
Secure Proxy Signature Schemes for

Delegation of Signing Rights

Alexandra Boldyreva Adriana Palacio Bogdan Warinschi

Dept. of Computer Science & Engineering, University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA.

Email: {aboldyre,apalacio,bogdan}@cs.ucsd.edu
URL: http://www-cse.ucsd.edu/users/{aboldyre,apalacio,bogdan}

Abstract

A proxy signature scheme permits an entity to delegate its signing rights to another entity.
These schemes have been suggested for use in numerous applications, particularly in distributed
computing. But to date, no proxy signature schemes with guaranteed security have been pro-
posed; no precise definitions or proofs of security have been provided for such schemes. In this
paper, we formalize a notion of security for proxy signature schemes and present provably-secure
schemes. We analyze the security of the well-known delegation-by-certificate scheme and show
that after some slight but important modifications, the resulting scheme is secure, assuming
the underlying standard signature scheme is secure. We then show that employment of the re-
cently introduced aggregate signature schemes permits bandwidth and computational savings.
Finally, we analyze the proxy signature scheme of Kim, Park and Won, which offers important
performance benefits. We propose modifications to this scheme that preserve its efficiency, and
yield a proxy signature scheme that is provably secure in the random-oracle model, under the
discrete-logarithm assumption.

Keywords: Applied cryptography, digital signature schemes, proxy signature schemes, aggre-
gate signature schemes, provable security.

Contents

1 Introduction 3

2 Preliminaries 6

3 Proxy Signature Schemes 7
3.1 Syntax of Proxy Signature Schemes . 7
3.2 A Notion of Security for Proxy Signature Schemes 8

4 Delegation-by-certificate proxy signature schemes 10

5 Aggregate-signature-based proxy signature schemes 11
5.1 Aggregate signatures, their security and constructions 11
5.2 Aggregate-signature-based proxy signature schemes 12

6 The Triple Schnorr scheme and its security 13
6.1 The Schnorr signature scheme. 13
6.2 The Triple Schnorr proxy signature scheme. 14

7 Acknowledgements 15

A Proof of Theorem 5.2 17

B Proof of Theorem 6.1 19

2

1 Introduction

A proxy signature protocol allows an entity, called the designator or original signer, to delegate
another entity, called a proxy signer, to sign messages on its behalf, in case of say, temporal absence,
lack of time or computational power, etc. The delegated proxy signer can compute a proxy signature
that can be verified by anyone with access to the original signer’s certified public key.

Applications and background. Proxy signatures have found numerous practical applications,
particularly in distributed computing where delegation of rights is quite common. Examples dis-
cussed in the literature include distributed systems [22, 33], Grid computing [7], mobile agent
applications [11, 15], distributed shared object systems [18], global distribution networks [2], and
mobile communications [24]. The proxy signature primitive and the first efficient solution were
introduced by Mambo, Usuda and Okamoto [19]. Since then proxy signature schemes have enjoyed
a considerable amount of interest from the cryptographic research community. New security con-
siderations and constructions have been proposed, old schemes have been broken, followed by more
constructions (e.g., [12, 34, 23, 31, 30, 35, 15, 8, 16, 32]). Furthermore, various extensions of the
basic proxy signature primitive have been considered. These include threshold proxy signatures
[12, 37, 28, 29, 10], blind proxy signatures [13], proxy signatures with warrant recovery [14], nomi-
native proxy signatures [24], one-time proxy signatures [11], and proxy-anonymous proxy signatures
[27].

Unfortunately, the extensive cryptographic research on the topic has brought developers more
confusion than guidance because almost every other paper breaks some previously proposed con-
struction, and proposes a new one. See [36, 17, 15, 16, 32] for some illustrative examples of this trial
and error approach. Very few schemes were left unbroken, and none of them has provable-security
guarantees. Typically, security of these schemes is argued by presenting attacks that fail, which pro-
vides only very weak guarantees. What is clearly desirable but has not been provided until now, is a
proxy signature scheme with guaranteed security. In order to achieve this goal, it is necessary to first
formalize a notion of security for proxy signature schemes, since the current security requirements
are vague and ill-defined. This problem was recognized and left open in [16].

Our current work is aimed at filling this void. This is the first work on proxy signatures in the
provable-security direction. We define a formal model for the security of proxy signature schemes,
which enables the cryptographic analysis of such schemes. Then we present several examples of proxy
signature schemes that provably satisfy this notion of security, under widely-believed computational-
complexity assumptions.

Functionality of proxy signature schemes. As in previous works, we assume a Public Key
Infrastructure (PKI) setting, where each entity holds a public and secret key pair. As usual, each
user can sign messages using the signing algorithm of a standard digital signature scheme, and his
or her secret key. When a user (the original signer) desires to delegate his or her signing ability to
another user (the proxy signer), they run a possibly interactive proxy-designation protocol. Through
a successful execution of this protocol, the proxy signer obtains a proxy signing key. It can then
sign messages on behalf of the original signer using a proxy signing algorithm and the proxy signing
key. Anyone can verify the validity of such signatures using a proxy verification algorithm and the
original signer’s public key.

Natural constructions. Before discussing the security of these schemes, we sketch a couple of
natural constructions based on any standard digital signature scheme.

The most straightforward solution is for the designator to give its secret key to the proxy signer,
who can then use it to sign messages. In this case proxy signatures are just standard signatures,
and can be verified the usual way. This scheme, called full delegation in the literature, has several

3

shortcomings. Its security relies on the honesty of the proxy signer in a completely unrealistic
manner. It provides no way to restrict signing rights to particular types of messages or a certain
time period. Even if the proxy signer is fully trusted, this scheme increases the vulnerability of the
designator’s secret key. Additionally, it requires the establishment of a secure channel between the
original signer and the proxy signer. Although most previous works assume a secure channel for the
proxy-designation protocol, we find this requirement unnecessary and undesirable.

A second approach is known as delegation by certificate or delegation by warrant. Here the
designator uses the signing algorithm of a standard signature scheme and its secret key to sign
a warrant, which contains information regarding the particular proxy signer. For instance, the
warrant may contain the proxy signer’s public key, a period of validity, and restrictions on the class
of messages for which the warrant is valid. We call the signature computed by the designator a
certificate. The designator sends the proxy signer the warrant and the certificate. The proxy signer
then uses its own secret key as the proxy signing key to sign messages on behalf of the designator.
A proxy signature contains the warrant, the certificate and the proxy signer’s signature. A verifier
needs to ensure that the certificate is valid with respect to the public key of the designator, verify
the second signature with respect to the public key of the proxy signer specified in the warrant,
and make sure that the message signed conforms to the restrictions in the warrant. We show that
after some slight but important modifications, the delegation-by-certificate scheme is in fact a secure
proxy signature scheme, assuming the underlying standard signature scheme is secure.

A delegation-by-certificate proxy signature can be computed in roughly the same amount of time
required for standard signing, but verification of such proxy signatures requires twice the time to
verify a standard signature. Consider, for example, an RSA-signature-based delegation-by-certificate
proxy signature scheme. Verification requires two modular exponentiations (i.e., two RSA-signature
verifications). If a discrete-logarithm-based scheme such as Schnorr’s signature scheme is used,
verification of a proxy signature requires four modular exponentiations (i.e., two Schnorr-signature
verifications). Most of the works on basic proxy signature schemes mentioned above focused on
constructing a more efficient scheme, where verification of a proxy signature requires less time
than verification of two standard signatures. Several such constructions were proposed, but they
lack provable-security guarantees. In order to provide an efficient, provably-secure proxy signature
scheme, we first pin down an appropriate formal notion of security.

Security of proxy signature schemes. The security properties for proxy signature schemes
introduced in [19] were somewhat enhanced by [15], and did not evolve much since then. The
properties stated in [15] are the following.
Verifiability: From a proxy signature, a verifier can be convinced of the original signer’s agreement
on the signed message.
Strong unforgeability : The original signer and third parties who are not designated as proxy signers
cannot create a valid proxy signature.
Strong identifiability : Anyone can determine the identity of the corresponding proxy signer from a
proxy signature.
Strong undeniability : A proxy signer cannot repudiate a proxy signature it created.
Prevention of misuse: A proxy signing key cannot be used for purposes other than generating valid
proxy signatures. In case of misuse, the responsibility of the proxy signer should be determined
explicitly.1

1This property is not only ill-defined, but too strong. In particular, it seems to imply that delegation-by-certificate
schemes are inherently insecure because in these schemes the proxy signing key is the proxy signer’s secret key, used
for standard signing. The attacks discussed in [15] that lead to the formulation of this property can be prevented
without going to this extreme. Our model implicitly takes them into account.

4

While these informal requirements provide some intuition about the goals that a notion of
security for proxy signature schemes should capture, their precise meaning is unclear. They do
not specify what an attack is, leaving important questions unanswered. For instance, what are an
adversary’s capabilities? In particular, can malicious parties collude? Are attackers allowed to see
or request signatures? Are they allowed to register keys? What exactly is the adversary’s goal?
When is an attacker considered successful?

We clarify these issues by designing a formal model for the security of proxy signature schemes.
It involves a rather powerful adversary who is allowed to corrupt an arbitrary number of users and
learn their secret keys. Moreover, the adversary can register public keys on behalf of new users,
possibly obtained otherwise than running the key-generation algorithm, and possibly depending on
the public keys of already registered users.2 Furthermore, we allow the adversary to interact with
honest users playing the role of a designator or a proxy signer. We also allow it to see transcripts
of all executions of the proxy-designation protocol between honest users, i.e., we do not assume the
existence of a secure channel between a designator and a proxy signer. The adversary can ask to
see both standard signatures and proxy signatures generated by honest users on messages of the
adversary’s choice. We say that the adversary wins if it manages to create a standard signature
or a proxy signature for a new message, i.e., a message that was not signed by an honest user.
As is standard in modern cryptography, we characterize security of proxy signature schemes in
terms of their resistance against attacks by probabilistic polynomial-time adversaries. We say that
a proxy signature scheme is secure if no such adversary can win with probability non-negligible in
the security parameter of the scheme. This security model, which is one of our main contributions,
is detailed in Section 3.

Analysis of delegation-by-certificate proxy signature schemes. Having a well-defined
notion of security in hand allowed us to identify some simple, previously overlooked attacks on
delegation-by-certificate proxy signature schemes. We discuss these attacks in Section 4. We also
suggest fixes that guarantee the security of delegation-by-certificate schemes based on secure stan-
dard signature schemes. Namely, it is crucial for security of these constructs that users prepend
distinct symbols, say 11, 00, 01 to each message before signing it with the standard signing algo-
rithm, depending on whether the user is generating a standard signature, signing a warrant for proxy
designation, or generating a proxy signature on behalf of a designator. We also require that a proxy
signer prepend the public key of the designator to a message before signing it on the designator’s
behalf. We prove that the resulting proxy signature scheme is secure according to our notion of
security, assuming that the standard signature scheme is secure (i.e., existentially unforgeable under
adaptive chosen message attacks [9]).

Aggregate-signature-based proxy signature schemes. Quite recently, Boneh et al. [5]
introduced the concept of an aggregate signature scheme, which allows composition of a single
signature out of signatures generated by several users for distinct messages. Using aggregate signa-
tures it is possible to obtain an improvement over delegation-by-certificate proxy signature schemes
in terms of both bandwidth and efficiency. In Section 5, we discuss a simple construction of a secure
proxy signature scheme, given any secure aggregate signature scheme, such that a proxy signature
consists of a warrant and a single aggregated signature.

The aggregate signature scheme presented in [5] is constructed from the co-GDH signature
scheme based on bilinear maps [6], a scheme that produces short digital signatures. This bilinear
aggregate signature scheme was proved secure in the random-oracle model [4], under the Computa-
tional co-Diffie-Hellman assumption. In the case of a proxy signature scheme based on the bilinear

2We assume, however, that during registration of public keys, all users prove knowledge [3] of the corresponding
secret key, which is the recommended practice for certification authorities (e.g., [1, 21]).

5

aggregate signature scheme, the length of a proxy signature is the length of a warrant plus the
length of a single short bilinear co-GDH signature. Verification of a proxy signature requires three
bilinear map computations, whereas verification of a delegation-by-certificate proxy signature based
on the bilinear co-GDH signature scheme requires four bilinear map computations.

The Triple Schnorr proxy signature scheme. Kim, Park, and Won [12] presented a proxy
signature scheme (KPW) based on the Schnorr signature scheme [26] that is more efficient than
the delegation-by-certificate scheme based on Schnorr signatures. The latter requires four modular
exponentiations per proxy signature verification, while verification of a KPW proxy signature re-
quires only three exponentiations. This improvement can be furthered by employing an algorithm
for simultaneous multiple exponentiation. The cost of verification of a KPW proxy signature can
be reduced to about 1.25 exponentiations, versus roughly 2.35 exponentiations for verification of a
Schnorr-based delegation-by-certificate proxy signature. To the best of our knowledge, the KPW
scheme is the only proxy signature scheme that remains unbroken, does not require a secure channel
for proxy designation, and has this advantage in efficiency over the corresponding delegation-by-
certificate scheme.

We discuss the KPW scheme in Section 6. We modify the scheme, preserving its efficiency,
and prove that the resulting scheme is secure in the random-oracle model, assuming hardness of
computation of discrete logarithms in the underlying group. This is our second main result. We call
this scheme the Triple Schnorr proxy signature scheme since it uses Schnorr signatures for standard
signing, proxy designation, and proxy signing. It is the first provably-secure proxy signature scheme
with an advantage in efficiency of verification of more than 45% over the corresponding delegation-
by-certificate scheme. Standard signing and proxy signing require approximately the same amount
of time in both of these schemes.

2 Preliminaries

Notation. We denote by {0, 1}∗ the set of all binary strings of finite length. For N ∈ N, we let
[N] = {1, . . . , N}. If A is a possibly randomized algorithm, then the notation x

$← A(x1, x2, . . .)
denotes that x is assigned the outcome of the experiment of running A on inputs x1, x2, For
strings a1, . . . , an, a1|| · · · ||an denotes an encoding such that the constituent strings are uniquely
recoverable from the final one. Recall that a function f : N→ R is called negligible if it approaches
zero faster than the reciprocal of any polynomial, i.e., for any polynomial p, there exists np ∈ N
such that for all n ≥ np, f(n) ≤ 1/p(n).

Signature schemes. We recall the components of a digital signature scheme and the standard
notion of security for such schemes, namely, existential unforgeability under adaptive chosen message
attacks [9].

Definition 2.1 [Digital signature scheme] A digital signature scheme DS = (G,K,S,V) is spec-
ified by four polynomial-time algorithms with the following functionalities.

• The randomized parameter-generation algorithm G takes input 1k, where k is the security pa-
rameter, and outputs some global parameters params. These may contain, for example, a
security parameter, the description of a cyclic group and a generator, and the description of a
hash function. We assume that these parameters become publicly available.

• The randomized key-generation algorithm K takes input global parameters params and outputs
a pair (pk, sk) consisting of a public key and a matching secret key, respectively.

6

• The (possibly) randomized signing algorithm S takes input a secret key sk and a message
M ∈ {0, 1}∗, and outputs a signature σ.

• The deterministic verification algorithm V takes input a public key pk, a message M and a
candidate signature σ for M , and outputs a bit. We say that σ is a valid signature for M
relative to pk if V(pk,M, σ) = 1.

For any pair of keys (pk, sk) that might be output by K and any M ∈ {0, 1}∗, it is required that
V(pk,M,S(sk,M)) = 1.

Definition 2.2 [Security of a digital signature scheme] Let DS = (G,K,S,V) be a digital
signature scheme. Consider an adversaryA that is given input a public key pk and access to a signing
oracle OS(sk, ·), where pk and sk are matching keys generated via params

$← G(1k) ; (pk, sk) $←
K(params). The oracle takes input a message M and returns a signature σ

$← S(sk,M). A queries
this oracle on messages of its choice, and eventually outputs a forgery (M,σ). The adversary’s
advantage in attacking the scheme is the probability that it outputs a pair (M,σ) such that σ is a
valid signature for message M and this message was not queried to the signing oracle. DS is said
to be secure against existential forgery under adaptive chosen-message attacks (or simply, secure)
if the advantage of any poly(k)-time adversary A is negligible in the security parameter k.

3 Proxy Signature Schemes

The setting. As discussed in the introduction, we consider a PKI-like setting: users are identified
by natural numbers, and we let pki denote the public key of user i ∈ N, and ski denote the
corresponding secret key.

3.1 Syntax of Proxy Signature Schemes

A proxy signature scheme involves a digital signature scheme for standard signing, a protocol that
users can run in order for one of them to designate the other as a proxy signer, a signing algorithm to
be used by proxy signers (which, in general, can differ from the one used for standard signing), and
a corresponding verification algorithm for proxy signatures. Additionally, the strong identifiability
property mentioned in Section 1 suggests that there should be an algorithm that extracts the identity
of the proxy signer from a proxy signature. This identity can be the natural number identifying
the user, or equivalently, the user’s public key. The following definition details the components of a
proxy signature scheme.

Definition 3.1 [Proxy signature scheme] A proxy signature scheme is a tuple PS = (G,K,S,V,
(D,P),PS,PV, ID), where the constituent algorithms run in polynomial time, DS = (G,K,S,V) is
a digital signature scheme, and the other components are defined as follows.

• (D,P) is a pair of interactive randomized algorithms forming the (two-party) proxy-designation
protocol. The input to each algorithm includes two public keys pki, pkj for the designator i and
the proxy signer j, respectively. D also takes as input the secret key ski of the designator, and
P also takes as input the secret key skj of the proxy signer. As result of the interaction, the ex-
pected local output of P is skp, a proxy signing key that user j uses to produce proxy signatures
on behalf of user i. D has no local output. We write skp

$← [D(pki,pkj , ski),P(pki,pkj , skj)]
for the result of this interaction.

• PS is the (possibly) randomized proxy signing algorithm. It takes input a proxy signing key
skp and a message M ∈ {0, 1}∗, and outputs a proxy signature pσ.

7

• PV is the deterministic proxy verification algorithm. It takes input a public key pk, a message
M and a proxy signature pσ, and outputs 0 or 1. In the latter case, we say that pσ is a valid
proxy signature for M relative to pk.

• ID is the proxy identification algorithm. It takes input a valid proxy signature pσ, and outputs
an identity, i.e., a public key, or ⊥ in case of an error.

Correctness. We require that for all messages M ∈ {0, 1}∗ and all users i, j ∈ N, if skp is a
proxy signing key for user j on behalf of user i, i.e., skp

$← [D(pki,pkj , ski),P(pki,pkj , skj)], then
PV(pki,M,PS(skp,M)) = 1 and ID(PS(skp,M)) = pkj . Informally, this means that signatures
produced with proxy signing keys are valid relative to the public key of the designator, and that the
identity of the proxy signer can be extracted from proxy signatures that it produces. Notice that no
secret keys are involved in the identification process, i.e., we model the case when the identification
algorithm can be run by anyone.

3.2 A Notion of Security for Proxy Signature Schemes

Some intuition. We first informally describe some of the features of our adversarial model. We
allow the adversary to corrupt users and learn their secret keys. It can also add new users and
register public keys for them. These keys do not have to have the distribution defined by the key-
generation algorithm. In principle, they can even depend on the public keys of honest users. In order
to prevent these rogue-key attacks, we require all users to prove knowledge of the associated secret
key during key registration, as is commonly recommended to be done in practice [1, 21]. To capture
this, the adversary is required to output both the public key and the corresponding secret key for
a new user. Alternatively, we could explicitly consider the key-registration process in the model,
and, in proofs of security, use the extractors guaranteed by the proof of knowledge property [3] to
extract the secret keys from the adversary. We use the former approach for simplicity.

We model a seemingly extreme case in which the adversary is working against a single honest
user, say user 1, and can select and register keys for all other users. Notice that this is without
loss of generality since any attack that can be carried out in the presence of more honest users,
can be performed by having some of the users under the control of the adversary behave honestly.
The adversary can play the role of user i 6= 1 in executions of the proxy-designation protocol with
user 1, as designator or as proxy signer. In both cases, the adversary may behave dishonestly in an
attempt to obtain information from the honest user. We comment that there is no restriction on
the number of executions of the proxy-designation protocol between the same two users. We do not
rule out the possibility that a user designate himself (which may be useful, for example, to create
a temporary key for use in a hostile environment), so we let the adversary request user 1 to run
the proxy-designation protocol with himself, and see the transcript of the execution. We emphasize
that we do not assume the existence of a secure channel between a designator and a proxy signer.

We model chosen-message attack capabilities by providing the adversary access to two oracles:
a standard signing oracle and a proxy signing oracle. The first oracle takes input a message M , and
returns a standard signature for M by user 1. The second oracle takes input a tuple (i, l, M), and,
if user 1 was designated by user i at least l times, returns a proxy signature for M created by user
1 on behalf of user i, using the l-th proxy signing key.

The goal of the adversary is to produce one of the following forgeries: (1) a standard signature
by user 1 for a message that was not submitted to the standard signing oracle, (2) a proxy signature
for a message M by user 1 on behalf of some user i such that either user i never designated user 1,
or M was not in a query (i, l,M) made to the proxy signing oracle, or (3) a proxy signature for a
message M by some user i on behalf of user 1, such that user i was never designated by user 1.

8

Our notion of security for proxy signature schemes is formally defined as follows.

Definition 3.2 [Security of a proxy signature scheme] Let PS = (G,K,S,V, (D,P),PS,PV,

ID) be a proxy signature scheme. Consider an experiment Expps-uf
PS,A(k) related to scheme PS,

adversary A, and security parameter k. First, system parameters params are generated by running
G on input 1k. Then a public and secret key pair for user 1 is generated via (pk1, sk1)

$← K(params).
A counter n for the number of users is initialized to 1, and an empty array skp1 and an empty set
D are created. Adversary A is given input pk1, and it can make the following requests or queries,
in any order and any number of times.

• (i registers pki) A can request to register a public key pki for user i = n+1 by outputting a pair
(pki, ski) of matching public and secret keys. These keys are stored, counter n is incremented,
and an empty array skpi is created.

• (1 designates i) A can request to interact with user 1 running D(pk1,pki, sk1), for some i ∈
{2, . . . , n}, and play the role of user i running P(pk1,pki, ski); after a successful run, D is set
to D ∪ {pki}.

• (i designates 1) A can request to interact with user 1 running P(pki,pk1, sk1), for some i ∈
{2, . . . , n}, and play the role of user i running D(pki,pk1, ski). The private output skp of P is
stored in the last unoccupied position of skpi. We emphasize that A does not have access to
the elements of skpi.

• (1 designates 1) A can request that user 1 run the designation protocol with itself, and see the
transcript of the interaction. The private output skp of user 1 is stored in the next available
position in skp1. A does not have access to the elements of skp1.

• (standard signature by 1) A can query oracle OS(sk1, ·) with a message M and obtain a standard
signature for M by user 1, σ

$← S(sk1,M).

• (proxy signature by 1 on behalf of i using the l-th proxy signing key) A can make a query
(i, l,M), where i ∈ [n], l ∈ N, and M ∈ {0, 1}∗, to oracle OPS((skpu)u∈[n], ·, ·, ·). If key skpi[l]
has already been defined, we say the query is valid and the oracle returns PS(skpi[l],M); if
skpi[l] has not been defined, the query is said to be invalid and the oracle returns ⊥.

Eventually, A outputs a forgery (M,σ) or (M,pσ,pk). The output of the experiment is determined
as follows:

1. If the forgery is of the form (M,σ), where V(pk1,M, σ) = 1, and M was not queried to oracle
OS(sk1, ·), then return 1. [forgery of a standard signature]

2. If the forgery is of the form (M,pσ,pk), where pk = pki for some i ∈ [n], PV(pki,M, pσ) = 1,
ID(pσ) = pk1, and no valid query (i, l,M), for l ∈ N, was made to OPS((skpu)u∈[n], ·, ·, ·),
then return 1. [forgery of a proxy signature by user 1 on behalf of user i]

3. If the forgery is of the form (M,pσ,pk1), where PV(pk1,M, pσ) = 1, and ID(pσ) 6∈ D∪{pk1}∪
{⊥}, then return 1. [forgery of a proxy signature by user i 6= 1 on behalf of user 1; user i was
not designated by user 1]

4. Otherwise, return 0

We define the advantage of adversary A as

Advps-uf
PS,A(k) = Pr

[
Expps-uf

PS,A(k) = 1
]
.

We adopt the convention that the time complexity of adversary A is the execution time of the entire
experiment, including the time taken for parameter and key generation, and computation of answers

9

to oracle queries. We say that PS is a secure proxy signature scheme if the function Advps-uf
PS,A(·) is

negligible for all adversaries A of time complexity polynomial in the security parameter k.

4 Delegation-by-certificate proxy signature schemes

Since the introduction of the proxy signature primitive [19], it has been believed that proxy signa-
ture schemes can be securely constructed from any digital signature scheme, in a very simple way.
Informally, a user i (with public and secret key pair (pki, ski)) can delegate its signing capability
to user j (with keys pkj , skj) by sending it an appropriate warrant and a certificate, which is a
signature for the warrant under key ski. A warrant is a message containing the public key pkj of
the designated proxy signer j and, possibly, restrictions on the messages the proxy signer is allowed
to sign. These restrictions depend on the application and may include periods of validity, specifica-
tions about the types of messages allowed, etc. Once designated, user j can create a proxy signature
for a message M by computing a signature for M under its secret key skj and concatenating this
signature with the warrant and the certificate. Verification of a proxy signature involves verifying
the validity of the certificate relative to pki, verifying the validity of the signature for M relative
to pkj , and checking that M conforms to the restrictions, if any, specified in the warrant. We will
not mention this final check explicitly again, since its details are specific to each application, but is
important to keep in mind that verification includes this step.

As we mentioned in Section 1, the “raison d’être” of most of the previous work on proxy signature
schemes was to improve on the efficiency of the delegation-by-certificate solution. As a consequence,
its details have never been properly pinned down. Nevertheless, we believe discussing this scheme
in some detail is important since its conceptual simplicity and generality makes it convenient for
implementation in applications requiring the functionality of proxy signatures. We first note various
weaknesses of a naive implementation of the scheme. Then, we propose appropriate fixes and show
that the resulting scheme is indeed secure.

Flaws and fixes. Given a standard digital signature created by user j for message M , a malicious
user i can transform this signature into a proxy signature by user j for message M on behalf of
user i. For this it is sufficient for i to sign a warrant certifying that j can produce signatures on its
behalf. These two signatures together with the warrant comprise a proxy signature valid relative to
the public key of user i. This and similar problems can be fixed by introducing a way to differentiate
between signatures created for standard signing, proxy designation, and proxy signing. For instance,
in order to sign a message M , the user actually signs message 11||M , whereas in order to sign a
warrant ω during the designation process, the user actually signs 00||ω, and for proxy signing of a
message M , the proxy signer signs 01||M . Verification of standard (resp., proxy) signatures is then
performed by first prepending 11 (resp., 01) to the message.

This fix is insufficient. The resulting delegation-by-certificate proxy signatures still have some
undesirable malleability properties. Indeed, given a single proxy signature created by user j on
behalf of user i for a message M , it is possible to obtain a proxy signature for the same message
by user j on behalf of some malicious user k. For this, k removes the warrant (and corresponding
certificate) stating that j can sign on behalf of i, and replaces it with one stating that j is allowed
to sign on behalf of k. The result is a proxy signature by user j on behalf of user k, which user j
did not produce. Again, there is a simple fix: to sign on behalf of user i, instead of signing message
01||M , user j signs message 01||pki||M . This ties the part of the proxy signature created by the
proxy signer to the designator.

We are now ready to summarize the above discussion by presenting the construction of a
delegation-by-certificate proxy signature scheme from any digital signature scheme.

10

Construction 4.1 Let DS = (G,K,S,V) be a signature scheme. The algorithms of the correspond-
ing delegation-by-certificate proxy signature scheme PS[DS] = (G1,K1,S1,V1, (D,P),PS,PV, ID)
are defined as follows:

• The parameter and key generation algorithms stay the same: G1 = G, K1 = K.

• A standard signature for message M is obtained by prepending 11 to the message, and signing
the result using S, i.e., S1(sk,M) = S(sk, 11||M).

• The verification of a signature σ for message M is done by computing V1(pk,M, σ) =
V(pk, 11||M,σ).

• User i, in order to designate user j as a proxy signer, simply sends to j an appropriate warrant
ω together with a signature cert for message 00||ω, under the secret key of user i. Since the
warrant includes the public key of the designated proxy signer, for clarity, we make it explicit
and require cert to be a signature for message 00||pkj ||ω. The corresponding proxy signing key
of j is skp = (skj ,pki,pkj ||ω, cert).

• A proxy signature for message M produced by user j on behalf of user i, contains a warrant ω,
the public key of the proxy signer pkj , the certificate cert (a signature for 00||pkj ||ω under ski)
and a signature for 01||pki||M under skj . Formally,

PS((skj ,pki,pkj ||ω, cert),M) = (ω, pkj , cert,S(skj , 01||pki||M)).

• Proxy signature verification is defined via

PV(pk,M, (ω, pk′, cert, σ)) = V(pk, 00||pk′||ω, cert) ∧ V(pk′, 01||pk||M,σ).

• The identification algorithm is simply defined as ID((ω, pk′, σ)) = pk′.

The following theorem states our result about the security of proxy signature scheme PS[DS].

Theorem 4.2 Let DS be a secure digital signature scheme. Then the scheme PS[DS] specified in
Construction 4.1 is a secure proxy signature scheme.

This result follows from a theorem stated in Section 5.2 and is proved there.

5 Aggregate-signature-based proxy signature schemes

As we mentioned in Section 1, aggregate signatures can be used to optimize the length, and possibly
the verification time of delegation-by-certificate proxy signatures. In this section we treat this matter
in more detail. We first briefly review the aggregate signature primitive, its security and existing
schemes. We refer the reader to [5] for details. We then show how aggregate signatures can be used
to construct proxy signature schemes.

5.1 Aggregate signatures, their security and constructions

Aggregate signature schemes [5], allow construction of a single signature for a sequence of messages,
out of signatures generated by distinct users for each of these messages. Formally, an aggregate sig-
nature scheme is given by a tuple of algorithms AS = (G,K,S,V,A,AV), where DS = (G,K,S,V) is
a standard digital signature scheme, called the base signature scheme, A is the aggregation algorithm,
and AV is the aggregate verification algorithm. The aggregation algorithm takes input a sequence of
public keys, messages and signatures pk1, . . . ,pkn,M1, . . . ,Mn, σ1, . . . , σn, where each signature σi

is valid for Mi relative to public key pki, and outputs a single aggregate signature aσ. The aggregate

11

verification algorithm takes input a sequence of public keys and messages pk1, . . . ,pkn,M1, . . . ,Mn

and an aggregate signature aσ and outputs a bit. It is required that

AV(pk1, . . . ,pkn,M1, . . . ,Mn,A(pk1, . . . ,pkn,M1, . . . ,Mn,S(sk1,M1), . . . ,S(skn,Mn))) = 1.

Security of aggregate signature schemes. The security of aggregate signatures is defined
via an experiment Expag-uf

AS,B (k) related to scheme AS, adversary B and security parameter k. First,
system parameters params are generated by running G on input 1k. Then, a public and secret key
pair (pk1, sk1) is selected by running the key-generation algorithm K on input params, and pk1 is
given as input to B. Furthermore, B is provided with access to the signing oracle S(sk1, ·). The
goal of the adversary is to output a forgery, i.e., n− 1 additional public keys pk2, . . . ,pkn, for some
n ≥ 1, a sequence of messages M1, . . . ,Mn, and an aggregate signature aσ for these messages. The
experiment returns 1 (in which case we say that B wins) if AV(pk1, . . . ,pkn,M1, . . . ,Mn, aσ) = 1
and B did not submit M1 to the signing oracle. The advantage of adversary B is defined by

Advag-uf
AS,B (k) = Pr

[
Expag-uf

AS,B (k) = 1
]
,

and aggregate signature scheme AS is said to be secure if the function Advag-uf
AS,B (·) is negligible for

any poly(k)-time adversary B.

Constructions of aggregate signature schemes. Note that any secure standard signature
scheme DS yields a secure trivial aggregate signature scheme, in which the aggregation algorithm
simply concatenates all signatures, and the aggregate verification algorithm simply verifies all sig-
natures. We will refer to the aggregate signature scheme constructed this way as TAS[DS]. It is
easy to see that TAS[DS] is secure given that the underlying signature scheme DS is secure.

Boneh et al. [5] introduced a bilinear aggregate signature scheme which works in Gap Diffie-
Hellman (GDH) groups (where the Decisional Diffie-Hellman problem is believed to be hard but
the Computational Diffie-Hellman problem is easy) and which are also equipped with an additional
bilinear map. The construction is based on the co-GDH signature scheme [6], which allows to
produce short signatures. The security of the bilinear aggregate signature scheme is proved in the
random-oracle model, assuming hardness of the Computational co-Diffie-Hellman assumption.

5.2 Aggregate-signature-based proxy signature schemes

We sketch the construction of a proxy signature scheme from any aggregate signature scheme.

Construction 5.1 Let AS = (G,K,S,V,A,AV) be an aggregate signature scheme. The algorithms
of the corresponding proxy signature scheme PS[AS] = (G1,K1,S1,V1, (D,P),PS,PV, ID) are de-
fined as follows.

• The algorithms G1,K1,S1,V1, (D,P) use the algorithms G,K,S,V in the same way as those in
Construction 4.1.

• The proxy signing algorithm PS uses A to aggregate the certificate and a proxy signature as
follows:

PS((skj ,pki,pkj ||ω, cert),M) =
(ω, pkj ,A(pki,pkj , 00||pkj ||ω, 01||pki||M, cert,S(skj , 01||pki||M))).

• The proxy verification algorithm PV is defined by

PV(pk,M, (ω, pk′, aσ)) = AV(pk,pk′, 00||pk′||ω, 01||pk||M,aσ).

• The identification algorithm is defined by ID((ω, pk′, aσ)) = pk′.

12

The following theorem formally relates the security of the above construction to the security of the
base aggregate signature scheme.

Theorem 5.2 Let AS be a secure aggregate signature scheme. Then the scheme PS[AS] defined
above is a secure proxy signature scheme.

The proof of Theorem 5.2 is in Appendix A. We now use this result to prove Theorem 4.2.

Proof of Theorem 4.2: Let TAS[DS] be the trivial aggregate signature scheme defined in
Section 5.1. As we mentioned there, it is secure if DS is secure. PS[TAS[DS]] as defined by
Construction 5.1 is exactly the delegation-by-certificate scheme PS[DS] as per Construction 4.1.
Therefore, Theorem 5.2 implies that PS[DS] is secure.

A proxy signature scheme with short signatures. As we mentioned before, the bilinear
aggregate signature scheme was proved secure in the random-oracle model, assuming hardness of
the Computational co-Diffie-Hellman assumption. This together with Theorem 5.2 imply that under
the same assumptions, the proxy signature scheme obtained from the bilinear aggregate signature
as per Construction 5.1 is a secure proxy signature scheme.

The length of the corresponding proxy signature is the length of the warrant plus the length of one
short co-GDH signature. The use of the bilinear aggregate signature scheme also permits computa-
tional savings since the verification of a proxy signature requires 3 bilinear map computations versus
4 in the verification of a proxy signature in the co-GDH-signature-based delegation-by-certificate
solution.

6 The Triple Schnorr scheme and its security

The proxy signature scheme proposed by Kim, Park, and Won [12] (KPW) employs Schnorr’s
signature scheme [26] for standard signing and for delegation, and allows the use of any signature
scheme based on the hardness of the DLP for generation of proxy signatures. We make slight
modifications to the version of the KPW scheme in which Schnorr’s signature scheme is also used
for proxy signing, and prove that the resulting proxy signature scheme is secure in the random-oracle
model, under the assumption of hardness of the DLP. We call this provably-secure scheme Triple
Schnorr. We remark that our modifications do not affect the length of the signatures produces
nor do they have a significant impact on performance. We first recall the Schnorr digital signature
scheme.

6.1 The Schnorr signature scheme.

On input 1k, the parameter-generation algorithm G outputs primes p, q such that 2k−1 ≤ p < 2k (p is
k bits long) and q divides p− 1, an element g ∈ Z∗

p of order q, and a hash function G : {0, 1}∗ → Zq.
The key-generation algorithm K, on input (p, q, g, G), selects a random x ∈ Zq, computes X ←
gx mod p, and outputs the pair ((p, q, g, G,X), (p, q, g, G, x)) of public and secret keys. To simplify
the notation, we will assume that the values p, q, g, G are available to all parties and we will not
include them explicitly in the public and secret keys (i.e., the public and secret keys will simply be
X and x, respectively).

To sign a message M , the signing algorithm S performs the following operations.

- Pick a random y ∈ Zq

- Compute a commitment Y ← gy mod p

13

- Compute a challenge c← G(M,Y)

- Compute s← y + c · x mod q

- Output (Y, s) as the signature of M

To verify a signature (Y , s̄) for message M , the verification algorithm V performs the following
operations.

- Compute the challenge c← G(M,Y)

- If gs̄ ≡ Y ·Xc (mod p) then output 1 else output 0

The Schnorr signature scheme is known to be provably-secure in the random-oracle model, assuming
hardness of the DLP [25]. In the sequel, S = (G,K,S,V) denotes the Schnorr scheme. We use the
notation SG, VG to emphasize that the hash function used in the scheme is G.

6.2 The Triple Schnorr proxy signature scheme.

In the following description, additions to the KPW scheme are underlined. Other modifications are
specified below. The Triple Schnorr scheme is the proxy signature scheme TS = (GT,KT,ST,VT,
(D,P),PS,PV, ID) whose constituent algorithms are defined as follows.

• The parameter-generation algorithm GT runs the Schnorr scheme parameter-generation al-
gorithm G to get (p, q, g, G). It generates a hash function H : {0, 1}∗ → Zq, and outputs
(p, q, g, G,H).

• On input (p, q, g, G,H), the key-generation algorithmKT runs the Schnorr scheme key-generation
algorithm K on (p, q, g, G) to get ((p, q, g, G,X), (p, q, g, G, x)), and outputs ((p, q, g, G,H,X),
(p, q, g, G,H, x)). Again, we will assume that the values p, q, g, G,H are available to all parties,
and the public and secret keys will simply be X and x, respectively.

• To sign a message M , the signing algorithm first prepends a 1 to the message, and then runs the
Schnorr signing algorithm with hash function G, on the result, i.e., ST(sk,M) = SG(sk, 1||M).

• To verify a signature σ for message M , the verification algorithm first prepends a 1 to the
message, and then runs the Schnorr verification algorithm with hash function G, on the result,
i.e., VT(pk,M, σ) = VG(pk, 1||M,σ).

• In order to designate user j as a proxy signer, user i sends user j an appropriate warrant
ω and a certificate cert that is a Schnorr signature with hash function G for message 0||ω
under the secret key ski of user i. We require that the warrant include the public keys of the
designator and the proxy signer. For clarity, we make these keys explicit and require user i to
sign the message 0||pki||pkj ||ω, i.e., cert = SG(ski, 0||pki||pkj ||ω) = (Y, s). User j verifies this
signature, and if it is valid, he computes a proxy signing key as skp = (pki||pkj ||ω, Y, t), where
t = G(0||pki||pkj ||ω, Y) · skj + s mod q. See Figure 1.

• A proxy signature for message M , on behalf of user i, produced by user j (with proxy signing key
(pki||pkj ||ω, Y, t)), contains the warrant ω, the delegation commitment Y , the public key of the
proxy signer pkj , and a Schnorr signature with hash function H for message 0||M ||pki||pkj ||ω||Y
under key t. Formally,

PS((pki||pkj ||ω, Y, t),M) = (ω, Y,pkj ,SH(t, 0||M ||pki||pkj ||ω||Y))

In the version of the KPW scheme in which Schnorr’s signature scheme is also used for proxy
signing, the proxy signing (resp., verification) algorithm uses the Schnorr signing (resp., verifi-
cation) algorithm with hash function G. The scheme is also provably secure in this case, but in
order to simplify the proof, we chose to use an independent hash function H for proxy signing.

14

D(pki,pkj , ski) P(pki,pkj , skj)

cert
$← SG(ski, 0||pki||pkj ||ω)

ω, cert -

If VG(pki, 0||pki||pkj ||ω, cert) = 0 then abort

Parse cert as (Y, s)

t← G(0||pki||pkj ||ω, Y) · skj + s mod q

skp ← (pki||pkj ||ω, Y, t)

Figure 1: The Triple Schnorr designation protocol run by user i as designator, and user j as proxy
signer.

• To verify a proxy signature (ω, Y,pk′, σ) for message M with public key pk, the proxy verification
algorithm computes a proxy public key as pkp = (pk · pk′)G(0||pk||pk′||ω,Y) · Y mod p, and then
runs the Schnorr verification algorithm with hash function H, on the computed key pkp, message
0||M ||pk||pk′||ω||Y , and signature σ, i.e.,

PV(pk,M, (ω, Y,pk′, σ)) = VH(pkp, 0||M ||pk||pk′||ω||Y , σ)

• The proxy identification algorithm is defined as ID((ω, Y,pk′, σ)) = pk′.

We observe that verification of a Triple Schnorr proxy signature requires three exponentiations mod-
ulo p. Using a simultaneous multiple exponentiation algorithm such as Algorithm 14.88 in [20], the
three exponentiations can be computed at a cost of about 1.25 exponentiations. This is a significant
improvement over the Schnorr-based delegation-by-certificate scheme, for which verification (using
simultaneous multiple exponentiation) requires roughly 2.35 exponentiations. Standard signing and
proxy signing require approximately the same amount of time in the Triple Schnorr scheme as in the
Schnorr-based delegation-by-certificate scheme. Proxy designation requires one additional modular
multiplication to compute the proxy signing key in the Triple Schnorr scheme.

Security of Triple Schnorr. The following theorem states our result about the security of the
Triple Schnorr proxy signature scheme in the random-oracle model.

Theorem 6.1 Let TS = (GT,KT,ST,VT, (D,P),PS,PV, ID) be the Triple Schnorr scheme defined
above. If the DLP is hard then TS is a secure proxy signature scheme in the random-oracle model.

The proof of Theorem 6.1 is in Appendix B.

7 Acknowledgements

The authors are grateful to Mihir Bellare for valuable discussions. They also thank David Pointcheval
for clarifications on [25].

References

[1] C. Adams and S. Farrell. Internet x.509 public key infrastructure: Certificate management protocols.
RFC 2510, March 1999.

15

[2] A. Bakker, M. Steen, and A. S. Tanenbaum. A law-abiding peer-to-peer network for free-software
distribution. In IEEE International Symposium on Network Computing and Applications (NCA’01),
2001.

[3] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. Brickell, editor, Proceedings of
Advances in Cryptology – Crypto’92, volume 740 of LNCS, pages 390–420. Springer-Verlag, 1992.

[4] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In First ACM Conference on Computer and Communications Security, LNCS. Springer-Verlag, 1993.

[5] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably encrypted signatures from
bilinear maps. In E. Biham, editor, Proceedings of Advances is Cryptology – Eurocrypt’03, LNCS.
Springer-Verlag, 2003. To appear.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C. Boyd, editor,
Asiacrypt ’01, volume 2248 of LNCS. Springer Verlag, 2001.

[7] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational grids. In
Fifth ACM Conference on Computers and Communications Security, 1998.

[8] H. Ghodosi and J. Pieprzyk. Repudiation of cheating and non-repudiation of Zhang’s proxy signature
schemes. In LNCS, volume 1587. Springer-Verlag, 2001.

[9] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.

[10] J. Herranz and G. Sez. Verifiable secret sharing for general access structures, with application to fully
distributed proxy signatures. In Proceedings of Financial Cryptography 2003, LNCS. Springer-Verlag,
2003.

[11] H. Kim, J. Baek, B. Lee, and K. Kim. Secret computation with secrets for mobile agent using one-time
proxy signature. In Cryptography and Information Security 2001, 2001.

[12] S. Kim, S. Park, and D. Won. Proxy signatures, revisited. In Y. Han, T. Okamoto, and S. Quing, edi-
tors, Proceedings of International Conference on Information and Communications Security (ICICS)’97,
volume 1334 of LNCS, pages 223–232. Springer-Verlag, 1997.

[13] S. Lal and A. K. Awasthi. Proxy blind signature scheme. Cryptology ePrint Archive, Report 2003/072.
Available at http://eprint.iacr.org/, 2003.

[14] S. Lal and A. K. Awasthi. A scheme for obtaining a warrant message from the digital proxy signatures.
Cryptology ePrint Archive, Report 2003/073. Available at http://eprint.iacr.org/, 2003.

[15] B. Lee, H. Kim, and K. Kim. Strong proxy signature and its applications. In Proceedings of SCIS, 2001.

[16] J. Lee, J. Cheon, and S. Kim. An analysis of proxy signatures: Is a secure channel necessary? In
M. Joye, editor, Topics in Cryptology–CT-RSA’03, volume 2612 of LNCS, pages 68–79. Spinger-Verlag,
2003.

[17] N.-Y. Lee, T. Hwang, and C.-H. Wang. On zhang’s nonrepudiable proxy signature schemes. In Infor-
mation Security and Privacy, Third Australasian Conference, ACISP’98, LNCS, pages 415–422, 1999.

[18] J. Leiwo, C. Hanle, P. Homburg, and A. S. Tanenbaum. Disallowing unauthorized state changes of
distributed shared objects. In SEC, pages 381–390, 2000.

[19] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing operation. In Proceedings
of the 3rd ACM Conference on Computer and Communications Security (CCS), pages 48–57. ACM, 1996.

[20] A. Menezes, P. C. van Oorschot, and S. Vanstone. Handbook of Apllied Cryptography. CRC Press, 1997.

[21] M. Meyers, C. Adams, D. Solo, and D. Kemp. Internet x.509 certificate request message format. RFC
2511, March 1999.

[22] B. C. Neuman. Proxy based authorization and accounting for distributed systems. In Proceedings of the
13th International Conference on Distributed Computing Systems, pages 283–291, 1993.

16

[23] T. Okamoto, M. Tada, and E. Okamoto. Extended proxy signatures for smart cards. In LNCS, volume
1729 of LNCS. Springer-Verlag, 1999.

[24] H.-U. Park and L.-Y. Lee. A digital nominative proxy signature scheme for mobile communications. In
ICICS 2001, volume 2229 of LNCS, pages 451–455. Springer-Verlag, 2001.

[25] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of
Cryptology, 13(3):361–369, 2000.

[26] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.

[27] K. Shum and V.-K. Wei. A strong proxy signature scheme with proxy signer privacy protection. In
Eleventh IEEE International Workshop on Enabling Technologies: Infrastucture for Collaborative En-
terprises (WET ICE ’02), 2002.

[28] H. Sun, N.-Y. Lee, and T. Hwang. Threshold proxy signatures. In IEEE Proceedings - Computers and
Digital Techniques, volume 146, pages 259–263. IEEE Press, 1999.

[29] H. M. Sun. An efficient nonrepudiable threshold proxy signature scheme with known signers. Computer
Communications, 22(8):717–722, 1999.

[30] H.-M. Sun. On the design of time-stamped proxy signatures with traceable receivers. In IEEE Proceedings
- Computers and Digital Techniques. IEEE Press, 2000.

[31] H.-M. Sun and B.-T. Hsieh. Remarks on two nonrepudiable proxy signature schemes. In Ninth National
Conference on Information Security, volume 241-246, 1999.

[32] H.-M. Sun and B.-T. Hsieh. On the security of some proxy signature schemes. Cryptology ePrint Archive,
Report 2003/068. Available at http://eprint.iacr.org/, 2003.

[33] V. Varadharajan, P. Allen, and S. Black. An analysis of the proxy problem in distributed systems. In
Proceedings of 1991 IEEE Computer Society Symposium on Research in Security and Privacy, pages
255–275, 1991.

[34] C.-K. Wu and V. Varadharajan. Modified Chinese Remainder Theorem and its application to proxy
signatures. In ICPP Workshop, pages 146–, 1999.

[35] S.-M. Yen, C.-P. Hung, and Y.-Y. Lee. Remarks on some proxy signature schemes. In Workshop on
Cryptology and Information Security, 2000 ICS, pages 54–59, 2000.

[36] K. Zhang. Nonrepudiable proxy signature schemes. Manuscript, Available at http://citeseer.nj.
nec.com/360090.html, 1997.

[37] K. Zhang. Threshold proxy signature schemes. In Proceedings of 1st International Information Security
Workshop, pages 282–290, 1997.

A Proof of Theorem 5.2

The proof is by reduction; we show that for every adversary A with non-negligible advantage
Advps-uf

PS[AS],A we can construct an adversary B with non-negligible advantage Advag-uf
AS,B , so if AS

is a secure aggregate signature scheme, PS[AS] is a secure proxy signature scheme. The details are
as follows.

Description of the adversary. B is given pk1 and access to the signing oracle OS(sk1, ·). B
initializes a counter n = 1 for the number of users and creates an empty array wskp1. B runs A on
input pk1 handling all of A’s requests and answering all A’s queries as follows:

• If A requests to register a new user user i = n + 1 by outputting (pki, ski), then B stores these
keys, increments n and creates an empty array wskpi.

17

• If A requests to interact with D(pk1,pki, sk1), where i ∈ {2, . . . , n}, playing the role of
P(pk1,pki, ski), B creates an appropriate warrant3 ω and makes query 00||pki||ω to its signing
oracle OS(sk1, ·). Upon receiving an answer cert, it forwards ω, cert to A.

• If A requests to interact with P(pki,pk1, sk1), where i ∈ {2, . . . , n}, playing the role of
D(pki,pk1, ski), when A outputs ω, cert, B verifies that cert is a valid signature for message
00||pk1||ω (i.e., it checks if V(pki, 00||pk1||ω, cert) = 1). If so, the adversary stores ω, cert in the
last unoccupied position of wskpi.

• If A requests that user 1 run the designation protocol with itself, B creates an appropriate
warrant ω and makes query 00||pk1||ω to its signing oracle OS(sk1, ·). Upon receiving an
answer cert, it stores ω, cert in the last unoccupied position of wskp1.

• If A queries its oracle OS1(sk1, ·) with a message M , B makes query 11||M to its own signing
oracle OS(sk1, ·) and forwards the response to A.

• If Amakes a query (i, l,M), where i ∈ [n], l ∈ N, and M ∈ {0, 1}∗, to its oracle OPS((skpu)u∈[n],
·, ·, ·), B responds as follows. If wskpi[l] is not defined, it returns ⊥ to A. Otherwise, let ω, cert
be the content of this position. B submits to the signing oracle (01||pki||M) and in return
obtains σ. It then computes aσ as: aσ = A(pki,pk1, 00||pk1||ω, 01||pki||M, cert, σ) and returns
ω, pk1, aσ to A.

Eventually A outputs a forgery. If A outputs a forgery of the form (M,σ) then the forgery out-
put by B is (11||M,σ). If A outputs (M,pσ,pki) with ID(pσ) = pk1 then adversary B outputs
(pki, 01||pki||M, 00||pk1||ω, pσ). The last case is when A outputs a forgery (M,pσ,pk1) such that
ID(pσ) = pk 6∈ D ∪ {pk1} ∪ {⊥}; in this case B outputs (pk, 00||pk||ω, 01||pk1||M,pσ).

Analysis. We first claim that the view of A in the simulated experiment above is indistinguishable
from the one in the real experiment Expps-uf

PS[AS],A(k). Since the simulation is perfect and A has
non-negligible advantage, at least one of the following events occurs with non-negligible probability.
(See Definition 3.2.)

E1 : A outputs a forgery of the form (M,σ), where V1(pk1,M, σ) = 1, and M was not queried
to oracle OS1(sk1, ·).

E2 : A outputs a forgery of the form (M,pσ,pki), for some i ∈ N where PV(pki,M, pσ) = 1,
ID(pσ) = pk1, and no query (i, j, M) was made to oracle OPS((skpu)u∈[n], ·, ·, ·), for
j ∈ N.

E3 : A outputs a forgery of the form (M,pσ,pk1), where PV(pk1,M, pσ) = 1, and ID(pσ)
= pk 6∈ D ∪ {pk1} ∪ {⊥}.

If event E1 occurs, then M,σ are such that V1(pk, 11||M,σ) = 1. Since A did not query M to its
signing oracle, B did not query 11||M to its signing oracle. Therefore, B’s output (11||M,σ) is a
valid forgery.

If event E2 occurs, pσ is a valid proxy signature of user 1 on behalf of user i, hence, pσ must
be a valid aggregate signature for messages 00||pk1||ω and 01||pki||M , relative to public keys pki

and pk1 respectively. It’s a valid forgery for A, i.e. A did not make a query i, l,M for any l ∈ N to
its oracle OPS((skpu)u∈[n], ·, ·, ·). Hence B did not query message 01||pki||M to its signing oracle.
Therefore, (pki, 01||pki||M, 00||pk1||ω, pσ) is a valid forgery for B.

Finally, if event E3 occurs, pσ is a valid aggregate signature on messages 00||pk||ω and 01||pk1||M
relative to pk1 and pk respectively. So the forgery output by B in this case, i.e. (pk, 00||pk||ω,
01||pk1||M,pσ) is valid, as long as this message was not queried by B to its signing oracle. It is

3As we mentioned before, we do not specify the information contained in the warrant, since it is public and it
depends on the application.

18

immediate that B makes this query only in the case A requests that user 1 designates user ID(pσ)
as a proxy signer, which is not the case (since ID(pσ) = pk 6∈ D ∪ {pk1} ∪ {⊥}).

We showed that whenever A outputs a valid forgery, B outputs a valid forgery, therefore

Advps-uf
PS[AS],A = Advag-uf

AS,B .

Since A runs poly(k)-time, it is easy to see that B runs poly(k)-time.

B Proof of Theorem 6.1

Since the Schnorr signature scheme S = (G,K,S,V) is secure in the random-oracle model, assuming
hardness of the DLP [25], it is sufficient to prove that if S is secure then TS is secure. To this end,
for any polynomial-time adversary A against TS we construct polynomial-time adversaries B, C,
and D against S such that if A has a non-negligible advantage in creating a forgery for TS, then at
least one of the three adversaries has a non-negligible advantage in creating a forgery for S.

Fix k ∈ N and let A be a poly(k)-time adversary against TS. As is usual in the random-oracle
model, the hash functions G and H used in the scheme are assumed to behave as random oracles,
i.e., they are assumed to be chosen independently at random from all functions f : {0, 1}∗ → Zq,
and the adversary is given access to these oracles. Without loss of generality, we assume that the
adversary does not repeat any random-oracle queries (it can just store the responses in a table).

Description of the adversaries. Since adversaries B, C, and D have many similarities, we
describe them simultaneously, pointing out their differences. The adversaries are each given input
a public key pk1, and access to a random oracle G and a Schnorr signing oracle OSG(sk1, ·), where
sk1 is a secret key matching pk1. The adversaries use their oracles G and OSG(sk1, ·) to answer A’s
requests and queries as described in detail below. They simulate random oracle H. Some queries to
H are answered with a freshly chosen random value, but for certain inputs which we specify shortly,
the value of random oracle H is previously set to a uniformly distributed value.

Each adversary sets n = 1, creates empty arrays wskp1 and H, chooses some randomness for
A, and runs A on input pk1 with this randomness. It then answers the requests and queries made
by A as follows.

• If A requests to register a public key pki for user i = n + 1 by outputting a pair (pki, ski) of
matching public and secret keys, the adversary stores these keys, increments n, and creates an
empty array wskpi.

• If A requests to interact with user 1 running D(pk1,pki, sk1), for some i ∈ {2, . . . , n}, and play
the role of user i running P(pk1,pki, ski), the adversary creates an appropriate warrant ω and
makes query 0||pk1||pki||ω to its signing oracle OSG(sk1, ·). Upon receiving an answer cert, it
forwards ω, cert to A.

• If A requests to interact with user 1 running P(pki,pk1, sk1), for some i ∈ {2, . . . , n}, and
play the role of user i running D(pki,pk1, ski), when A outputs ω, cert, the adversary ver-
ifies that cert = (Y, s) is a valid signature for message 0||pki||pk1||ω (i.e., it checks that
VG(pki, 0||pki||pk1||ω, cert) = 1). If so, the adversary stores ω, Y, s in the last unoccupied
position of wskpi.

• If A requests that user 1 run the designation protocol with itself, the adversary creates an
appropriate warrant ω and makes query 0||pk1||pk1||ω to its signing oracle OSG(sk1, ·). Upon
receiving an answer cert = (Y, s), adversaries B and D store ω, Y, s in the last unoccupied
position of wskp1 and forward ω, cert to A. Adversary C checks if A has made the query
(0||pk1||pk1||ω, Y) to random oracle G. If so, it aborts. Otherwise, it stores ω, Y, s in the last
unoccupied position of wskp1 and forwards ω, cert to A. Note that since oracle OSG(sk1, ·)

19

chooses commitment Y uniformly at random, the probability that A previously made query
(0||pk1||pk1||ω, Y) to random oracle G is negligible.

• If A queries its oracle OST
(sk1, ·) with a message M , the adversary makes query 1||M to its

signing oracle OSG(sk1, ·) and forwards the response to A.

• If A makes a query (i, l,M), where i ∈ [n], l ∈ N, and M ∈ {0, 1}∗, to its oracle
OPS((skpu)u∈[n], ·, ·, ·), the adversary responds as follows. If wskpi[l] is not defined, it returns
⊥ to A. Otherwise, it parses wskpi[l] as ωl, Yl, sl, and performs the following operations.

- Pick a random c ∈ Zq

- Pick a random s ∈ Zq

- Make query (0||pki||pk1||ωl, Yl) to oracle G and let e be the response

- Compute commitment Y ← gs · ((pki · pk1)e · Yl)−c mod p

- If A has made the query (0||M ||pki||pk1||ωl||Yl, Y) to random oracle H, then abort. Oth-
erwise, set H[0||M ||pki||pk1||ωl||Yl, Y]← c

- Return (ωl, Yl,pk1, (Y, s)) to A
Thus, the adversary simulates proxy signing by user 1 on behalf of user i using the l-th proxy
signing key. It is well known and easy to see that the simulated signature (Y, s) has the same
distribution as a real Schnorr signature. Therefore, the signature returned to adversary A has
the same distribution as a signature returned by oracle OPS((skpu)u∈[n], ·, ·, ·). Note that since
s is uniformly distributed and independent from A, Y is uniformly distributed and independent
from A. Hence the probability that A made query (0||M ||pki||pk1||ωl||Yl, Y) to random oracle
H is negligible.

• If A makes a query x to random oracle G, the adversary makes the same query to its oracle G,
obtaining a response e. Adversaries B and D return e to A. Adversary C checks if x is of the form
(0||pk1||pk1||ω, Y), where ω, Y does not appear in wskp1 (i.e., for all l, if wskp1[l] = ωl, Yl, sl,
then ω 6= ωl or Y 6= Yl). If so, it returns e · 2−1 mod q to A. Otherwise, it returns e to A. In
either case, the response is uniformly distributed.

• If A makes a query (M,Z) to random oracle H, the adversary checks if H[M,Z] is defined. If
not, it picks a random c ∈ Zq and sets H[M,Z]← c. Then it returns H[M,Z] to A.

The behaviors of adversaries B, C, and D differ once A outputs its forgery (M,σ) or (M,pσ,pk).

Adversary B aborts if A’s forgery is not of the form (M,σ). Otherwise, it outputs the forgery
(1||M,σ).

Adversary C aborts if A’s forgery is not of the form (M,pσ,pki), for some i ∈ [n], where ID(pσ) =
pk1. Otherwise, C parses pσ as (ω, Y,pk1, (Y , s̄)). If A did not make query (0||M ||pki||pk1||ω||Y, Y)
to random oracle H, then C aborts. Otherwise, let c be the response adversary C gave A when
it made this query. C rewinds A to the point where it makes this query and gives it a randomly
chosen response c′ 6= c. It continues the execution of A (with the same randomness), responding
to its requests and queries as before (with fresh coins), until A outputs a forgery. If this forgery is
not of the form (M, (ω, Y,pk1, (Y , s̄′)),pki), then C aborts. Otherwise, C computes the proxy secret
corresponding to A’s forgeries as t← (s̄− s̄′) · (c− c′)−1 mod q.

If pki 6= pk1, then C makes the query (0||pki||pk1||ω, Y) to random oracle G, obtains a response
e, computes s′ ← t− e · ski mod q, and outputs the forgery (0||pki||pk1||ω, (Y, s′)).

If pki = pk1 and there exists l ∈ N such that wskp1[l] = ω, Y, sl for some sl, then C makes the
query (0||pk1||pk1||ω, Y) to random oracle G, obtains a response e, and computes user 1’s secret

20

key as sk1 ← (t − sl) · e−1 mod q. It then selects a message M ′ that was not queried to oracle
OSG(sk1, ·), computes a Schnorr signature (Y ′, s′) for this message under key sk1 and outputs the
forgery (M ′, (Y ′, s′)).

If pki = pk1 and no such l exists (i.e., ω, Y does not appear in wskp1), then C outputs the
forgery (0||pk1||pk1||ω, (Y, t)).

Adversary D aborts if A’s forgery is not of the form (M,pσ,pk1). Otherwise, D parses pσ as
(ω, Y,pki, (Y , s̄)). If pki = pk1 or A did not make query (0||M ||pk1||pki||ω||Y, Y) to random
oracle H, then D aborts. Otherwise, let c be the response adversary D gave A when it made
this query. D rewinds A to the point where it makes this query and gives it a randomly chosen
response c′ 6= c. It continues the execution of A (with the same randomness), responding to its
requests and queries as before (with fresh coins), until A outputs a forgery. If this forgery is not
of the form (M, (ω, Y,pki, (Y , s̄′)),pk1), then D aborts. Otherwise, D computes the proxy secret
corresponding to A’s forgeries as t← (s̄−s̄′)·(c−c′)−1 mod q. D makes the query (0||pk1||pki||ω, Y)
to random oracle G, obtains a response e, computes s′ ← t− e · ski mod q, and outputs the forgery
(0||pk1||pki||ω, (Y, s′)).

Clearly, the running time of adversaries B, C, and D is polynomial in k.

Analysis. Consider experiment Expps-uf
TS,A(k). Since A has a non-negligible advantage, at least one

of the following events occurs with non-negligible probability. (See Definition 3.2.)

E1 : A outputs a forgery of the form (M,σ), where VT(pk1,M, σ) = 1, and M was not queried
to oracle OST

(sk1, ·)
E2 : A outputs a forgery of the form (M,pσ,pki), for some i ∈ [n], where PV(pki,M, pσ) = 1,

ID(pσ) = pk1, and no valid query (i, l,M), for l ∈ N, was made to oracle
OPS((skpu)u∈[n], ·, ·, ·)

E3 : A’s forgery is of the form (M,pσ,pk1), where PV(pk1,M, pσ) = 1 and ID(pσ) 6∈
D ∪ {pk1} ∪ {⊥}

We observe that if adversaries B, C, and D do not abort before A outputs its forgery, then they
perfectly simulate the environment provided to A in experiment Expps-uf

TS,A(k). Also, the probability
that B, C, or D abort before A outputs its forgery is negligible. We will show that if event E1 occurs,
then with non-negligible probability adversary B is successful, if E2 occurs, then with non-negligible
probability C is successful, and if E3 occurs, then with non-negligible probability D is successful.
This implies that the advantage of at least one of these adversaries is non-negligible, as desired.

Assume event E1 occurs and consider the execution of A by adversary B. Assume B does not
abort. Then B outputs the forgery (1||M,σ). Since VT(pk1,M, σ) = 1, VG(pk1, 1||M,σ) = 1. Since
M was not queried to oracle OST

(sk1, ·), B did not make query 1||M to oracle OSG(sk1, ·). Thus
B’s output is a successful forgery of a Schnorr signature.

Assume event E2 occurs. Consider the execution of A by adversary C and assume C does not
abort. Notice that C simulates random oracle G with a function G′ that is equal to G except possibly
on some points of the form (0||pk1||pk1||ω, Y), where G′(0||pk1||pk1||ω, Y) = G(0||pk1||pk1||ω, Y) ·
2−1 mod q. Since E2 occurs, PV(pki,M, pσ) = 1 and ID(pσ) = pk1. Therefore, pσ must be of the
form (ω, Y,pk1, (Y , s̄)), where (Y , s̄) is a valid Schnorr signature with random oracle H for message
0||M ||pki||pk1||ω||Y relative to proxy public key pkp = (pki · pk1)G′(0||pki||pk1||ω,Y) · Y mod p. With
non-negligible probability, A made query (0||M ||pki||pk1||ω||Y, Y) to random oracle H (otherwise,
it would have only a negligible probability of outputting such a valid Schnorr signature (Y , s̄).)
When A made this query, H[0||M ||pki||pk1||ω||Y, Y] must not have been defined because A did not
make a valid query (i, l,M), for l ∈ N, to oracle OPS((skpu)u∈[n], ·, ·, ·). (Only such a query could

21

cause H[0||M ||pki||pk1||ω||Y, Y] to be defined.) Hence C must have chosen a fresh random value
c ∈ Zq as a response to this query. When C rewinds A to this point and gives it a random response
c′ 6= c, with non-negligible probability, A produces a forgery with respect to the same query. (The
exact probabilistic analysis is based on the forking lemma of [25] and is similar to the analysis
presented there for the proof of security of the Schnorr signature scheme.) Since the query contains
M , pki, pk1, ω, Y , and Y , with non-negligible probability, A forges a proxy signature for the same
message M , relative to the same public key pkp, using the same commitment Y , i.e., it produces a
forgery of the form (M, (ω, Y,pk1, (Y , s̄′)),pki). From the two Schnorr signatures (Y , s̄) and (Y , s̄′),
C extracts the discrete logarithm t of the proxy public key pkp. To see that the value computed is
indeed the discrete logarithm of pkp, observe that since these signatures are valid relative to pkp,
gs̄ ≡ Y · pkpc (mod p) and gs̄′ ≡ Y · pkpc′ (mod p). Hence g(s̄−s̄′) mod q ≡ pkp(c−c′) mod q (mod p),
and therefore, g(s̄−s̄′)·(c−c′)−1 mod q ≡ pkp (mod p). Thus t = (s̄− s̄′) ·(c−c′)−1 mod q is the discrete
logarithm of pkp. Since pkp = (pki ·pk1)G′(0||pki||pk1||ω,Y) ·Y mod p, t = G′(0||pki||pk1||ω, Y) · ski +
G′(0||pki||pk1||ω, Y) · sk1 + y mod q, where ski is the discrete logarithm of pki and y is the discrete
logarithm of Y .

If pki 6= pk1, then adversary C stored the key pair (pki, ski) when A made the request to
register public key pki for user i. Also, note that G′(0||pki||pk1||ω, Y) = G(0||pki||pk1||ω, Y).
Therefore, when C subtracts the term G(0||pki||pk1||ω, Y) · ski mod q from t, it obtains s′ =
G(0||pki||pk1||ω, Y) · sk1 + y mod q. We observe that (Y, s′) is a valid Schnorr signature with
random oracle G for message 0||pki||pk1||ω relative to public key pk1. Since C did not make the
query 0||pki||pk1||ω to oracle OSG(sk1, ·), its forgery (0||pki||pk1||ω, (Y, s′)) is successful.

If pki = pk1 and there exists l ∈ N such that wskp1[l] = ω, Y, sl for some sl, then
G′(0||pk1||pk1||ω, Y) = G(0||pk1||pk1||ω, Y). Also, since (Y, sl) is a Schnorr signature with ran-
dom oracle G for message 0||pk1||pk1||ω under key sk1, sl = G(0||pk1||pk1||ω, Y) · sk1 + y mod q.
Therefore, when C subtracts the term sl from t and divides by G(0||pk1||pk1||ω, Y), it obtains sk1.
Having user 1’s secret key, it easily constructs a successful forgery.

If pki = pk1 and no such l exists (i.e., ω, Y does not appear in wskp1), then with non-negligible
probability, A made query (0||pk1||pk1||ω, Y) to random oracle G (otherwise, it would have only
a negligible probability of outputting a Schnorr signature valid relative to pkp.) C gave A the
value G(0||pk1||pk1||ω, Y) · 2−1 mod q as a response to this query, i.e., G′(0||pk1||pk1||ω, Y) =
G(0||pk1||pk1||ω, Y)·2−1 mod q. Therefore, t = G(0||pk1||pk1||ω, Y)·2−1 ·sk1+G(0||pk1||pk1||ω, Y)·
2−1 · sk1 + y mod q = G(0||pk1||pk1||ω, Y) · sk1 + y mod q. We observe that (Y, t) is a valid Schnorr
signature with random oracle G for message 0||pk1||pk1||ω relative to public key pk1. Since ω, Y
does not appear in wskp1 and C did not abort, it must be the case that C did not make the query
0||pk1||pk1||ω to oracle OSG(sk1, ·). Thus its forgery (0||pk1||pk1||ω, (Y, t)) is successful.

Assume event E3 occurs. Consider the execution of A by adversary D and assume D does
not abort. Since PV(pk1,M, pσ) = 1, pσ must be of the form (ω, Y,pki, (Y , s̄)), where (Y , s̄)
is a valid Schnorr signature with random oracle H for message 0||M ||pk1||pki||ω||Y relative to
proxy public key pkp = (pk1 · pki)G(0||pk1||pki||ω,Y) · Y mod p. As in the previous case, A must
have made query (0||M ||pk1||pki||ω||Y, Y) to random oracle H (otherwise, it would have only a
negligible probability of outputting such a valid Schnorr signature (Y , s̄).) When A made this
query, H[0||M ||pk1||pki||ω||Y, Y] must not have been defined because values for H are only set by
D when answering queries to H or when simulating oracle OPS((skpu)u∈[n], ·, ·, ·), and the points for
which H is set during such a simulation are of the form (0||M ||pki||pk1||ωj ||Yj , Y).) Hence D must
have chosen a fresh random value c ∈ Zq as a response to this query. When D rewinds A to this point
and gives it a random response c′ 6= c, with non-negligible probability, A produces a forgery with
respect to the same query. Since the query contains M , pk1, pki, ω, Y , and Y , with non-negligible

22

probability, A forges a signature for the same message M , relative to the same public key pkp, using
the same commitment Y , i.e., it produces a forgery of the form (M, (ω, Y,pki, (Y , s̄′)),pk1). From
the two Schnorr signatures (Y , s̄) and (Y , s̄′), D extracts the discrete logarithm t of the proxy public
key pkp. As in the previous case, it is easy to see that the value computed is indeed the discrete
logarithm of pkp, and that t = G(0||pk1||pki||ω, Y) · sk1 + G(0||pk1||pki||ω, Y) · ski + y mod q,
where ski is the discrete logarithm of pki and y is the discrete logarithm of Y . Adversary D knows
the secret key ski. When it subtracts the term G(0||pk1||pki||ω, Y) · ski mod q from t, it obtains
s′ = G(0||pk1||pki||ω, Y) · sk1 + y mod q. We observe that (Y, s′) is a valid Schnorr signature with
random oracle G for message 0||pk1||pki||ω relative to public key pk1. Since ID(pσ) 6∈ D, D did not
make the query 0||pk1||pki||ω to oracle OSG(sk1, ·). Therefore, its forgery (0||pk1||pki||ω, (Y, s′)) is
successful.

23

