
Efficient Public Key Generation for Multivariate Cryptosystems

Christopher Wolf1

K.U.Leuven ESAT-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

Christopher.Wolf@esat.kuleuven.ac.be or chris@Christopher-Wolf.de
http://www.esat.kuleuven.ac.be/cosic/

This is a preliminary version of the article [Wol04]
“Efficient public key generation for HFE and variations.”

In Cryptographic Algorithms and Their Uses 2004, pages 78–93.
Dawson, Klimm, editors, QUT University, 2004.

Cryptology ePrint Archive, Report 2003/089

http://eprint.iacr.org/

Current Version: 2005-08-06

First Version: 2003-05-05

Abstract

Asymmetric cryptographic systems using multivariate polynomials over finite fields
have been proposed several times since the 1980s. Although some of them have been
successfully broken, the area is still vital and promises interesting algorithms with low
computational costs, short message, and signature sizes.

In this paper, we present two novel strategies “base transformation” and “adapted
evaluation” for the generation of the public key in such schemes. We demonstrate both
with the example of the Hidden Field Equations (HFE) system and outline how they can
be adapted to similar systems.

In addition, we compare the running time of the previously known “polynomial inter-
polation” with our new developments by empirical studies. We conclude that the running
time of polynomial interpolation is approximately 30% higher than for base transforma-
tion.

Keywords: Multivariate Cryptography, Hidden Field Equations, Key Generation

1This project has mainly been carried out while the author was at University College Cork, Ireland

1

1 Introduction

During the past years, several asymmetric cryptographic systems were proposed based
on multivariate cryptography [MI88, Pat96a, Pat96b, CGP01, KPG99, Moh99, CGP03,
YC04, KS04]. There are systems both for signing and encryption. The general idea of
these systems is very similar: using polynomials over finite fields of different size, they
exploit the intractability of the “MQ-problem”, i.e., multivariate quadratic equations
over finite fields are difficult to solve [GJ79]. Although some of these systems have been
successfully broken (e.g., [Pat95, KS99, GC00, FJ03, CDF03]), the area is still vital and
promises interesting algorithms with rather low computational costs. Moreover, they
also allow rather short signature sizes (e.g., only 128 bits for Quartz [CGP01]). For
an encryption algorithm based on HFE, we can expect similar short messages [Pat96b].
This would be of interest for the transmission of session keys without overhead (e.g., for
equivalent security, we would have more than 800 bits overhead for an RSA system).

Although several systems were proposed, the question of efficient public key generation
has not yet received much attention. For example, [Pat96b, CGP01, CGP03] completely
ignore it. However, [MI88] presents a quite general algorithm which can be adapted
easily to different systems. In a nutshell, their algorithm uses polynomial interpolation
for multivariate polynomials. See Sect. 3.1 for a detailed description.

In this paper, we present a novel strategy called “base transformation” which deals
with the problem of generating the public key for a given private key. It can be seen
as a generalisation of a technique sketched in [Pat96a]. We demonstrate “base transfor-
mation” for the “Hidden Field Equations” (HFE) system [Pat96b] and outline how it
can be adapted to variations of it. Moreover, we show how “base transformation” can be
combined with polynomial interpolation to obtain the “adapted interpolation” technique.
In addition, we study the running time of all techniques by simulations.

This paper is organised as follows: in Sect. 2 we give a concise overview of the HFE
system. In the third section we describe three different strategies for public key genera-
tion, namely “polynomial interpolation”, “base transformation”, and “adapted interpola-
tion”. A toy example of the base transformation technique can be found in the Appendix.
Sect. 4 presents a speed comparison using a Java implementation of all three techniques.
In Sect. 5 we sketch how the base transformation technique can be adapted to variations
of HFE. The paper concludes with Sect. 6.

2 Description of the HFE system

This section gives a concise description of the “Hidden Field Equations” system; a more
detailed description can be found in [Pat96b]. Consider a finite field F with q = |F|
elements, characteristic char F (a prime), and an extension field E with degree n over
F. The extension field is generated by the irreducible polynomial i(t) over F. This
polynomial i(t) has degree n := ∂i(t). For our purpose, we identify this extension field

2

E with the vector space F
n as some operations of HFE are not performed in the field E

but in the vector space F
n. This means that every e ∈ E can be seen as a vector

e = (f1, . . . , fn) : fi ∈ F and, also, as a polynomial in F[t]/i(t) of degree at most n − 1.
In the extension field E, addition is normal polynomial addition and multiplication is
performed modulo the irreducible polynomial i(t).

The three secret parameters in HFE (i.e., its private key) are two affine transforma-
tions S, T : F

n → F
n and one private polynomial P : E → E, hence the private key K is

the triple (S, P, T) ∈ AGLn(F)×E[x]×AGLn(F) where AGLn(F) denotes the set of affine
transformations in n variables over the finite field F. Note: an affine transformation over
a finite field is always invertible. The public key k is an n-tuple of polynomials (p1, . . . , pn)
over F where each polynomial consists of n variables (x1, . . . , xn). In a nutshell, we want
∀x ∈ F

n : k(x) = T (P (S(x))), i.e., the private key and the public key yield the same
result if applied to the same element x of the vector space F

n. We describe in Sect. 3
how this public key k can be derived from the private key K.

In contrast to the public key, the private polynomial P is defined over the extension
field E and depends on the single variable x. It has degree d := ∂P and some restrictions
on its powers:

P (x) :=
∑

0≤i,j≤d

qi+qj≤d

ci,jx
qi+qj

+
∑

0≤k≤d

qk≤d

bkx
qk

+ a

where

ci,jx
qi+qj

for ci,j ∈ E are the quadratic terms,

bkx
qk

for bk ∈ E are the linear terms, and
a for a ∈ E is the constant term

Fig. 1: Structure of the Private Polynomial P in HFE

Our aim in restricting the powers of P is to keep the public polynomials (p1, . . . , pn)
“small”, i.e., at most quadratic in (x1, . . . , xn). Being quadratic is enough for a system
of multivariate equations over a finite field to be NP-complete (cf [GJ79, p. 251] and
[PG97, App.] for a proof). On the other hand, as xq → x is a linear transformation in
the finite field F = GF(q), the operation xqi+qj

can be expressed in terms of two linear
transformations, i.e., is at most quadratic over F. As already pointed out, the public key
is a composition of the private key. In this context, the two affine transformations S, T are
expressed as affine systems of multivariate equations in n variables each, denoted S, T.
The private polynomial P is expressed as a quadratic system of multivariate equations,
denoted P. The public key is then computed as the composition T ◦ P ◦ S. As both
S, T are of degree 1, while P is of degree 2, the overall degree of this composition is of
degree 2. This idea is summarised in Figure 2. By changing our point of view we can say

3

input x

?

x = (x1, . . . , xn)

?

private: S

x′

?

private: P

y′

?

private: T

output y ¾

public:
(p1, . . . , pn)

Fig. 2: Private Key (S, P, T) as MQ trapdoor in HFE

that the public key k = (p1, . . . , pn) is used to “bypass” the private key K = (S, P, T)
without revealing its individual components S, P, T . The point is that the two affine
transformations S and T as well as the private polynomial P can be inverted while there
are no efficient algorithms available for inverting the public polynomials without knowing
the private key [Pat96b, Cou01]. A way of obtaining S, P, T from the public key only
is presented in [KS99]. However, it is far from being efficient for suitable choices of
parameters in HFE [Cou01].

To apply the public key or the private key to a message, this message must be in
the correct form. For applying the public key or an affine transformation, it must be
represented as a vector v ∈ F

n while for applying the private polynomial P , it must
be an element e ∈ E. So we have to transfer elements between E and F

n. We use a
correspondence between corresponding coefficients, i.e., ei = fi for ei the coefficients of
an element e ∈ E and fi the coefficients of a vector f ∈ F

n throughout this paper.

3 Key Generation

After explaining the overall structure of HFE in the previous section, we move on to
private key generation. We start with the technique from Matsumoto-Imai [MI88]. The
other techniques described in this paper have been developed by the author.

3.1 Polynomial Interpolation

We begin with a description of polynomial interpolation for fields F 6= GF(2). Key
generation for F = GF(2) is slightly different, we deal with this case later in this section.

4

We want to obtain polynomials over F as the public key which have the form

pi(x1, . . . , xn) = γi,j,kxjxk + βi,jxj + αi ,

for 1 ≤ i, j, k ≤ n and some αi, βi,j , γi,j,k ∈ F. To compute these polynomials pi, we use
polynomial interpolation, i.e., we need the output of these polynomials for several inputs.
To do so, we exploit that the private key K = (S, P, T) yields the same values as the
public key. Therefore, we evaluate the function T (P (S(x))) for several values of x:

• η0 ∈ F
n is the 0 vector

• ηj ∈ F
n : 1 ≤ j ≤ n, is a vector with its jth coefficient 1, the others 0

• ηj,k ∈ F
n : 1 ≤ j < k ≤ n, is a vector with its jth and kth coefficient 1, the others 0

These 1 + n + 1
2n(n + 1) = 1

2(n + 1)(n + 2) vectors yield the required coefficients, as we
see below:

T (P (S(η0)))i = αi

T (P (S(ηj)))i = αi + βi,j + γi,j,j

T (P (S(aηj)))i = αi + aβi,j + a2γi,j,j where a ∈ F, a 6= 0, 1

T (P (S(ηj,k)))i = αi + βi,j + βi,k + γi,j,j + γi,k,k + γi,j,k

The values for αi, βi,j , γi,j,k are obtained by

αi := T (P (S(η0)))i

γi,j,j :=
1

a(a − 1)
[T (P (S(aηj)))i − aT (P (S(ηj)))i + (1 − a)αi]

βi,j := (T (P (S(ηj)))i − γi,j,j − αi

γi,j,k := (T (P (S(ηj,k)))i − γi,j,j − γi,k,k − βi,j − βi,k − αi

This yields the public polynomials for F 6= GF(2).
To adapt the algorithm to F = GF(2), we observe that x2 = x over GF(2), i.e., all

squares in only one variable become linear factors. Therefore, we can skip all terms with
γi,j,j , i.e., all quadratic terms in x2

j for 1 ≤ j ≤ n. Moreover, we do not have to evaluate
T (P (S(aηj)))i for a 6= 0, 1 as we do not have to distinguish between quadratic and linear
terms in xi.

3.2 Base Transformation

As pointed out in the previous section, it requires O(n6) steps to obtain the public key
from a given private key using polynomial interpolation. In this section, we describe a
new algorithm for this problem, called “base transformation”. The key idea is to transfer

5

a base of the message space F
n rather than evaluating O(n2) vectors. This technique has

been developed by the author.
As already pointed out, we do not apply HFE(x) to elements from F

n, but to an
arbitrary base B of F

n. In polynomial notation, the base chosen is

B =

p1 = x1
...

. . .

pn = xn

and consists of n polynomials over F. Furthermore, the base transformation technique
identifies this base with an element of E = F[t]/i(t). Here i(t) denotes the irreducible
polynomial which generates E. So the set B is also viewed as polynomial

P(x1, . . . , xn)[t] = pntn−1 + . . . + p1 = xntn−1 + . . . + x1 .

Another way of thinking about the polynomial P is to replace each coefficient ai (where
ai ∈ F) by the corresponding polynomial pi. In this context, it is important to notice the
difference between t on the one hand and x1, . . . , xn on the other hand. The first generates
the extension field E, while the second is a base of the message space F

n. All operations
in the function HFE(x) = T (P (S(x))) are applied in the same way as they would be
applied to elements from E. This means especially that multiplication and squaring are
done modulo the irreducible polynomial i(t). The following sections describe this in detail
and also deal with the complexity of the operations involved.

3.2.1 Affine Transformation S

When applying S to P, each coefficient in P is multiplied by n elements from the corre-
sponding matrix. By virtue of the choice of P, each polynomial p1, . . . , pn has only one
p1, . . . , pn can be seen as a simple copy operation.

3.2.2 Applying Polynomial P

After expressing affine transformation S in terms of affine polynomials p1, . . . , pn, i.e.,
in terms of P, we have to investigate how raising P to the power of q := |F| affects the
underlying polynomials. Therefore, we concentrate on one polynomial p = α + β1x1 +
. . . + βnxn with α, βi ∈ F. Using xq = x and (a + b)q = aq + bq (cf [LN00]), we obtain

pq = (α + β1x1 + . . . + βnxn)q

= αq + βq
1x

q
1 + . . . + βq

nxq
n

= α + β1x1 + . . . + βnxn

6

so pq = p for all polynomials over F. However, the vector P also depends on t, and
tq 6= t in general. So the operation Pq will yield an arbitrary vector Q, which consists of
only linear polynomials in x1, . . . , xn. Computing xqi+qj

however, is by no means a linear
operation but yields quadratic polynomials in x1, . . . , xn. Finally, we have to apply the
coefficients, i.e., elements from E to the result. This requires a further reduction by t but
does not change the degree of the polynomials involved.

3.2.3 Transformation T

As for affine transformation S, we have to apply affine transformation T to the result of
Sect. 3.2.2.

3.2.4 Overall Algorithm

Using the different steps outlined above, we obtain the following algorithm:

1. Express S in terms of affine polynomials, that is, as P.

2. Compute Pqi

for i = 0, 1, . . . , blogq dc .

3. Compute Pqk+ql

= Pqk

Pql

using the results of Step 2.

4. Compute biP
qi

and ck,lP
qk+ql

using the results from steps 2 and 3.

5. Form the sum of the results of Step 4 and add a.

6. Apply T to the result of Step 5.

Here a, bi, cj,k ∈ E are the coefficients of the private polynomial P (see Sect. 2).

3.3 Adapted Evaluation as Intermediate Technique

Sect. 3.1 and 3.2 show how to compute the public key for a given private key. The
advantage of the base transformation technique is that it is faster (see below). However,
it needs a lot of specialised code, as we saw in the previous section.

In this section, we outline a third possibility which does not need so much specialised
code. It has also been developed by the author. For this technique we observe that any
vector of Hamming weight two is the sum of two vectors of Hamming weight one. Denote
ηi ∈ F

n the vector which has only zeros but one at position i and ηi,j ∈ F
n the vector

which has only zeros but one at positions i, j where 1 ≤ i ≤ n and 1 ≤ i < j ≤ n,
respectively. Moreover, denote η0 the vector which has zeros only. Using this, we define
further:

s0 := S(η0) si := S(ηi) si,j := S(ηi,j) .

7

We see that si,j = si + sj − s0. In addition, applying S to η0, ηi does not require any
matrix multiplication as si can be seen as selecting one column vector rather than a
complete matrix multiplication.

Remark: In addition, we could exploit the fact that (a + b)qk

= aqk

+ bqk

in finite
fields (see [LN00]). Hence, it is sufficient to raise s0, si to the power q1, . . . , qblogq dc and

then obtain sqk

i,j by adding the corresponding elements. If we were doing so, we would
need as much code as for the base transformation technique and spoil the overall idea
of adapting just a little bit of code. In fact, exploiting this relation, too, would lead
to “vector transformation” instead of “base transformation” and we therefore expect a
similar complexity and running time for both techniques.

After this remark, we go back to the adapted evaluation technique. In terms of com-
plexity, the algorithm is less efficient than the base transformation technique (see per-
formance results below). However, for the base transformation technique, we need much
more specialised code: we need to implement all steps as outlined in the previous section.
In our implementation, we needed about about 30 times more code — and therefore pro-
gramming time — for base transformation in comparison to polynomial interpolation. In
addition, the base transformation technique has to be adapted specifically to the system
in question while polynomial interpolation may be used quite generic: as long as there
is a way of encrypting data with the private key alone, polynomial interpolation can use
this as a “black box” to derive the corresponding public key. This encryption function is
usually quite short — typically 15–30 lines of code — assuming that the building blocks
(e.g., affine transformations, finite field arithmetic) already exist. This is not the case
for base transformation: here, we need to write specific code to “emulate” finite field
arithmetic for multivariate polynomials. So in terms of the implementation effort versus
performance (both translates into costs: either paying programmers for fast software or
hardware to compensate for the slower key generation), the adapted evaluation technique
seems to be worthwhile considering. But as we see below, the difference between adapted
evaluation and polynomial interpolation is rather small.

GF(2103) GF(2131) GF(2151)

Polynomial Interpolation [ms] 6001 13,463 20,585

Base Transformation [ms] 4556 10,304 15,706

Adapted Evaluation [ms] 5922 13,439 20,541

Table 1: Timing results on a Pentium IV-2.6GHz with Java 1.3

8

GF(2103) GF(2131) GF(2151)

Polynomial Interpolation [ms] 7471 16,622 25,495

Base Transformation [ms] 5706 12,635 19,324

Adapted Evaluation [ms] 7436 16,548 25,372

Table 2: Timing results on an Athlon XP 2000+ with Java 1.3

GF(2103) GF(2131) GF(2151)

Polynomial Interpolation [ms] 5962 13,891 20,959

Base Transformation [ms] 4625 10,711 16,085

Adapted Evaluation [ms] 5951 13,877 20,928

Table 3: Timing results on an Athlon XP1700+ with Java 1.4

4 Speed Comparison

We have implemented all three techniques in Java. Our implementation consists of ap-
prox. 9000 lines of Java code, including comments and testing routines.2 To see how the
underlying architecture effects the running time, we used different machines to compare
the performance of our implementation both with Java 1.3 and Java 1.4. In all cases,
the private polynomial had degree 129. This value was chosen as it is the recommended
parameter in Quartz [CGP01]. The first field size 2103 is also due to Quartz, the other two
values (2131 and 2151, respectively) were chosen to see how the implementation scales up
for larger fields. The results given in tables 1–5 and are the average of 101 measurements
each.

As we see from these tables, polynomial interpolation has always a 30% higher running
time than base transformation — independently from the underlying architecture, i.e.,
processor and Java-version used. Adapted evaluation is always slightly better than normal
polynomial interpolation — but the difference is less than 1%. However, as it does not

2In the final version of this paper, there is a link to the code

GF(2103) GF(2131) GF(2151)

Polynomial Interpolation [ms] 4202 10,001 15,476

Base Transformation [ms] 3266 7794 11,863

Adapted Evaluation [ms] 4191 9992 15,258

Table 4: Timing results on a HP PA-RISC-700 with Java 1.4 (32 bit)

9

GF(2103) GF(2131) GF(2151)

Polynomial Interpolation [ms] 6258 10,045 15,605

Base Transformation [ms] 4845 7843 11,957

Adapted Evaluation [ms] 6247 10,018 15,278

Table 5: Timing results on a HP PA-RISC-700 with Java 1.4 (64 bit)

need any additional memory or more code than polynomial interpolation, it is certainly
worth being considered.

However, it is interesting to investigate the rather large difference between base trans-
formation and polynomial interpolation in more depth. In our experiments, we identified
two main sources for the higher speed of base-transformation:

Memory: For base transformation, we are able to store the results of the exponentiation
(cf Sect. 3.2.4, Step 2). This way, we neither need to evaluate the affine transforma-
tion S several times nor compute the power-function more than logq d times. Both
takes only a fraction of a ms (correct value depending on the architecture), but adds
up when evaluated

(

n
2

)

+ n + 1 times. The additional memory requirement here is
blogq dcn(n+1) as we have to store blogq dc different n-vectors of affine polynomials
in n variables each.

Multiplication: For polynomial interpolation, we used a state of the art implementa-
tion of finite field arithmetic, as described in [LD00]. There, multiplication in the
polynomial base takes n shift operations and n field additions on average. For base
transformation, we exploit the fact that we deal with a whole vector of polynomials
at a time. This way, we can use an interpolation-like approach (!) for multiplication
which turns out to be twice as fast as näıve multiplication. Therefore, we identify
this as another important source of the speed-up.

In addition, we notice that the running time on the Athlon 1700+ is lower than
on the Athlon 2000+. We credit this to the fact that we used Java 1.3 in the latter
case. Moreover, we see that the 64-bit-version of Java needs 50% more time for GF(2103)
than the 32-bit-version. This difference nearly vanishes (less than 1% time difference)
for GF(2131) and GF(2151). At present, we do not have a satisfying explanation for this
behaviour. However, we re-run the programme several times on different machines in the
HP-cluster and always got the same picture: GF(2103) with 64-bit needs about 50% more
time than GF(2103) with 32-bit. Although we cannot explain this difference at present,
we want to point out that it is not important for our overall goal: comparing the speed of
the three different techniques for public-key generation outlined in this paper on a fixed
architecture.

10

Unfortunately, we cannot compare our results to other implementations, as [MI88,
Pat96b, CGP01, CGP00, CGP03] do not provide timing results for key generation. More-
over, the author is not aware of other literature which provides timing results for HFE
key generation.

5 Variations of HFE

In this section, we sketch how base transformation can be adapted to different versions
of HFE [Pat96b].

We always use the same idea: replace the coefficients in the vector space F
n and

the extension field E by arbitrary polynomials (e.g., by B from Sect. 3.2). After that,
apply each step from message encryption with the private key to these polynomials from
B. For example, in HFE-, we proceed as in Sect. 3.2. As soon as we discard some of
the message/signature bits (therefore the name, HFE-), we discard the corresponding
polynomials.

HFEv is more difficult, as we have a different private polynomial P namely

P(z1,...,zv) :=
∑

0≤i,j≤d

qi+qj≤d

αi,jx
qi+qj

+
∑

0≤k≤d

qk≤d

βk(z1, . . . , zv)x
qk

+ γ(z1, . . . , zv) ,

for αi,j ∈ E, βk(z1, . . . , zv) are affine in (z1, . . . , zv), and γ(z1, . . . , zv) is at most quadratic
in (z1, . . . , zv). Here (z1, . . . , zv) are called “vinegar” variables [KPG99, Sect. 12]. These
vinegar variables are over F. Moreover, T ∈ AGLn(F) but S ∈ AGLn+v(F).

However, if we proceed as described above, we apply the affine transformation S to
B (now with n + v polynomials), and then set z1 := pn+1, . . . , zv := pn+v. After that, we
compute the public key as described in Sect. 3.2. Now, in Step 4 of Sect. 3.2.4, we have
to multiply vectors of affine polynomials. This is similar to Step 3 in the same algorithm.

6 Conclusions

In this paper, we presented two novel techniques called “base transformation” and “adapted
evaluation”. The first is clearly faster than the previously known “polynomial interpo-
lation” technique. Table 6 summarises our results, setting the running time of base
transformation equal to 1. This table is based on results from 5 different architectures (cf
Sect. 4). We notice that base transformation is the fastest technique from our test set.
The other two algorithms have a roughly 30% higher running time. There is a slight dif-
ference between polynomial interpolation and adapted evaluation. However, it is smaller
than 1% (see Sect. 4) and therefore not reflected in the above table.

Moreover, base transformation is quite general. As outlined in Sect. 5, it can be
adapted to various other systems which also use multivariate quadratic equations as
their public key. Therefore, it is useful for run-time efficient public key generation in

11

Running Time

Polynomial Interpolation ≈ 1.3

Base Transformation 1.0

Adapted Evaluation ≈ 1.3

Table 6: Summary of the Results for Key Generation Algorithms

such systems. However, for code-efficient implementations, polynomial interpolation and
adapted evaluation are better choices.

Acknowledgements

We want to thank Simon Foley and Patrick Fitzpatrick (University College Cork, Ireland)
for fruitful discussions and helpful remarks. Moreover, we want to thank An Braeken,
Bart Preneel, Michael Quisquater (K.U. Leuven) and Lynn Batten (University of Deakin,
Australia) for helpful remarks.

This work was supported in part by the Concerted Research Action (GOA) Mefisto-
2000/06 of the Flemish Government and the German Academic Exchange Service (DAAD).

References

[BWP05] An Braeken, Christopher Wolf, and Bart Preneel. A study of the security
of Unbalanced Oil and Vinegar signature schemes. In The Cryptographer’s
Track at RSA Conference 2005, Lecture Notes in Computer Science. Alfred J.
Menezes, editor, Springer, 2005. 13 pages, cf http://eprint.iacr.org/2004/
222/.

[CDF03] Nicolas T. Courtois, Magnus Daum, and Patrick Felke. On the security of
HFE, HFEv- and Quartz. In Public Key Cryptography — PKC 2003, volume
2567 of Lecture Notes in Computer Science, pages 337–350. Y. Desmedt, editor,
Springer, 2002. http://eprint.iacr.org/2002/138.

[CGP00] Nicolas Courtois, Louis Goubin, and Jacques Patarin. Flash: Primitive spec-
ification and supporting documentation, 2000. https://www.cosic.esat.

kuleuven.ac.be/nessie/workshop/submissions/flash.zip, 9 pages.

[CGP01] Nicolas Courtois, Louis Goubin, and Jacques Patarin. Quartz: Primitive spec-
ification (second revised version), October 2001. https://www.cosic.esat.

kuleuven.ac.be/nessie Submissions, Quartz, 18 pages.

12

[CGP03] Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFlashv3, a fast asym-
metric signature scheme — Revised Specificatoin of SFlash, version 3.0, Octo-
ber 17th 2003. ePrint Report 2003/211, http://eprint.iacr.org/, 14 pages.

[Cou01] Nicolas T. Courtois. The security of Hidden Field Equations (HFE). In The
Cryptographer’s Track at RSA Conference 2001, volume 2020 of Lecture Notes
in Computer Science, pages 266–281. D. Naccache, editor, Springer, 2001.
http://www.minrank.org/hfesec.{ps|dvi|pdf}.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of Hidden
Field Equations (HFE) using gröbner bases. In Advances in Cryptology —
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
44–60. Dan Boneh, editor, Springer, 2003.

[GC00] Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosys-
tem. In Advances in Cryptology — ASIACRYPT 2000, volume 1976 of Lecture
Notes in Computer Science, pages 44–57. Tatsuaki Okamoto, editor, Springer,
2000.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability — A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.
ISBN 0-7167-1044-7 or 0-7167-1045-5.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar
signature schemes. In Advances in Cryptology — EUROCRYPT 1999, volume
1592 of Lecture Notes in Computer Science, pages 206–222. Jacques Stern,
editor, Springer, 1999.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosys-
tem. In Advances in Cryptology — CRYPTO 1999, volume 1666 of Lecture
Notes in Computer Science, pages 19–30. Michael Wiener, editor, Springer,
1999. http://www.minrank.org/hfesubreg.ps or http://citeseer.nj.

nec.com/kipnis99cryptanalysis.html.

[KS04] Masao Kasahara and Ryuichi Sakai. A construction of public key cryptosystem
for realizing ciphtertext of size 100 bit and digital signature scheme. IEICE
Trans. Fundamentals, E87-A(1):102–109, January 2004. Electronic version:
http://search.ieice.org/2004/files/e000a01.htm\#e87-a,1,102.

[LD00] Julio Lopéz and Ricardo Dahab. An overview of elliptic curve cryptography.
Technical report, Institute of Computing, State University of Campinas, Brazil,
22nd of May 2000. http://citeseer.nj.nec.com/333066.html or http://

www.dcc.unicamp.br/ic-tr-ftp/2000/00-14.ps.gz.

13

[LN00] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their
Applications. Cambridge University Press, 2000. ISBN 0-521-46094-8.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature verification and message-encryption. In Advances in Cryptol-
ogy — EUROCRYPT 1988, volume 330 of Lecture Notes in Computer Science,
pages 419–545. Christoph G. Günther, editor, Springer, 1988.

[Moh99] T. Moh. A public key system with signature and master key function. Com-
munications in Algebra, 27(5):2207–2222, 1999. Electronic version: http:

//citeseer/moh99public.html.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme
of Eurocrypt’88. In Advances in Cryptology — CRYPTO 1995, volume 963 of
Lecture Notes in Computer Science, pages 248–261. Don Coppersmith, editor,
Springer, 1995.

[Pat96a] Jacques Patarin. Asymmetric cryptography with a hidden monomial. In Ad-
vances in Cryptology — CRYPTO 1996, volume 1109 of Lecture Notes in Com-
puter Science, pages 45–60. Neal Koblitz, editor, Springer, 1996.

[Pat96b] Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polyno-
mials (IP): two new families of asymmetric algorithms. In Advances in Cryp-
tology — EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Sci-
ence, pages 33–48. Ueli Maurer, editor, Springer, 1996. Extended Version:
http://www.minrank.org/hfe.pdf.

[PG97] Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and mul-
tivariate polynomials. In International Conference on Information Security
and Cryptology 1997, volume 1334 of Lecture Notes in Computer Science,
pages 356–368. International Communications and Information Security As-
sociation, Springer, 1997. Extended Version: http://citeseer.nj.nec.com/
patarin97trapdoor.html.

[WBP04] Christopher Wolf, An Braeken, and Bart Preneel. Efficient cryptanalysis of
RSE(2)PKC and RSSE(2)PKC. In Conference on Security in Communication
Networks — SCN 2004, Lecture Notes in Computer Science, pages 145–151,
September 8–10 2004. Extended version: http://eprint.iacr.org/2004/

237.

[Wol02] Christopher Wolf. Hidden Field Equations (HFE) - variations and at-
tacks. Diplomarbeit, Universität Ulm, December 2002. http://www.

christopher-wolf.de/dpl, 87 pages.

14

[Wol04] Christopher Wolf. Efficient public key generation for HFE and variations. In
Cryptographic Algorithms and Their Uses 2004, pages 78–93. Dawson, Klimm,
editors, QUT University, 2004.

[WP04] Christopher Wolf and Bart Preneel. Asymmetric cryptography: Hidden Field
Equations. In European Congress on Computational Methods in Applied Sci-
ences and Engineering 2004. P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate,
J. Périaux, and D. Knörzer, editors, Jyväskylä University, 2004. 20 pages,
extended version: http://eprint.iacr.org/2004/072/.

[WP05a] Christopher Wolf and Bart Preneel. Equivalent keys in HFE, C∗, and varia-
tions. In Proceedings of Mycrypt 2005, volume 3715 of Lecture Notes in Com-
puter Science, pages 33–49. Serge Vaudenay, editor, Springer, 2005. Extended
version http://eprint.iacr.org/2004/360/, 12 pages.

[WP05b] Christopher Wolf and Bart Preneel. Superfluous keys in Multivariate
Quadratic asymmetric systems. In Public Key Cryptography — PKC 2005,
volume 3386 of Lecture Notes in Computer Science, pages 275–287. Serge Vau-
denay, editor, Springer, 2005. Extended version http://eprint.iacr.org/

2004/361/.

[YC04] Bo-Yin Yang and Jiun-Ming Chen. Rank attacks and defence in Tame-like
multivariate PKC’s. Cryptology ePrint Archive, Report 2004/061, 23rd March
2004. http://eprint.iacr.org/, 21 pages.

15

