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Abstract

A proxy signature scheme permits an entity to delegate its signing rights to another. These schemes have
been suggested for use in numerous applications, particularly in distributed computing. Before our work [6]
appeared, no precise definitions or proven-secure schemes had been provided. In this paper, we formalize
a notion of security for proxy signature schemes and present provably-secure schemes. We analyze the
security of the well-known delegation-by-certificate scheme and show that after some slight but important
modifications, the resulting scheme is secure, assuming the underlying standard signature scheme is se-
cure. We then show that employment of aggregate signature schemes permits bandwidth and computational
savings. Finally, we analyze the proxy signature scheme of Kim, Park and Won, which offers important
performance benefits. We propose modifications to this scheme which preserve its efficiency and yield a
proxy signature scheme that is provably secure in the random-oracle model, under the discrete-logarithm
assumption.
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1 Introduction

A proxy signature protocol allows an entity, called the designator or original signer, to delegate another entity,
called a proxy signer, to sign messages on its behalf, in case of say, temporal absence, lack of time or compu-
tational power, etc. The delegated proxy signer can compute a proxy signature that can be verified by anyone
with access to the original signer’s certified public key. We note that Blaze and Strauss[5] and Dodis and Ivan
[15] use the term “proxy signatures,” in the context of “proxy cryptography,” to describe a different primitive
with distinct goals.

APPLICATIONS AND BACKGROUND. Proxy signatures have found numerous practical applications, particu-
larly in distributed computing where delegation of rights is quite common. Examples discussed in the literature
include distributed systems [31, 43], grid computing [10], mobile agent applications [16, 20], distributed shared
object systems [23], global distribution networks [1], and mobile communications [33]. The proxy signature
primitive and the first efficient solution were introduced by Mambo, Usuda and Okamoto [29]. Since then
proxy signature schemes have enjoyed a considerable amount of interest from the cryptographic research com-
munity. New security considerations and constructions have been proposed, old schemes have been broken,
followed by more constructions (e.g., [17, 46, 32, 40, 39, 47, 20, 11, 21, 41, 44, 9, 25, 48, 45]). Furthermore,
many extensions of the basic proxy signature primitive have been considered. These include threshold proxy
signatures [17, 50, 37, 38, 14, 13], blind proxy signatures [18, 48], proxy signatures with warrant recovery [19],
nominative proxy signatures [33], one-time proxy signatures [16], and proxy-anonymous proxy signatures [36].

Unfortunately, the extensive previous cryptographic research on the topic has not brought developers much
guidance because almost every other paper breaks some previously proposed construction, and proposes a new
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one. See [49, 22, 20, 21, 41] for illustrative examples of this trial and error approach. Very few schemes
were left unbroken, and none of them had provable-security guarantees. Typically, security of these schemes is
argued by presenting attacks that fail, which provides only very weak guarantees. What is clearly desirable but
has not been provided until now, is a proxy signature scheme with guaranteed security. In order to achieve this
goal, it is necessary to first formalize a security notion for proxy signature schemes, since the current security
requirements are vague and ill-defined. This problem was recognized and left open in [21].

Our work is aimed at filling this void. The original version of the paper [6] is the first work on proxy signa-
tures in the provable-security direction. We define a formal model for the security of proxy signature schemes,
which enables the cryptographic analysis of such schemes. Then we present several examples of efficient proxy
signature schemes that provably satisfy this notion of security, under widely-believed computational-complexity
assumptions.

We note that the contribution of our work is not only in our immediate results, but also in its impact on
further research on proxy-signature-related topics under the principles of provable security, as exemplified by
[13, 28]. Herranz and Saez [13] extend our security model to analyze fully distributed proxy signatures. Build-
ing on our work, Malkin et al. [28] give a model for hierarchical proxy signatures and investigate foundational
issues such as their relation with several key-evolving signature primitives.

FUNCTIONALITY AND SECURITY OF PROXY SIGNATURE SCHEMES. As in previous works, we assume a
Public Key Infrastructure (PKI) setting, where each entity holds a public and secret key pair. As usual, each user
can sign messages using the signing algorithm of a standard digital signature scheme, and his or her secret key.
When a user (the original signer) desires to delegate his or her signing ability to another user (the proxy signer),
the users run a possibly interactive proxy-designation protocol. We note that a proxy signer can correspond to
another device (e.g., a palm computer) of the original signer. Through a successful execution of this protocol,
the proxy signer obtains a proxy signing key. It can then sign messages on behalf of the original signer using
a proxy signing algorithm and the proxy signing key. Anyone can verify the validity of such signatures using a
proxy verification algorithm and the original signer’s public key.

Several security properties for proxy signature schemes were introduced in [29], were somewhat enhanced
by [20], and did not evolve much since then. The properties stated in [20] are the following.
Verifiability: From a proxy signature, a verifier can be convinced of the original signer’s agreement on the
signed message.
Strong unforgeability: The original signer and third parties who are not designated as proxy signers cannot
create a valid proxy signature.
Strong identifiability: Anyone can determine the identity of the corresponding proxy signer from a proxy sig-
nature.
Strong undeniability: A proxy signer cannot repudiate a proxy signature it created.
Prevention of misuse: A proxy signing key cannot be used for purposes other than generating valid proxy
signatures. In case of misuse, the responsibility of the proxy signer should be determined explicitly.

While these informal requirements provide some intuition about the goals that a notion of security for proxy
signature schemes should capture, their precise meaning is unclear. They do not specify what a successful attack
is, leaving important questions unanswered. For instance, what are an adversary’s capabilities? In particular,
can malicious parties collude? Are attackers allowed to see or request signatures? Are they allowed to register
keys? What exactly is the adversary’s goal? When is an attacker considered successful?

One of the main contributions of our work is to clarify these issues by designing a formal model for the
security of proxy signature schemes. It involves a rather powerful adversary who is allowed to corrupt an
arbitrary number of users and learn their secret keys. Moreover, the adversary can register public keys on behalf
of new users, possibly obtained otherwise than running the key-generation algorithm, and possibly depending
on the public keys of already registered users.

We allow the adversary to interact with honest users playing the role of a designator or that of a proxy
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signer. We also allow it to see transcripts of all executions of the proxy-designation protocol between honest
users, i.e., we do not assume the existence of a secure channel between a designator and a proxy signer. The
adversary can ask to see both standard signatures and proxy signatures generated by honest users on messages
of her choice. We say that the adversary wins if it manages to create a standard signature or a proxy signature
for a new message, i.e., a message that was not signed by an honest user. We say that a proxy signature scheme
is secure if no probabilistic efficient adversary can win with probability non-negligible in the security parameter
of the scheme. This security model is detailed in Section 3.

CONSTRUCTIONS. The simplest approach to achieve the main goal of a proxy signature scheme is for the
designator to give its secret key to the proxy signer, who can then use it to sign messages. In this case proxy
signatures are just standard signatures, and can be verified the usual way. This scheme, called full delegation
in the literature, has several shortcomings. Its security relies on the honesty of the proxy signer in a completely
unrealistic manner. It provides no way to restrict signing rights to particular types of messages or a certain
time period. Even if the proxy signer is fully trusted, this scheme increases the vulnerability of the designator’s
secret key. Additionally, it requires the establishment of a secure channel between the original signer and the
proxy signer. Although most previous works assume a secure channel for the proxy-designation protocol, we
find this requirement unnecessary and undesirable.

Another simple construction is known as delegation by certificate or delegation by warrant. Here the desig-
nator uses the signing algorithm of a standard signature scheme to produce an unforgeable warrant that certifies
that the proxy signer is indeed allowed to sign on its behalf. Usually, the warrant consists of a description of
the space of messages for which the proxy signer is allowed to produce signatures, together with a signature
on this description (and possibly some other information like the identity of the designator, and/or that of the
proxy signer). We refer to this signature as a certificate.

The warrant is sent to the proxy signer who uses it in conjunction with its own signing key to produce
proxy signatures. A proxy signature contains the warrant and the proxy signer’s signature. A verifier needs
to ensure that the certificate contained in the warrant is valid with respect to the public key of the designator,
verify the second signature with respect to the public key of the proxy signer specified in the warrant, and also
ensure that the message signed belongs to the message space specified in the warrant. One of our contributions
is to show that a direct implementation of this scheme is susceptible to a chosen-message attack which we
present in Section 4. We also discuss other vulnerabilities of naive implementations, including one pointed
out by [28]. We provide fixes and prove that the resulting scheme is secure, assuming the underlying standard
signature scheme is secure (i.e., existentially unforgeable under adaptive chosen message attack [12]). Also,
we investigate other vulnerabilities of naive implementations, including the ones pointed out by [28] and [42].

A delegation-by-certificate proxy signature can be computed in roughly the same amount of time required
for standard signing, but verification of such proxy signatures requires twice the time to verify a standard
signature. Most of the works on basic proxy signatures mentioned above focused on constructing a more
efficient scheme, where verification of a proxy signature requires less time than verification of two standard
signatures. Several such constructions were proposed, but they all lack provable-security guarantees.

Aggregate signature schemes [7, 26, 24, 27] allow composition of a single short signature out of signatures
generated by several users for different messages. Using an aggregate signature scheme, it is possible to ob-
tain an improvement over delegation-by-certificate proxy signature schemes in terms of both bandwidth and
efficiency. In Section 5 we discuss a simple construction of a secure proxy signature scheme, given any secure
aggregate signature scheme, such that a proxy signature consists of, essentially, a message space description
and a single aggregated signature. We prove that the resulting proxy signature scheme is secure under the
assumptions needed for security of the base aggregate signature scheme.

For example, if a proxy signature scheme is based on the bilinear co-GDH aggregate signature scheme of
Boneh et al. [7], the length of a proxy signature is the length of the message space description plus the length
of a single short bilinear co-GDH aggregate signature. Verification of a proxy signature requires three bilinear
map computations, whereas verification of a delegation-by-certificate proxy signature based on the bilinear
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co-GDH signature scheme requires four bilinear map computations. The bilinear co-GDH aggregate signature
scheme was proved secure in the random-oracle (RO) model [4], under the Computational co-Diffie-Hellman
assumption1. Thus the corresponding proxy signature scheme is secure under the same assumption in the RO
model.

Kim, Park, and Won [17] presented a proxy signature scheme (KPW) based on the Schnorr signature scheme
[35] that is more efficient than the delegation-by-certificate scheme based on Schnorr signatures. The latter
requires four modular exponentiations per proxy signature verification, while verification of a KPW proxy sig-
nature requires only three exponentiations. This improvement can be furthered by employing an algorithm for
simultaneous multiple exponentiation (e.g., Algorithm 14.88 in [30]). The cost of verification of a KPW proxy
signature can be reduced to about 1.25 exponentiations, versus roughly 2.5 exponentiations for verification of a
Schnorr-based delegation-by-certificate proxy signature using standard techniques for fast exponentiation. To
the best of our knowledge, the KPW scheme is the only proxy signature scheme that remained unbroken before
the earlier version of our work appeared, does not require a secure channel for proxy designation, and has this
advantage in efficiency over the corresponding delegation-by-certificate scheme.

We discuss the KPW scheme in Section 6. We mention that we were unable to prove the original scheme
secure. We modify the scheme, preserving its efficiency, and prove that the resulting scheme is secure in
the random-oracle model, assuming hardness of computation of discrete logarithms in the underlying group.
Our proof is in the basic key-registration model, i.e., it does not assume that users prove knowledge of secret
keys during public-key registration. We call this scheme the Triple Schnorr proxy signature scheme since it
uses Schnorr signatures for standard signing, proxy designation, and proxy signing. The proof, which is our
second main result, is quite technical and long, and we present it in Appendix C. Triple Schnorr is the first
provably-secure proxy signature scheme with an advantage in efficiency of verification of about 50% over the
corresponding delegation-by-certificate scheme. Standard signing and proxy signing require approximately the
same amount of time in both of these schemes.

We note that our proof of security of the KPW scheme uses a new lemma of independent interest, that we
call the Multiple-Forking Lemma. Our lemma is a farther generalization of the General Forking Lemma of
Bellare and Neven [2].

RELATION TO THE PREVIOUS VERSION OF THE PAPER [6]. This work significantly strengthens the earlier
version in several ways. We extend the security model to address self-delegation (an issue raised by [28]) and
warrants. We also give a new proof for the security of Triple Schnorr construction that does not require the
users to prove knowledge of their secret keys during public key registration. We give concrete security results
for our constructions.

2 Preliminaries

NOTATION. For N ∈ N, we let [N ] = {1, . . . , N}. If A is a randomized algorithm, then the notation
x

$← A(x1, x2, . . .) denotes that x is assigned the outcome of the experiment of running A on inputs x1, x2, . . .
with fresh coins. If A is deterministic, we might drop the dollar sign above the arrow. For strings a1, . . . , an,
a1|| · · · ||an denotes an encoding such that the constituent strings are uniquely recoverable from the final one.
A (possibly randomized) algorithm is called efficient if it runs in time polynomial in the input length (which is
usually the security parameter). A function f : N → [0, 1] is called negligible if it approaches zero faster than
the reciprocal of any polynomial, i.e., for any polynomial p, there exists np ∈ N such that for all n ≥ np,
f(n) ≤ 1/p(n).

SIGNATURE SCHEMES. We recall the definitions of a digital signature scheme and its security. For simplicity
we give all definitions in the standard model. To extend these definitions to the random-oracle model, all

1See [8] for the definition of this assumption.
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algorithms including the adversary are given oracle access to one or more random functions G, H, . . ., drawn
from the set of all functions with appropriate domains and ranges.

Definition 2.1 [Digital signature scheme] A digital signature scheme DS = (G,K,S,V) is specified by four
efficient algorithms with the following functionalities.

• The randomized parameter-generation algorithm G takes input 1κ, where κ is the security parameter,
and outputs some global parameters params. These may contain, for example, a security parameter, the
description of a cyclic group and a generator, and the description of a hash function. We assume that these
parameters become publicly available.

• The randomized key-generation algorithm K takes input global parameters params and outputs a pair
(pk, sk) consisting of a public key and a matching secret key respectively.

• The (possibly) randomized signing algorithm S takes input a secret key sk and a message M ∈ {0, 1}∗,
and outputs a signature σ.

• The deterministic verification algorithm V takes input a public key pk, a message M and a candidate signa-
ture σ for M , and outputs a bit. We say that σ is a valid signature for M relative to pk if V(pk,M, σ) = 1.

For any pair of keys (pk, sk) that can be output by K and any M ∈ {0, 1}∗, it is required that V(pk,M,
S(sk,M)) = 1 with probability one.

Definition 2.2 [Security of a digital signature scheme] Let DS = (G,K,S,V) be a digital signature scheme.
Consider an adversary A that is given input a public key pk and access to a signing oracleOS(sk, ·), where pk

and sk are matching keys generated via params
$← G(1κ) ; (pk, sk) $← K(params). The oracle takes input

a message M and returns a signature σ
$← S(sk,M). A queries this oracle on messages of its choice, and

eventually outputs a forgery (M,σ). The advantage of adversary A in attacking the scheme DS, Advuf-cma
DS,A (κ),

is the probability that σ is a valid signature on M relative to pk, and this message was not queried to the signing
oracle. The probability is taken over all the random coins used in the experiment above. DS is said to be
secure against existential forgery under adaptive chosen-message attack (or, simply, secure) if Advuf-cma

DS,A (κ)
is negligible. Here and for other definitions in the paper we adopt the convention that the time complexity of
adversary A is the execution time of the entire experiment, including the time taken for parameter and key
generation, and computation of answers to oracle queries.

MESSAGE SPACE DESCRIPTION. A message space descriptor ωS for message space S ⊂ {0, 1}∗ is a deter-
ministic polynomial time Turing machine that computes the characteristic function of S. Throughout the paper
we use S and ωS interchangeably, so by slight abuse of notation we write M ∈ ωS to indicate that ωS(M) = 1,
or equivalently, that M ∈ S. Also, we use standard set operations with message space descriptors as operands.

3 Proxy Signature Schemes

THE SETTING. As discussed in the Introduction, we consider a PKI-like setting: users are identified by natural
numbers, and we let pki denote the public key of user i ∈ N, and ski denote the corresponding secret key.

3.1 Syntax of Proxy Signature Schemes

A proxy signature scheme involves a digital signature scheme for standard signing, a protocol that users run in
order for one of them to designate the other as a proxy signer, a signing algorithm to be used by proxy signers
(which can differ from the one used for standard signing), and a corresponding verification algorithm for proxy
signatures. Additionally, the strong identifiability property mentioned in the Introduction suggests that there be
an algorithm that extracts the identity of the proxy signer from a proxy signature. This identity is the natural
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number identifying the user. We note that identities of an original signer and its proxy can coincide in case
of self-delegation. The definition we give uses message space descriptors (Section 2) to specify the space of
messages for which proxy signers are allowed to produce signatures.

The following definition details the components of a proxy signature scheme.

Definition 3.1 [Proxy signature scheme] A proxy signature scheme is a tuple PS = (G,K,S,V, (D,P),PS,
PV, ID), where the constituent algorithms run in polynomial time, DS = (G,K,S,V) is a digital signature
scheme, and the other components are defined as follows.

• (D,P) is a pair of interactive randomized algorithms forming the (two-party) proxy-designation protocol.
The input to each algorithm includes two public keys pki, pkj for the designator i and the proxy signer j,
respectively. D also takes as input the secret key ski of the designator, the identity j of the proxy signer,
and a message space descriptor ω for which user i wants to delegate its signing rights to user j. P also
takes as input the secret key skj of the proxy signer. As a result of the interaction, the expected local
output of P is skp, a proxy signing key that user j uses to produce proxy signatures on behalf of user i, for
messages in ω. D has no local output. We write skp

$← [D(pki, ski, j,pkj , ω),P(pkj , skj ,pki)] for the
result of this interaction.

• PS is the (possibly) randomized proxy signing algorithm. It takes input a proxy signing key skp and a
message M ∈ {0, 1}∗, and outputs a proxy signature pσ.

• PV is the deterministic proxy verification algorithm. It takes input a public key pk, a message M ∈ {0, 1}∗
and a proxy signature pσ, and outputs 0 or 1. In the latter case, we say that pσ is a valid proxy signature
for M relative to pk.

• ID is the proxy identification algorithm. It takes input a valid proxy signature pσ, and outputs an identity
i ∈ N or ⊥ in case of an error.

CORRECTNESS. We require that for any message space ω ⊆ {0, 1}∗ and for all users i, j ∈ N, if skp is
a proxy signing key for user j on behalf of user i for message space ω, i.e., skp

$← [D(pki, ski, j,pkj , ω),
P(pkj , skj ,pki)], then for every M ∈ ω, PV(pki,M,PS(skp,M)) = 1 and ID(PS(skp,M)) = j with
probability one. Informally, this means that signatures produced with proxy signing keys are valid relative to
the public key of the designator, and that the identity of the proxy signer can be extracted from proxy signatures
that it produces.

3.2 A Notion of Security for Proxy Signature Schemes

SOME INTUITION. We consider a multi-party setting where parties have public/secret keys registered with
some public authority. The adversary may corrupt users and learn their secret keys. The adversary can also add
new users and register public keys for them. These keys do not have be distributed according to the distribution
defined by the key-generation algorithm and, in principle, they can depend on, the public keys of honest users.

We focus on a seemingly extreme case in which the adversary is working against a single honest user, say
user 1, and can select and register keys for all other users. Notice that this is without loss of generality since
any attack that can be carried out in the presence of more honest users can be performed by having some of the
users under the adversary’s control behave honestly. The adversary can play the role of user i 6= 1 in executions
of the proxy-designation protocol with user 1, as designator or as proxy signer. In both cases, the adversary
may behave dishonestly in an attempt to obtain information from the honest user, and the adversary can actually
decide for which message space the designation takes place. There is no restriction on the number of executions
of the proxy-designation protocol between the same two users. To account for the possibility that a user may
designate itself as a proxy signer (which is useful, for example, to create a temporary key for use in a hostile
environment), we let the adversary request user 1 to run the proxy-designation protocol with itself, and see the
transcript of the execution. We emphasize that we do not assume the existence of a secure channel between a
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designator and a proxy signer. As pointed out by Malkin et al. [28], the adversary should also be allowed to
obtain the proxy signing keys produced when user 1 designates itself since self-delegation is often employed in
situations where the signing key is vulnerable to exposure.

We model chosen-message attack capabilities by providing the adversary access to two oracles: a standard
signing oracle and a proxy signing oracle. The first oracle takes input a message M , and returns a standard
signature for M by user 1. The second oracle takes input a tuple (i, l,M), and, if user 1 was designated by
user i at least l times, returns a proxy signature for M created by user 1 on behalf of user i, using the l-th proxy
signing key.

The goal of the adversary is to produce one of the following forgeries:

1. a standard signature by user 1 for a message that was not submitted to the standard signing oracle,
2. a proxy signature for a message M by user 1 on behalf of some user i 6= 1 such that any query (i, l,M)

made to the proxy signing oracle was answered with ⊥.
3. a proxy signature for a message M by user 1 on behalf of user 1 such that any query (1, l, M) made to

the proxy signing oracle was answered with ⊥, and the adversary did not compromise any proxy signing
key produced during self-delegation for a message space to which M belongs.

4. a proxy signature for a message M by some user i 6= 1 on behalf of user 1 such that user i was never
designated by user 1 as a signer for a message space to which M belongs.

Our notion of security for proxy signature schemes is formally defined as follows.

Definition 3.2 [Security of a proxy signature scheme] Let PS = (G,K,S,V, (D,P),PS,PV, ID) be a
proxy signature scheme, A an adversary and κ ∈ N. We associate to PS, A and κ an experiment Expps-uf

PS,A(κ).
First, system parameters params are generated by running G on input 1κ. Then a public and secret key pair for
user 1 is generated via (pk1, sk1)

$← K(params) and a counter n for the number of users is initialized to 1. The
experiment initializes an empty array skp1 to store the self-delegated proxy signing keys and corresponding
message spaces, and empty sets DU and CS. The set DU stores the identities of the users designated by user 1
(together with the message spaces for which they are designated). The set CS keeps track of the set of messages
for which the adversary can produce proxy signatures by user 1 on behalf of user 1 using compromised self-
delegated proxy signing keys.

Adversary A is given input pk1, and it can make the following requests or queries, in any order and any
number of times.

• (i registers pki) A can request to register a public key pki for user i = n + 1 by outputting pki. The keys
are stored, counter n is incremented, and an empty array skpi is created. This array will store the proxy
signing keys of user 1 on behalf of user i together with the message spaces to which they correspond.

• (1 designates i) A can request to interact with user 1 runningD(pk1, sk1, i,pki, ω), for some i ∈ {2, . . . , n}
and some message space ω (chosen by A). In the interaction A plays the role of user i runningP(pki, ski,pk1).
After a successful run, DU is set to DU ∪ {(i, ω)}.

• (i designates 1) A can request to interact with user 1 runningP(pk1, sk1,pki), for some i ∈ {2, . . . , n}. In
the interaction A plays the role of user i runningD(pki, ski, 1,pk1, ω) for some message space ω selected
by A. If skp is the resulting proxy signing key, then the pair (skp, ω) is stored in the last unoccupied
position of skpi. A does not have direct access to the elements of skpi.

• (1 designates 1) A can request that user 1 run the designation protocol with itself for some message space
ω. A is given the transcript of the interaction. If skp is the resulting proxy signing key, the pair (skp, ω) is
stored in the next available position of skp1.

• (exposure of the l-th proxy signing key produced during self-delegation) A can request to see skp1[l] for
some l ∈ N. If skp1[l] contains a proxy signing key and message space pair (skp, ω), then skp is returned
to A and CS is set to CS ∪ ω. Otherwise, ⊥ is returned to A.
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• (standard signature by 1) A can query oracleOS(sk1, ·) with a message M and obtain a standard signature
for M by user 1, σ

$← S(sk1,M).

• (proxy signature by 1 on behalf of i using the l-th proxy signing key) A can make a query (i, l,M), where
i ∈ [n], l ∈ N and M ∈ {0, 1}∗, to oracleOPS((skpu)u∈[n], ·, ·, ·). If skpi[l] contains a proxy signing key
and message space pair (skp, ω), we say the query is valid and the oracle returns PS(skp,M). Otherwise,
we say the query is invalid and the oracle returns ⊥.

Eventually, A outputs a forgery (M,σ) or (M,pσ,pk). The output of the experiment is determined as follows:

1. If the forgery is of the form (M,σ), where V(pk1,M, σ) = 1, and M was not queried to oracle
OS(sk1, ·), then return 1. [forgery of a standard signature]

2. If the forgery is of the form (M,pσ,pki), for some i ∈ {2, . . . , n}, where PV(pki,M, pσ) = 1,
ID(pσ) = 1, and no valid query (i, l,M), for l ∈ N, was made to OPS((skpu)u∈[n], ·, ·, ·), then re-
turn 1. [forgery of a proxy signature by user 1 on behalf of user i 6= 1]

3. If the forgery is of the form (M,pσ,pk1), where PV(pk1,M, pσ) = 1, ID(pσ) = 1, no valid query
(1, l,M), for l ∈ N, was made to OPS((skpu)u∈[n], ·, ·, ·), and M 6∈ CS then return 1. [forgery of a
proxy signature by user 1 on behalf of user 1]

4. If the forgery is of the form (M,pσ,pk1), where PV(pk1,M, pσ) = 1 and for each message space ω
for which (ID(pσ), ω) ∈ DU it holds that M 6∈ ω then return 1. [forgery of a proxy signature by user
i 6= 1 on behalf of user 1; user i was not designated by user 1 to sign M ]

5. Otherwise, return 0

We define the advantage of adversary A as

Advps-uf
PS,A(κ) = Pr

[
Expps-uf

PS,A(κ) = 1
]
.

We say that PS is a secure proxy signature scheme if the function Advps-uf
PS,A(·) is negligible for all adversaries

A of time complexity polynomial in the security parameter κ.

4 Delegation-by-Certificate Proxy Signature Schemes

Since the introduction of the proxy signature primitive [29], it has been believed that proxy signature schemes
can be securely constructed from any digital signature scheme in a very simple way. Informally, a user i
(with public and secret key pair (pki, ski)) can delegate its signing capability to user j (with keys pkj , skj)
by sending it an warrant. The warrant consists of the description ω of the message space for which signing
is being delegated, together with a certificate which is signature on ω under key ski. Once designated, user j
can create a proxy signature for a message M by computing a signature for M under its secret key skj and
concatenating this signature with the warrant. Verification of a proxy signature involves verifying the validity
of the certificate contained in the warrant relative to pki, verifying the validity of the signature for M relative
to pkj , and checking that M conforms to the restrictions specified in ω.

As we mentioned in the Introduction, the raison d’être of most of the previous work on proxy signature
schemes was to improve on the efficiency of the delegation-by-certificate solution. Perhaps as a consequence,
its details have never been properly pinned down. We believe that discussing this scheme in some detail is
important since its conceptual simplicity and generality make it convenient for implementation in applications
requiring the functionality of proxy signatures. We first note various weaknesses of a naive implementation of
the scheme. Then, we propose appropriate fixes and show that the resulting scheme is indeed secure.

FLAWS AND FIXES. Consider the following chosen-message attack: The adversary requests a standard sig-
nature by user 1 for a message M . The adversary then produces a warrant certifying that user 1 can produce
signatures on behalf of a user i. The signature on M together with the warrant comprise a proxy signature
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valid relative to the public key of user i. Thus, the adversary can forge a proxy signature by user 1 on behalf
of user i. This and similar attacks can be prevented by introducing a way to differentiate between signatures
created for standard signing, proxy designation, and proxy signing. For example, to sign a message M the
user actually signs message 11||M , whereas o produce a warrant by signing the message space description ω
during the designation process, the user actually signs 00||ω. Finally, to produce a proxy signature on message
M the proxy signer signs 01||M . Verification of standard (resp., proxy) signatures is then performed by first
prepending 11 (resp., 01) to the message.

This fix is insufficient. The resulting delegation-by-certificate proxy signatures still have some undesirable
malleability properties. Consider the following attack: The adversary first designates user 1 as a proxy signer
for a user i. Then it requests a proxy signature by 1 on behalf of i for a message M . It removes the warrant
that states that user 1 can sign on behalf of i, and replaces it with one that states that 1 is allowed to sign on
behalf of a user k 6= i. The result is a forgery of a proxy signature by user 1 on behalf of user k. Again, there
is a simple fix: to sign on behalf of user i, instead of signing message 01||M , the proxy signer signs message
01||pki||M . This ties the part of the proxy signature created by the proxy signer to the designator.

Malkin et al. [28] identified a weakness of naive implementations of the delegation-by-certificate scheme
that arises when the scheme is used for self-delegation, namely, an adversary that compromises the proxy
signing key produced by an honest user during self-delegation can easily forge this user’s standard signatures.
As suggested in [28], this problem can be avoided by using a new signing/verifying key pair for each instance
of self-delegation.

We are now ready to summarise the above discussion by presenting the construction of a delegation-by-
certificate proxy signature scheme from any digital signature scheme.

Construction 4.1 Let DS = (G,K,S,V) be a signature scheme. The algorithms of the corresponding delegation-
by-certificate proxy signature scheme PS[DS] = (G1,K1,S1,V1, (D,P),PS,PV, ID) are defined as follows:

• The parameter- and key-generation algorithms are those of DS: G1 = G, K1 = K.

• A standard signature for message M is obtained by prepending 11 to the message, and signing the result
using S, i.e., S1(sk,M) = S(sk, 11||M).

• Verification of a signature σ for message M is done by computing V1(pk,M, σ) = V(pk, 11||M,σ).

• User i, in order to designate user j 6= i as a proxy signer for messages in message space ω, simply sends
to j the description ω of the message space, together with a certificate cert = §ski

(00||j||pkj ||ω (i.e. a
signature on the message 00||j||pkj ||ω, under the secret key of user i.). The corresponding proxy signing
key of user j is skp = (skj ,pki, j||pkj ||ω, cert).

User i, in order to designate itself as proxy signer for message space ω, runs K to obtain (pk′
i, sk

′
i), and

creates a certificate cert = §ski
(00||i||pk′i||ω). The corresponding self-delegated proxy signing key of user

i is skp = (sk′
i,pki, i||pk′

i||ω, cert).

• A proxy signature by user j on behalf of user i on message M ∈ ω using proxy-signing key (sk,pki,
j||pk||ω, cert),2 contains the identity j of the proxy signer, the message space description ω, the public
key pk of the proxy signer, the certificate cert (a signature for 00||j||pk||ω under ski) and a signature for
01||pki||M under sk. Formally,

PS((sk,pki, j||pk||ω, cert),M) = (j, ω, pk, cert,S(sk, 01||pki||M)).

If M 6∈ ω then the signing algorithm returns ⊥.

• Proxy signature verification is defined via

PV(pk′,M, (j, ω, pk, cert, σ)) = V(pk′, 00||j||pk||ω, cert) ∧ V(pk, 01||pk′||M,σ) ∧ (M ∈ ω).

• The identification algorithm is simply defined as ID((j, ω, pk, cert, σ)) = j.

2Here (pk, sk) = (pkj , skj) if i 6= j and (pk, sk) = (pk′i, sk
′
i) if i = j.
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The following theorem states our result about the security of proxy signature scheme PS[DS]. This result
follows from a theorem stated in Section 5.2 and is proved there.

Theorem 4.2 Let DS be a secure digital signature scheme. Then the scheme PS[DS] defined above is a secure
proxy signature scheme. Concretely, let A be an adversary against PS[AS] that makes at most qd delegation
queries, qsd self-delegation queries, qs standard signature queries, and at most qps proxy-siganture queries.
Then, there exist adversaries B, C , and D against DS such that:

Advps-uf
PS[DS],A(κ) ≤ Advuf-cma

DS,B (κ) + Advuf-cma
DS,C (κ) + qsd ·Advuf-cma

DS,D (κ).

Furthermore, adversaries B, C , and D make at most qd + qps + qs, qd + qsd + qs, qps queries to their signing
oracles, respectively. Also, if the running time of A is tA, then those of B, C , and D are also about tA.

5 Aggregate-Signature-based Proxy Signature Schemes

As we mentioned in the Introduction, aggregate signatures can be used to optimize the length, and possibly the
verification time of delegation-by-certificate proxy signatures. In this section we treat this matter in more detail.
We first briefly review the aggregate signature primitive, its security and existing schemes (see [7] for details.)
We then show how aggregate signature schemes can be used to construct proxy signature schemes.

5.1 Aggregate Signature Schemes, their Security and Constructions

Aggregate signature schemes were introduced by Boneh et al. [7], and allow construction of a single signature
for a sequence of messages, out of signatures generated by distinct users for each of these messages. Formally,
an aggregate signature scheme is given by a tuple of algorithms AS = (G,K,S,V,A,AV), where DS =
(G,K,S,V) is a standard digital signature scheme, called the base signature scheme, A is the aggregation
algorithm, and AV is the aggregate verification algorithm. The aggregation algorithm takes input a sequence
of public keys pk1, . . . ,pkn, messages M1, . . . ,Mn and signatures σ1, . . . , σn, where each signature σi is
valid for Mi relative to public key pki, and outputs a single aggregate signature aσ. The aggregate verification
algorithm takes input a sequence of public keys pk1, . . . ,pkn and messages M1, . . . ,Mn and an aggregate
signature aσ, and outputs a bit. It is required that

AV(pk1, . . . ,pkn,M1, . . . ,Mn,A(pk1, . . . ,pkn,M1, . . . ,Mn,S(sk1,M1), . . . ,S(skn,Mn))) = 1.

SECURITY OF AGGREGATE SIGNATURE SCHEMES. The security of aggregate signature schemes is defined
via an experiment Expag-uf

AS,B (κ) associated to scheme AS, adversary B and security parameter κ. First, system
parameters params are generated by running G on input 1κ. Then, a public and secret key pair (pk, sk) is
selected by running the key-generation algorithm K on input params, and pk is given as input to B. Fur-
thermore, B is provided with access to the signing oracle S(sk1, ·). The goal of the adversary is to output a
forgery, i.e., n public keys pk1,pk2, . . . ,pkn, for some n ≥ 1, a sequence of messages M1, . . . ,Mn, and an
aggregate signature aσ for these messages. The experiment returns 1 (in which case we say that B wins) if
AV(pk1, . . . ,pkn,M1, . . . ,Mn, aσ) = 1, pki = pk for some 1 ≤ i ≤ n and B did not submit Mi to the
signing oracle. The advantage of adversary B is defined by

Advag-uf
AS,B (κ) = Pr

[
Expag-uf

AS,B (κ) = 1
]
,

and aggregate signature scheme AS is said to be secure if the function Advag-uf
AS,B (·) is negligible for any efficient

adversary B. We note that the security definition above is a slight generalization of the one of Boneh et. al. [7],
which requires that pk1 = pk.

CONSTRUCTIONS OF AGGREGATE SIGNATURE SCHEMES. Note that any secure standard signature scheme DS
yields a secure trivial aggregate signature scheme in which the aggregation algorithm simply concatenates all
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signatures, and the aggregate verification algorithm simply verifies all signatures. We will refer to the aggregate
signature scheme constructed this way as TAS[DS]. A straightforward argument shows that for any efficient
adversary A against TAS[DS] that runs in time tA and makes qS signature queries to its oracle, there exists an
efficient adversary B against DS that runs in time tA and that makes qS signature queries to its oracle, such that

Advag-uf
TAS[DS],A(κ) ≤ Advuf-cma

DS,B (κ) ; (1)

that is, TAS[DS] is secure given that the underlying signature scheme DS is secure.
We remark that sequential aggregate signature schemes [26, 24], where signing and aggregation are per-

formed sequentially are also suitable for construction of proxy signature schemes.

5.2 Aggregate-Signature-based Proxy Signature Schemes

We sketch the construction of a proxy signature scheme from any aggregate signature scheme.

Construction 5.1 Let AS = (G,K,S,V,A,AV) be an aggregate signature scheme. The algorithms of the
corresponding proxy signature scheme PS[AS] = (G1,K1,S1,V1, (D,P),PS,PV, ID) are defined as follows.

• Algorithms G1,K1,S1,V1,D,P use algorithms G,K,S,V in the same way as those in Construction 4.1.

• If M ∈ ω, the proxy signing algorithm PS uses A to aggregate the certificate and a proxy signature as
follows:

PS((sk,pki, j||pk||ω, cert),M) =
(j, ω, pk,A(pki,pk, 00||j||pk||ω, 01||pki||M, cert,S(sk, 01||pki||M))).

If M 6∈ ω then the signing algorithm returns ⊥.

• The proxy verification algorithm PV is defined by

PV(pk′,M, (j, ω, pk, aσ)) = AV(pk′,pk, 00||j||pk||ω, 01||pk′||M,aσ) ∧ (M ∈ ω).

• The identification algorithm is defined by ID((j, ω, pk′, aσ)) = j.

The following theorem formally relates the security of the above construction to the security of the base aggre-
gate signature scheme.

Theorem 5.2 Let AS be a secure aggregate signature scheme. Then the scheme PS[AS] defined above is
a secure proxy signature scheme. Concretely, let A be an adversary against PS[AS] that makes at most qd

delegation queries, qsd self-delegation queries, qs standard signature queries, and at most qps proxy-signature
queries. Then, there exist adversaries B,C , and D against AS, such that

Advps-uf
PS[AS],A(κ) ≤ Advag-uf

AS,B (κ) + Advag-uf
AS,C (κ) + qsd ·Advag-uf

AS,D(κ).

Furthermore, adversaries B, C , and D make at most qd + qps + qs, qd + qsd + qs, qps queries to their signing
oracles, respectively. Also, if the running time of A is tA, then the running times of B, C , and D are also
about tA.

The proof of this theorem is in Appendix A. We now use the theorem to prove Theorem 4.2.

Proof of Theorem 4.2: Let TAS[DS] be the trivial aggregate signature scheme defined in Section 5.1. As
we mentioned there, it is secure if DS is secure. PS[TAS[DS]] as defined by Construction 5.1 is exactly the
delegation-by-certificate scheme PS[DS] as per Construction 4.1. Therefore, Theorem 5.2 implies that PS[DS]
is secure. The concrete security reduction follows from that of Theorem 5.2 and Equation 1.

In the Introduction we sketched a concrete example of using the bilinear aggregate signature scheme from
[7] to build a proxy signature scheme. Since the bilinear aggregate signature scheme was proved secure in
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the random-oracle, assuming hardness of the Computational co-Diffie-Hellman assumption, the above theorem
together with Theorem 5.2 imply that under the same assumptions, the proxy signature scheme obtained from
the bilinear aggregate signature as per Construction 5.1 is a secure proxy signature scheme. The length of the
corresponding proxy signature is essentially the length of the message space description plus the length of one
short co-GDH signature. The use of the bilinear aggregate signature scheme also permits computational savings
since the verification of a proxy signature requires 3 bilinear map computations versus 4 in the verification of a
proxy signature in the co-GDH-signature-based delegation-by-certificate solution.

6 The Triple Schnorr Scheme and its Security

Kim, Park, and Won [17] proposed a proxy signature scheme based on the discrete-logarithm problem (DLP),
which we call KPW. It employs Schnorr’s signature scheme [35] for both standard signing and delegation, and
allows the use of any signature scheme based on the hardness of the DLP for generation of proxy signatures.
We make important modifications to the version of the KPW scheme in which Schnorr’s signature scheme is
also used for proxy signing, and prove that the resulting proxy signature scheme is secure in the random-oracle
model, under the assumption of hardness of the DLP. We call this provably-secure scheme Triple Schnorr. We
remark that our modifications do not affect the length of the signatures produced nor do they have a significant
impact on performance. Our proof is in the basic model which does not require proofs of knowledge of secret
keys during public-key registration3.

We begin by recalling Schnorr’s digital signature scheme.

6.1 Schnorr Signature Scheme and the Discrete Logarithm Assumption

A randomized polynomial-time algorithm Gdl is said to be a discrete-logarithm parameter generator if given
input 1κ, it returns a triple (p, q, g) where p, q are primes such that 2κ−1 ≤ p < 2κ (p is κ bits long) and q
divides p− 1, and g ∈ Z∗

p is an element of order q.
On input 1κ, the Schnorr signature scheme’s parameter-generation algorithm G runs a discrete-logarithm

parameter generator Gdl to obtain (p, q, g). It then selects a hash function G : {0, 1}∗ → Zq and outputs
(p, q, g, G).

The key-generation algorithmK, on input (p, q, g, G), selects a random x ∈ Zq, computes X ← gx mod p,
and outputs the pair ((p, q, g, G,X), (p, q, g, G, x)) of public and secret keys. To simplify the notation, we will
assume that the values p, q, g, G are available to all parties and we will not include them explicitly in the public
and secret keys (i.e., the public and secret keys will simply be X and x, respectively).

To sign a message M , the signing algorithm S performs the following operations.

Pick a random y ∈ Zq ; Compute a commitment Y ← gy mod p
Compute a challenge c← G(M ||Y ) ; Compute s← y + c · x mod q
Output (Y, s) as the signature of M

To verify a signature (Y , s̄) for message M , the verification algorithm V performs the following operations.

Compute the challenge c← G(M ||Y ) ;
If gs̄ ≡ Y ·Xc (mod p) then output 1 else output 0

THE DISCRETE-LOGARITHM ASSUMPTION. We recall the assumption of hardness of the discrete-logarithm
problem. The advantage of algorithm A in solving the discrete-logarithm problem associated to discrete-
logarithm parameter generator Gdl is defined as

Advdl
Gdl,A

(κ) = Pr
[

(p, q, g) $← Gdl(1κ) ; X
$← 〈g〉 ; y

$← A(p, q, g, X) : gy ≡ X (mod p)
]

3The proof in the previous version of this paper [6] assumed that users prove knowledge of secret keys during public key registration.
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D(pki, ski, j,pkj , ω) P(pkj , skj ,pki)

cert
$← SG(ski, 0||pki||j||pkj ||ω) ω, cert- If VG(pki, 0||pki||j||pkj ||ω, cert) = 0 then abort

Parse cert as (Y, s)

c← G(0||pki||j||pkj ||ω||Y )

r ← R(pki||j||pkj ||ω||Y ||c)
t← r · skj + s mod q

skp ← (pki||j||pkj ||ω, Y, t)

Figure 1: The Triple Schnorr designation protocol run by user i as designator, and user j 6= i as proxy signer.

We say that the discrete-logarithm problem associated to Gdl is hard if for every polynomial-time algorithm A,
the function Advdl

Gdl,A
(·) is negligible.

The Schnorr signature scheme is known to be provably-secure in the random-oracle model, assuming the
DLP associated to the underlying discrete-logarithm parameter generator is hard [34]. In the sequel, S = (G,
K,S,V) denotes the Schnorr scheme. We use the notation SG, VG to emphasize that the hash function used in
the scheme is G.

6.2 Triple Schnorr Proxy Signature Scheme

We now define Triple Schnorr. For ease of comparison with KPW, the latter is described in Appendix B.

Construction 6.1 The Triple Schnorr scheme is the proxy signature scheme TS = (GT,KT,ST,VT, (D,P),
PS,PV, ID) whose constituent algorithms are defined as follows.

• The parameter-generation algorithm GT runs the Schnorr scheme parameter-generation algorithm G to get
(p, q, g, G). It generates hash functions H,R : {0, 1}∗ → Zq, and outputs (p, q, g, G,H, R).

• On input (p, q, g, G,H, R), the key-generation algorithm KT runs the Schnorr scheme key-generation al-
gorithm K on (p, q, g, G) to get ((p, q, g, G,X), (p, q, g, G, x)), and then outputs ((p, q, g, G,H, R,X),
(p, q, g, G,H, R, x)). Again, we will assume that the values p, q, g, G,H, R are available to all parties,
and the public and secret keys will simply be pk = X and sk = x, respectively.

• To sign a message M , the signing algorithm first prepends “1” to the message, and then runs the Schnorr
signing algorithm with hash function G, on the result, i.e., ST(sk,M) = SG(sk, 1||M).

• To verify a signature σ for message M , the verification algorithm first prepends “1” to the message, and
then runs the Schnorr verification algorithm with hash function G, on the result, i.e., VT(pk,M, σ) =
VG(pk, 1||M,σ).

• In order to designate user j 6= i as a proxy signer for messages in message space ω, user i sends user j
the description ω and a certificate cert that is a Schnorr signature with hash function G under the secret
key ski of user i for message 0||pki||j||pkj ||ω, i.e., cert = SG(ski, 0||pki||j||pkj ||ω) = (Y, s). User
j verifies this signature, and if it is valid, computes a proxy signing key as skp = (pki||j||pkj ||ω, Y, t),
where t = r ·skj +s mod q, r = R(pki||j||pkj ||ω||Y ||c), and c = G(0||pki||j||pkj ||ω||Y ). See Figure 1.

In order to designate itself for signing messages in message space ω, user i runs K (on input (p, q, g, G))
to obtain a new key pair (pk′

i, sk
′
i). It creates a certificate cert that is a Schnorr signature with hash

function G for message 0||pki||i||pk′
i||ω under ski, i.e., cert = SG(ski, 0||pki||i||pk′

i||ω) = (Y, s). The
corresponding self-delegated proxy signing key of user i is skp = (pki||i||pk′

i||ω, Y, t), where t = r ·
sk′

i + s mod q, r = R(pki||i||pk′
i||ω||Y ||c) and c = G(0||pki||i||pk′

i||ω||Y ).
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• A proxy signature for message M ∈ ω, on behalf of user i, produced by user j with proxy signing
key (pki||j||pk||ω, Y, t) contains the identity j of the proxy signer, its public key pk, ω, the delegation
commitment Y , and a Schnorr signature with hash function H for message 0||M ||pki||j||pk||ω||Y ||r
under key t, where r = R(pki||j||pk||ω||Y ||c) and c = G(0||pki||j||pk||ω||Y ). Formally,

PS((pki||j||pk||ω, Y, t),M)
c← G(0||pki||j||pk||ω||Y ) ; r ← R(pki||j||pk||ω||Y ||c)
Return (j,pk, ω, Y,SH(t, 0||M ||pki||j||pk||ω||Y ||r))

• To verify a proxy signature (j,pk, ω, Y, σ) for message M with public key pk′, the proxy verification algo-
rithm first checks that M ∈ ω. It then computes a proxy public key as pkp = pkr · Y · pk′c mod p, where
r = R(pk′||j||pk||ω||Y ||c) and c = G(0||pk′||j||pk||ω||Y ), and runs the Schnorr verification algorithm
with hash function H , on the computed key pkp, message 0||M ||pk′||j||pk||ω||Y ||r, and signature σ, i.e.,

PV(pk′,M, (j, pk, ω, Y, σ))
If M /∈ ω then return 0
c← G(0||pk′||j||pk||ω||Y ) ; r ← R(pk′||j||pk||ω||Y ||c) ; pkp ← pkr · Y · pk′c mod p

Return (M ∈ ω) ∧ VH(pkp, 0||M ||pk′||j||pk||ω||Y ||r, σ)

• The proxy identification algorithm is defined as ID((j,pk, ω, Y, σ)) = j.

We observe that verification of a Triple Schnorr proxy signature requires three exponentiations modulo p. Using
a simultaneous multiple exponentiation algorithm such as Algorithm 14.88 in [30], the three exponentiations
can be computed at a cost of about 1.25 exponentiations. This is a significant improvement over the Schnorr-
based delegation-by-certificate scheme, for which verification (using simultaneous multiple exponentiation)
requires roughly 2.5 exponentiations. Standard signing and proxy signing require approximately the same
amount of time in the Triple Schnorr scheme as in the Schnorr-based delegation-by-certificate scheme. Proxy
designation requires one additional modular multiplication to compute the proxy signing key in the Triple
Schnorr scheme.

SECURITY OF TRIPLE SCHNORR. The following theorem states our result about the security of the Triple
Schnorr proxy signature scheme in the random-oracle model and without any assumptions about key registra-
tion. The proof of this theorem is quite technical and is deferred to Appendix C.

Theorem 6.2 Let Gdl be a discrete-logarithm parameter generator and let TS = (GT,KT,ST,VT, (D,P),PS,
PV, ID) be the associated Triple Schnorr scheme defined above. If the DLP is hard for Gdl, then TS is a secure
proxy signature scheme in the random-oracle model.

Concretely, let A be an adversary against TS that makes at most qG queries to random oracle G, qR queries
to random oracle R, qH queries to random oracle H , qd requests to be designated by user 1, qsd self-delegation
requests, qs standard signature queries, and qp proxy signature queries. Then there exist adversaries B, C , D,
E, and F against the discrete-logarithm parameter generator Gdl underlying TS such that

Advps-uf
TS,A(κ)

≤
√

qG ·Advdl
Gdl,B

(κ) + 4

√
(qR + qH)6 ·Advdl

Gdl,C
(κ) + 6

√
(qG + qH)10 ·Advdl

Gdl,D
(κ)

qsd ·
√

δ ·Advdl
Gdl,E

(κ) + 6

√
(qG + qH)10 ·Advdl

Gdl,F
(κ) + 4

√
3(qR + qH)6

q
+

2 · 6

√
(qG + qH)10

q
+ 2 · 6

√
5(qG + qH)10

q
+ qsd ·

√
δ

q
+

δ · qsd + 3
q

+

4
(
qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH)

)
+ qG + 10

q
, (2)
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where q is the minimum value that can be returned as the second output by Gdl.
Furthermore, if tA denotes the running time of A, then the running times of B, C , D, E and F are about

2tA, 4tA, 6tA, 2tA, and 6tA, respectively.

The concrete security bound we got is not particularly tight, and strictly speaking, does not justify the
security savings the scheme provides. However, our proof is the first that shows that the KPW scheme is secure
and, of course, it does not rule out, the possibility of a tighter reduction.
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A Proof of Theorem 5.2

We define the following events associated to experiment Expps-uf
PS[AS],A(κ).

E1 : A outputs a forgery of the form (M,σ), where V1(pk1,M, σ) = 1, and M was not queried
to oracle OS1(sk1, ·).

E2 : A outputs a forgery of the form (M, (1, ω,pki, aσ),pki), where i 6= 1, PV(pki,M, σ) = 1,
and no valid query (i, l,M) was made to oracle OPS((skpu)u∈[n], ·, ·, ·), for j ∈ N.

E3 : A outputs a forgery of the form (M, (j, ω, pk′, aσ),pk1), with j 6= 1, and such that
for all (j, ω) ∈ DU it is the case that M 6∈ ω.

E4 : A outputs a forgery of the form (M, (1, ω,pk′, aσ),pk1) such that pk′ was not generated
by user 1 during one of the executions of the self delegation protocol.

E5 : A outputs a forgery of the form (M, (1, ω,pk′, aσ),pk1) such that pk′ was generated by
user 1 during one of the executions of the self delegation protocol.

We show that for every efficient adversary A against TAS[DS], there exist adversaries B,C , and D such
that

Pr [ E1 ∨ E2 ∨ E3 ] ≤ Advag-uf
AS,B (κ) ,

Pr [ E4 ] ≤ Advag-uf
AS,C (κ) ,

Pr [ E5 ] ≤ qs ·Advag-uf
AS,D(κ) ,

where qs is the number of self delegation queries made by A. Since events E1, E2, E3, E4, E5 form a partition
of the event that A wins in the Expps-uf

PS[DS],A(κ), it follows that

Advps-uf
PS[DS],A(κ) ≤ Advag-uf

AS,B (κ) + Advag-uf
AS,C (κ) + qs ·Advag-uf

AS,D(κ) .
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Hence, if AS is a secure aggregate signature scheme, then PS[AS] is a secure proxy signature scheme.

DESCRIPTION OF ADVERSARY B . Let A be an efficient adversary against PS[AS]. We construct adversary
B against AS. The adversary has access to a signing oracle under some signing key sk1, and gets as input the
corresponding verification key pk1. Adversary B simulates the execution of adversary A against an instance
of the proxy signature scheme PS[AS], where the keys of user 1 are (sk1,pk1). Adversary B works as follows:

First B initializes a counter n = 1 that keeps track of the number of users, creates an empty array skp1,
and initializes sets DU and CS. It then runs A on input pk1, handling A’s requests and answering A’s queries
as follows:

• If A requests to register a new user i = n + 1 by outputting pki, then B stores this key, increments n and
creates an empty array skpi.

• If A requests to interact with D(pk1, sk1, i,pki, ω), where i ∈ {2, . . . , n} and ω is an arbitrary message
space chosen by the adversary who plays the role of P(pki, ski,pk1) then B makes a query 00||i||pki||ω
to its signing oracle OS(sk1, ·) and receives an answer cert. It forwards ω, cert to A and sets DU to
DU ∪ (i, ω).

• If A requests to interact with P(pk1, sk1,pki), where i ∈ {2, . . . , n} and ω is an arbitrary message
space chosen by the adversary who plays the role of D(pki, ski, 1,pk1), then B proceeds as follows.
It expects to receive from A a message of the form ω, cert, B verifies that cert is a valid signature for
message 00||1||pk1||ω (i.e., it checks if V(pki, 00||1||pk1||ω, cert) = 1). If so, B stores (ω, cert) in the
last unoccupied position of skpi. (Notice that, unlike in the real experiment, adversary B cannot store
in sk1 the actual proxy signing keys of user 1 since these keys contain sk1. However, it is sufficient to
store (ω, cert) since this information, together with access to the signing oracle under sk1, is sufficient for
producing proxy signatures).

• If A requests that user 1 run the designation protocol with itself for message space ω, B runs K to ob-
tain (pk′

1, sk
′
1), and obtains a signature cert on 00||1||pk′

1||ω from the signing oracle OS(sk1, ·). It then
forwards ω, cert to A and stores (sk′

1, pk1, 1||pk′
1||ω, cert) in the last unoccupied position of skp1.

• If A requests to see skp1[i] for some i, then let (sk′
1,pk1, 1||pk′1||ω, cert) be the i’th entry in skp1[i].

Adversary B forwards (sk′
1,pk1, 1||pk′1||ω, cert) to A and sets CS to CS ∪ ω.

• If A queries its oracle OS1(sk1, ·) with a message M , B makes query 11||M to its own signing oracle
OS(sk1, ·) and forwards the response to A.

• If A makes a query (i, l,M), where i ∈ [n], l ∈ N, and M ∈ {0, 1}∗, to its oracleOPS((skpu)u∈[n], ·, ·, ·),
B responds as follows. If i = 1 and skp1[l] is not defined then return ⊥ to A. Otherwise, com-
pute and return to B the quantity PS(skp1[l],M). If i 6= 1 and skpi[l] is not defined, it returns
⊥ to A. Otherwise, let (ω, cert) be the content of this position. B submits to the signing oracle
(01||pki||M) and obtains in return σ. The proxy signature that B returns to A is (1, ω,pk1, aσ) where
aσ = A(pki,pk1, 00||1||pk1||ω, 01||pki||M, cert, σ).

Eventually, A outputs an attempted forgery. Adversary B computes its attempted forgery as follows:

1. If A outputs a forgery of the form (M,σ) then the forgery output by B is (11||M,σ).

2. If A outputs (M, (1, ω,pk1, aσ),pki) and i 6= 1 then adversary B outputs (pki,pk1, 00||1||pk1||ω,
01||pki||M,aσ).

3. If A outputs a forgery (M, (j, ω, pkj , σ),pk1) such that ID((j, ω, pkj , σ)) = j and j is such that for all
ω with (j, ω) ∈ DU M 6∈ ω then B outputs (pkj , 00||1||pkj ||ω, 01||pk1||M,σ).

ANALYSIS OF ADVERSARY B . It is clear that the view of A in the simulated experiment is identical to that in
the experiment Expps-uf

PS[AS],A(κ). We next argue that if either of events E1, E2 or E3 occurs during the execution
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of A then adversary B wins in the experiment Expag-uf
AS,B (κ).

1. If event E1 occurs, then M,σ are such that V1(pk1, 11||M,σ) = 1, and the forgery attempted by B is
(11||M,σ). We only need to argue that 11||M was not in a query of B to its signing oracle. Since the
forgery output by A is valid for the Expps-uf

,PS[AS]A(κ) experiment, it follows that A (in that experiment)
never queried M to its standard signing oracle. It is immediate that B did not need to query 11||M to its
own signing oracle, and therefore the forgery outputed by B is valid.

2. If event E2 occurs, then the forgery output by A is of the form (M, (1, ω,pki, aσ),pki) for some
i 6= 1, with aσ a valid aggregate signature on messages 00||1||pk1||ω and 01||pki||M with respect
to keys pki and pk1, i.e. (AV(pki,pk1, 00||1||pk1||ω, 01||pki||M,aσ)) = 1, so the forgery attempted
by B satisfies the verification requirement. We only need to argue that B did not query the message
01||pki||M to its signing oracle. From the description of adversary B it is clear that the only circum-
stance when B issues such a query is when A makes a query of the form (i, l,M) for some l ∈ N to
oracleOPS((skpu)u∈[n], ·, ·, ·), which is not the case, as such a query would invalidate the forgery output
by A.

3. If event E3 occurs and the forgery output by A of the form M, (1, ω,pkj , aσ),pk1), then aσ is a valid
aggregate signature on message 00||1||pkj ||ω and 01||pk1||M relative to pk1 and pkj respectively, so
AV(pk1,pkj , 00||1||pkj ||ω, 01||pk1||M) = 1. The forgery output by B satisfies thus the verification
equation. It remains to argue that this forgery i.e. (pk1,pkj , 00||j||pkj ||ω, 01||pk1||M,σ) is valid, in
the sense that B did not query message 00||j||pk||ω to its oracle. Notice from the description of B that
this query only needs to be issued when A requests that user 1 designates user j as a proxy signer on
message space ω. Such a query does not occur, since for any ω for which (j, ω) ∈ DU it holds that
M 6∈ ω.

Putting the above together, we have that

Pr [ E1 ∨ E2 ∨ E3 ] ≤ Advag-uf
AS,B (κ) .

Also, notice that adversary B needs to query its oracle onlye to answer the self-delegation, proxy signature,
and standard signature queries of A, that is at most qd + qps + qs times.

DESCRIPTION OF ADVERSARY C . First C initializes a counter n = 1 that keeps track of the number of users,
creates an empty array skp1, and initializes sets DU and CS. It then runs A on input pk1 (the verification
key that correspond to the signing key used by C’s signing oracle), handling A’s requests and answering A’s
queries as follows:

• If A requests to register a new user i = n + 1 by outputting pki, then C stores this key, increments n and
creates an empty array skpi.

• If A requests to interact with D(pk1, sk1, i,pki, ω), where i ∈ {2, . . . , n} and ω is an arbitrary messages
space chosen by the adversary who plays the role of P(pki, ski,pk1) then C makes a query 00||i||pki||ω
to its signing oracle OS(sk1, ·) and receives an answer cert. It forwards ω, cert to A and sets DU to
DU ∪ (i, ω).

• If A requests to interact with P(pk1, sk1,pki), where i ∈ {2, . . . , n} and ω is an arbitrary message
space chosen by the adversary who plays the role of D(pki, ski, 1,pk1, ω), then C proceeds as follows.
It expects to receive from A a message of the form ω, cert, C verifies that cert is a valid signature for
message 00||1||pk1||ω (i.e., it checks if V(pki, 00||1||pk1||ω, cert) = 1). If so, C stores (ω, cert) in the
last unoccupied position of skpi. (Notice that C instead of storing the proxy signing keys of user 1 for
other users, C only stores the pairs (ω, cert) in skpi since these proxy signing keys contain sk1 which C
does not have. However, the information stored in skpi is sufficient to create proxy signatures using the
signing oracle of C).
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• If A requests that user 1 run the designation protocol with itself for message space ω, C runs K to obtain
(pk′

1, sk
′
1) obtains signature cert on 00||1||pk′

1||ω from the signing oracle OS(sk1, ·). It then forwards
ω, cert to A and stores (sk′

1, pk1, 1||pk′
1||ω, cert) in the last unoccupied position of skp1.

• If A requests to see skp1[i] for some i , then let (sk′
1,pk1, 1||pk′1||ω, cert) be the i’th entry in skp1[i].

Adversary C forwards (sk′
1,pk1, 1||pk′1||ω, cert) to A and sets CS to CS ∪ ω.

• If A queries its oracle OS1(sk1, ·) with a message M , C makes query 11||M to its own signing oracle
OS(sk1, ·) and forwards the response to A.

• If A makes a query (i, l,M), where i ∈ [n], l ∈ N, and M ∈ {0, 1}∗, to its oracleOPS((skpu)u∈[n], ·, ·, ·),
C responds as follows. If i = 1 and skp1[l] is not defined then return ⊥ to A. Otherwise, compute
and return to C the quantity PS(skp1[l],M). If i 6= 1 and skpi[l] is not defined, it returns ⊥ to A.
Otherwise, let (ω, cert) be the content of this position in skpi[l]. Adversary C submits to the signing
oracle (01||pki||M) and obtains in return σ. The proxy signature that C returns to A is (1, ω,pk1, aσ) to
A where aσ = A(pki,pk1, 00||1||pk1||ω, 01||pki||M, cert, σ).

Eventually, A outputs an attempted forgery. If the forgery that is output by A is of the form (M, (1, ω,pk′, aσ),
pk1) with aσ an aggregate signature on message 00||1||pk′||ω and 01||pk1||M under keys pk1, and pk′, and
pk′ had not been used by user 1 in the self-delegation protocol, then the attepmpted forery of C is (pk1,pk′,
00||1||pk′||ω, 01||pk1||M,aσ). If the forgery attempted by A does not have this form, then adversary C aborts.

ANALYSIS OF ADVERSARY C . It is easy to see that the simulation of the experiment for security of proxy
signatures that C carries out for A is perfect. Assume that event E4 occurs in this simulation. Then adversary
C does not abort, and outputs (pk1,pk′, 00||1||pk′||ω, 01||pk1||M,aσ), as its attempted forgery. Since the
forgery output by A, (M, (1, ω,pk′, aσ),pk1) is valid, then aσ is a valid aggregate signature on messages
00||1||pk′||ω, 01||pk1||M with respect to keys pk1,pk′. It remains to argue that the forgery is valid in the
sense that 00||1||pk′||ω has not been queried to the signing oracle of C . This is clearly true because such a
query occurs only if user 1 uses pk′ for self delegation which, by the definition of event E4, did not happened.

Finally, notice that adversary C needs to query its oracle onlye to answer the delegation, self-delegation,
and standard signature queries of A, that is at most qd + qps + qs times.

DESCRIPTION OF ADVERSARY D. Adversary D is against the aggregate signature scheme AS, and as such
it has access to a signing oracle under sk and has as input the corresponding verification key pk. Adversary
D runs internally adversary A for which it simulates its environment. The simulation is as follows. First, D
selects a random index t ∈ {1, 2, . . . , qs} (virtually selecting one of the self-delegation requests of A). Then, D
initializes a counter n = 1 that keeps track of the number of users, creates an empty array skp1, and initializes
sets DU and CS. Next, it generates signing/verication keys (sk1,pk1) for user 1. Then, D executes adversary
A on input pk1, and intercepts and its requests which D handles as follows.

• If A requests to register a new user i = n + 1 by outputting pki, then D stores this key, increments n and
creates an empty array skpi.

• If A requests to interact with D(pk1, sk1, i,pki, ω), where i ∈ {2, . . . , n} and ω is an arbitrary message
space chosen by the adversary who plays the role of P(pki, ski,pk1, ω) then D produces a signature cert
on 00||i||pki||ω under key sk1 and it sends (ω, cert) to A. Then, it sets DU to DU ∪ (i, ω).

• If A requests to interact with P(pk1, sk1,pki), where i ∈ {2, . . . , n} and ω is an arbitrary message
space chosen by the adversary who plays the role of D(pki, ski, 1,pk1, ω), then D proceeds as follows. It
expects to receive from A a message of the form ω, cert, D verifies that cert is a valid signature for message
00||1||pk1||ω (i.e., it checks if V(pki, 00||1||pk1||ω, cert) = 1). If so, D stores (sk1,pk1, 1||pki||ω, cert)
in the last unoccupied position of skpi.

• When A asks that user 1 runs the self-delegation protocol, D proceeds as follows. For all but for the
t’th self-delegation requests that A makes, adversary D runs K to obtain (pk′

1, sk
′
1), and if ω is the mes-
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sage space for which A requests self-delegation, it obtains a signature cert on the message 00||1||pk′
1||ω

under the signing key sk1. It then forwards ω, cert to A and stores (sk′
1, pk1, 1||pk′

1||ω, cert) in the last
unoccupied position of skp1.

For the t’th self-designation query, D produces a signature cert on the message 00||1||pk||ω using the
signing key sk1. Here pk is the verification key that D takes as input. Then, D forwards (ω, cert) to A.

• If A requests to see skp1[i] for some i 6= t, then let (sk′
1,pk1, 1||pk′1||ω, cert) be the i’th entry in skp1[i].

Adversary D forwards (sk′
1,pk1, 1||pk′1||ω, cert) to A and sets CS to CS∪ω. If A requests skp1[t], then

D aborts its execution.

• If A queries its oracle OS1(sk1, ·) with a message M , D produces a signature on 11||M using sk1 and
forwards it to A.

• If A makes a query (i, l,M), where i ∈ [n], l ∈ N, M ∈ {0, 1}∗, to oracle OPS((skpu)u∈[n], ·, ·, ·), D
responds as follows.

1. If i = 1 and l 6= t or i 6= 1 and skp1[l] is not defined then return ⊥ to A.

2. if i = 1 and l 6= t, or i 6= 1 and skp1[l] is defined, then return to A the quantity PS(skp1[l],M).

3. if i = 1, l = t, then D proceeds as follows: it sends a query (01||pk1||M) to its signing oracle,
and obtains in return a signature σ under the key sk. The proxy signature that D returns to A is
(1, ω,pk1, aσ) where aσ = A(pk1,pk, 00||1||pk||ω, 01||pk1||M, cert, σ).

Eventually, A outputs an attempted forgery (M, (1, ω,pk, aσ),pk1). If pk is not the key used in the t’th
self-delegation request of A, then D aborts. Otherwise, the forgery output by D is (pk1,pk, 00||1||pk||ω,
01||pk1||M,aσ).

ANALYSIS OF ADVERSARY D. The simulation that D caries for A is perfect, provided that A does not request
to see the t’th proxy key resulted from self-delegation. This is certainly the case whenever event E5 occurs
(i.e. the forgery output by A is of the form (M, (1, ω,pk, aσ),pk1), where pk was generated by user 1 during
one of the self delegation requests), and the index t selected at random by D is precisely the index of the
self-delegation request where pk was generated (as otherwise the forgery output by A would be invalid). Since
the forgery output by A is valid, then aσ is a valid aggregate signature on messages 00||1||pk||ω, 01||pk1||M
with respect to keys pk1 and pk. It remains to argue that the forgery output by D is valid in the sense that
01||pk1||M had not been queried by D to its signing oracle. This query is only made if A sends (1, t,M) to
its oracle O. However, A does not make this query since otherwise its forgery would be invalid. Therefore,
whenever event E5 occurs and adversary D guesses correctly the index t of the self delegation request where
pk is generated, then adversary D wins in Expag-uf

AS,D(κ), i.e.:

1
qs
· Pr [ E5 ] ≤ Advag-uf

AS,D(κ) .

It is immediate that adversary B needs to query its oracle onlye to answer the proxy signature queries of A,
that is at most qps times.

Finally, notice that if the running time of A is tA, then the running times of B,C and D are also about tA.

B KPW Proxy Signature Scheme

The variant of KPW in which Schnorr’s signature scheme is used for standard signing, delegation, and proxy
signing is the proxy signature scheme KPW = (G,K,S,V, (DKPW,PKPW),PSKPW,PVKPW, IDKPW), where G, K,
S, and V are the algorithms of Schnorr’s digital signature scheme (see Section 6.1) and the remaining algorithms
are defined as follows.
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DKPW(pki, ski, j) PKPW(pkj , skj ,pki)

cert
$← SG(ski, ω)

ω, cert -

If VG(pki, ω, cert) = 0 then abort

Parse cert as (Y, s)

t← G(Y ||ω) · skj + s mod q

skp ← (j, pkj , ω, Y, t)

PSKPW((j,pkj , ω, Y, t),M)

σ ← SG(t, M)
Return (σ, ω, Y, j,pkj)

PVKPW(pk,M, (σ, ω, Y, j,pkj))

pkp ← (pk · pkj)G(Y ||ω) · Y mod p

Return VG(pkp,M, σ)

IDKPW((σ, ω, Y, j,pkj))

Return j

C Proof of Theorem 6.2

We begin by recalling the General Forking Lemma of Bellare and Neven [2] which we will use in the proof of
Theorem 6.2.

Lemma C.1 [General Forking Lemma [2]] Fix α ∈ Z+ and a set S such that |S| ≥ 2. Let Y be a randomized
algorithm that on input a string x and elements s1, . . . , sα ∈ S, returns a pair (I, σ) consisting of an integer
0 ≤ I ≤ α and a string σ. The forking algorithm FY associated to Y is defined as follows:

Algorithm FY (x)
Pick coins ρ for Y at random
s1, . . . , sα

$← S ; (I, σ)← Y (x, s1, . . . , sα; ρ)
If ( I = 0 ) then return (0, ε, ε)
s′I , . . . , s

′
α

$← S ; (I ′, σ′)← Y (x, s1, . . . , sI−1, s
′
I , . . . , s

′
α; ρ)

If ( I ′ = I and s′I 6= sI ) then return (1, σ, σ′) else return (0, ε, ε)

Let IG be a randomized algorithm that takes no input and returns a string. Let

acc = Pr
[

x
$← IG ; s1, . . . , sα

$← S ; (I, σ) $← Y (x, s1, . . . , sα) : I ≥ 1
]

frk = Pr
[

x
$← IG ; (b, σ, σ′) $← FY (x) : b = 1

]
.

Then

frk ≥ acc ·
(

acc

α
− 1
|S|

)
.

Alternatively,

acc ≤
√

α · frk +
α

|S|
.

We also use a related lemma which considers an algorithm Y that outputs a pair of integers, rather than a
single integer, to indicate possible forking positions. The lemma involves a forking algorithm that rewinds Y
multiple times. The proof of this lemma uses Jensen’s inequality and a corollary of Hölder’s inequality. We
first recall these and then state our forking lemma.
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Lemma C.2 [Jensen’s inequality] If f is a convex4 function and X is a random variable then

E [f(X)] ≥ f(E [X]) .

Lemma C.3 [Hölder’s inequality] Let n ≥ 1 be an integer, 1 ≤ p, q < ∞ with 1/p + 1/q = 1 and
x1, . . . , xn, y1, . . . , yn ∈ R. Then

n∑
k=1

|xkyk| ≤

(
n∑

k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

.

Corollary C.4 Let n ≥ 1 be an integer, 1 ≤ p, q <∞ with 1/p + 1/q = 1, and x1, . . . , xn ≥ 0 real numbers.
Then

n∑
k=1

xp
k ≥ 1

np/q

(
n∑

k=1

xk

)p

.

Proof: Follows from Lemma C.3 with y1 = · · · = yn = 1, by raising both sides of the inequality to the power
p and rearranging terms.

The following result may be of independent interest.

Lemma C.5 [Multiple-Forking Lemma] Fix α ∈ Z+ and a set S such that |S| ≥ 2. Let Y be a randomized
algorithm that on input a string x and elements s1, . . . , sα ∈ S, returns a triple (I, J, σ) consisting of two
integers 0 ≤ J < I ≤ α and a string σ. Let n ≥ 1 be an odd integer. The multiple-forking algorithm MFY ,n

associated to Y and n is defined as follows, where x is a string:

Algorithm MFY ,n(x)
Initialize an empty array results[0 ... n]
Pick coins ρ for Y at random
s1, . . . , sα

$← S ; (I, J, σ0)← Y (x, s1, . . . , sα; ρ)
If ( I = 0 or J = 0 ) then return (0, results)
s1
I , . . . , s

1
α

$← S ; (I1, J1, σ1)← Y (x, s1, . . . , sI−1, s
1
I , . . . , s

1
α; ρ)

If ( (I1, J1) 6= (I, J) or s1
I = sI ) then return (0, results)

i← 2
While ( i < n ) do

si
J , . . . , si

α
$← S ; (Ii, Ji, σi)← Y (x, s1, . . . , sJ−1, s

i
J , . . . , si

α; ρ)
If ( (Ii, Ji) 6= (I, J) or si

J = si−1
J ) then return (0, results)

si+1
I , . . . , si+1

α
$← S ; (Ii+1, Ji+1, σi+1)← Y (x, s1, . . . , sJ−1, s

i
J , . . . , si

I−1, s
i+1
I , . . . , si+1

α ; ρ)
If ( (Ii+1, Ji+1) 6= (I, J) or si+1

I = si
I ) then return (0, results)

i← i + 2
EndWhile
For i = 0 to n do

results[i]← σi

EndFor
Return (1, results)

4A function f is convex on an interval [a, b] if for any two points x1 and x2 in [a, b] and any λ, where 0 ≤ λ ≤ 1, f(λx1 + (1 −
λ)x2) ≤ λf(x1) + (1− λ)f(x2). If f has a second derivative in [a, b], then a necessary and sufficient condition for it to be convex on
that interval is that the second derivative f ′′(x) ≥ 0 for all x in [a, b].
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Let IG be a randomized algorithm that takes no input and returns a string. Let

acc = Pr
[

x
$← IG ; s1, . . . , sα

$← S ; (I, J, σ) $← Y (x, s1, . . . , sα) : I ≥ 1 ∧ J ≥ 1
]

frk = Pr
[

x
$← IG ; (b, results) $←MFY ,n(x) : b = 1

]
.

Then

frk ≥ acc ·
(

accn

α2n
− n

|S|

)
. (3)

Consequently,

acc ≤ n+1
√

α2n · frk + n+1

√
n · α2n

|S|
. (4)

Proof: Fix a string x. Let

acc(x) = Pr
[

s1, . . . , sα
$← S ; (I, J, σ) $← Y (x, s1, . . . , sα) : I ≥ 1 ∧ J ≥ 1

]
frk(x) = Pr

[
(b, results) $←MFY ,n(x) : b = 1

]
.

Then, with probabilities taken over the randomness of MFY ,n, we have

frk(x)
= Pr [ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) ∧ I ≥ 1 ∧ J ≥ 1 ∧

sn
I 6= sn−1

I ∧ sn−1
J 6= sn−2

J ∧ · · · ∧ s2
J 6= s1

J ∧ s1
I 6= sI

]
≥ Pr [ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) ∧ I ≥ 1 ∧ J ≥ 1 ]
− Pr

[
I ≥ 1 ∧ J ≥ 1 ∧ ( sn

I = sn−1
I ∨ sn−1

J = sn−2
J ∨ · · · ∨ s2

J = s1
J ∨ s1

I = sI )
]
. (5)

We compute the second term as follows.

Pr
[
I ≥ 1 ∧ J ≥ 1 ∧ ( sn

I = sn−1
I ∨ sn−1

J = sn−2
J ∨ · · · ∨ s2

J = s1
J ∨ s1

I = sI )
]

= Pr [ I ≥ 1 ∧ J ≥ 1 ] · Pr
[
sn
I = sn−1

I ∨ sn−1
J = sn−2

J ∨ · · · ∨ s2
J = s1

J ∨ s1
I = sI

]
=

n · Pr [ I ≥ 1 ∧ J ≥ 1 ]
|S|

=
n · acc(x)
|S|

. (6)

We will now show that

Pr [ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) ∧ I ≥ 1 ∧ J ≥ 1 ] ≥ acc(x)n+1/α2n .

For convenience, we will use the following shorthand:
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symbol represents symbol represents symbol represents

T ρ, s1, . . . , sJ−1 U0 sJ , . . . , sI−1 V0 sI , . . . , sα

U1 s2
J , . . . , s2

I−1 V1 s1
I , . . . , s

1
α

U2 s4
J , . . . , s4

I−1 V2 s2
I , . . . , s

2
α

U3 s6
J , . . . , s6

I−1 V3 s3
I , . . . , s

3
α

...
...

Un−1
2

sn−1
J , . . . , sn−1

I−1

...
...

Vn sn
I , . . . , sn

α

With this notation, algorithm MFY ,n makes the following invocations of Y . (Note that we include Y ’s
random tape ρ in T .)

Y (x, T, U0, V0), Y (x, T, U0, V1), Y (x, T, U1, V2), Y (x, T, U1, V3),

Y (x, T, U2, V4), Y (x, T, U2, V5), . . . , Y (x, T, Un−1
2

, Vn−1), Y (x, T, Un−1
2

, Vn)

LetR denote the set from which Y draws its coins at random. Then

Pr [ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) ∧ I ≥ 1 ∧ J ≥ 1 ]

=
α∑

i=1

α∑
j=1

Pr [ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) = (i, j) ]

=
α∑

i=1

α∑
j=1

∑
T

PrUk,Vl
[ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) = (i, j) ]

|R| · |S|j−1
. (7)

We compute the terms in the summation as follows:

Pr
Uk,Vl

[ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) = (i, j) ]

= Pr
Uk,Vl

[ (In, Jn) = (In−1, Jn−1) = · · · = (I3, J3) = (I2, J2) = (i, j) | (I1, J1) = (I, J) = (i, j) ] ·

Pr
Uk,Vl

[ (I1, J1) = (I, J) = (i, j) ]

= Pr
U1,...,U n−1

2
,V2,...,Vn

[ (In, Jn) = · · · = (I3, J3) = (I2, J2) = (i, j) | (I1, J1) = (I, J) = (i, j) ] ·

Pr
U0,V0,V1

[ (I1, J1) = (I, J) = (i, j) ]

= Pr
U1,...,U n−1

2
,V2,...,Vn

[ (In, Jn) = (In−1, Jn−1) = · · · = (I3, J3) = (I2, J2) = (i, j) ] ·

∑
U0

1
|S|i−j

· Pr
V0,V1

[ (I1, J1) = (I, J) = (i, j) ]

= Pr
U1,...,U n−1

2
,V2,...,Vn

[ (In, Jn) = · · · = (I4, J4) = (i, j) | (I3, J3) = (I2, J2) = (i, j) ] ·

Pr
U1,...,U n−1

2
,V2,...,Vn

[ (I3, J3) = (I2, J2) = (i, j) ] ·
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∑
U0

1
|S|i−j

· Pr
V0,V1

[ (I1, J1) = (i, j) | (I, J) = (i, j) ] · Pr
V0,V1

[ (I, J) = (i, j) ]

= Pr
U2,...,U n−1

2
,V4,...,Vn

[ (In, Jn) = · · · = (I4, J4) = (i, j) | (I3, J3) = (I2, J2) = (i, j) ] ·

Pr
U1,V2,V3

[ (I3, J3) = (I2, J2) = (i, j) ] ·∑
U0

1
|S|i−j

· Pr
V1

[ (I1, J1) = (i, j) | (I, J) = (i, j) ] · Pr
V0

[ (I, J) = (i, j) ]

= Pr
U2,...,U n−1

2
,V4,...,Vn

[ (In, Jn) = · · · = (I4, J4) = (i, j) ] ·

∑
U1

1
|S|i−j

· Pr
V2,V3

[ (I3, J3) = (I2, J2) = (i, j) ] ·

∑
U0

1
|S|i−j

· Pr
V1

[ (I1, J1) = (i, j) ] · Pr
V0

[ (I, J) = (i, j) ]

= Pr
U2,...,U n−1

2
,V4,...,Vn

[ (In, Jn) = · · · = (I6, J6) = (i, j) | (I5, J5) = (I4, J4) = (i, j) ] ·

Pr
U2,...,U n−1

2
,V4,...,Vn

[ (I5, J5) = (I4, J4) = (i, j) ] ·

∑
U1

1
|S|i−j

· Pr
V2,V3

[ (I3, J3) = (i, j) | (I2, J2) = (i, j) ] · Pr
V2,V3

[ (I2, J2) = (i, j) ] ·

∑
U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

...

= Pr
U n−1

2
,Vn−1,Vn

[ (In, Jn) = (In−1, Jn−1) = (i, j) ] ·∑
U n−3

2

1
|S|i−j

· Pr
Vn−3

[ (In−3, Jn−3) = (i, j) ]2

 · · · · ·
∑

U2

1
|S|i−j

· Pr
V4

[ (I4, J4) = (i, j) ]2

 ·
∑

U1

1
|S|i−j

· Pr
V2

[ (I2, J2) = (i, j) ]2

 ·
∑

U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2


=

∑
U n−1

2

1
|S|i−j

· Pr
Vn−1,Vn

[ (In, Jn) = (In−1, Jn−1) = (i, j) ] ·

∑
U n−3

2

1
|S|i−j

· Pr
Vn−3

[ (In−3, Jn−3) = (i, j) ]2

 · · · · ·
∑

U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2


=

∑
U n−1

2

1
|S|i−j

· Pr
Vn−1,Vn

[ (In, Jn) = (i, j) | (In−1, Jn−1) = (i, j) ] · Pr
Vn−1,Vn

[ (In−1, Jn−1) = (i, j) ] ·
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∑
U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

n−1
2

=
∑

U n−1
2

1
|S|i−j

· Pr
Vn

[ (In, Jn) = (i, j) | (In−1, Jn−1) = (i, j) ] · Pr
Vn−1

[ (In−1, Jn−1) = (i, j) ] ·

∑
U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

n−1
2

=
∑

U n−1
2

1
|S|i−j

· Pr
Vn

[ (In, Jn) = (i, j) ] · Pr
Vn−1

[ (In−1, Jn−1) = (i, j) ] ·

∑
U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

n−1
2

=

∑
U n−1

2

1
|S|i−j

· Pr
Vn−1

[ (In−1, Jn−1) = (i, j) ]2

 ·
∑

U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

n−1
2

=

∑
U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

n+1
2

(8)

For each i, j ∈ {1, . . . , α} and T ∈ R × Sj−1, we define a random variable Yi,j,T : S|i−j| → [0, 1] (over the
uniform distribution on its domain) via

Yi,j,T (U0) = Pr
[

V0
$← Sα−i+1 ; (I, J, σ)← Y (x, T, U0, V0) : (I, J) = (i, j)

]
,

for all U0 ∈ S|i−j|. For each i, j ∈ {1, . . . , α}, we define a random variable Zi,j : R×Sj−1 → [0, 1] (over the
uniform distribution on its domain) via

Zi,j(T ) = E [Yi,j,T ] ,

for all T ∈ R× Sj−1. Then, combining Equations (7) and (8), we have

Pr [ (In, Jn) = (In−1, Jn−1) = · · · = (I1, J1) = (I, J) ∧ I ≥ 1 ∧ J ≥ 1 ]

=
α∑

i=1

α∑
j=1

∑
T

1
|R| · |S|j−1

·

∑
U0

1
|S|i−j

· Pr
V0

[ (I, J) = (i, j) ]2

n+1
2

=
α∑

i=1

α∑
j=1

∑
T

1
|R| · |S|j−1

·E
[
Yi,j,T

2
]n+1

2

≥
α∑

i=1

α∑
j=1

∑
T

1
|R| · |S|j−1

·E [Yi,j,T ]n+1 (by Jensen’s inequality with f(x) = x2)

=
α∑

i=1

α∑
j=1

E
[
Zi,j,T

n+1
]
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≥
α∑

i=1

α∑
j=1

E [Zi,j,T ]n+1 (by Jensen’s inequality with f(x) = xn+1)

≥ 1
α2n

 α∑
i=1

α∑
j=1

E [Zi,j,T ]

n+1

(by Corollary C.4 with n = α2, p = n + 1, q = (n + 1)/n)

=
1

α2n
· acc(x)n+1 (9)

Combining Equations (5), (6) and (9), we get

frk(x) ≥ acc(x)n+1

α2n
− n · acc(x)

|S|
.

Then, with the expectation taken over x
$← IG, we have

frk = E [frk(x)] ≥ E
[
acc(x)n+1

α2n
− n · acc(x)

|S|

]
=

E
[
acc(x)n+1

]
α2n

− n ·E [acc(x)]
|S|

≥ E [acc(x)]n+1

α2n
− n ·E [acc(x)]

|S|
= acc ·

(
accn

α2n
− n

|S|

)
.

The second line above follows from Lemma C.2 with f(x) = xn+1. This completes the proof of Equation (3).
We obtain Equation (4) from Equation (3) as follows.

frk ≥ accn+1

α2n
− n · acc

|S|
≥ accn+1

α2n
− n

|S|

n+1

√
α2n · frk +

n · α2n

|S|
≥ acc

n+1
√

α2n · frk + n+1

√
n · α2n

|S|
≥ acc .

The last equation follows from the fact that n+1
√

a + n+1
√

b ≥ n+1
√

a + b for any real numbers a, b ≥ 0.

We now prove Theorem 6.2. As is usual in the random-oracle model, the hash functions G, R, H used
in the scheme are assumed to behave as random oracles, i.e., they are assumed to be chosen independently at
random from all functions f : {0, 1}∗ → Zq, and all parties (including the adversary) are given access to these
oracles.

Let A be an adversary against TS that makes at most qG queries to random oracle G, qR queries to random
oracle R, qH queries to random oracle H , qd requests to be designated by user 1, qsd self-delegation requests,
qs standard signature queries, and qp proxy signature queries. Without loss of generality, we assume that the
adversary does not repeat any random-oracle queries (it can just store the responses in a table). Fix κ ∈ N.
Consider experiment Expps-uf

TS,A(κ). Recall that CS contains the messages for which A can produce proxy
signatures by user 1 on behalf of user 1 using compromised self-delegated proxy signing keys, and DU contains
the identities of the users designated by user 1 together with the descriptions of the message spaces for which
they are designated. We define the following events associated to experiment Expps-uf

TS,A(κ).

E1 : A’s forgery is of the form (M,σ), where V(pk1,M, σ) = 1, and M was not queried to
oracle OST

(sk1, ·)
E2 : A’s forgery is of the form (M,pσ,pki), where i 6= 1, PV(pki,M, pσ) = 1, ID(pσ) = 1,
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and no valid query (i, l,M), for l ∈ N, was made to oracle OPS((skpu)u∈[n], ·, ·, ·)

E3 : A’s forgery is of the form (M, (1, ω, Y, pk′
1, (V, z)),pk1), where PV(pk1,M, (1, ω, Y, pk′

1,
(V, z))) = 1, no valid query (1, l,M), for l ∈ N, was made to oracle OPS((skpu)u∈[n], ·, ·, ·),
M 6∈ CS, and A did not make a self-delegation request that was answered with a
Schnorr signature (Y, s) for message 0||pk1||1||pk′

1||ω
E4 : A’s forgery is of the form (M, (1, ω, Y, pk′

1, (V, z)),pk1), where PV(pk1,M, (1, ω, Y, pk′
1,

(V, z))) = 1, no valid query (1, l,M), for l ∈ N, was made to oracle OPS((skpu)u∈[n], ·, ·, ·),
M 6∈ CS, and A made a self-delegation request that was answered with a Schnorr
signature (Y, s) for message 0||pk1||1||pk′

1||ω
E5 : A’s forgery is of the form (M,pσ,pk1), where PV(pk1,M, pσ) = 1, and for all message

spaces ω with (ID(pσ), ω) ∈ DU it holds that M 6∈ ω

It follows from Definition 3.2 that Pr
[
Expps-uf

TS,A(κ) = 1
]

= Pr [ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ]. Therefore,

Advps-uf
TS,A(κ) ≤ Pr [ E1 ] + Pr [ E2 ] + Pr [ E3 ] + Pr [ E4 ] + Pr [ E5 ] . (10)

We will construct adversaries B, C , D E, and F against the discrete-logarithm parameter generator Gdl under-
lying TS such that

Pr [ E1 ] ≤
√

qG ·Advdl
Gdl,B

(κ) +

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + qG + 1
q

, (11)

Pr [ E2 ] ≤ 4

√
(qR + qH)6 ·Advdl

Gdl,C
(κ) + 4

√
3(qR + qH)6

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

, (12)

Pr [ E3 ] ≤ 6

√
(qG + qH)10 ·Advdl

Gdl,D
(κ) + 6

√
(qG + qH)10

q
+ 6

√
5(qG + qH)10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

, (13)

Pr [ E4 ] ≤ qsd ·
√

δ ·Advdl
Gdl,E

(κ) + qsd ·

√
δ

q
+

δ · qsd + 3
q

, (14)

Pr [ E5 ] ≤ 6

√
(qG + qH)10 ·Advdl

Gdl,F
(κ) + 6

√
(qG + qH)10

q
+ 6

√
5(qG + qH)10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

. (15)

Combining these five equations with Equation (10), we obtain Equation (2). We proceed to define adversaries
B, C , D, E, and F.
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Let α = qG and S = Zq. We first define an algorithm Y that given inputs a public key (p, q, g, X) and
s1, . . . , sα ∈ S, returns a pair (I, σ) consisting of an integer 0 ≤ I ≤ α and a string σ. Then we use the forking
algorithm FY associated to Y to construct adversary B against Gdl.

Y sets n = 1, pk1 = X , and j = 0; creates empty sets S̄, S1, DU, and CS; creates empty arrays skp1,
GT , RT , and HT ; chooses some randomness for A; and runs A on input pk1 with this randomness. It then
answers the requests and queries made by A as follows.

1. If A makes a query 1||M ||Y to random oracle G, then Y checks if GT [1||M ||Y ] is defined. If not, it
increments j and sets Mj ||Yj = M ||Y and GT [1||M ||Y ] = sj . Then it returns GT [1||M ||Y ] to A.

2. If A makes a query 0||M to random oracle G, then Y checks if GT [0||M ] is defined. If not, it picks a
random c ∈ Zq and sets GT [0||M ] = c. Then it returns GT [0||M ] to A.

3. If A makes a query M to random oracle R, then Y checks if RT [M ] is defined. If not, it picks a random
r ∈ Zq and sets RT [M ] = r. Then it returns RT [M ] to A.

4. If A makes a query M to random oracle H , then Y checks if HT [M ] is defined. If not, it picks a random
h ∈ Zq and sets HT [M ] = h. Then it returns HT [M ] to A.

5. If A requests to register a public key pk for user n + 1, then Y increments n, sets pkn = pk, Sn = ∅
and creates an empty array skpn.

6. If A requests to interact with user 1 running D(pk1, sk1, i,pki, ω), for some i ∈ {2, . . . , n}, and play
the role of user i running P(pki, ski,pk1), then Y creates an appropriate message space description ω,
sets DU = DU ∪ {(i, ω)}, and performs the following operations:

- Pick random c ∈ Zq, s ∈ Zq

- Compute commitment Y = gs · pk−c
1 mod p

- If GT [0||pk1||i||pki||ω||Y ] is defined, set bad = true

- Set GT [0||pk1||i||pki||ω||Y ] = c

- Return ω, (Y, s) to A

Thus, Y simulates standard signing by user 1 for message 0||pk1||i||pki||ω. It is easy to see that the sim-
ulated signature (Y, s) has the same distribution as a real Schnorr signature for that message. Therefore,
the signature returned to adversary A has the same distribution as a signature generated by user 1 during
proxy designation.

7. If A requests to interact with user 1 running P(pk1, sk1,pki), for some i ∈ {2, . . . , n}, and play the role
of user i runningD(pki, ski, 1,pk1, ω), when A outputs ω, (Y, s), Y performs the following operations:

- If GT [0||pki||1||pk1||ω||Y ] is defined, set c = GT [0||pki||1||pk1||ω||Y ]. Otherwise, pick a random
c ∈ Zq and set GT [0||pki||1||pk1||ω||Y ] = c.

- Verify that (Y, s) is a valid signature for message 0||pki||1||pk1||ω with respect to public key pki

(i.e., check that gs ≡ Y · pkc
i (mod p)). If so, store ω, Y, s in the last unoccupied position of skpi.

Otherwise, abort.

8. If A requests that user 1 run the designation protocol with itself for ω, then Y creates a new key pair
(pk′

1, sk
′
1) by selecting sk′

1 ∈ Zq at random and setting pk′
1 = gsk′1 mod p, and performs the following

operations:

- Pick a random c ∈ Zq, s ∈ Zq

- Compute commitment Y = gs · pk−c
1 mod p

- If GT [0||pk1||1||pk′
1||ω||Y ] is defined, set bad = true

- Set GT [0||pk1||1||pk′
1||ω||Y ] = c

- If RT [pk1||1||pk′
1||ω||Y ||c] is defined, set r = RT [pk1||1||pk′

1||ω||Y ||c]. Otherwise, pick a random
r ∈ Zq and set RT [pk1||1||pk′

1||ω||Y ||c] = r.
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- Set t = r · sk′
1 + s mod q

- Set skp = (pk1||1||pk′
1||ω, Y, t)

- Store (skp, ω) in the last unoccupied position of skp1

- Return ω, (Y, s) to A

Here Y simulates standard signing by user 1 for message 0||pk1||1||pk′
1||ω. Using the signature ob-

tained, it computes a correct proxy signing key for user 1.

9. If A requests to see skp1[l] for some l ∈ N, then if skp1[l] contains a proxy signing key and message
space pair (skp, ω), Y sets CS = CS ∪ ω and returns skp to A; otherwise, Y returns ⊥ to A.

10. If A queries its oracle OST
(sk1, ·) with a message M , then Y performs the following operations:

- Pick a random c ∈ Zq, s ∈ Zq

- Compute commitment Y = gs · pk−c
1 mod p

- If GT [1||M ||Y ] is defined, set bad = true

- Set GT [1||M ||Y ] = c

- Set S̄ = S̄ ∪ {M}
- Return (Y, s) to A

Y simulates standard signing by user 1 for message 1||M .

11. If A makes a query (i, l,M), where i ∈ {2, . . . , n}, l ∈ N, and M ∈ {0, 1}∗, to its oracle
OPS((skpu)u∈[n], ·, ·, ·), then Y responds as follows. If skpi[l] is not defined, then it returns ⊥ to
A. Otherwise, it parses skpi[l] as ωl, Yl, sl, and performs the following operations:

- Pick a random h ∈ Zq, s ∈ Zq

- Set c = GT [0||pki||1||pk1||ωl||Yl]
- If RT [pki||1||pk1||ωl||Yl||c] is defined, set r = RT [pki||1||pk1||ωl||Yl||c]. Otherwise, pick a ran-

dom r ∈ Zq and set RT [pki||1||pk1||ωl||Yl||c] = r.
- Compute proxy public key pkp = pkr

1 · Yl · pkc
i mod p

- Compute commitment Y ← gs · pkp−h mod p

- If HT [0||M ||pki||1||pk1||ωl||Yl||r||Y ] is defined, set bad = true

- Set HT [0||M ||pki||1||pk1||ωl||Yl||r||Y ] = h

- Set Si = Si ∪ {M}
- Return (1, ωl, Yl,pk1, (Y, s)) to A

Thus, Y simulates proxy signing by user 1 on behalf of user i using the l-th proxy signing key. It is easy
to see that the simulated signature (Y, s) has the same distribution as a real Schnorr signature for message
0||M ||pki||1||pk1||ωl||Yl||r. Therefore, the signature returned to adversary A has the same distribution
as a signature returned by oracle OPS((skpu)u∈[n], ·, ·, ·).

12. If A makes a query (1, l,M), where l ∈ N, and M ∈ {0, 1}∗, to its oracle OPS((skpu)u∈[n], ·, ·, ·), then
Y responds as follows. If skp1[l] is not defined, then it returns ⊥ to A. Otherwise, it parses skp1[l] as
((pk1||1||pkl

1||ωl, Yl, tl), ω), and performs the following operations:

- Pick a random y ∈ Zq

- Compute commitment Y ← gy mod p

- Set c = GT [0||pk1||1||pkl
1||ωl||Yl]

- Set r = RT [pk1||1||pkl
1||ωl||Yl||c]

- If HT [0||M ||pk1||1||pkl
1||ωl||Yl||r||Y ] is defined, set h = HT [0||M ||pk1||1||pkl

1||ωl||Yl||r||Y ].
Otherwise, pick a random h ∈ Zq and set HT [0||M ||pk1||1||pkl

1||ωl||Yl||r||Y ] = h.
- Set s = y + tl · h mod q
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- Set S1 = S1 ∪ {M}
- Return (1, ωl, Yl,pkl

1, (Y, s)) to A

Y computes a proxy signature by user 1 on behalf of herself using the l-th proxy signing key
(pk1||1||pkl

1||ωl, Yl, tl). The signature returned to adversary A is thus identical to the signature returned
by oracle OPS((skpu)u∈[n], ·, ·, ·).

Until A outputs a forgery (M,σ) or (M,pσ,pk). If A’s forgery is not of the form (M,σ), then Y aborts.
Otherwise, Y performs the following operations:

- Parse σ as (V, z)
- If A did not make query 1||M ||V to random oracle G then set bad = true. Otherwise, set c = GT [1||M ||V ].
- If bad = true or gz 6≡ V · pkc

1 (mod p) or M ∈ S̄, then return (0, ε)
- Let i be such that Mi||Yi = M ||V
- Return (i, (z, si))

Let IG be the algorithm that runs KT(1κ) to obtain (pk, sk) and returns pk = (p, q, g, X). Let

acc = Pr
[

pk
$← IG ; s1, . . . , sα

$← Zq ; (I, σ) $← Y (pk, s1, . . . , sα) : I ≥ 1
]
,

as in Lemma C.1. Assume that event E1 occurs and bad 6= true. Then when A makes query 1||M ||V to
random oracle G, GT [1||M ||V ] is undefined and gets set to si for some i such that 1 ≤ i ≤ α. Therefore, Y
returns (i, (z, si)) for some i ≥ 1. Thus,

acc ≥ Pr [ E1 ∧ bad 6= true ] = Pr [ E1 ] · Pr [ bad 6= true | E1 ]
≥ Pr [ E1 ]− Pr [ bad = true | E1 ]

≥ Pr [ E1 ]− qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 1
|Zq|

Let FY be the forking algorithm associated to Y as per Lemma C.1. Then we define adversary B against
discrete-logarithm parameter generator Gdl as follows.

Adversary B(p, q, g, X)
pk ← (p, q, g, X) ; (b, σ, σ′) $← FY (pk)
If ( b = 0 ) then return 0
Parse σ as (z, s) and σ′ as (z′, s′)
Return (z − z′)(s− s′)−1 mod q

We claim that if b = 1 then B computes the discrete logarithm of X . To justify this claim, consider the
definitions of Y and FY . If b = 1 then there exist coins ρ for Y , i ≥ 1 and s1, . . . , sα, s′i, . . . , s

′
α ∈ Zq with

s′ = s′i 6= si = s such that 1) in the execution of Y (pk, s1, . . . , sα; ρ), A outputs a valid forgery (M, (V, z))
with M ||V = Mi||Yi and GT [1||M ||V ] = si, and 2) in the execution of Y (pk, s1, . . . , si−1, s

′
i, . . . , s

′
α; ρ), A

outputs a valid forgery (M ′, (V ′, z′)) with M ′||V ′ = Mi||Yi and GT [1||M ′||V ′] = s′i. It follows that M ′ = M ,
V ′ = V , gz ≡ V ·Xs (mod p), and gz′ ≡ V ·Xs′ (mod p). Thus, g(z−z′)(s−s′)−1 ≡ X (mod p), as desired.

Let frk be defined as in Lemma C.1. Applying this lemma, we have

Pr [ E1 ]

≤ acc +
qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 1

q

≤
√

α · frk +
α

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 1
q
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≤
√

qG ·Advdl
Gdl,B

(κ) +

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + qG + 1
q

.

This proves Equation (11).

Let β = qR + qH and S = Zq. Next, we define an algorithm Z that given inputs a public key (p, q, g, X)
and s1, . . . , sβ ∈ S, returns a triple (I, J, σ) consisting of two integers 0 ≤ J < I ≤ β and a string σ. Then
we use the multiple-forking algorithm MFZ,3 associated to Z and 3 to construct adversary C against Gdl.

Z is very similar to algorithm Y defined above. It makes the same initializations: n = 1, pk1 = X , and
j = 0; creates empty sets S̄, S1, DU, and CS; creates empty arrays skp1, GT , RT , and HT ; chooses some
randomness for A; and runs A on input pk1 with this randomness. It then answers the requests and queries
made by A exactly as Y does except for the differences specified below. These are identified by the number(s)
of the corresponding step(s) in Y .

1, 2. If A makes a query M to random oracle G, then Z checks if GT [M ] is defined. If not, it picks a random
c ∈ Zq and sets GT [M ] = c. Then it returns GT [M ] to A.

3. If A makes a query pki||1||pk1||ω||Y ||c to random oracle R, where i ∈ {2, . . . , n}, then Z checks
if RT [pki||1||pk1||ω||Y ||c] is defined. If not, it increments j and sets pki,j ||1||pk1,j ||ωj ||Yj ||cj =
pki||1||pk1||ω||Y ||c and RT [pki||1||pk1||ω||Y ||c] = sj . Then it returns RT [pki||1||pk1||ω||Y ||c] to
A.

3. If A makes a query M that cannot be parsed as pki||1||pk1||ω||Y ||c, for some i ∈ {2, . . . , n}, to random
oracle R, then Z checks if RT [M ] is defined. If not, it picks a random r ∈ Zq and sets RT [M ] = r.
Then it returns RT [M ] to A.

4. If A makes a query 0||M ||pki||1||pk1||ω||Y ||r||V to random oracle H , where i ∈ {2, . . . , n}, then Z
checks if HT [0||M ||pki||1||pk1||ω||Y ||r||V ] is defined. If not, it increments j and sets 0||Mj ||pki,j ||
1||pk1,j ||ωj ||Yj ||rj ||Vj = 0||M ||pki||1||pk1||ω||Y ||r||V and HT [0||M ||pki||1||pk1||ω||Y ||r||V ] = sj .
Then it returns HT [0||M ||pki||1||pk1||ω||Y ||r||V ] to A.

4. If A makes a query M ′ that cannot be parsed as 0||M ||pki||1||pk1||ω||Y ||r||V , for some i ∈ {2, . . . , n},
to random oracle H , then Z checks if HT [M ′] is defined. If not, it picks a random h ∈ Zq and sets
HT [M ′] = h. Then it returns HT [M ′] to A.

Until A outputs a forgery (M,σ) or (M,pσ,pk). If A’s forgery is not of the form (M,pσ,pki) for some
i ∈ {2, . . . , n}, where ID(pσ) = 1, then Z aborts. Otherwise, Z performs the following operations:

- Parse pσ as (1, ω, Y, pk1, (V, z))
- If A did not make the following queries in the order given, then set bad = true.

• 0||pki||1||pk1||ω||Y to random oracle G,

• pki||1||pk1||ω||Y ||c, where c is the response to the G-query above, to random oracle R,

• 0||M ||pki||1||pk1||ω||Y ||r||V , where r is the response to the R-query above, to H

Otherwise, set c = GT [0||pki||1||pk1||ω||Y ], r = RT [pki||1||pk1||ω||Y ||c], and h = HT [0||M ||pki||1||
pk1||ω||Y ||r||V ].

- If bad 6= true, compute proxy public key pkp = pkr
1 · Y · pkc

i mod p

- If bad = true or gz 6≡ V · pkph (mod p) or M ∈ Si, then return (0, 0, ε)
- Let j be such that 0||Mj ||pki,j ||1||pk1,j ||ωj ||Yj ||rj ||Vj = 0||M ||pki||1||pk1||ω||Y ||r||V , and k such that

pki,k||1||pk1,k||ωk||Yk||ck = pki||1||pk1||ω||Y ||c
- Return (j, k, (z, sj , sk))

33



Let IG be the algorithm that runs KT(1κ) to obtain (pk, sk) and returns pk = (p, q, g, X). Let

acc = Pr
[

pk
$← IG ; s1, . . . , sβ

$← Zq ; (I, J, σ) $← Z(pk, s1, . . . , sβ) : I ≥ 1 ∧ J ≥ 1
]
,

as in Lemma C.5. Assume that event E2 occurs and bad 6= true. Then when A makes query
pki||1||pk1||ω||Y ||c to random oracle R, RT [pki||1||pk1||ω||Y ||c] is undefined and gets set to sk for some
k such that 1 ≤ k ≤ β. In addition, when A makes query 0||M ||pki||1||pk1||ω||Y ||r||V to random oracle
H , HT [0||M ||pki||1||pk1||ω||Y ||r||V ] is undefined and gets set to sj for some j > k such that 1 ≤ j ≤ β.
Therefore, Z returns (j, k, (z, sj , sk)) for some j > k ≥ 1. Thus,

acc ≥ Pr [ E2 ∧ bad 6= true ] ≥ Pr [ E2 ]− Pr [ bad = true | E2 ]

≥ Pr [ E2 ]− qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
|Zq|

Let MFZ,3 be the multiple-forking algorithm associated to Z and 3 as per Lemma C.5. Then we define
adversary C against discrete-logarithm parameter generator Gdl as follows.

Adversary C(p, q, g, X)
pk ← (p, q, g, X) ; (b, results) $←MFZ,3(pk)
If ( b = 0 ) then return 0
Parse results[0] as (z, h, r), results[1] as (ẑ, ĥ, r̂), results[2] as (z̄, h̄, r̄), results[3] as (ż, ḣ, ṙ)
Return

(
(z − ẑ)(h− ĥ)−1 − (z̄ − ż)(h̄− ḣ)−1

)
· (r − r̄)−1 mod q

We claim that if b = 1 then C computes the discrete logarithm of X . To justify this claim, con-
sider the definitions of Z and MFZ,3. If b = 1 then there exist coins ρ for Z , j > k ≥ 1 and
s1, . . . , sβ, s1

j , . . . , s
1
β, s2

k, . . . , s
2
β, s3

j , . . . , s
3
β ∈ Zq with ĥ = s1

j 6= sj = h, r̂ = sk = r, r̄ = s2
k 6= sk = r,

ḣ = s3
j 6= s2

j = h̄, and ṙ = s2
k = r̄, such that

1) in the execution of Z(pk, s1, . . . , sβ; ρ), adversary A outputs a valid forgery (M, (1, ω, Y, pk1, (V, z)),
pki) with c = GT [0||pki||1||pk1||ω||Y ], r = RT [pki||1||pk1||ω||Y ||c] = sk, h = HT [0||M ||pki||1||
pk1||ω||Y ||r||V ] = sj , pki||1||pk1||ω||Y ||c = pki,k||1||pk1,k||ωk||Yk||ck, and 0||M ||pki||1||pk1||ω||
Y ||r||V = 0||Mj ||pki,j ||1||pk1,j ||ωj ||Yj ||rj ||Vj ,

2) in the execution of Z(pk, s1, . . . , sj−1, s
1
j , . . . , s

1
β; ρ), A outputs a valid forgery (M̂, (1, ω̂, Ŷ , ˆpk1,

(V̂ , ẑ)), ˆpki) with ĉ = GT [0|| ˆpki||1|| ˆpk1||ω̂||Ŷ ], r̂ = RT [ ˆpki||1|| ˆpk1||ω̂||Ŷ ||ĉ] = sk, ĥ = HT [0||
M̂ || ˆpki||1|| ˆpk1||ω̂||Ŷ ||r̂||V̂ ] = s1

j , ˆpki||1|| ˆpk1||ω̂||Ŷ ||ĉ = pki,k||1||pk1,k||ωk||Yk||ck, and 0||M̂ || ˆpki||
1|| ˆpk1||ω̂||Ŷ ||r̂||V̂ = 0||Mj ||pki,j ||1||pk1,j ||ωj ||Yj ||rj ||Vj ,

3) in the execution of Z(pk, s1, . . . , sk−1, s
2
k, . . . , s

2
β; ρ), A outputs a valid forgery (M̄, (1, ω̄, Ȳ , ¯pk1,

(V̄ , z̄)), ¯pki) with c̄ = GT [0|| ¯pki||1|| ¯pk1||ω̄||Ȳ ], r̄ = RT [ ¯pki||1|| ¯pk1||ω̄||Ȳ ||c̄] = s2
k, h̄ = HT [0||M̄ ||

¯pki||1|| ¯pk1||ω̄||Ȳ ||r̄||V̄ ] = s2
j , ¯pki||1|| ¯pk1||ω̄||Ȳ ||c̄ = pki,k||1||pk1,k||ωk||Yk||ck, and 0||M̄ || ¯pki||1||

¯pk1||ω̄||Ȳ ||r̄||V̄ = 0||M̄j ||pki,j ||1||pk1,j ||ωj ||Yj ||r̄j ||V̄j , and

4) in the execution of Z(pk, s1, . . . , sk−1, s
2
k, . . . , s

2
j−1, s

3
j , . . . , s

3
β; ρ), A outputs a valid forgery (Ṁ, (1,

ω̇, Ẏ , ˙pk1, (V̇ , ż)), ˙pki) with ċ = GT [0|| ˙pki||1|| ˙pk1||ω̇||Ẏ ], ṙ = RT [ ˙pki||1|| ˙pk1||ω̇||Ẏ ||ċ] = s2
k,

ḣ = HT [0||Ṁ || ˙pki||1|| ˙pk1||ω̇||Ẏ ||ṙ||V̇ ] = s3
j , ˙pki||1|| ˙pk1||ω̇||Ẏ ||ċ = pki,k||1||pk1,k||ωk||Yk||ck, and

0||Ṁ || ˙pki||1|| ˙pk1||ω̇||Ẏ ||ṙ||V̇ = 0||M̄j ||pki,j ||1||pk1,j ||ωj ||Yj ||r̄j ||V̄j .

From 1) and 2), it follows that M̂ = M , ˆpki = pki, ˆpk1 = pk1, ω̂ = ω, Ŷ = Y , r̂ = r, V̂ = V , ĉ = c,
gz ≡ V · (Xr · Y · pkc

i )
h (mod p), and gẑ ≡ V · (Xr · Y · pki

c)ĥ (mod p). Since ĥ 6= h, (h − ĥ)−1 is
well-defined. Thus,

g(z−ẑ)(h−ĥ)−1 ≡ Xr · Y · pkc
i (mod p). (16)
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From 3) and 4), it follows that Ṁ = M̄ , ˙pki = ¯pki = pki, ˙pk1 = ¯pk1 = pk1, ω̇ = ω̄ = ω, Ẏ = Ȳ = Y ,
ṙ = r̄, V̇ = V̄ , ċ = c̄ = c, gz̄ ≡ V̄ · (X r̄ · Y · pkc

i )
h̄ (mod p), and gż ≡ V̄ · (X r̄ · Y · pkc

i )
ḣ (mod p). Since

ḣ 6= h̄, (h̄− ḣ)−1 is well-defined. Thus,

g(z̄−ż)(h̄−ḣ)−1 ≡ X r̄ · Y · pkc
i (mod p). (17)

Dividing Equation (16) by Equation (17) and raising both sides of the resulting congruence to the power (r −
r̄)−1 (which is well-defined since r̄ 6= r), we have

g((z−ẑ)(h−ĥ)−1−(z̄−ż)(h̄−ḣ)−1)·(r−r̄)−1 ≡ X (mod p),

as desired.
Let frk be defined as in Lemma C.5. Applying this lemma, we have

Pr [ E2 ]

≤ acc +
qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3

q

≤ 4
√

β6 · frk + 4

√
3 · β6

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

≤ 4

√
(qR + qH)6 ·Advdl

Gdl,C
(κ) + 4

√
3 · (qR + qH)6

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

.

This proves Equation (12).

Let γ = qG + qH and S = Zq. Next, we define an algorithm U that given inputs a public key (p, q, g, X)
and s1, . . . , sγ ∈ S, returns a triple (I, J, σ) consisting of two integers 0 ≤ J < I ≤ γ and a string σ. Then we
use the multiple-forking algorithm MFU ,5 associated to U and 5 to construct adversary D against Gdl.

U makes the same initializations as algorithms Y and Z defined above: n = 1, pk1 = X , and j = 0;
it creates empty sets S̄, S1, DU, and CS; it creates empty arrays skp1, GT , RT , and HT ; it chooses some
randomness for A; and then it runs A on input pk1 with this randomness. U answers the requests and queries
made by A exactly as Y does except for the differences specified below. These are identified by the number(s)
of the corresponding step(s) in Y .

1. If A makes a query 1||M to random oracle G, then U checks if GT [1||M ] is defined. If not, it picks a
random c ∈ Zq and sets GT [1||M ] = c. Then it returns GT [1||M ] to A.

2. If A makes a query 0||pk1||1||pk′
1||ω||Y to random oracle G, then U checks if GT [0||pk1||1||pk′

1||
ω||Y ] is defined. If not, it increments j and sets 0||pk1,j ||1||pk′

1,j ||ωj ||Yj = 0||pk1||1||pk′
1||ω||Y and

GT [0||pk1||1||pk′
1||ω||Y ] = sj . Then it returns GT [0||pk1||1||pk′

1||ω||Y ] to A.

2. If A makes a query 0||M that cannot be parsed as 0||pk1||1||pk′
1||ω||Y to random oracle G, then U

checks if GT [0||M ] is defined. If not, it picks a random c ∈ Zq and sets GT [0||M ] = c. Then it returns
GT [0||M ] to A.

3. If A makes a query M to random oracle R, then U checks if RT [M ] is defined. If not, it picks a random
r ∈ Zq and sets RT [M ] = r. Then it returns RT [M ] to A.

4. If A makes a query 0||M ||pk1||1||pk′
1||ω||Y ||r||V to random oracle H , then U checks if HT [0||M ||

pk1||1||pk′
1||ω||Y ||r||V ] is defined. If not, it increments j and sets 0||Mj ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||
rj ||Vj = 0||M ||pk1||1||pk′

1||ω||Y ||r||V and HT [0||M ||pk1||1||pk′
1||ω||Y ||r||V ] = sj . Then it returns

HT [0||M ||pk1||1||pk′
1||ω||Y ||r||V ] to A.
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4. If A makes a query M ′ that cannot be parsed as 0||M ||pk1||1||pk′
1||ω||Y ||r||V to random oracle H , then

U checks if HT [M ′] is defined. If not, it picks a random h ∈ Zq and sets HT [M ′] = h. Then it returns
HT [M ′] to A.

Until A outputs a forgery (M,σ) or (M,pσ,pk). If A’s forgery is not of the form (M,pσ,pk1), where
ID(pσ) = 1, then U aborts. Otherwise, U performs the following operations:

- Parse pσ as (1, ω, Y, pk′
1, (V, z))

- If A did not make the following queries in the order given, then set bad = true.

• 0||pk1||1||pk′
1||ω||Y to random oracle G,

• pk1||1||pk′
1||ω||Y ||c, where c is the response to the G-query above, to random oracle R,

• 0||M ||pk1||1||pk′
1||ω||Y ||r||V , where r is the response to the R-query above, to H

Otherwise, set c = GT [0||pk1||1||pk′
1||ω||Y ], r = RT [pk1||1||pk′

1||ω||Y ||c], and h = HT [0||M ||pk1||
1||pk′

1||ω||Y ||r||V ].
- If bad 6= true, compute proxy public key pkp = pk′

1
r · Y · pkc

1 mod p

- If bad = true or gz 6≡ V · pkph (mod p) or M ∈ S1 or M ∈ CS, then return (0, 0, ε)
- Let j be such that 0||Mj ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||rj ||Vj = 0||M ||pk1||1||pk′
1||ω||Y ||r||V , and k such that

0||pk1,k||1||pk′
1,k||ωk||Yk = 0||pk1||1||pk′

1||ω||Y
- Return (j, k, (z, sj , r, sk))

Let IG be the algorithm that runs KT(1κ) to obtain (pk, sk) and returns pk = (p, q, g, X). Let

acc = Pr
[

pk
$← IG ; s1, . . . , sγ

$← Zq ; (I, J, σ) $← U(pk, s1, . . . , sγ) : I ≥ 1 ∧ J ≥ 1
]
,

as in Lemma C.5. Assume that event E3 occurs and bad 6= true. Then when A makes query
0||pk1||1||pk′

1||ω||Y to random oracle G, GT [0||pk1||1||pk′
1||ω||Y ] is undefined and gets set to sk for some

k such that 1 ≤ k ≤ γ. In addition, when A makes query 0||M ||pk1||1||pk′
1||ω||Y ||r||V to random oracle

H , HT [0||M ||pk1||1||pk′
1||ω||Y ||r||V ] is undefined and gets set to sj for some j > k such that 1 ≤ j ≤ γ.

Therefore, U returns (j, k, (z, sj , r, sk)) for some j > k ≥ 1. Thus,

acc ≥ Pr [ E3 ∧ bad 6= true ]
≥ Pr [ E3 ]− Pr [ bad = true | E3 ]

≥ Pr [ E3 ]− qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
|Zq|

Let MFU ,5 be the multiple-forking algorithm associated to U as per Lemma C.5. Then we define adversary
D against discrete-logarithm parameter generator Gdl as follows.

Adversary D(p, q, g, X)
pk ← (p, q, g, X) ; (b, results) $←MFU ,5(pk)
If ( b = 0 ) then return 0
Parse results[0] as (z, h, r, c), results[1] as (ẑ, ĥ, r̂, ĉ), results[2] as (z̄, h̄, r̄, c̄),

results[3] as (ż, ḣ, ṙ, ċ), results[4] as (ž, ȟ, ř, č), results[5] as (z̃, h̃, r̃, c̃)
If ( r(č− c̄)− r̄(č− c) + ř(c̄− c) ≡ 0 (mod q) ) then return 0
else

Solve the following system of equations modulo q to obtain x3:
r · x1 + x2 + c · x3 ≡ (z − ẑ)(h− ĥ)−1

r̄ · x1 + x2 + c̄ · x3 ≡ (z̄ − ż)(h̄− ḣ)−1

ř · x1 + x2 + č · x3 ≡ (ž − z̃)(ȟ− h̃)−1

return x3
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We claim that if b = 1 and r(č − c̄) − r̄(č − c) + ř(c̄ − c) 6≡ 0 (mod q), then D computes the discrete
logarithm of X . To justify this claim, consider the definitions of U and MFU ,5. If b = 1 then there exist
coins ρ for U , j ≥ 1, k ≥ 1 and s1, . . . , sγ , s′j , . . . , s

′
γ , tk, . . . , tγ , t′j , . . . , t

′
γ , uk, . . . , uγ , u′j , . . . , u

′
γ ∈ Zq with

ĥ = s′j 6= sj = h, ĉ = sk = c, c̄ = tk 6= sk = ĉ, ḣ = t′j 6= tj = h̄, ċ = tk = c̄, č = uk 6= tk = ċ,
h̃ = u′j 6= uj = ȟ, and c̃ = uk = č, such that

1) in the execution of U(pk), s1, . . . , sγ ; ρ), adversary A outputs a valid forgery (M, (1, ω, Y, pk′
1, (V, z)),

pk1) with c = GT [0||pk1||1||pk′
1||ω||Y ] = sk, r = RT [pk1||1||pk′

1||ω||Y ||c], h = HT [0||M ||pk1||1||
pk′

1||ω||Y ||r||V ] = sj , 0||pk1||1||pk′
1||ω||Y = 0||pk1,k||1||pk′

1,k||ωk||Yk, and 0||M ||pk1||1||pk′
1||ω||

Y ||r||V = 0||Mj ||pk1,j ||1||pk′
1,j ||ωj ||Yj ||rj ||Vj ,

2) in the execution of U(pk, s1, . . . , sj−1, s
′
j , . . . , s

′
γ ; ρ), A outputs a valid forgery (M̂, (1, ω̂, Ŷ , ˆpk′

1,

(V̂ , ẑ)), ˆpk1) with ĉ = GT [0|| ˆpk1||1|| ˆpk′
1||ω̂||Ŷ ] = sk, r̂ = RT [ ˆpk1||1|| ˆpk′

1||ω̂||Ŷ ||ĉ], ĥ = HT [0||M̂ ||
ˆpk1||1|| ˆpk′

1||ω̂||Ŷ ||r̂||V̂ ] = s′j , 0|| ˆpk1||1|| ˆpk′
1||ω̂||Ŷ = 0||pk1,k||1||pk′

1,k||ωk||Yk, and 0||M̂ || ˆpk1||1||
ˆpk′

1||ω̂||Ŷ ||r̂||V̂ = 0||Mj ||pk1,j ||1||pk′
1,j ||ωj ||Yj ||rj ||Vj ,

3) in the execution of U(pk), s1, . . . , sk−1, tk, . . . , tγ ; ρ), A outputs a valid forgery (M̄, (1, ω̄, Ȳ , ¯pk′
1,

(V̄ , z̄)), ¯pk1) with c̄ = GT [0|| ¯pk1||1|| ¯pk′
1||ω̄||Ȳ ] = tk, r̄ = RT [ ¯pk1||1|| ¯pk′

1||ω̄||Ȳ ||c̄], h̄ = HT [0||M̄ ||
¯pk1||1|| ¯pk′

1||ω̄||Ȳ ||r̄||V̄ ] = tj , 0|| ¯pk1||1|| ¯pk′
1||ω̄||Ȳ = 0||pk1,k||1||pk′

1,k||ωk||Yk, and 0||M̄ || ¯pk1||1||
¯pk′

1||ω̄||Ȳ ||r̄||V̄ = 0||M̄j ||pk1,j ||1||pk′
1,j ||ωj ||Yj ||r̄j ||V̄j ,

4) in the execution of U(pk, s1, . . . , sk−1, tk, . . . , tj−1, t
′
j , . . . , t

′
γ ; ρ), A outputs a valid forgery (Ṁ, (1,

ω̇, Ẏ , ˙pk′
1, (V̇ , ż)), ˙pk1) with ċ = GT [0|| ˙pk1||1|| ˙pk′

1||ω̇||Ẏ ] = tk, ṙ = RT [ ˙pk1||1|| ˙pk′
1||ω̇||Ẏ ||ċ],

ḣ = HT [0||Ṁ || ˙pk1||1|| ˙pk′
1||ω̇||Ẏ ||ṙ||V̇ ] = t′j , 0|| ˙pk1||1|| ˙pk′

1||ω̇||Ẏ = 0||pk1,k||1||pk′
1,k||ωk||Yk, and

0||Ṁ || ˙pk1||1|| ˙pk′
1||ω̇||Ẏ ||ṙ||V̇ = 0||M̄j ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||r̄j ||V̄j ,

5) in the execution of U(pk, s1, . . . , sk−1, uk, . . . , uγ ; ρ), A outputs a valid forgery (M̌, (1, ω̌, Y̌ , ˇpk′
1,

(V̌ , ž)), ˇpk1) with č = GT [0|| ˇpk1||1|| ˇpk′
1||ω̌||Y̌ ] = uk, ř = RT [ ˇpk1||1|| ˇpk′

1||ω̌||Y̌ ||č], ȟ = HT [0||M̌ ||
ˇpk1||1|| ˇpk′

1||ω̌||Y̌ ||ř||V̌ ] = uj , 0|| ˇpk1||1|| ˇpk′
1||ω̌||Y̌ = 0||pk1,k||1||pk′

1,k||ωk||Yk, and 0||M̌ || ˇpk1||1||
ˇpk′

1||ω̌||Y̌ ||ř||V̌ = 0||M̌j ||pk1,j ||1||pk′
1,j ||ωj ||Yj ||řj ||V̌j , and

6) in the execution of U(pk, s1, . . . , sk−1, uk, . . . , uj−1, u
′
j , . . . , u

′
γ ; ρ), A outputs a valid forgery (M̃, (1,

ω̃, Ỹ , ˜pk′
1, (Ṽ , z̃)), ˜pk1) with c̃ = GT [0|| ˜pk1||1|| ˜pk′

1||ω̃||Ỹ ] = uk, r̃ = RT [ ˜pk1||1|| ˜pk′
1||ω̃||Ỹ ||c̃],

h̃ = HT [0||M̃ || ˜pk1||1|| ˜pk′
1||ω̃||Ỹ ||r̃||Ṽ ] = u′j , 0|| ˜pk1||1|| ˜pk′

1||ω̃||Ỹ = 0||pk1,k||1||pk′
1,k||ωk||Yk, and

0||M̃ || ˜pk1||1|| ˜pk′
1||ω̃||Ỹ ||r̃||Ṽ = 0||M̌j ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||řj ||V̌j .

From 1) and 2), it follows that M̂ = M , ˆpk1 = pk1, ˆpk′
1 = pk′

1, ω̂ = ω, Ŷ = Y , r̂ = r, V̂ = V , ĉ = c,
gz ≡ V · (pk′

1
r · Y ·Xc)h (mod p), and gẑ ≡ V · (pk′

1
r · Y ·Xc)ĥ (mod p). Since ĥ 6= h, (h− ĥ)−1 exists.

Thus,

g(z−ẑ)(h−ĥ)−1 ≡ pk′
1
r · Y ·Xc (mod p). (18)

From 3) and 4), it follows that Ṁ = M̄ , ˙pk1 = ¯pk1 = pk1, ˙pk′
1 = ¯pk′

1 = pk′
1, ω̇ = ω̄ = ω, Ẏ = Ȳ = Y ,

ṙ = r̄, V̇ = V̄ , ċ = c̄, gz̄ ≡ V̄ · (pk′
1
r̄ · Y ·X c̄)h̄ (mod p), and gż ≡ V̄ · (pk′

1
r̄ · Y ·X c̄)ḣ (mod p). Since

ḣ 6= h̄, (h̄− ḣ)−1 exists. Thus,

g(z̄−ż)(h̄−ḣ)−1 ≡ pk′
1
r̄ · Y ·X c̄ (mod p). (19)

From 5) and 6), it follows that M̃ = M̌ , ˜pk1 = ˇpk1 = pk1, ˜pk′
1 = ˇpk′

1 = pk′
1, ω̃ = ω̌ = ω, Ỹ = Y̌ = Y ,

r̃ = ř, Ṽ = V̌ , c̃ = č, gž ≡ V̌ · (pk′
1
ř · Y ·X č)ȟ (mod p), and gz̃ ≡ V̌ · (pk′

1
ř · Y ·X č)h̃ (mod p). Since
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h̃ 6= ȟ, (ȟ− h̃)−1 exists. Thus,

g(ž−z̃)(ȟ−h̃)−1 ≡ pk′
1
ř · Y ·X č (mod p). (20)

Equations (18), (19) and (20) yield the system of equations solved by D, where gx1 = pk′
1, gx2 = Y and

gx3 = X . If r(č− c̄)− r̄(č− c) + ř(c̄− c) 6≡ 0 (mod q), then the system has a unique solution and D returns
the discrete logarithm of X .

Let frk be defined as in Lemma C.5. Then,

Advdl
Gdl,D

(k) ≥ Pr [ b = 1 ∧ r(č− c̄)− r̄(č− c) + ř(c̄− c) 6≡ 0 (mod q) ]
≥ frk − Pr [ r(č− c̄)− r̄(č− c) + ř(c̄− c) ≡ 0 (mod q) ]

≥ frk − 1
q

.

The last equation above follows from the fact that values r, r̂, r̄, c, ĉ, c̄ are independent and uniformly dis-
tributed, according to the definitions of U and MFU ,5 .

Applying Lemma C.5, we then have

Pr [ E3 ]

≤ acc +
qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3

q

≤ 6
√

γ10 · frk + 6

√
5 · γ10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

≤ 6

√
(qG + qH)10

(
Advdl

Gdl,D
(κ) + 1/q

)
+ 6

√
5 · (qG + qH)10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

≤ 6

√
(qG + qH)10 ·Advdl

Gdl,D
(κ) + 6

√
(qG + qH)10

q
+ 6

√
5 · (qG + qH)10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

.

The last equation follows from the fact that 6
√

a + b ≤ 6
√

a + 6
√

b for any real numbers a, b ≥ 0. This proves
Equation (13).

Let δ = qH and S = Zq. We define an algorithm V that given inputs a public key (p, q, g, X) and
s1, . . . , sδ ∈ S, returns a pair (I, σ) consisting of an integer 0 ≤ I ≤ δ and a string σ. Then we use the forking
algorithm FY associated to Y to construct adversary E against Gdl.

V sets n = 1, pk′
1 = X , j = 0, and ctr = 0; creates empty sets S̄, S1, DU, and CS; creates empty

arrays skp1, GT , RT , and HT ; creates a key pair (pk1, sk1) by selecting sk1 ∈ Zq at random and setting
pk1 = gsk1 mod p; chooses m ∈ {1, . . . , qsd} at random; chooses some randomness for A; and runs A on
input pk1 with this randomness. It then answers the requests and queries made by A as follows.

1. If A makes a query M to random oracle G, then V checks if GT [M ] is defined. If not, it picks a random
c ∈ Zq and sets GT [M ] = c. Then it returns GT [M ] to A.

2. If A makes a query M to random oracle R, then V checks if RT [M ] is defined. If not, it picks a random
r ∈ Zq and sets RT [M ] = r. Then it returns RT [M ] to A.
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3. If A makes a query 0||M ||pk1||1||pk′
1||ω||Y ||r||V to random oracle H , then V checks if HT [0||M ||

pk1||1||pk′
1||ω||Y ||r||V ] is defined. If not, it increments j and sets 0||Mj ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||
rj ||Vj = 0||M ||pk1||1||pk′

1||ω||Y ||r||V and HT [0||M ||pk1||1||pk′
1||ω||Y ||r||V ] = sj . Then it returns

HT [0||M ||pk1||1||pk′
1||ω||Y ||r||V ] to A.

4. If A makes a query M ′ that cannot be parsed as 0||M ||pk1||1||pk′
1||ω||Y ||r||V to random oracle H , then

V checks if HT [M ′] is defined. If not, it picks a random h ∈ Zq and sets HT [M ′] = h. Then it returns
HT [M ′] to A.

5. If A requests to register a public key pk for user n + 1, then V increments n, sets pkn = pk, Sn = ∅
and creates an empty array skpn.

6. If A requests to interact with user 1 runningD(pk1, sk1, i,pki, ω), for some i ∈ {2, . . . , n}, and play the
role of user i running P(pki, ski,pk1), then V , sets DU = DU ∪ {(i, ω)}, and performs the following
operations:

- Pick a random y ∈ Zq

- Set Y = gy mod p

- If GT [0||pk1||i||pki||ω||Y ] is defined, set c = GT [0||pk1||i||pki||ω||Y ]. Otherwise, pick a random
c ∈ Zq and set GT [0||pk1||i||pki||ω||Y ] = c.

- Set s = y + c · sk1 mod q

- Return ω, (Y, s) to A

Thus, V computes a Schnorr signature by user 1 for message 0||pk1||i||pki||ω using sk1, and gives this
signature and ω to A.

7. If A requests to interact with user 1 running P(pk1, sk1,pki), for some i ∈ {2, . . . , n}, and play the role
of user i runningD(pki, ski, 1,pk1, ω), when A outputs ω, (Y, s), V performs the following operations:

- If GT [0||pki||1||pk1||ω||Y ] is defined, set c = GT [0||pki||1||pk1||ω||Y ]. Otherwise, pick a random
c ∈ Zq and set GT [0||pki||1||pk1||ω||Y ] = c.

- Verify that (Y, s) is a valid signature for message 0||pki||1||pk1||ω with respect to public key pki

(i.e., check that gs ≡ Y · pkc
i (mod p)). If not, abort.

- If RT [pki||1||pk1||ω||Y ||c] is defined, set r = RT [pki||1||pk1||ω||Y ||c]. Otherwise, pick a random
r ∈ Zq and set RT [pki||1||pk1||ω||Y ||c] = r.

- Set t = r · sk1 + s mod q

- Set skp = (pki||1||pk1||ω, Y, t)
- Store (skp, ω) in the last unoccupied position of skpi

Here V computes a correct proxy signing key for user 1 using sk1.

8. If A requests that user 1 run the designation protocol with itself for ω, then V increments ctr. If ctr 6=
m then V creates a new key pair (pk′′

1, sk
′′
1) by selecting sk′′

1 ∈ Zq at random and setting pk′′
1 =

gsk′′1 mod p, and performs the following operations:

- Pick a random y ∈ Zq

- Set Y = gy mod p

- If GT [0||pk1||1||pk′′
1||ω||Y ] is defined, set c = GT [0||pk1||1||pk′′

1||ω||Y ]. Otherwise, pick a ran-
dom c ∈ Zq and set GT [0||pk1||1||pk′′

1||ω||Y ] = c.
- Set s = y + c · sk1 mod q

- If RT [pk1||1||pk′′
1||ω||Y ||c] is defined, set r = RT [pk1||1||pk′′

1||ω||Y ||c]. Otherwise, pick a random
r ∈ Zq and set RT [pk1||1||pk′′

1||ω||Y ||c] = r.
- Set t = r · sk′′

1 + s mod q
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- Set skp = (pk1||1||pk′′
1||ω, Y, t)

- Store (skp, ω) in skp1[ctr]
- Return ω, (Y, s) to A

Here V computes a Schnorr signature by user 1 for message 0||pk1||1||pk′′
1||ω. Using the signature

obtained, it computes a correct proxy signing key for user 1.
Otherwise (i.e., ctr = m), V creates an appropriate message space description ω, and performs the

following operations:

- Pick a random y ∈ Zq

- Set Y = gy mod p

- If GT [0||pk1||1||pk′
1||ω||Y ] is defined, set c = GT [0||pk1||1||pk′

1||ω||Y ]. Otherwise, pick a ran-
dom c ∈ Zq and set GT [0||pk1||1||pk′

1||ω||Y ] = c.
- Set s = y + c · sk1 mod q

- Store ω, Y, s in skp1[ctr].
- Return ω, (Y, s) to A

Here V computes a Schnorr signature by user 1 for message 0||pk1||1||pk′
1||ω using sk1, and gives the

certificate, which is the message space description and the signature, to A.

9. If A requests to see skp1[l] for some l ∈ N, then if skp1[l] contains a pair (skp, ω), V sets CS = CS∪ω
and returns skp to A; otherwise, if skp1[l] contains ω, an element Y ∈ Zp, and an element s ∈ Zq, V
aborts. Otherwise, V returns ⊥ to A.

10. If A queries its oracle OST
(sk1, ·) with a message M , then V performs the following operations:

- Pick a random y ∈ Zq

- Set Y = gy mod p

- If GT [1||M ||Y ] is defined, set c = GT [1||M ||Y ]. Otherwise, pick a random c ∈ Zq and set
GT [1||M ||Y ] = c.

- Set s = y + c · sk1 mod q

- Set S̄ = S̄ ∪ {M}
- Return (Y, s) to A

V computes a Schnorr signature by user 1 for message 1||M using sk1.

11. If A makes a query (i, l,M), where i ∈ {2, . . . , n}, l ∈ N, and M ∈ {0, 1}∗, to its oracle
OPS((skpu)u∈[n], ·, ·, ·), then V responds as follows. If skpi[l] is not defined, then it returns ⊥ to
A. Otherwise, it parses skpi[l] as ((pki||1||pk1||ωl, Yl, tl), ωl), and performs the following operations:

- Pick a random y ∈ Zq

- Compute commitment Y ← gy mod p

- Set c = GT [0||pki||1||pk1||ωl||Yl]
- Set r = RT [pki||1||pk1||ωl||Yl||c]
- If HT [0||M ||pki||1||pk1||ωl||Yl||r||Y ] is defined, set h = HT [0||M ||pki||1||pk1||ωl||Yl||r||Y ].

Otherwise, pick a random h ∈ Zq and set HT [0||M ||pki||1||pk1||ωl||Yl||r||Y ] = h.
- Set s = y + tl · h mod q

- Set Si = Si ∪ {M}
- Return (1, ωl, Yl,pk1, (Y, s)) to A

Thus, V computes a proxy signature by user 1 on behalf of user i for message
0||M ||pki||1||pk1||ωl||Yl||r, using the l-th proxy signing key and the signature returned to adver-
sary A is identical to the signature returned by oracle OPS((skpu)u∈[n], ·, ·, ·).
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12. If A makes a query (1, l,M), where l ∈ N, and M ∈ {0, 1}∗, to its oracle OPS((skpu)u∈[n], ·, ·, ·), then
V responds as follows. If skp1[l] is not defined, then it returns ⊥ to A. Otherwise, if skp1[l] contains a
pair (skp, ω), V parses skp as (pk1||1||pkl

1||ωl, Yl, tl), and performs the following operations:

- Pick a random y ∈ Zq

- Compute commitment Y ← gy mod p

- Set c = GT [0||pk1||1||pkl
1||ωl||Yl]

- Set r = RT [pk1||1||pkl
1||ωl||Yl||c]

- If HT [0||M ||pk1||1||pkl
1||ωl||Yl||r||Y ] is defined, set h = HT [0||M ||pk1||1||pkl

1||ωl||Yl||r||Y ].
Otherwise, pick a random h ∈ Zq and set HT [0||M ||pk1||1||pkl

1||ωl||Yl||r||Y ] = h.
- Set s = y + tl · h mod q

- Set S1 = S1 ∪ {M}
- Return (1, ωl, Yl,pkl

1, (Y, s)) to A

In this case, V computes a proxy signature by user 1 on behalf of herself using the l-th proxy signing key
(pk1||1||pkl

1||ωl, Yl, tl). The signature returned to adversary A is thus identical to the signature returned
by oracle OPS((skpu)u∈[n], ·, ·, ·).

Otherwise, if skp1[l] contains ωl, an element Yl ∈ Zp, and an element sl ∈ Zq, V performs the
following operations:

- Pick a random h ∈ Zq

- Pick a random s ∈ Zq

- Set c = GT [0||pk1||1||pk′
1||ωl||Yl]

- If RT [pk1||1||pk′
1||ωl||Yl||c] is defined, set r = RT [pk1||1||pk′

1||ωl||Yl||c]. Otherwise, pick a ran-
dom r ∈ Zq and set RT [pk1||1||pk′

1||ωl||Yl||c] = r.
- Compute proxy public key pkp = pk′

1
r · Yl · pkc

1 mod p

- Compute commitment Y ← gs · pkp−h mod p

- If HT [0||M ||pk1||1||pk′
1||ωl||Yl||r||Y ] is defined, set bad = true

- Set HT [0||M ||pk1||1||pk′
1||ωl||Yl||r||Y ] = h

- Set S1 = S1 ∪ {M}
- Return (1, ωl, Yl,pk′

1, (Y, s)) to A

In this case, V simulates proxy signing by user 1 on behalf of herself using the l-th proxy signing key.
It is easy to see that the simulated signature (Y, s) has the same distribution as a real Schnorr signature
for message 0||M ||pk1||1||pk′

1||ωl||Yl||r. Therefore, the signature returned to adversary A has the same
distribution as a signature returned by oracle OPS((skpu)u∈[n], ·, ·, ·).

Until A outputs a forgery (M,σ) or (M,pσ,pk). If A’s forgery is not of the form (M,pσ,pk1), where
ID(pσ) = 1, then V aborts. Otherwise, V performs the following operations:

- Parse pσ as (1, ω, Y, pk′
1, (V, z))

- If A did not make the following queries in the order given, then set bad = true.

• 0||pk1||1||pk′
1||ω||Y to random oracle G,

• pk1||1||pk′
1||ω||Y ||c, where c is the response to the G-query above, to random oracle R,

• 0||M ||pk1||1||pk′
1||ω||Y ||r||V , where r is the response to the R-query above, to H

Otherwise, set c = GT [0||pk1||1||pk′
1||ω||Y ], r = RT [pk1||1||pk′

1||ω||Y ||c], and h = HT [0||M ||pk1||
1||pk′

1||ω||Y ||r||V ].
- If bad 6= true, compute proxy public key pkp = pk′

1
r · Y · pkc

1 mod p

- If bad = true or gz 6≡ V · pkph (mod p) or M ∈ S1 or M ∈ CS, then return (0, ε)
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- If skp1[m] 6= ω, Y, s for some s ∈ Zq, then return (0, ε)
- Let j be such that 0||Mj ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||rj ||Vj = 0||M ||pk1||1||pk′
1||ω||Y ||r||V

- Return (j, (z, r, sj , s))

Let IG be the algorithm that runs KT(1κ) to obtain (pk, sk) and returns pk = (p, q, g, X). Let

acc = Pr
[

pk
$← IG ; s1, . . . , sδ

$← Zq ; (I, σ) $← V (pk, s1, . . . , sδ) : I ≥ 1
]
,

as in Lemma C.1. Assume that event E4 occurs, bad 6= true and V correctly guesses which self-delegation
request was answered with a Schnorr signature (Y, s) for message 0||pk1||1||pk′

1||ω. Then A does not request
to see skp1[m], so V does not abort in step 9 above. Additionally, skp1[m] = ω, Y, s. When A makes query
0||M ||pk1||1||pk′

1||ω||Y ||r||V to random oracle H , HT [0||M ||pk1||1||pk′
1||ω||Y ||r||V ] is undefined and gets

set to si for some i such that 1 ≤ i ≤ δ. Therefore, V returns (i, (z, r, si, s)) for some i ≥ 1. Thus,

acc ≥ Pr [ E4 ∧ bad 6= true ∧V guesses correctly ]

= Pr [ E4 ∧ bad 6= true ] · 1
qsd

qsd · acc ≥ Pr [ E4 ]− Pr [ bad = true | E4 ]

≥ Pr [ E4 ]− 3
|Zq|

Let FV be the forking algorithm associated to V as per Lemma C.1. Then we define adversary E against
discrete-logarithm parameter generator Gdl as follows.

Adversary E(p, q, g, X)
pk ← (p, q, g, X) ; (b, σ, σ̂) $← FV (pk)
If ( b = 0 ) then return 0
Parse σ as (z, r, h, s) and σ̂ as (ẑ, r̂, ĥ, ŝ)
If ( r ≡ 0 (mod q) ) then return 0
else return ((z − ẑ)(h− ĥ)−1 − s) · r−1 mod q

We claim that if b = 1 and r 6≡ 0 (mod q), then E computes the discrete logarithm of X . To justify this claim,
consider the definitions of V and FV . If b = 1 then there exist coins ρ for V , j ≥ 1 and s1, . . . , sδ, s

′
j , . . . , s

′
δ ∈

Zq with ĥ = s′j 6= sj = h such that

1) in the execution of V (pk, s1, . . . , sδ; ρ), A outputs a valid forgery (M, (1, ω, Y, pk′
1, (V, z)),pk1) with

c = GT [0||pk1||1||pk′
1||ω||Y ], r = RT [pk1||1||pk′

1||ω||Y ||c], h = HT [0||M ||pk1||1||pk′
1||ω||Y ||

r||V ] = sj , 0||M ||pk1||1||pk′
1||ω||Y ||r||V = 0||Mj ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||rj ||Vj , and skp1[m] =
ω, Y, s, where gs = Y · pkc

1 mod p, and

2) in the execution of V (pk, s1, . . . , sj−1, s
′
j , . . . , s

′
δ; ρ), A outputs a valid forgery (M̂, (1, ω̂, Ŷ , ˆpk′

1,

(V̂ , ẑ)), ˆpk1) with ĉ = GT [0|| ˆpk1||1|| ˆpk′
1||ω̂||Ŷ ], r̂ = RT [ ˆpk1||1|| ˆpk′

1||ω̂||Ŷ ||ĉ], ĥ = HT [0||M̂ || ˆpk1||
1|| ˆpk′

1||ω̂||Ŷ ||r̂||V̂ ] = s′j , 0||M̂ || ˆpk1||1|| ˆpk′
1||ω̂||Ŷ ||r̂||V̂ = 0||Mj ||pk1,j ||1||pk′

1,j ||ωj ||Yj ||rj ||Vj , and

skp1[m] = ω̂, Ŷ , ŝ, where gŝ = Ŷ · ˆpk1
ĉ
mod p

It follows that M̂ = M , ˆpk1 = pk1, ˆpk′
1 = pk′

1, ω̂ = ω, Ŷ = Y , r̂ = r, V̂ = V , ĉ = c, gz ≡ V · (Xr ·Y ·pkc
1)

h

(mod p), gẑ ≡ V · (Xr · Y · pkc
1)

ĥ (mod p), ŝ = s, and gs = Y · pkc
1 mod p. Since ĥ 6= h, (h− ĥ)−1 exists.

Thus,

g(z−ẑ)(h−ĥ)−1 ≡ Xr · gs (mod p).
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If r 6≡ 0 (mod q), then we have

g((z−ẑ)(h−ĥ)−1−s)·r−1 ≡ X (mod p).

Therefore, E returns the discrete logarithm of X .
Let frk be defined as in Lemma C.1. Then,

Advdl
Gdl,E

(k) ≥ Pr [ b = 1 ∧ r 6≡ 0 (mod q) ]
≥ frk − Pr [ r ≡ 0 (mod q) ]

≥ frk − 1
q

.

The last equation above follows from the fact that r is uniformly distributed, according to the definitions of V
and FV .

Applying Lemma C.1, we then have

Pr [ E4 ] ≤ qsd · acc +
3
q
≤ qsd ·

(√
δ · frk +

δ

q

)
+

3
q

≤ qsd ·
√

δ ·
(
Advdl

Gdl,E
(κ) + 1/q

)
+

δ · qsd + 3
q

≤ qsd ·
√

δ ·Advdl
Gdl,E

(κ) + qsd ·

√
δ

q
+

δ · qsd + 3
q

.

The last equation follows from the fact that 6
√

a + b ≤ 6
√

a + 6
√

b for any real numbers a, b ≥ 0. This proves
Equation (14).

Let γ = qG + qH and S = Zq, as above. We now define an algorithm W that given inputs a public key
(p, q, g, X) and s1, . . . , sγ ∈ S, returns a triple (I, J, σ) consisting of two integers 0 ≤ J < I ≤ γ and a
string σ. Then we use the multiple-forking algorithm MFW ,5 associated to W and 5 to construct adversary F
against Gdl.

W makes the same initializations as algorithm Y defined above: n = 1, pk1 = X , and j = 0; it creates
empty sets S̄, S1, DU, and CS; it creates empty arrays skp1, GT , RT , and HT ; it chooses some randomness
for A; and then it runs A on input pk1 with this randomness. W answers the requests and queries made by
A exactly as Y does except for the differences specified below. These are identified by the number(s) of the
corresponding step(s) in Y .

1. If A makes a query 1||M to random oracle G, then W checks if GT [1||M ] is defined. If not, it picks a
random c ∈ Zq and sets GT [1||M ] = c. Then it returns GT [1||M ] to A.

2. If A makes a query 0||pk1||i||pki||ω||Y to random oracle G, where i ∈ {2, . . . , n}, then W checks if
GT [0||pk1||i||pki||ω||Y ] is defined. If not, it increments j and sets 0||pk1,j ||i||pki,j ||ωj ||Yj = 0||pk1||
i||pki||ω||Y and GT [0||pk1||i||pki||ω||Y ] = sj . Then it returns GT [0||pk1||i||pki||ω||Y ] to A.

3. If A makes a query 0||M that cannot be parsed as 0||pk1||i||pki||ω||Y , for some i ∈ {2, . . . , n}, to
random oracle G, then W checks if GT [0||M ] is defined. If not, it picks a random c ∈ Zq and sets
GT [0||M ] = c. Then it returns GT [0||M ] to A.

4. If A makes a query M to random oracle R, then W checks if RT [M ] is defined. If not, it picks a random
r ∈ Zq and sets RT [M ] = r. Then it returns RT [M ] to A.

5. If A makes a query 0||M ||pk1||i||pki||ω||Y ||r||V to random oracle H , where i ∈ {2, . . . , n}, then W
checks if HT [0||M ||pk1||i||pki||ω||Y ||r||V ] is defined. If not, it increments j and sets 0||Mj ||pk1,j ||
i||pki,j ||ωj ||Yj ||rj ||Vj = 0||M ||pk1||i||pki||ω||Y ||r||V and HT [0||M ||pk1||i||pki||ω||Y ||r||V ] = sj .
Then it returns HT [0||M ||pk1||i||pki||ω||Y ||r||V ] to A.
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6. If A makes a query M ′ that cannot be parsed as 0||M ||pk1||i||pki||ω||Y ||r||V , for some i ∈ {2, . . . , n},
to random oracle H , then W checks if HT [M ′] is defined. If not, it picks a random h ∈ Zq and sets
HT [M ′] = h. Then it returns HT [M ′] to A.

Until A outputs a forgery (M,σ) or (M,pσ,pk). If A’s forgery is not of the form (M,pσ,pk1), where
ID(pσ) = i for some i ∈ {2, . . . , n}, then W aborts. Otherwise, W performs the following operations:

- Parse pσ as (i, ω, Y,pki, (V, z))
- If A did not make the following queries in the order given, then set bad = true.

• 0||pk1||i||pki||ω||Y to random oracle G,

• pk1||i||pki||ω||Y ||c, where c is the response to the G-query above, to random oracle R,

• 0||M ||pk1||i||pki||ω||Y ||r||V , where r is the response to the R-query above, to H

Otherwise, set c = GT [0||pk1||i||pki||ω||Y ], r = RT [pk1||i||pki||ω||Y ||c], and h = HT [0||M ||pk1||i||
pki||ω||Y ||r||V ].

- If bad 6= true, compute proxy public key pkp = pki
r · Y · pkc

1 mod p

- If bad = true or gz 6≡ V · pkph (mod p), then return (0, 0, ε)
- Let j be such that 0||Mj ||pk1,j ||i||pki,j ||ωj ||Yj ||rj ||Vj = 0||M ||pk1||i||pki||ω||Y ||r||V , and k such that

0||pk1,k||i||pki,k||ωk||Yk = 0||pk1||i||pki||ω||Y
- Return (j, k, (z, sj , r, sk))

Let IG be the algorithm that runs KT(1κ) to obtain (pk, sk) and returns pk = (p, q, g, X). Let

acc = Pr
[

pk
$← IG ; s1, . . . , sγ

$← Zq ; (I, J, σ) $←W (pk, s1, . . . , sγ) : I ≥ 1 ∧ J ≥ 1
]
,

as in Lemma C.5. Assume that event E5 occurs and bad 6= true. Then when A makes query
0||pk1||i||pki||ω||Y to random oracle G, GT [0||pk1||i||pki||ω||Y ] is undefined and gets set to sk for some
k such that 1 ≤ k ≤ γ. In addition, when A makes query 0||M ||pk1||i||pki||ω||Y ||r||V to random oracle
H , HT [0||M ||pk1||i||pki||ω||Y ||r||V ] is undefined and gets set to sj for some j > k such that 1 ≤ j ≤ γ.
Therefore, W returns (j, k, (z, sj , r, sk)) for some j > k ≥ 1. Thus,

acc ≥ Pr [ E5 ∧ bad 6= true ]
≥ Pr [ E5 ]− Pr [ bad = true | E5 ]

≥ Pr [ E5 ]− qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
|Zq|

Let MFW ,5 be the multiple-forking algorithm associated to W as per Lemma C.5. Then we define adversary
F against discrete-logarithm parameter generator Gdl as follows.

Adversary F(p, q, g, X)
pk ← (p, q, g, X) ; (b, results) $←MFW ,5(pk)
If ( b = 0 ) then return 0
Parse results[0] as (z, h, r, c), results[1] as (ẑ, ĥ, r̂, ĉ), results[2] as (z̄, h̄, r̄, c̄),

results[3] as (ż, ḣ, ṙ, ċ), results[4] as (ž, ȟ, ř, č), results[5] as (z̃, h̃, r̃, c̃)
If ( r(č− c̄)− r̄(č− c) + ř(c̄− c) ≡ 0 (mod q) ) then return 0
else

Solve the following system of equations modulo q to obtain x3:
r · x1 + x2 + c · x3 ≡ (z − ẑ)(h− ĥ)−1

r̄ · x1 + x2 + c̄ · x3 ≡ (z̄ − ż)(h̄− ḣ)−1

ř · x1 + x2 + č · x3 ≡ (ž − z̃)(ȟ− h̃)−1

return x3

44



We claim that if b = 1 and r(č − c̄) − r̄(č − c) + ř(c̄ − c) 6≡ 0 (mod q), then F computes the discrete
logarithm of X . To justify this claim, consider the definitions of W and MFW ,5. If b = 1 then there exist
coins ρ for W , j ≥ 1, k ≥ 1 and s1, . . . , sγ , s′j , . . . , s

′
γ , tk, . . . , tγ , t′j , . . . , t

′
γ , uk, . . . , uγ , u′j , . . . , u

′
γ ∈ Zq

with ĥ = s′j 6= sj = h, ĉ = sk = c, c̄ = tk 6= sk = ĉ, ḣ = t′j 6= tj = h̄, ċ = tk = c̄, č = uk 6= tk = ċ,
h̃ = u′j 6= uj = ȟ, and c̃ = uk = č, such that

1) in the execution of W ((p, q, g, X), s1, . . . , sγ ; ρ), adversary A outputs a valid forgery (M, (i, ω, Y,pki,
(V, z)),pk1) with c = GT [0||pk1||i||pki||ω||Y ] = sk, r = RT [pk1||i||pki||ω||Y ||c], h = HT [0||M ||
pk1||i||pki||ω||Y ||r||V ] = sj , 0||pk1||i||pki||ω||Y = 0||pk1,k||i||pki,k||ωk||Yk, and 0||M ||pk1||i||pki||
ω||Y ||r||V = 0||Mj ||pk1,j ||i||pki,j ||ωj ||Yj ||rj ||Vj ,

2) in the execution of W ((p, q, g, X), s1, . . . , sj−1, s
′
j , . . . , s

′
γ ; ρ), A outputs a valid forgery (M̂, (i, ω̂,

Ŷ , ˆpki, (V̂ , ẑ)), ˆpk1) with ĉ = GT [0|| ˆpk1||i|| ˆpki||ω̂||Ŷ ] = sk, r̂ = RT [ ˆpk1||i|| ˆpki||ω̂||Ŷ ||ĉ], ĥ =
HT [0||M̂ || ˆpk1||i|| ˆpki||ω̂||Ŷ ||r̂||V̂ ] = s′j , 0|| ˆpk1||i|| ˆpki||ω̂||Ŷ = 0||pk1,k||i||pki,k||ωk||Yk, and 0||M̂ ||
ˆpk1||i|| ˆpki||ω̂||Ŷ ||r̂||V̂ = 0||Mj ||pk1,j ||i||pki,j ||ωj ||Yj ||rj ||Vj ,

3) in the execution of W ((p, q, g, X), s1, . . . , sk−1, tk, . . . , tγ ; ρ), A outputs a valid forgery (M̄, (i, ω̄,
Ȳ , ¯pki, (V̄ , z̄)), ¯pk1) with c̄ = GT [0|| ¯pk1||i|| ¯pki||ω̄||Ȳ ] = tk, r̄ = RT [ ¯pk1||i|| ¯pki||ω̄||Ȳ ||c̄], h̄ =
HT [0||M̄ || ¯pk1||i|| ¯pki||ω̄||Ȳ ||r̄||V̄ ] = tj , 0|| ¯pk1||i|| ¯pki||ω̄||Ȳ = 0||pk1,k||i||pki,k||ωk||Yk, and 0||M̄ ||
¯pk1||i|| ¯pki||ω̄||Ȳ ||r̄||V̄ = 0||M̄j ||pk1,j ||i||pki,j ||ωj ||Yj ||r̄j ||V̄j ,

4) in the execution of W ((p, q, g, X), s1, . . . , sk−1, tk, . . . , tj−1, t
′
j , . . . , t

′
γ ; ρ), A outputs a valid forgery

(Ṁ, (i, ω̇, Ẏ , ˙pki, (V̇ , ż)), ˙pk1) with ċ = GT [0|| ˙pk1||i|| ˙pki||ω̇||Ẏ ] = tk, ṙ = RT [ ˙pk1||i|| ˙pki||ω̇||Ẏ ||ċ],
ḣ = HT [0||Ṁ || ˙pk1||i|| ˙pki||ω̇||Ẏ ||ṙ||V̇ ] = t′j , 0|| ˙pk1||i|| ˙pki||ω̇||Ẏ = 0||pk1,k||i||pki,k||ωk||Yk, and
0||Ṁ || ˙pk1||i|| ˙pki||ω̇||Ẏ ||ṙ||V̇ = 0||M̄j ||pk1,j ||i||pki,j ||ωj ||Yj ||r̄j ||V̄j ,

5) in the execution of W ((p, q, g, X), s1, . . . , sk−1, uk, . . . , uγ ; ρ), A outputs a valid forgery (M̌, (i, ω̌,
Y̌ , ˇpki, (V̌ , ž)), ˇpk1) with č = GT [0|| ˇpk1||i|| ˇpki||ω̌||Y̌ ] = uk, ř = RT [ ˇpk1||i|| ˇpki||ω̌||Y̌ ||č], ȟ =
HT [0||M̌ || ˇpk1||i|| ˇpki||ω̌||Y̌ ||ř||V̌ ] = uj , 0|| ˇpk1||i|| ˇpki||ω̌||Y̌ = 0||pk1,k||i||pki,k||ωk||Yk, and 0||M̌ ||
ˇpk1||i|| ˇpki||ω̌||Y̌ ||ř||V̌ = 0||M̌j ||pk1,j ||i||pki,j ||ωj ||Yj ||řj ||V̌j , and

6) in the execution of W ((p, q, g, X), s1, . . . , sk−1, uk, . . . , uj−1, u
′
j , . . . , u

′
γ ; ρ), A outputs a valid forgery

(M̃, (i, ω̃, Ỹ , ˜pki, (Ṽ , z̃)), ˜pk1) with c̃ = GT [0|| ˜pk1||i|| ˜pki||ω̃||Ỹ ] = uk, r̃ = RT [ ˜pk1||i|| ˜pki||ω̃||
Ỹ ||c̃], h̃ = HT [0||M̃ || ˜pk1||i|| ˜pki||ω̃||Ỹ ||r̃||Ṽ ] = u′j , 0|| ˜pk1||i|| ˜pki||ω̃||Ỹ = 0||pk1,k||i||pki,k||ωk||Yk,
and 0||M̃ || ˜pk1||i|| ˜pki||ω̃||Ỹ ||r̃||Ṽ = 0||M̌j ||pk1,j ||i||pki,j ||ωj ||Yj ||řj ||V̌j .

From 1) and 2), it follows that M̂ = M , ˆpk1 = pk1, ˆpki = pki, ω̂ = ω, Ŷ = Y , r̂ = r, V̂ = V , ĉ = c,
gz ≡ V · (pki

r · Y ·Xc)h (mod p), and gẑ ≡ V · (pki
r · Y ·Xc)ĥ (mod p). Since ĥ 6= h, (h− ĥ)−1 exists.

Thus,

g(z−ẑ)(h−ĥ)−1 ≡ pki
r · Y ·Xc (mod p). (21)

From 3) and 4), it follows that Ṁ = M̄ , ˙pk1 = ¯pk1 = pk1, ˙pki = ¯pki = pki, ω̇ = ω̄ = ω, Ẏ = Ȳ = Y ,
ṙ = r̄, V̇ = V̄ , ċ = c̄, gz̄ ≡ V̄ · (pki

r̄ · Y · X c̄)h̄ (mod p), and gż ≡ V̄ · (pki
r̄ · Y · X c̄)ḣ (mod p). Since

ḣ 6= h̄, (h̄− ḣ)−1 exists. Thus,

g(z̄−ż)(h̄−ḣ)−1 ≡ pki
r̄ · Y ·X c̄ (mod p). (22)

From 5) and 6), it follows that M̃ = M̌ , ˜pk1 = ˇpk1 = pk1, ˜pki = ˇpki = pki, ω̃ = ω̌ = ω, Ỹ = Y̌ = Y ,
r̃ = ř, Ṽ = V̌ , c̃ = č, gž ≡ V̌ · (pki

ř · Y · X č)ȟ (mod p), and gz̃ ≡ V̌ · (pki
ř · Y · X č)h̃ (mod p). Since

h̃ 6= ȟ, (ȟ− h̃)−1 exists. Thus,

g(ž−z̃)(ȟ−h̃)−1 ≡ pki
ř · Y ·X č (mod p). (23)
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Equations (18), (19) and (20) yield the system of equations solved by F, where gx1 = pki, gx2 = Y and
gx3 = X . If r(č− c̄)− r̄(č− c) + ř(c̄− c) 6≡ 0 (mod q), then the system has a unique solution and F returns
the discrete logarithm of X .

Let frk be defined as in Lemma C.5. Then,

Advdl
Gdl,F

(k) ≥ Pr [ b = 1 ∧ r(č− c̄)− r̄(č− c) + ř(c̄− c) 6≡ 0 (mod q) ]
≥ frk − Pr [ r(č− c̄)− r̄(č− c) + ř(c̄− c) ≡ 0 (mod q) ]

≥ frk − 1
q

.

The last equation above follows from the fact that values r, r̂, r̄, c, ĉ, c̄ are independent and uniformly dis-
tributed, according to the definitions of W and MFW ,5 .

Applying Lemma C.5, we then have

Pr [ E5 ]

≤ acc +
qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3

q

≤ 6
√

γ10 · frk + 6

√
5 · γ10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

≤ 6

√
(qG + qH)10

(
Advdl

Gdl,F
(κ) + 1/q

)
+ 6

√
5 · (qG + qH)10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

≤ 6

√
(qG + qH)10 ·Advdl

Gdl,F
(κ) + 6

√
(qG + qH)10

q
+ 6

√
5 · (qG + qH)10

q
+

qd(qd − 1 + qG) + qsd(qsd − 1 + qG) + qs(qs − 1 + qG) + qp(qp − 1 + qH) + 3
q

.

The last equation follows from the fact that 6
√

a + b ≤ 6
√

a + 6
√

b for any real numbers a, b ≥ 0. This proves
Equation (15).

To complete the proof of Theorem 6.2, we observe that the running times of adversaries B, C , D, and F
are approximately 2tA, 4tA, 6tA, and 6tA, respectively.
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