Provably-Secure Enhancement on 3GPP Authentication and Key Agreement Protocol

Muxinng Zhang
Werivon Laboraloriea
40 Gyl wan Ihord, Wallham, MA 0245 I
muximig.xhangiverivon com

Abstract

Abatract This paper analpses the anthentifatimn and key agreennent proterol adepted by Colver- real and perrelven wealmossa in Gigi and other wireless mmmumication aytenis. In this The wilnerabllity allowe an adversary to redirest, iser trafte from one networl to another. Impersonate all other networks. In addition, we ehow that the nepe of aymelmontration be of 3GPP AKA. To prificte firther enhancemento on MGPP AKA, we prosent an anthentlcation and keg agreenent, protoml wheh defente redire:tion attarl and atratically lomers the impact of networl miviptimn. The proteren, ealled AP-AKA, ales ellminates synchro- approarh, we have developed a formal moxdel of eacmity for symumetric-key based anthentifation and key agreement. protorile in the moblle setitige. Whthln thle nixalel, we have amalymed the semulty of AP-AKA agalnstia powerfil adversary haying fill control of the commundratlon channels betwern a isar and a networl.

1 Introduction

 ta computa arsptragraphic rafpange and ripher leng. This helpe to minimise the trust that the

 are nat being reurer.

 in tha mobile etation and annthar ame in tha hrome natworl. Normally: the muntar in tha

 of protionsil.

Th provide furthar anhanpamant on SCPP AKA. wh pranant an authanticatian and hay

 atastas frir earch individual muberriber. Tha unar man marify whethar authantication westara

 motile aftitigg and frrmulate the definition of authantiontion. Within our fromal model of

2 Description of 3GPP AKA

 oartain aryptagraphin algarithma with hin hame natwark: denated by HN. In additirm, tha

1. $\quad S N \rightarrow$ ㅍN: atfientimation data reremat $I D_{T T}$

 werer nuthentimation rejeret GADSE

 the uner rejenta. Otharwina; the uner furthar yarifine if the menquanfa mumar $B Q N$ in in the

 anciapta.
 ADTS: whirh has the following frum

$$
A D T S=G o n \in\left(B Q N_{M g}\right) \| M A C-S
$$

whare

And

$$
M A C-S=f L_{k}^{*}\left(S Q N_{M G:}, R A N D: A M F\right) .
$$

 anthantiondian westara atrired firir the urar.

3 Analygis of gGPP-AKA

 anthantiontan the unar by barifying the unar authantication reaponne: RES: to detarmina if

3.1 Hedirection Attadr

 unintanderl natwnils

Tha ra-diractinn attanly mag emam apparant ainca natanorle infantity in nat indurded in tha

3.2 Active Attack in Corrupted Networle

 maintaineal far a muberriber ta be get to a high malue. Aq the masimum falua of $B Q \mathrm{~N}_{\mathrm{HN}}$ is limiterel: thin enratiens the lifetime of the mokile etation.

3.3 Operational Difficulty with Sequence Numbers

 nat nempararily mean an failura in the raumar $S Q N_{H M}$. It might be rauneal by an advertary by

 anthantiration pertara.

4 Specification of AP-AKA

1. $\quad S N \rightarrow V:$
2. $U \rightarrow g N:$
3. $\quad B N \rightarrow H N$:
4. $H N \rightarrow g N:$
$S N \rightarrow U:$

: Afer diafa reptent: FRESH

Protacol encecution in SN

 in twan diffarant whyt.
 the fifth flow: i.es: manding wer nuthentiontion repereft to the unar: including RAND

 intagrity.

User actions

- If ids = 0, the uner updatas ita internal atata and arcapta.

 axplriting pravirusly unser muthentiontion vestarg.

Protacol encecultion in Hirr

 dexaiberl below:

1. $\quad H N \rightarrow V:$ mefer dita repwemt FRESH

 networke mould be made idmational by alightly madifying the protamen asemeution in HN: that

Verlflcatican of [TNTidr

5 Anslygis of AP-AKA

5.1 Fedirectionn Attacle

 deffarta re-direntinm attarle

5.2 Impact of Netmorir Corruption

 a dedicstered circuit.

 poraibla emamarica:

 yfrary atarta AP-AKA bry manding FBESH and IDgne to the upar: the unar replifa

 man detarmaina that tha unar in in nath in $S N$ and thus rafure the request.

 drastionally hawared in AP-AKA in mmparann with 6 GPP AKA.

5.3 Provable Security

 provide an oraryiaw of the mecurity madel, as well an the main rafult, proferl within the madel.

 whe tafer tha tabiame ta [200].

 घfytifm.

 oparatirms: in itinlize entityp, initinulize entity inntanes, deliver mentage and appliention. As in

 arnt afthamb. Thate are twora requiramanta:

 hama maztirin lagy.
 anchiancy murh that thair trangeripta are mamputatimally indiatinguinhabla.

Within the mancurity madel : we hase profed the frillowing thenram:

5.4 Comparison whth Other Proposals

 rixa.

 pithar of tham.

f Conclusion

 natomerls.

Referenceg

[1] 3GPP TS 21.102, Srd Gamaration Partnamhip Projent (3GPP); Terhninal Spenifintion

 Varlag: 1904. pp. ED-249.

 Pp. 唃-他.

 1904: pp. s-824.

 Kryptrknight family of light-wpight protamla far authantication and lay diatributinn:

 Pp. 40-45.

 Juna 1063.

[21] C.H. Lab: M.S. Hwang: and WT.P. Yang: Enhangad primany and authantiontion frir tha

 4: Merhanimun uring a aryptrgraphin cheres function.
 Promeding of ACM SIGCOMAld'的: Augurt logn.
 1906.

 1904: pp. 2f-34.

 1906: Pp. 144 -145.

A Security Model

 leg axuhange protromla.
In the frllowing: wh utilise Shoup'g frimal model of ancurity to analyse authantiontinn

 Sha can abpin acquira maminn lafye and apply tham through an aribitrary mathamatimal function.

 aimulatability in tha texn diffarant warlds.

A. 1 The Ideal Sygtem

(initialime entity: i, ralfe: $I D_{j}$): This aparation mpasififa an idantity $I D_{5}$: along with

 reford of the form (initialize antity: i, rollef: $I D_{j}$).

 frorm (initializa entity fratance, i: j: PID
 for this oparation in (abort aegeime: i: j).

 determined ancording to monestion_amignorent fa fallowa:

 lrmger inclatherl.

- conproaiba: tha ring martar mata Fiy equal ta key.

 $\left.f: f\left(\mathbb{R}_{:}\left\{\mathcal{K}_{i j}\right\}\right]\right)$.
 the trangrript. The remerd frir this operation in (iaplementatiomemmeremet).

A. 2 The Feal System

 authantiontinn and lay farpamant protomal. In tha frillowing: we deanri beat the aparatirne of tha raml-warld entyartary.
 aparation
(initialimeentity: i: rolfe: $I D_{i}$)

(initialimeentityinatance: i: j: Pr $_{\text {Fif }}$)

Tha remord far this aperation in (initialize antity inatance, i; j: PIDsy). Unlika in

 agreamant with all pratinurly initializarl natwerke. Th dn ma, the ring matar in the real

 $N_{i \prime}$ eharia thim emenura channmel.

 networls. Whan an antity in initialised as an unar U_{i} with identity $I D_{;}$: whara $I D_{;}$in prafix

> (delivermemage: i: j: wpre: Inilhag):

 pratiola atat.us:
continue: $I_{i j}$ ip prapared to rempita annthar mearaga

 encution of the protacrl. The applination oparatim pradureas the remerd (application:

A. 5 Deflition of Security

 protamil in our modal.

 diatinguinhahla.

 initialized ingtange. Whan making the mmention antignmant (ereate: i^{\prime} : j^{\prime}): wh dn not

B Security Proofs

 $k>\mathrm{k}$.

 ligible in k : wh eas that X and Y ara mompatationnity in diatinguifhatis.
Lat $G:\{0,1\}^{k} \times\{0,1\}^{d} \rightarrow\{0,1\}^{n}$ dannte in family of functinan and let. $4(L, L)$ denate the
 marhina A: the prffadmontage of A it definad an
 G. Whe armaminta to G an innesurity funation:

 presthomandonf functinn family.

 mernige.

 inttaniff.

 we mbithat T_{A} is a antinion-fres emaraript.

$$
\begin{equation*}
P r\left(\bar{G}_{A}\right) \leq \frac{m}{2}_{2}^{2}\left(\left.2\right|^{|F R E S H|}+2^{|R N|}+2^{|R A N D|}\right) \tag{1}
\end{equation*}
$$

 under B are different, ine mob that B in milition-fres in TA-

 л.anther of inntureen initintized by A.

 game of \mathcal{A} and outputa an ampty string.

 not quariad ta the arancla $F_{\text {xr }}$. Thin impliex that

$$
\operatorname{Pr}[A S y=1] \leq \operatorname{Pr}[S \sin (\mathcal{F} ; F)=1] .
$$

$$
\begin{equation*}
\left.P_{r}\left[A S_{r^{\prime} y^{\prime}}=1\right] \leq A d v_{F}^{m}(t, ~ P]\right) \tag{2}
\end{equation*}
$$

whare $t=O(T): q=O\left(m_{i j}\right)$.

 $R N\|F R E S E\| I D_{\mathrm{Y}} \cdot \mathrm{B}_{\mathrm{F}}$ (2): wh hase

$$
\begin{equation*}
P_{4}\left(I B_{\mathrm{g}}=1\right) \leq \mathrm{Adv}_{F}^{m}(t, p) . \tag{6}
\end{equation*}
$$

 aA dearribued alotra: we hase

$$
\operatorname{Fr}\left(A S_{\mathrm{Y}}=1\right) \leq \operatorname{Pr}\left(\left[\beta \operatorname{vec}\left(\mathcal{F}^{\prime}: F\right)=1\right) A\left(\beta \operatorname{coc}\left(\mathcal{F}^{\prime}: H\right)=1\right)\right] .
$$

 by a compatible netwarly ingtanga ia uppar-hounded by

 A has murraftiully minemend tha MAC frir tha mefrage RAMD. Similar to (2), it ran ba

 $\left.f: f\left(R,\left\{S K_{i, f}\right\}\right)\right)$ bs (application: $\left.f: f\left(R_{:}\left\{K_{i}\right\}\right\}\right)$.

 running tire T,
 initinlized by $A, t=O(T): q=O\left(n_{i j}\right)$.

 kesp aubetitutionn made by simacletar mimin the oparationn of the ring mantar in the ideal ay

 by at randnm member $\boldsymbol{K}_{\mathrm{i}_{1} ; 1}$.

 nat. marla beffra.

 trangraipta T_{A} and $T=S i m m b t a r\left(T_{A}\right)$ ara mamputatianally indiatinguinhabla. Note that if wa remorn tha application remirde in hoth T_{A} and T : than tha ramaining tranemipta

 diatinguinher for ' T_{A} and T. Вy running D an T_{A} and T : wh hase an adterancy D^{\prime} far G
aurth that:

Thur:

 bef concluderd that
whirh profer tha lamma.
Bremed on Lamma 1 and Lamma. 2: wh hash tha fillow thaitam.
 menfrige nuthentimion monder, and F.G, and H are independent. Then AP-AFIA in a

Pronf. Tha momplation requiramant fallowa divertly by ingpention. Now wa profe that

 time T :

$$
\begin{aligned}
& =\mid\left[P_{\uparrow}\left(D\left(T_{\mathcal{A}}=1\right) \mid M_{\mathcal{A}} A C_{\mathcal{A}}\right)-P_{\uparrow}\left(D(T=1) \mid M_{\mathcal{A}} A_{A} \sigma_{\mathcal{A}}\right) P_{r}\left(M_{\mathcal{A}} A C_{\mathcal{A}}\right)\right. \\
& +\left[P_{r}\left(D_{\mathcal{A}}\left(T_{\mathcal{A}}\right)=1 \mid \overline{M A}_{\mathcal{A}} \vee \bar{C}_{\mathcal{A}}\right]-P_{r}\left(D(T)=1 \mid \overline{M A}_{\mathcal{A}} \vee \bar{C}_{\mathcal{A}}\right)\left|P_{r}\left(\overline{M A}_{\mathcal{A}} \vee \bar{C}_{\mathcal{A}}\right)\right|\right. \\
& \leqslant \mid\left[P_{r}\left(D\left(T_{A}=1\right) \mid M_{A} A G_{A}\right)-\operatorname{Pr}\left(D(T=1) \mid M_{A} A G_{A}\right) \mid+P_{r}\left(\bar{M}_{A}\right)+P_{r}\left(\bar{C}_{A}\right)\right.
\end{aligned}
$$

On the athar hand:

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{M}_{A}\right) & =\operatorname{Pr}\left(\bar{M}_{A} \mid C_{A}\right) \operatorname{Pr}\left(C_{A}\right]+\operatorname{Pr}\left(\bar{M}_{A} \mid \bar{G}_{A}\right] \operatorname{Pr}\left(\bar{C}_{A}\right) \\
& \leq \operatorname{Pr}\left(\bar{M}_{A} \mid \bar{C}_{A}\right)+\operatorname{Pr}\left(\bar{C}_{A}\right)
\end{aligned}
$$

Henras it frillowe that
 $A d v v_{1} T(D)$ in natigigible.

C Security Aggingt Network Corruption

 defined in tarme of momplation and aimulatahility: will ramain tha afme.

 frim (implementatim, rearl mageage: i: Imideilit: Mag) in addear to tha trannaript.

 i. ImMail : Mag .

 far ang unar: indapandant of the antual laration of tha uner. The ermpramiand authanti-

 if not morretped

 applimation aparatinna.

 implian that the cmmention areignmant (arente: $i^{\prime}: j^{\prime \prime}$) war not made befora.

which mamplatan tha pronf of the lamma

Baresi on Lammal 1 and Lamma 3: wh hasf the frollowing thastam.

 AP-AKA in enmparianm with UMTS AKA.

