈P 〉 × 〈Q〉, where Q = Ψ(Q). It
may be desirable to explicitly check that e(P, Q) 6= 1, but as this occurs with
overwhelming probability, in some situations it could be safe to skip this check.
Note that only P is required to have order r.

Operations that do not use the pairing such as key generation and point
transmission can be performed using only arithmetic on Fqd . Points of E′(Fqd)
are mapped back to points on E(Fqk ) only when needed for a pairing computa-
tion. This avoid many Fqk operations and halves bandwidth requirements.

For instance, if k = 2, pairing-based protocols can be implemented using
E(Fq) arithmetic, readily available in a highly optimized form in many code
libraries, along with support for simple Fq2 operations for the pairing computa-
tion.

For higher k, we suggest implementing Fqk as Fq [x]/Rk(x), where Rk(x) is
the sparsest possible polynomial containing only terms of even degree. In this
case, elements in Fqd are polynomials lacking any term of odd degree.

3.1 Some remarks on the selected groups

We mention a few observations on the groups selected by our algorithm.

Lemma 5. Let Q = (X, Y ) ∈ E(Fqk ) be a finite point. Then Φd(Q) = −Q if

and only if Xqd
−1 = 1 (i.e. X ∈ Fqd) and Y qd

−1 = −1.

Proof. Since −Q = (X,−Y ) (for a suitable Weierstraß form), we conclude that

Φd(X, Y ) = (Xqd

, Y qd

) = (X,−Y ) if and only if Xqd
−1 = 1 (i.e. X ∈ Fqd) and

Y qd
−1 = −1.

Thus Ψ(E′(Fqd)) is precisely the group of points in E(Fqk ) satisfying Φd(Q) =
−Q, which is a subgroup of the trace zero points of E(Fqk ).

Hence an alternative way to pick Q in our algorithm is to choose a random
R ∈ E(Fqk ) and set Q← R−Φd(R). However this is slower than finding points
of E′(Fqd), and we also do not obtain the bonus of speeding up non-pairing
operations.

Lastly, we note that the above lemma can be used to show that points of
trace zero have a special form.

Corollary 1. Let Q = (X, Y ) ∈ E(Fqk )[r] be a finite point with tr(Q) = O.

Then X ∈ Fqd and Y qd
−1 = −1.

Proof. As tr(Q) = O, the point Q lies in the q-eigenspace of the Frobenius map
Φ, that is, Φ(Q) = [q]Q.

We have qd ≡ −1 (mod r), because q2d ≡ 1 (mod r) and 2d = k is the
smallest integer for which this holds. Thus Φd(Q) = −Q. By Lemma 5 we have

Xqd
−1 = 1 and Y qd

−1 = −1. ut
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4 Tate Pairing Computation

We review Miller’s algorithm [16] for computing the Tate pairing and describe
how to optimize it for the subgroups constructed according to our algorithm.

Let P ∈ E(Fq)[r] and Q ∈ E(Fqk ) be linearly independent points. Let f be
the rational function with divisor (f) = r(P ) − r(O). We wish to compute the

Tate pairing e(P, Q) = f(D)(q
k
−1)/r, where D satisfies D ∼ (Q)− (O), and the

support of D does not contain P or O.
For this section, instead of requiring k to be even and setting d = k/2, we

generalize so that d now represents any proper factor of k, that is, d | k and
d < k.

Lemma 6. qd − 1 is a factor of (qk − 1)/r.

Proof. We start with the factorization qk − 1 = (qd − 1)
∑k/d−1

i=0 qid. Since the

embedding degree is k > 1,we have r | qk−1 and r - qd−1. Thus r |∑k/d−1
i=0 qid,

and qd − 1 survives as a factor of (qk − 1)/r. ut

The next theorem generalizes a result originally established only for certain
supersingular curves [1, Theorem 1]:

Theorem 1. e(P, Q) = f(Q)(q
k
−1)/r for Q 6= O.

Proof. Suppose R 6∈ {O,−P, Q, Q − P} is some point on the curve. Let f ′ be
a function with divisor (f ′) = r(P + R) − r(R), so that e(P, Q) = f ′((Q) −
(O))(q

k
−1)/r. Since P has coordinates in Fq, and because f ′ does not have a zero

or pole at O, we know that f ′(O) ∈ F∗

q . Thus f ′((Q)− (O)) = f ′(Q)/f ′(O). By
Fermat’s Little Theorem for finite fields [13, lemma 2.3], f ′(O)q−1 = 1. Lemma 6

then ensures that f ′(O)(q
k
−1)/r = 1. Hence, f ′(O) is an irrelevant factor and can

be omitted from the Tate pairing computation, i.e. e(P, Q) = f ′(Q)(q
k
−1)/r.

Now (f ′) = r((P +R)− (R)) = r((P )− (O)+(g)) for some rational function
g (since (P + R)− (R) ∼ (P )− (O)). Thus f ′ = fgr.

Then f ′(Q)(q
k
−1)/r = f(Q)(q

k
−1)/rg(Q)qk

−1 = f(Q)(q
k
−1)/r. (We know that

g(Q) ∈ F∗

q since Q is not a zero or pole of f or f ′.) ut

Notice that the special case Q = O where Theorem 1 does not apply is triv-
ially handled, since e(P, O) = 1. But of greater importance is the next corollary:

Corollary 2 (Irrelevant factors). One can multiply f(Q) by any nonzero
x ∈ Fqd without affecting the pairing value.

Proof. To compute the pairing, f(Q) is raised to the exponent (qk − 1)/r. By

Lemma 6, this exponent contains a factor qd − 1, thus x(qk
−1)/r = 1. ut

In what follows, which we quote directly from Barreto et al. [1, Theorem 2],
for each pair U, V ∈ E(Fq) we define gU,V : E(Fqk ) → Fqk to be (the equation
of) the line through points U and V (if U = V , then gU,V is the tangent to the
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curve at U , and if either one of U, V is the point at infinity O, then gU,V is the
vertical line at the other point). The shorthand gU stands for gU,−U . In affine
coordinates, for U = (xU , yU ), V = (xV , yV ) and Q = (x, y), we have:

gU,V (O) = 1.

gU,U (Q) = λ1(x− xU ) + yU − y, Q 6= O.

gU,V (Q) = λ2(x− xU ) + yU − y, Q 6= O, U 6= V.

gU (Q) = x− xU , Q 6= O.

where

λ1 =
3x2

U + a

2yU
, λ2 =

yV − yU

xV − xU
.

Lemma 7 (Miller’s formula). Let P be a point on E(Fq) and fc be a function
with divisor (fc) = c(P )− (cP )− (c− 1)(O), c ∈ Z. For all a, b ∈ Z, fa+b(Q) =
fa(Q) · fb(Q) · gaP,bP (Q)/g(a+b)P (Q).

Proof. See Barreto et al. [1, Theorem 2]. ut

Notice that (f0) = (f1) = 0, so that by corollary 2 we can set f0(Q) =
f1(Q) = 1. Furthermore, fa+1(Q) = fa(Q) · gaP,P (Q)/g(a+1)P (Q) and f2a(Q) =
fa(Q)2 · gaP,aP (Q)/g2aP (Q). Recall that r > 0 is the order of P . Let its binary
representation be r = (rt, . . . , r1, r0) where ri ∈ {0, 1} and rt 6= 0. Miller’s
algorithm computes f(Q) = fr(Q), Q 6= O by coupling the above formulas with
the double-and-add method to calculate [r]P :

Miller’s algorithm:

set f ← 1 and V ← P
for i← t− 1, t− 2, . . . , 1, 0 do {

set f ← f2 · gV,V (Q)/g2V (Q) and V ← 2V
if ri = 1 then set f ← f · gV,P (Q)/gV +P (Q) and V ← V + P

}
return f

Miller’s algorithm can be simplified further if k is even, as established by the
following generalization of a previous result [1, Theorem 2]:

Theorem 2 (Denominator elimination). Let P ∈ E(Fq)[r]. Suppose Q =
(X, Y ) ∈ E(Fqk ) and X ∈ Fqd . Then the g2V and gV +P denominators in Miller’s
algorithm can be discarded without changing the value of e(P, Q).

Proof. The denominators in Miller’s formula have the form gU (Q) ≡ x−u, where
x ∈ Fqd is the abscissa of Q and u ∈ Fq is the abscissa of U . Hence gU (Q) ∈ Fqd .
By Corollary 2, they can be discarded without changing the pairing value. ut
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5 Results

To illustrate the effectiveness of our method for the computation of the Tate
pairing, we compare our results with those of Izu and Takagi [12] for non-
supersingular curves with k = 2 and k = 6.

The computation of e(P, Q) requires all of the intermediate points computed
during the scalar multiplication [r]P . If P is fixed, these can be precalculated
and stored, with considerable savings. In this case affine coordinates are faster,
and require less storage. Otherwise we follow Izu and Takagi [12] and use pro-
jective coordinates. Additional savings could be obtained with the method of
Eisentraeger, Lauter and Montgomery [9], but we have not implemented it.

Table 1 summarizes the results, where M denotes the computing time of a
multiplication in Fq , and assuming that the time taken by one squaring is about
0.8M .

Table 1. Complexity of computing the Tate pairing.

algorithm coordinates k = 2, |q| = 512 k = 6, |q| = 171

[12] projective 20737.6M 33078.3M

ours, w/o precomp. projective 4153.2M 15633.0M

ours, with precomp. projective 2997.6M 14055.4M

ours, with precomp. affine 1899.6M 11110.2M

6 Conclusions

We have shown how to select cryptographically significant groups where the Tate
pairing can be efficiently implemented.

Specifically, we have argued that the Tate pairing e(P, Q) is most efficiently
calculated when P ∈ E(Fq)[r] and Q ∈ E(Fqk ) satisfies Φk/2(Q) = −Q. We
have also provided an algorithm to choose such P and Q so that e(P, Q) is
nondegenerate.

An interesting line of further research is the extension of our methods to
hyperelliptic curves, possibly with enhancements. This has already been done
for the supersingular case [8].
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