
Sequential Aggregate Signatures from Trapdoor Permutations

Anna Lysyanskaya
anna@cs.brown.edu

Silvio Micali Leonid Reyzin
reyzin@cs.bu.edu

Hovav Shacham
hovav@cs.stanford.edu

Abstract

An aggregate signature scheme (recently proposed by Boneh, Gentry, Lynn and Shacham)
is a method for combining n signatures from n different signers on n different messages into
one signature of unit length. We propose sequential aggregate signatures, in which the set of
signers is ordered. The aggregate signature is computed by having each signer, in turn, add
his signature to it. We show how to realize this in such a way that the size of the aggregate
signature is independent of n. This makes sequential aggregate signatures a natural primitive
for certificate chains, whose length can be reduced by aggregating all signatures in a chain.
We give a construction based on families of certified trapdoor permutations, and show how to
instantiate our scheme based on RSA.

1 Introduction

Authentication constitutes one of the core problems in cryptography. Much modern research focuses
on constructing authentication schemes that are: (1) as secure as possible, i.e., provably secure
under the most general assumptions; and (2) as efficient as possible, i.e., communication- and
computation-efficient. For cryptographic schemes to be adopted in practice, efficiency is crucial.
Moreover, communication and storage efficiency — namely, the size of the authentication data, for
example the size of a signature — plays an even greater role than computation: while computational
power of modern computers has experienced rapid growth over the last several decades, the growth
in bandwidth of communication networks seems to have more constraints.

As much as we would like to reduce the size of a stand-alone signature, its length is roughly
equal to the security parameter. The problem becomes more interesting, however, once we have n
different signers with public keys PK1, . . . ,PKn, and each of them wants to sign her own message,
M1, . . . ,Mn, respectively. Suppose that the public keys and the messages are known to the recipient
of the signature ahead of time: they may be clear from the context. We want, in some way, to
combine the authenticating information associated with this set of signers and messages, into one
short signature, whose length is independent of n.

This problem actually arises in practice. For example, in a Public Key Infrastructure (PKI) of
depth n, a certificate on a user’s public key consists of a chain of certificates issued by a hierarchy
of certification authorities (CAs): the CA at depth i is certifying the CA at depth i + 1. Which
CAs were responsible for certifying a given user is usually clear from the context, and the public
keys of these CAs may be available to the recipient off-line. The user’s certificate, however, needs

1



to be included in all of his communications, and therefore it is highly desirable to make its length
independent of the length of the certification chain.

Recently, Boneh et al. [5] introduced and realized aggregate signatures. An aggregate signature
scheme is a signature scheme which, in addition to the usual setup, signing, and verification al-
gorithms, admits an efficient algorithm for aggregating n signatures under n different public keys
into one signature of unit length. Namely, suppose each of n users has a public-private key pair
(PKi,SKi); each wishes to attest to a message Mi. Each user first signs her message Mi, obtaining
a signature σi; the n signatures can then be combined by an unrelated party into an aggregate σ.
An aggregate signature scheme also includes an extra verification algorithm that verifies such an ag-
gregate signature. An aggregate signature provides non-repudiation simultaneously on message M1

for User 1, message M2 for User 2, and so forth. Crucially, such repudiation holds for each user
regardless of whether other users are malicious. Boneh et al. construct an aggregate signature
scheme in the random oracle model under the bilinear Diffie-Hellman assumption (see, for example,
Boneh and Franklin [4] and references therein).

However, for applications such as certificate chains, the ability to combine preexisting indi-
vidual signatures into an aggregate is unnecessary. Each user, when producing a signature, is
aware of the signatures above his in the chain. Thus aggregation for certificate chains should
be performed incrementally and sequentially, so that User i, given an aggregate on messages
M1, . . . ,Mi−1 under keys PK1, . . . ,PKi−1, outputs an aggregate on messages M1, . . . ,Mi−1,Mi

under keys PK1, . . . ,PKi−1,PKi. We call such a procedure sequential aggregation, and a signature
scheme supporting it, a sequential aggregate signature scheme.

In this paper, we begin by giving a formal definition of sequential aggregate signatures. We then
show how to realize such signatures from a family of certified1 trapdoor permutations (TDPs) over
the same domain, as long as the domain is a group under some operation. We prove security (with
exact security analysis) of our construction in the random oracle model; we give tighter security
guarantees for the special cases of homomorphic and claw-free TDPs. As compared to the scheme
of [5], our scheme place more restrictions on the signers (because of the sequentiality requirement),
but relies on a more accepted general assumption.

Finally, we show how to instantiate our construction with the RSA trapdoor permutation. This
turns out to be more difficult than may be expected, because in this setting we need to worry
about maliciously generated RSA keys (because we need to provide security for User i regardless of
whether other users are honest). There are essentially four problems. The first is that our scheme
assumes multiple trapdoor permutations over the same domain, which RSA does not provide. The
second is that RSA is not a certified trapdoor permutation: for a maliciously generated public-key,
it can indeed be very far from a permutation. The third is that the domain of RSA is not the
convenient ZN , but rather Z∗

N , which can be much smaller for maliciously generated N . Finally,
the natural group operation on Z∗

N (multiplication) is not a group operation on ZN . We overcome
these problems with techniques that may be of independent interest. In particular, we turn RSA
into a certified trapdoor permutation over the entire ZN .

Other related work. Aggregate signatures are related to multisignatures [13, 15, 14, 3]. In
particular, our aggregate signature scheme has similarities with the multisignature scheme of
Okamoto [15] (though the latter has no security proof and, indeed, is missing important details that
would make the security proof possible, as shown in [12]). Also of interest are threshold signatures,

1A TDP is certified [2] if one can verify from the public key that it is actually a permutation.

2



in particular the non-interactive threshold signature scheme due to Shoup [17], where we have a
set of n signers, and a threshold t, such that signature shares from any t < k ≤ n signers can be
combined into one signature. They are different from aggregate signatures in several crucial as-
pects: threshold signatures require an expensive (or trusted) setup procedure; pieces of a threshold
signature do not constitute a stand-alone signature; pieces of a threshold signature can only be
combined into one once there are enough of them; and a threshold signature looks the same no
matter which of the signers contributed pieces to it.

2 Preliminaries

We recall the definitions of trapdoor permutations and ordinary digital signatures, and the full-
domain hash signatures based on trapdoor permutations. We also define certified trapdoor per-
mutations, which are needed for building sequential aggregate signatures. In addition, we define
claw-free permutations, and homomorphic trapdoor permutations, whose properties are used to
achieve a better security reduction.

2.1 Trapdoor one-way permutations

Let D be a group over some operation �. For simplicity, we assume that choosing an element of D
at random, computing �, and inverting � each take unit time.

A trapdoor permutation family Π over D comprises three algorithms: Generate, Evaluate,
and Invert. The randomized generation algorithm Generate outputs the description s of a per-
mutation along with the corresponding trapdoor t. The evaluation algorithm Evaluate, given the
permutation description s and a value x ∈ D, outputs a ∈ D, the image of x under the permuta-
tion. The inversion algorithm Invert, given the permutation description s, the trapdoor t, and a
value a ∈ D, outputs the preimage of a under the permutation.

We require that Evaluate(s, ·) be a permutation of D for all (s, t) R← Generate, and that
Invert(s, t,Evaluate(s, x)) = x hold for all (s, t) R← Generate and for all x ∈ D. The algorithms
Generate, Evaluate, and Invert are assumed to take unit time for simplicity.

Definition 2.1. The advantage of an algorithm A in inverting a trapdoor permutation family is

Adv InvertA
def= Pr

[
x = A(s,Evaluate(s, x)) : (s, t) R← Generate, x R← D

]
.

The probability is taken over the coin tosses of Generate and of A. An algorithm A (t, ε)-inverts a
trapdoor permutation family if A runs in time at most t and Adv InvertA is at least ε. A trapdoor
permutation family is (t, ε)-one-way if no algorithm (t, ε)-inverts the trapdoor permutation family.

Note that this definition of a trapdoor permutation family requires that there exist multiple
trapdoor permutations over the same domain D. Note also that we avoid the use of an infinite
sequence of domains D, one for each security parameter, by simply fixing the security parameter
and considering concrete security.

When it engenders no ambiguity, we consider the output of the generation algorithm Generate
as a probability distribution Π on permutations, and write (π, π−1) R← Π; here π is the permuta-
tion Evaluate(s, ·), and π−1 is the inverse permutation Invert(s, t, ·).

3



2.2 Certified trapdoor permutations

The trapdoor permutation families used in sequential aggregation must be certified trapdoor per-
mutation families [2]. A certified trapdoor permutation family is one such that, for any string s,
it is easy to determine whether s can have been output by Generate, and thereby ensure that
Evaluate(s, ·) is a permutation. This is important when permutation descriptions s can be gener-
ated by malicious parties.

Applying the definitions above to the RSA permutation family requires some care. RSA gives
permutations over domains Z∗

N , where each user has a distinct modulus N . Moreover, given just
a public key (N, e), certifying that the key describes a permutation is difficult. We consider this
further in Section 5.

2.3 Claw-free permutations and homomorphic trapdoor permutations

We now describe two variants of trapdoor permutations: claw-free permutations and homomorphic
trapdoor permutations. The features these variants provide are not needed in the description of the
sequential aggregate signature scheme, but allow a more efficient security reduction in Theorem 4.3.

A claw-free permutation family Π [11] is a trapdoor permutation family with an additional
permutation g : D → D, evaluated by algorithm EvaluateG(s, ·). (More generally, g can map any
domain E onto D as long as the uniform distribution on E induces the uniform distribution on
g(E).) We assume that algorithm EvaluateG runs in unit time, and choosing an element of E at
random also takes unit time, just like above.

Definition 2.2. The advantage of an algorithm A in finding a claw in a claw-free permutation
family is

Adv ClawA
def= Pr

[
Evaluate(s, x) = EvaluateG(s, y) :

(s, t) R← Generate, (x, y) R← A(s)

]
.

The probability is taken over the coin tosses of Generate and of A. An algorithm A (t, ε)-breaks a
claw-free permutation family if A runs in time at most t and Adv ClawA is at least ε. A permutation
family is (t, ε)-claw-free if no algorithm (t, ε)-breaks the claw-free permutation family.

When it engenders no ambiguity, we abbreviate EvaluateG(s, ·) as g(·), and write (π, π−1, g) R←
Π. In this compact notation, a claw is a pair (x, y) such that π(x) = g(y).

One obtains from every claw-free permutation family a trapdoor permutation family, simply by
ignoring EvaluateG [11]. The proof is straightforward. Suppose there exists an algorithm A that
inverts π with nonnegligible probability. One selects y

R← E, and provides A with z = g(y), which
is uniformly distributed in D. If A outputs x such that x = π−1(z), then it has uncovered a claw
π(x) = g(y).

A trapdoor permutation family is homomorphic if D is a group with some operation ∗ and
if, for all (s, t) generated by Generate, the permutation π : D → D induced by Evaluate(s, ·) is
an automorphism on D with ∗. That is, if a = π(x) and b = π(y), then a ∗ b = π(x ∗ y). The
group action ∗ is assumed to be computable in unit time. The operation ∗ can be different from
the operation � given above; we do not require any particular relationship (e.g., distributivity)
between � and ∗.

One obtains from every homomorphic trapdoor permutation family a claw-free permutation
family [10]. Pick some z 6= 1 ∈ D, and define g(x) = z ∗ π(x). (In this case, E = D.) Then a claw
π(x) = g(y) = z ∗ π(y) reveals π−1(z) = x ∗ (1/y) (where the inverse is with respect to ∗).

4



2.4 Digital signatures

We review the well-known definition of security for ordinary digital signatures.
Existential unforgeability under a chosen message attack [11] in the random oracle model [1]

for a signature scheme (KeyGen, Sign, and Verify) with a random oracle H is defined using the
following game between a challenger and an adversary A:

Setup. The challenger runs algorithm KeyGen to obtain a public key PK and private key SK.
The adversary A is given PK.

Queries. Proceeding adaptively, A requests signatures with PK on at most qS messages of his
choice M1, . . . ,Mqs ∈ {0, 1}∗. The challenger responds to each query with a signature
σi = Sign(SK,Mi). Algorithm A also adaptively asks for at most qH queries of the
random oracle H.

Output. Eventually, A outputs a pair (M,σ) and wins the game if (1) M is not any of
M1, . . . ,Mqs , and (2) Verify(PK,M, σ) = valid.

We define Adv SigA to be the probability that A wins in the above game, taken over the coin tosses
of KeyGen and of A.

Definition 2.3. A forger A (t, qH , qS, ε)-breaks a signature scheme if A runs in time at most t; A
makes at most qS signature queries and at most qH queries to the random oracle; and Adv SigA is
at least ε. A signature scheme is (t, qH , qS, ε)-existentially unforgeable under an adaptive chosen-
message attack if no forger (t, qH , qS, ε)-breaks it.

2.5 Full-domain signatures

We review the full-domain hash signature scheme. The scheme, introduced by Bellare and Rog-
away [1], works in any trapdoor one-way permutation family. The more efficient security reduction
given by Coron [8] additionally requires that the permutation family be homomorphic. Dodis and
Reyzin show that Coron’s analysis can be applied for any claw-free permutation family [10]. The
scheme makes use of a hash function H : {0, 1}∗ → D, which is modeled as a random oracle. The
signature scheme comprises three algorithms: KeyGen, Sign, and Verify.

Key generation. For a particular user, pick random (s, t) R← Generate. The user’s public key PK
is s. The user’s private key SK is (s, t).

Signing. For a particular user, given the private key (s, t) and a message M ∈ {0, 1}∗, compute
h← H(M), where h ∈ D, and σ ← Invert(s, t, h). The signature is σ ∈ D.

Verification. Given user’s public key s, a message M , and a signature σ, compute h ← H(M);
accept if h = Evaluate(s, σ) holds.

The following theorem, due to Coron, shows the security of full-domain signatures under the
adaptive chosen message attack in the random oracle model. The terms given in the exact analysis
of ε and t have been adapted to agree with the accounting employed by Boneh et al [6].

5



Theorem 2.4. Let Π be a (t′, ε′)-one-way homomorphic trapdoor permutation family. Then the
full-domain hash signature scheme on Π is (t, qH , qS, ε)-secure against existential forgery under an
adaptive chosen-message attack (in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − 2(qH + 2qS) .

Here e is the base of the natural logarithm.

3 Sequential aggregate signatures

We introduce sequential aggregate signatures and present a security model for them.

3.1 Aggregate and sequential aggregate signatures

Boneh et al. [5] present a new signature primitive, aggregate signatures. Aggregate signatures are
a generalization of multisignatures [13, 15, 14, 3] wherein signatures by several users on several
distinct messages may be combined into an aggregate whose length is the same as that of a single
signature. Using an aggregate signature in place of several individual signatures in a protocol yields
useful space savings. In an aggregate signature, signatures are first individually generated and then
combined into an aggregate.

Sequential aggregate signatures are different. Each would-be signer transforms a sequential
aggregate into another that includes a signature on a message of his choice. Signing and aggregation
are a single operation; sequential aggregates are built in layers, like an onion; the first signature in
the aggregate is the inmost. As with non-sequential aggregate signatures, the resulting sequential
aggregate is the same length as an ordinary signature. This behavior closely mirrors the sequential
nature of certificate chains in a PKI.

Let us restate the intuition given above more formally. Aggregation and signing is a combined
operation in a sequential aggregate signature scheme. The operation takes as input a private
key SK, a message Mi to sign, and a sequential aggregate σ′ on messages M1, . . . ,Mi−1 under
respective public keys PK1, . . . ,PKi−1, where M1 is the inmost message. All of M1, . . . ,Mi−1 and
PK1, . . . ,PKi−1 must be provided as inputs. If i is 1, the aggregate σ is taken to be empty. It
adds a signature on Mi under SK to the aggregate, outputting a sequential aggregate σ on all i
messages M1, . . . ,Mi.

The aggregate verification algorithm is given a sequential aggregate signature σ, messages
M1, . . . ,Mi, and public keys PK1, . . . ,PKi, and verifies that σ is a valid sequential aggregate (with
M1 inmost) on the given messages under the given keys.

3.2 Sequential aggregate signature security

The security of sequential aggregate signature schemes is defined as the nonexistence of an adver-
sary capable, within the confines of a certain game, of existentially forging a sequential aggregate
signature. Existential forgery here means that the adversary attempts to forge a sequential aggre-
gate signature, on messages of his choice, by some set of users not all of whose private keys are
known to the forger.

We formalize this intuition as the sequential aggregate chosen-key security model. In this model,
the adversary A is given a single public key. His goal is the existential forgery of a sequential

6



aggregate signature. We give the adversary power to choose all public keys except the challenge
public key. The adversary is also given access to a sequential aggregate signing oracle on the
challenge key. His advantage, Adv AggSigA, is defined to be his probability of success in the following
game.

Setup. The aggregate forger A is provided with a public key PK, generated at random.

Queries. Proceeding adaptively, A requests sequential aggregate signatures with PK on
messages of his choice. For each query, he supplies a sequential aggregate signature σ
on some messages M1, . . . ,Mi−1 under distinct keys PK1, . . . ,PKi−1, and an additional
message Mi to be signed by the oracle under key PK (where i is at most n, a game
parameter).

Response. Finally, A outputs i distinct public keys PK1, . . . ,PKi. Here i is at most n,
and need not equal the lengths (also denoted i) of A’s requests in the query phase
above. One of these keys must equal PK, the challenge key. Algorithm A also outputs
messages M1, . . . ,Mi, and a sequential aggregate signature σ by the i users, each on his
corresponding message, with PK1 inmost.

The forger wins if the sequential aggregate signature σ is a valid sequential aggregate signature
on messages M1, . . . ,Mi under keys PK1, . . . ,PKi, and σ is nontrivial, i.e., A did not request
a sequential aggregate signature on messages M1, . . . ,Mi∗ under keys PK1, . . . ,PKi∗ , where
i∗ is the index of the challenge key PK in the forgery. The probability is over the coin tosses
of the key-generation algorithm and of A.

Definition 3.1. A sequential aggregate forger A (t, qH , qS, n, ε)-breaks an n-user aggregate signa-
ture scheme in the sequential aggregate chosen-key model if: A runs in time at most t; A makes
at most qH queries to the hash function and at most qS queries to the aggregate signing oracle;
Adv AggSigA is at least ε; and the forged sequential aggregate signature is by at most n users.
A sequential aggregate signature scheme is (t, qH , qS, n, ε)-secure against existential forgery in the
sequential aggregate chosen-key model if no forger (t, qH , qS, n, ε)-breaks it.

4 Sequential aggregates from trapdoor permutations

We describe a sequential aggregate signature scheme arising from any family of trapdoor permuta-
tions, and prove the security of the scheme.

We first introduce some notation for vectors. We write a vector as x, its length as |x|, and its
elements as x1,x2, . . . ,x|x|. We denote concatenating vectors as x‖y and appending an element to
a vector as x‖z. For a vector x, x|ba is the sub-vector containing elements xa,xa+1, . . . ,xb. It is
necessarily the case that 1 ≤ a ≤ b ≤ |x|.

4.1 The scheme

We now describe three algorithms: KeyGen, AggregateSign, and AggregateVerify for our sequential
aggregate signature scheme. The scheme employs a full-domain hash function H : {0, 1}∗ → D,
viewed as a random oracle, and resembles full-domain hash described in Section 2.5. The trick to
aggregation is to incorporate the sequential aggregate signature of previous users by multiplying it

7



(via the group operation �) together with the hash of the message. Actually, the hash now needs
to include not only the signer’s message, but also her public key and the prior messages and keys.2

Key generation. For a particular user, pick random (s, t) R← Generate. The user’s public key PK
is s. The user’s private key SK is (s, t).

Aggregate signing. The input is a private key (s, t), a message M ∈ {0, 1}∗ to be signed, and
a sequential aggregate σ′ on messages M under public keys s. Verify that σ′ is a valid
signature on M under s using the verification algorithm below; if not, output ?, indicating
error. Otherwise, compute h ← H(s‖s,M‖M), where h ∈ D, and σ ← Invert(s, t, h � σ′).
The sequential aggregate signature is σ ∈ D.

Aggregate verification. The input is a sequential aggregate σ on messages M under public
keys s. If any key appears twice in s, if any element of s does not describe a valid permutation,
or if |M| and |s| differ, reject. Otherwise, let i equal |M| = |s|. Set σi ← σ. Then, for
j = i, . . . , 1, set σj−1 ← Evaluate(sj , σj) � H(s|j1 , M|j1)−1. Accept if σ0 equals 1, the unit
of D with respect to �.

Written using π-notation, a sequential aggregate signature is of the form

π−1
i (hi � π−1

i−1(hi−1 � π−1
i−2(· · ·π−1

2 (h2 � π−1
1 (h1)) · · ·))) ,

where hj = H(s|j1 , M|j1). Verification evaluates the permutations in the forward direction, peeling
layers away until the center is reached.

4.2 Security

The following theorem demonstrates that our is secure when instantiated on any certified trapdoor
permutation family.

Theorem 4.1. Let Π be a certified (t′, ε′)-trapdoor permutation family. Then our sequential aggre-
gate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery under an adaptive
sequential aggregate chosen-message attack (in the random oracle model) for all t and ε satisfying

ε ≥ (qH + qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n− 1) .

Following to Coron’s work [8], a better security reduction is obtained if the trapdoor permutations
are, additionally, homomorphic under some operatin ∗. (The operation ∗ need not be the same as
the operation � used in the description of the signature scheme in Section 4.)

Theorem 4.2. Let Π be a certifified homomorphic (t′, ε′)-trapdoor permutation family. Then our
sequential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery under
an adaptive sequential aggregate chosen-message attack (in the random oracle model) for all t and
ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − ((4n + 1)qH + (4n + 1)qS + 7n + 3) .

Here e is the base of the natural logarithm.
2This is done not merely because we do not know how to prove the scheme secure otherwise. Micali et al. [13]

pointed out that if the signature does not include the public key, then an adversary may attack the scheme by deciding
on the public key after the signature is issued. Our approach is the same as that of Boneh et al. [5, Section 3.2].

8



Finally, following the work of Dodis and Reyzin [10], the homorphic property is not really necessary,
and can be replaced with the more general claw-free property:

Theorem 4.3. Let Π be a certified (t′, ε′)-claw-free permutation family. Then the sequential aggre-
gate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery under an adaptive
sequential aggregate chosen-message attack (in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n) .

Here e is the base of the natural logarithm.

The proofs of these theorems are very similar (in fact, Theorem 4.2 is just a corollary of Theo-
rem 4.3, because, as we already saw, homomorphic trapdoor permutations are claw-free). We will
prove all three at once.

Proofs. Suppose there exists a forger A that breaks the security of our sequential aggregate sig-
nature scheme. We demonstrate algorithm B that reduces A to breaks of the different security
notions (trapdoor one-wayness, homomorphic one-wayness, and claw-freeness). In fact, the algo-
rithm is slightly different depending on the security assumption that it is trying to break. The
variant we present uses A to find a claw in a (supposedly) claw-free permutation family Π. We will
point out later the changes needed to make the reduction to ordinary and homormophic trapdoor
permutations.

Suppose A is a forger algorithm that (t, qH , qS, n, ε)-breaks the sequential aggregate signature
scheme. We construct an algorithm B that finds a claw in Π.

Crucial in our construction is the following fact about our signature scheme: once the function
H is fixed on i input values (s|j1 , M|j1), 1 ≤ j ≤ i, there exists only one valid aggregate signature on
M using keys s. Thus, by answering hash queries properly, B can prepare for answering signature
queries and for taking advantage of the eventual forgery.

Algorithm B is given the description s of an element of Π, and must find values x ∈ D and
y ∈ E such that Evaluate(s, x) = EvaluateG(s, y). Algorithm B supplies A with the public key s.
It then runs A and answers its oracle queries as follows.

Hash queries. Algorithm B maintains a list of tuples
〈
s(j),M(j), w(j), r(j), c(j)

〉
. We refer to this

list as the H-list. The list is initially empty. When A queries the oracle H at a point (s,M),
algorithm B responds as follows.

If the query (s,M) is already present on the H-list, in some tuple 〈s,M, w, r, c〉, algorithm B
answers the query as H(s,M) = w ∈ D.

If |M| and |s| differ, if |s| exceeds n, if some key is repeated in s, or if any key in s does
not describe a valid permutation, then (s,M) can never be part of a sequential aggregate
signature. Algorithm B picks w

R← D, and sets r ← ? and c← ?, both placeholder values. It
adds 〈s,M, w, r, c〉 to the H-list and responds to the query as H(s,M) = w ∈ D.

Set i = |s| = |M|. If i exceeds 1, B runs the hashing algorithm on input (s|i−1
1 , M|i−1

1 ),

obtaining the corresponding entry on the H-list,
〈
s|i−1

1 , M|i−1
1 , w′, r′, c′

〉
. If i equals 1, B

sets r′ ← 1. Algorithm B must now choose elements r,w, and c to include, along with s and
M, in a new entry on the H-list. There are three cases to consider.

9



If the challenge key s does not appear at any index of s, B chooses r
R← D at random, sets

c← ?, a placeholder value, and computes

w ← Evaluate(si, r)� (r′)−1
.

If the challenge key s appears in s at index i∗ = i, Algorithm B generates a random coin c ∈
{0, 1} such that Pr[c = 0] = 1/(qS + 1). If c = 1, B chooses r

R← D at random and sets

w ← Evaluate(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries because r has been
chosen uniformly and independently at random from D, and Evaluate and combining with
(r′)−1 are both permutations.) If c = 0, B chooses r

R← E at random and sets

w ← EvaluateG(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries because r has been
chosen uniformly and independently at random from E, EvaluateG maps uniformly onto D,
and combining with (r′)−1 is a permutation.)

If the challenge key s appears in s at index i∗ � i, aggregate signature. B picks w
R← D at

random, and sets r ← ? and c← ?, both placeholder values.

Finally, B adds 〈s,M, w, r, c〉 to the H-list, and responds to the query as H(s,M) = w.

In all cases, B’s response, w, is uniform in D and independent of A’s current view, as required.

Aggregate signature queries. Algorithm A requests a sequential aggregate signature, under
key s, on messages M under keys s.

If |s| and |M| differ, if |s| exceeds n, if any key appears more than once in s, or if any key in s
does not describe a valid permutation, (s,M) is not a valid aggregate, and B responds to A
with ?, indicating error. Let i = |s| = |M|. If si differs from s, (s,M) is not a valid query to
the aggregate signing oracle, and B again responds with ?.

Algorithm A also supplies a purported aggregate signature σ′ on messages M|i−1
1 under

keys s|i−1
1 . If i equals 1, B verifies that σ′ equals 1. Otherwise, B uses AggregateVerify

to ensure that σ′ is the correct sequential aggregate signature on (s|i−1
1 , M|i−1

1 ). If σ′ is
incorrect, B again responds with ?.

Otherwise, B runs the hash algorithm on (s,M), obtaining the corresponding entry on
the H-list, 〈s,M, w, r, c〉. Since si equals s, c must be 0 or 1. If c = 0 holds, B reports
failure and terminates. Otherwise, B responds to the query with σ ← r.

Output. Eventually algorithm A halts, producing a message vector M, a public-key vector s, and
a corresponding sequential aggregate signature forgery σ. The forgery must be valid: No key
may occur more than once in s, each key in s must describe a valid permutation, the two
vectors s and M must have the same length i, which is at most n. The forgery must also be
nontrivial: The challenge key s must occur in s, at some location i∗, and A must not have
asked for a sequential aggregate signature on messages M|i

∗

1 under keys s|i
∗

1 . If A fails to
output a valid and nontrivial forgery, B reports failure and terminates.

10



Algorithm B begins by checking the hashes included in σ. For each j, 1 ≤ j ≤ i, B runs its
hash algorithm on (s|j1 , M|j1), obtaining a series of tuples

〈
s|j1 , M|j1 , w(j), r(j), c(j)

〉
. Note

that B always returns w as the answer to a hash query, so, for each j, H(s|j1 , M|j1) = w(j).

Algorithm B then examines c(i∗). Since s(i∗) equals s, c(i∗) must be 0 or 1. If c(i∗) = 1 holds, B
reports failure and terminates. Then B applies the aggregate signature verification algorithm
to σ. It sets σ(i) ← σ. For j = i, . . . , 1, it sets σ(j−1) ← Evaluate(s(j), σ(j))� (w(j))−1.

If σ(0) does not equal 0, σ is not a valid aggregate signature, and B reports failure and
terminates. Otherwise, σ is valid and, moreover, each σ(j) computed by B is the (unique)
valid aggregate signature on messages M|j1 under keys s|j1.

Finally, B sets x← σ(i∗) and y ← r(i∗).

This completes the description of algorithm B.
It is easy to modify this algorithm for homomorphic trapdoor permutations. Now the algo-

rithm’s goal is not to find a claw, but to invert the permutation given by s on a given input
z. Simply replace, when answering hash queries for c = 0, invocation of EvaluateG(s, r) with
z ∗ Evaluate(s, r). The a claw (x, y) allows B to recover the inverse of z under the permutation by
computing z = x ∗ (1/y), where 1/y is the inverse of y under ∗.

Finally, it is also easy to modify this algorithm for ordinary trapdoor permutations:

• In answering hash queries where the challenge key s is outmost in s, instead of letting c = 0
with probability 1/(qS + 1), set c = 0 for exactly one query, chosen at random. There can be
at most qH + qS + 1 such queries.

• For the c = 0 query, set w ← z � (r′)−1. Then w is random given A’s view.

• If Algorithm A’s forgery is such that c(i∗) = 0, B′′ outputs x← σ(i∗).

In Appendix A we show that B correctly simulates A’s environment, and analyze its running
time and success probability.

5 Aggregating with RSA

We consider the details of instantiating the sequential aggregate signature scheme presented in
Section 4 using the RSA permutation family.

The RSA function was introduced by Rivest, Shamir, and Adleman [16]. If N = pq is the
product of two large primes and ed = 1 mod φ(N), then π(x) = xe mod N is a permutation on Z∗

N ,
and π−1(x) = xd mod N is its inverse. Setting s = (N, e) and t = (d) gives a one-way trapdoor
permutation that is multiplicatively homomorphic.

A few difficulties arise when we try to instantiate the above scheme with RSA. We tackle them
individually.

The first problem is that RSA is not a certified trapdoor permutation. Raising to the power e
may not be a permutation over Z∗

N if e is not relatively prime with φ(N). Moreover, even if it is
a permutation of Z∗

N , it may not be a permutation of the entire ZN if N is maliciously generated
(in particular, if N is not square-free). Note that, for maliciously generated N , the difference
between Z∗

N and ZN may be considerable. The traditional argument used to dismiss this issue

11



(that if one finds x outside Z∗
N , one factors N) has no relevance here: N may be generated by

the adversary, and our ability to factor it has no impact on the security of the scheme for the
honest signer who is using a different modulus. Our security proof substantially relied on the fact
that even the adversarial public keys define permutations, for uniqueness of signatures and proper
distribution of hash query answers. Indeed, this is not just a “proof problem,” but a demonstrable
security concern: If the adversary is able to precede the honest user’s key (Ni, ei) with multiple keys
(N1, e1), . . . , (Ni−1, ei−1), each of which defines a collision-prone function rather than a permutation,
then it is quite possible that no matter value one takes for σi, it will be likely to verify correctly:
for example, there will be two valid σ1 values, four valid σ2 values, eight valid σ3 values, . . . , 2i

valid σi values.
We tackle this problem in the same way as Micali et al. [12]. First, we require e to be a prime

larger than N (this idea also appeared in Cachin et al. [7]). Then it is guaranteed to be relatively
prime with φ(N), and therefore provide a permutation over Z∗

N . To extend to a permutation
over ZN , we define Evaluate((N, e), x) as follows: if gcd(x,N) = 1, output xe mod N ; else output x.

The second problem is that the natural choice for the group operation �, multiplication, is not
actually a group operation over ZN . Thus, signature verification, which requires computation of
an inverse under �, may be unable to proceed. Moreover, our security proof, which relies on the
fact that � is a group operation for uniqueness of signatures and proper distribution of hash query
answers, will no longer hold. This difficulty is simple to overcome: Use addition modulo N as the
group operation �. Recall that no properties were required of � beyond being a group operation
on the domain.

The third problem is that two users cannot share the same modulus N . Thus the domains of
the one-way permutations belonging to the aggregating users differ, making it difficult to treat RSA
as a family of trapdoor permutations. We give two approaches that allow us to create sequential
aggregates from RSA nonetheless.

The first approach is to require the users’ moduli to be arranged in increasing order: N1 <
N2 . . . < Nn. At verification, it is important to check that the i-th signature σi is actually less
than Ni, to ensure that correct signatures are unique if H is fixed. As long as log N1 − log Nn is
constant, and the range of H is a subset of ZN1 whose size is a constant fraction of N1, the scheme
will be secure. The same security proof still goes through, with the following minor modification
for answering hash queries. Whenever a hash query answer w is computed by first choosing a
random r in ZNi , there is a chance that w will be outside of the range of H. In this case, simply
repeat with a fresh random r until w falls in the right range (the expected number of repetitions
is constant). Note that because we insisted on Evaluate being a permutation and � being a group
operation, the resulting distribution of w is uniform on the range of H. Therefore, the distribution
of answers to hash queries is uniform. Since signatures are uniquely determined by answers to hash
queries, the adversary’s whole view is correct, and the proof works without other modifications.
(This technique is related to Coron’s partial-domain hash analysis [9], though Coron deals with the
more complicated case when the partial domain is exponentially smaller than the full domain.)

Our second approach allows for more general moduli: we do not require them to be in increasing
order. However, we do require them to be of the same length l (constant differences in the lengths
will also work, but we do not address them here for simplicity of exposition). The signature will
expand by n bits b1 . . . bn, where n is the total number of users. Namely, during signing, if σi ≥ Ni+1,
let bi = 1; else, let bi = 0. During verification, if bi = 1, add Ni+1 to σi before proceeding with
the verification of σi. Always check that σi is in the correct range 0 ≤ σi < Ni (to ensure, again,

12



uniqueness of signatures). The security proof requires no major modifications.3

To summarize, the resulting RSA aggregate signature schemes for n users with moduli of length l
are as follows. Let H : {0, 1}∗ → {0, 1}l−1 be a hash function.

Restricted Moduli. We first present the scheme where the moduli must be ordered.

Key generation. Each user i generates an RSA public key (Ni, ei) and secret key (Ni, di), ensuring
that 2l−1(1 + (i− 1)/n) ≤ Ni < 2l−1(1 + i/n) and that ei > Ni is a prime.

Signing. First, given an aggregate signature σ′ on M1, . . . ,Mi−1 and keys (N1, e1), . . . , (Ni−1, ei−1),
user i first verifies σ′ (using the verification procedure below). If the verification succeeds,
user i computes hi = H((M1, . . . ,Mi), ((N1, e1), . . . , (Ni, ei))), y = hi + σ′ and outputs
σ = ydi mod Ni (the user may first check that gcd(y′, N) = 1 and, if not, output y; however,
the chances that the check will fail are negligible, because the user is honest).

Verifying. On input an aggregate signature σ on M1, . . . ,Mi and keys (N1, e1), . . . , (Ni−1, ei), first
check that no key appears twice. Then check that ei > Ni is a prime and that Ni is of length
l (this can be once per key, and need not be done per signature). Check that 0 ≤ σ < Ni.
If gcd(σ,Ni) = 1, let y = σei mod Ni. Else let y = σ (this check is crucial, because we do
not know if user i is honest). Compute hi = H((M1, . . . ,Mi), ((N1, e1), . . . , (Ni, ei))) and
σ′ = y − hi mod Ni. Verify σ′ recursively. The base case for recursion is i = 0, in which case
simply check that σ = 0.

Unrestricted Moduli. We present the scheme for unordered moduli by simply demonstrating
the required modifications. First, the range of Ni is now 2l−1 < Ni < 2l. Second, to sign, upon
verifying σ′, check if σ′ ≥ Ni. If so, replace σ′ with σ′ −Ni and set bi = 1; else, set bi = 0. Finally,
to verify, replace σ′ with σ′ + biNi before proceeding with the recursive step.

Security. Because RSA over Z∗
N is homomorphic with respect to multiplication, it is claw-free

(not just over Z∗
N , but over entire ZN , because finding a claw outside of Z∗

n implies factoring n and
hence being able to invert RSA). Therefore, the conclusions of Theorem 4.3 apply to this scheme.

Acknowledgments

The authors thank Dan Boneh, Stanis law Jarecki, and Craig Gentry for helpful discussions about
this work, and Eu-Jin Goh for his detailed and helpful comments on the manuscript.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby, editors, Proceedings
of CCS 1993, pages 62–73. ACM, 1993.

3We need to argue that correct signatures are unique given the hash answers. At first glance it may seem that
the adversary may have choice on whether to use bi = 0 or bi = 1. However, this will result in two values σi−1 that
are guaranteed to be different: one will be less than Ni and the other at least Ni. Hence uniqueness of σi−1 implies
uniqueness of bi and, therefore, σi. Thus, by induction, signatures are still unique. In particular, there is no need to
include bi into the hash function input.

13



[2] M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge based on
any trapdoor permutation. J. Cryptology, 9(1):149–66, 1996.

[3] A. Boldyreva. Efficient threshold signature, multisignature and blind signature schemes based
on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, Proceedings of PKC
2003, volume 2567 of LNCS, pages 31–46. Springer-Verlag, 2003.

[4] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Com-
puting, 32(3):586–615, 2003. Extended abstract in Proceedings of Crypto 2001.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS,
pages 416–32. Springer-Verlag, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Proceedings
of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer-Verlag, 2001. Full paper:
http://crypto.stanford.edu/~dabo/pubs.html.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor, Proceedings of Eurocrypt 1999, volume
1592 of LNCS, pages 402–414. Springer-Verlag, 1999.

[8] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 229–35. Springer-Verlag, 2000.

[9] J.-S. Coron. Security proof for partial-domain hash signature schemes. In M. Yung, editor,
Proceedings of Crypto 2002, volume 2442 of LNCS, pages 613–26. Springer-Verlag, 2002.

[10] Y. Dodis and L. Reyzin. On the power of claw-free permutations. In S. Cimato, C. Galdi, and
G. Persiano, editors, Proceedings of SCN 2002, number 2576 in LNCS, pages 55–73. Springer-
Verlag, 2002.

[11] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

[12] S. Micali, K. Ohta, and L. Reyzin. Provable-subgroup signatures. Unpublished manuscript,
1999.

[13] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (extended abstract).
In Proceedings of CCS 2001, pages 245–54. ACM Press, 2001.

[14] K. Ohta and T. Okamoto. Multisignature schemes secure against active insider attacks. IEICE
Trans. Fundamentals, E82-A(1):21–31, 1999.

[15] T. Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM
Trans. Computer Systems, 6(4):432–41, November 1988.

[16] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public
key cryptosystems. Commun. ACM, 21:120–126, 1978.

[17] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of Eurocrypt 2000,
volume 1807 of LNCS, pages 207–220. Springer Verlag, 2000.

14



A Analysis of the security reduction

In this seciton we analyze the success probability of the reduction B described in in the proofs of
Theorems 4.1, 4.2, and 4.3.

Recall that we suppose that A is a forger algorithm that (t, qH , qS, n, ε)-breaks the sequential
aggregate signature scheme. Our goal is to show that algorithm B, described above, correctly
simulates A’s environment, runs in time t′, and finds a claw in Π with probability at least ε′, which
will contradict the (t′, ε′)-claw-freeness of Π (almost identical arguments work for the modifications
of B for ordinary and homomorphic trapdoor permutations).

We introduce some notation, which we will use to demonstrate that B correctly answers A’s
oracle queries. Consider public keys s and respective messages M, where i = |s| = |M|, and the
entries in s are all distinct. For each j, 1 ≤ j ≤ i, B’s hash algorithm associates with (s|j1 , M|j1)

a tuple
〈
s|j1 , M|j1 , w(j), r(j), c(j)

〉
. The last three elements of these tuples we view as i-element

vectors w, r, and c. Algorithm B always returns w as the answer to a hash query, so, for each j,
H(s|j1 , M|j1) = wj . We also abbreviate the permutation evaluation Evaluate(sj , ·) as πj(·). For
each j there is a unique correct sequential aggregate signature σj on messages M|j1 under keys s|j1.
Finally, for the challenge key s, we abbreviate the second function of the claw-free permutation
pair, EvaluateG(s, ·), as g(·).

Note that, for the keys s and messages M output by A as its forgery, B, in its output phase,
computes and makes use of the vectors w, r, and c as defined here, along with the correct sequential
aggregate signatures σj . In our analysis, we will also consider these vectors for keys and messages
other than those forged on by A.

The proof proceeds in a series of claims. In particular, Claim 4 below shows that B answers A’s
signature queries with the correct sequential aggregate signature, and Claim 5 below shows that B
outputs a claw π(x) = g(y).

Claim 1. If the challenge key s does not equal any of the elements of s, then σj = rj for each j,
1 ≤ j ≤ i.

Proof. We proceed by induction. Since s1 6= s, w1 = π1(r1)� 1, or, equivalently, r1 = π−1
1 (w1) =

π−1
1 (H(s|11 , M|11)) = σ1. Thus the claim holds for j = 1. If the claim holds for j − 1, then, since

sj 6= s, wj = πj(rj)�rj−1
−1, or, equivalently, rj = π−1

j (wj�rj−1) = π−1
1 (H(s|j1 , M|j1)�σj−1) = σj ,

and the claim holds for j.

Claim 2. If the challenge key s appears at index i∗ of s, and ci∗ = 1, then σj = rj for each j,
1 ≤ j ≤ i∗.

Proof. If ci∗ equals 1, then B computes wi∗ precisely as it would have had si∗ not been s. Thus
the proof of Claim 1 applies still.

Claim 3. If the challenge key s appears at index i∗ of s, and ci∗ = 0, then, for j < i∗, σj = rj,
and, for j = i∗, σj = π−1

i∗ (g(ri∗)).

Proof. For j < i∗, the result follows from Claim 1. We consider the case j = i∗. If i∗ equals 1, B
calculates the hash wi∗ as

w1 = g(r1)� 1−1 = g(r1) .

15



Thus the correct aggregate signature σ1 is

σ1 = π−1
1 (w1) = π−1

1 (g(r1)) .

If i∗ is greater than 1, B calculates the hash wi∗ as

wi∗ = g(ri∗)� (ri∗−1)−1 ,

and thus
σi∗ = π−1

i∗ (wi∗ � σi∗−1) = π−1
i∗ (wi∗ � ri∗−1) = π−1

i∗ (g(ri∗)) ,

where the first substitution follows from the first half of this claim. Thus the claim also holds for
j = i∗ > 1.

Using the claims above, we can demonstrate that B correctly answers A’s aggregate signing
queries, and that, except when it declares failure, B correctly computes a claw π(x) = g(y), the
solution to the challenge posed it.

Claim 4. If A makes a valid sequential aggregate query, supplying messages M, keys s, and se-
quential aggregate signature σ′ on all but the last message, then B either declares failure and halts
or outputs the correct sequential aggregate signature σ on the messages.

Proof. If the request is valid then no key appears twice in s, |s| = |M| = i ≤ n, and si = s.
Algorithm B examines ci. If ci equals 0, B declares failure and exits; if it equals 1, B outputs ri as
the answer to the signature query. In this case, the antecedent of Claim 2 is satisfied, and σ = σi

equals ri, as required.

Claim 5. If A outputs a valid and nontrivial aggregate signature forgery σ on messages M un-
der keys s then B either declares failure and halts, or outputs the correct solution x to the given
challenge.

Proof. If the forgery is valid and nontrivial, then no key appears twice in s, |s| = |M| = i ≤ n,
and si∗ = s for some i∗. Algorithm B examines ci∗ . If ci∗ equals 1, B declares failure and exits. If
ci∗ equals 0, the antecedent of Claim 3 is satisfied, and

σi∗ = π−1
i∗ (g(ri∗)) .

That is,
π(σi∗) = g(ri∗) ,

where we note that πi∗(·) = π(·), the challenge permutation. Algorithm B outputs (in our notation)
x = σi∗ and y = ri∗ ; it therefore outputs a claw on π(·) and g(·), as required.

It remains to show that B outputs the claw with probability at least ε′. To do so, we analyze
the three events needed for B to succeed:

E1: B does not abort as a result of any of A’s sequential aggregate signature queries.

E2: A generates a valid and nontrivial sequential aggregate forgery σ on messages M under keys s.

E3: Event E2 holds, and c = 0 for the tuple containing (s|i
∗

1 , M|i
∗

1 ) on the H-list, where i∗ is the
index of s in s.

16



B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2] . (1)

The following claims give a lower bound for each of these terms.

Claim 6. The probability that algorithm B does not abort as a result of A’s aggregate signature
queries is at least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that A does not ask for the signature of the same
message twice. We prove by induction that after A makes k signature queries the probability
that B does not abort is at least (1 − 1/(qS + 1))k. The claim is trivially true for k = 0. Let
(s(k),M(k) be A’s k’th signature query and let

〈
s(k),M(k), w(k), r(k), c(k)

〉
be the corresponding

tuple on the H-list. Then, prior to A’s issuing the query, the bit c(k) is independent of A’s view —
the only value that could be given to A that depends on c(k) is H(s(k),M(k)), but the distribution
of H(s(k),M(k)) is the same whether c(k) = 0 or c(k) = 1. Therefore, the probability that this
query causes B to abort is at most 1/(qS + 1), the probability that c(k) equals 0. Using the
inductive hypothesis and the independence of c(k), the probability that B does not abort after this
query is at least (1 − 1/(qS + 1))k. This proves the inductive claim. Since A makes at most qS

signature queries, the probability that B does not abort as a result of all signature queries is at
least (1− 1/(qS + 1))qS ≥ 1/e. Hence Pr[E1] ≥ 1/e.

Claim 7. If algorithm B does not abort as a result of A’s queries then algorithm A’s view is
identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given to A is from the same distribution as public keys produced by algo-
rithm KeyGen. Responses to hash queries are as in the real attack since each response is uniformly
and independently distributed in D. All responses to sequential aggregate signature queries are
valid. Therefore A will produce a valid and nontrivial aggregate signature forgery with probability
at least ε. Hence Pr[E2 | E1] ≥ ε.

Claim 8. The probability that algorithm B does not abort after A, outputs a valid and nontrivial
forgery is at least 1/(qS + 1). Hence, Pr[E3 | E1 ∧ E2] ≥ 1/(qS + 1).

Proof. Given that events E1 and E2 occurred, B will abort only if A generates a forgery (s,M, σ)
for which the tuple

〈
s|i

∗

1 , M|i
∗

1 , w(i∗), r(i∗), c(i∗)
〉

on the H-list has c(i∗) = 1, where i∗ is the index
of s in s. At the time A generates its output, it knows the value of c for those vector pairs (s′,M′)
on which it issued a sequential aggregate signature query (and in which s is necessarily the last
key). All the remaining c’s are independent of A’s view. Indeed, if A did not issue a signature
query for (s|i

∗

1 , M|i
∗

1 ), then the only value given to A that depends on c(i∗) is H(s|i
∗

1 , M|i
∗

1 ), but
the distribution on H(s|i

∗

1 , M|i
∗

1 ) is the same whether c(i∗) = 0 or c(i∗) = 1. Since the forgery is
nontrivial, A could not have issued a signature query at (s|i

∗

1 , M|i
∗

1 ), so c(i∗) is independent of A’s
current view and therefore Pr[c = 0 | E1 ∧ E2] ≥ 1/(qS + 1) as required.

Using the bounds from the claims above in equation (1) shows that B produces the correct
answer with probability at least 1/e · ε · 1/(qS + 1), as required.

Algorithm B’s running time is the same as A’s running time plus the time is takes to respond
to up to qH hash queries and qS aggregate signature queries. Each hash query may require as many

17



as n levels of recursion, and each level requires (at most) choosing a random value from D or E,
a call to Evaluate or EvaluateG, an inversion in D, and a evaluation of the group operation �
in D. Any of these operations is computable in unit time, so each hash query requires at most
4n time units to answer. Each signature query involves a corresponding hash computation, and so
requires at most 4n time units to answer (σ′ can be verified at no cost by comparing it to ri−1).
Transforming a forgery into a claw (x, y) requires a hash query and a signature verification. As
before, the hash query takes at most 4n time units to process. The signature verification requires
at most n steps, each of which requires a call to Evaluate, an inversion in D, and a evaluation of the
group operation � in D, and thus takes at most n time units to process. The output step thus takes
at most 7n time units in total. Hence B’s total running time is at most t + (4nqH + 4nqS + 7n) ≤ t′

as required.

In the case when case B is modified for homomorphic trapdoor permutations, the running-
time accounting requires some care, since it needs now two time units to compute EvaluateG,
not one. Answering a hash oracle query (s,M) may involve up to n nested computations, but
only one entry in s can contain the challenge key s and require a call to EvaluateG. The same is
true of the hashing required to answer signature oracle queries and in the output phase of B. In
addition, B′ takes 2 time units to compute π−1(z). Hence the total running time of B′ is at most
t + ((4n + 1)qH + (4n + 1)qS + 7n + 3) ≤ t′ as required.

Finally, when B is modified for plain trapdoor permutations, we analyze the running time and
the success probability as follows. The challenge z is embedded in only one hash response (s,M).
If A asks for a signature on (s,M), it cannot later forge on it — the forgery would be trivial —
and so B can then never succeed in inverting z, and its not being able to answer A’s query is of
no consequence. Algorithm B′′ succeeds if A succeeds in creating a forgery, which happens with
probability ε, and if that forgery includes the challenge (s,M), which happens with probability at
least 1/(qH + qS + 1). These two probabilities are independent since the placement of the challenge
is independent of A’s view. The running time of B does not change. (The only difference is that,
for the single hash query for which c = 0, B need not compute EvaluateG, saving one time unit
overall).

18


