
Algorithms in Braid Groups

Matthew J. Campagna
matthew.campagna@pb.com

Secure Systems
Pitney Bowes, Inc.

Abstract

Braid Groups have recently been considered for use in Public-Key
Cryptographic Systems. The most notable of these system has been the
Birman-Ko-Lee system presented at Crypto 2000. This article gives a brief
introduction into braid groups and the hard problems on which public
key systems have been defined. It suggests a canonical form max run
form using the Artin generators and supplies some supporting algorithms
necessary for cryptographic operations.

1 Introduction

Braid groups were introduced into the literature by Artin in 1947 [1]. A clas-
sical problem that arose from this work is known in the literature as the word
conjugacy problem. The difficulty of this problem and other similar problems,
conjugacy search problem, have been incorporated into various braid group cryp-
tosystems [2]. The primary purpose of this paper is to introduce algorithms for
performing braid group operations necessary in a cryptosystem, so that any
such cryptosystem can be better understood and researched.

In this paper we review the braid group using the Artin representation. All
the algorithms developed in subsequent sections will be based on the Artin
generators for the braid group. A similar suite of algorithms for performing
braid group operations on the band-generator presentation is given in [3].

Section 2 provides a review and some notational conventions used throughout
the paper. Section 3 introduces the max-run form and provides some motiva-
tion for its use, and its usage with in various cryptosystems. Section 4 details
algorithms for performing cryptographic operations.

1

2 Braid Groups

A braid can be understood as the intertwining or crossing over of parallel strands
or strings. We use the common convention that the leftward moving strand
crosses over the rightward moving strand represents a positive twist. The number
of strands is called the braid index, and the set of all braids on n strands is
denoted Bn. In an effort to align the algorithm presentation with source code
implementation we will use a zero-based indexing convention.

Definition: Let n > 0 be an integer, then we define the n−braid group,
(Bn, ·, e), as the group generated by σ0, σ1, . . . σn−2 subject to the following
relations

Bn =
〈

σ0, . . . , σn−1 | σiσjσi = σjσiσj |i− j| = 1
σiσj = σjσi otherwise

〉
(1)

We refer to σi, 0 ≤ i < n− 1 as an elementary braid on n-strands and interpret
that as the braid that interchanges strand i and i + 1 by passing i + 1 over i.

0 i i+1 n-1

. . .
¡

¡¡
@

@ . . .

Figure 1: Elementary Braid σi

We multiply two elementary braids together σi and σj , σi · σj by performing
the ith elementary operation and then the jth operation.

The inverse of an elementary braid element, σi is an exchange of the strands i
and i + 1 where the right moving strand i crosses over the left moving strand
i + 1. A braid word α ∈ Bn is any sequence of elementary braids, or their in-
verses, alternately just a braid or word. A braid word consisting of no inverses is
called a positive braid, and we denote the set forming a monoid under the group
operation as B+

n . The length of a braid α, |α|, is the number of elementary
braids and inverses in the presentation of α. Two braids are equal when they
have identical representation. Two positive braids are equal when either they
have identical representation or they can be transformed into an identical rep-
resentation through a sequence of positive word transformation using the group
relation.

2

Definition: A braid α ∈ Bn is called a positive permutation braid if it a
positive braid and it can be drawn without any two strings crossing each other
more than once. We denote the set of positive permutation braids as Σ̃n.

There is a natural embedding of the symmetric group on n-letters Σn into Σ̃n,
induced by the mapping ψ(i, i+1) = σi, where (i, i+1) represents the two cycle
transposition that takes i to i + 1, and i + 1 to i.

Let π ∈ Σn be a permutation, the since π : {0, . . . n − 1} −→ {0, . . . n − 1}, we
simply express π = (π(0), π(1), . . . π(n− 1)). Under this presentation permuta-
tion π = (2, 0, 1, 3) can be represented as the product of two cycles (0, 1)(1, 2)
which is mapped to σ0 ·σ1. It is often desirable to take a permutation and place
it into a positive permutation braid, or permutation braid.

Definition: Let a ∈ G where < G, ·, 1 > is a group. An element of the form
b−1 · a · b, for some b ∈ G is called a conjugate of a.

We are now in a position to state a few classical problems in braid group theory.

Word Problem The simplest problem is given two braids α1, α2 ∈ Bn

determine if α1 = α2.

Conjugacy Decision Problem Given two braids α, β ∈ Bn can it be
determined if α is a conjugate of β.

Conjugacy Search Problem Given two braids α, β ∈ Bn β a conjugate
of α can a γ be found such that γ−1αγ = β.

Generalized Conjugacy Search Problem Given two braids α, β ∈ Bn,

Most of the solutions for solving the word problem are related to putting a braid
into some kind of standardized form. We will present one such form and define
algorithms to place an arbitrary braid into this standardized form.

Despite its relatively simple description the Braid Group proves to be a fairly
complex group. This section gives some of the basic mathematical properties
of the braid group. Artin, explored the relationship between the braid group
on n strands Bn to the symmetric group on n elements Σn, defined by the
natural map φ : Bn −→ Σn, that takes generators σi to transpositions (i, i+1).
There is a natural mapping from the symmetric group into the braid group. All
elements of the symmetric group, π ∈ Σn can be represented by a sequence of
transpositions of distance 1, there is an obvious embedding of the Σn in Bn,
denoted Σ̃n, by ψ : (i, i+1) 7→ σi, we refer this set of braids as the permutation

3

braids. Artin’s solution to the word problem was improved by Garside. Garside
also introduced the notion of the fundamental braid.

Definition: Let Bn be a braid group. The fundamental braid ∆ is defined as
the braid in which every strand crosses every other strand exactly once, it can
be represented as:

∆ = (σ0σ1 · · ·σn−2)(σ0σ1 · · ·σn−3) · · · (σ0σ1)(σ0).

Garside demonstrated that all braids α ∈ Bn can be put into a canonical form
α = ∆rβ where r ∈ Z, and β ∈ B+

n , with some additional constraints on the
representation of β. Let A ∈ Bn then A(i) is the permutation result of applying
the permutation induced by the braid on the ith stand.

Proposition 1. For all permutation braids α ∈ Σ̃n such that |α| = |∆| then
α = ∆.

Proof: For a given n, |∆| = n · (n−1)/2, which is n choose 2. Now each element
in α introduces a twist between two strands, since there are at most n choose
2 choices for strand twists, and their are n choose 2 twists in α a permutation
braid, it is clear that no two strands cross twice and so every two strand crosses
exactly once. Hence α is the fundamental braid.

Some results based found in the literature follows.

1. ∆ = σiAi = Biσi for some permutation braids Ai, Bi ∈
∑̃

n, and for
−1 < i < n− 1.

2. σi∆ = ∆σn−2−i, for −1 < i < n− 1.

3. σ−1
i = ∆−1Bi, where ∆ = Biσi, for a permutation braid Bi ∈ Σ̃n.

4. For all W ∈ Bn, W = ∆rV where r ∈ Z, and V ∈ B+
n .

In order to effectively work in a braid group, we need algorithms for computing
inverses and commuting elements to the left or to the right. What follows is an
algorithm for commuting an element to the left. All elements here are assumed
positive.

4

3 Max Run Form

In an effort to develop some efficient algorithms designed for a computer a new
normalized form was defined and used. We begin this section with a description
of this new normalized form. We then go on to prove how it uniquely defines all
elements in a braid group, and provide some algorithms for basic braid group
operations.

Definition A braid β ∈ Bn is in maximal run form when it is expressed as

β = ∆nα0α1 · . . . · αk−1

where n ∈ Z and α0 is the longest possible braid after moving all powers of the
fundamental braid to the left, which can be formed by series of sequences of
increasing generators from σ0σ1 . . . σn−2 then σ0 . . . σn−3 then σ0 . . . σn−4 etc..,
skipping any value in the run that cannot be obtained in the re-sequencing.

This form has a flavor similar to the descending cycles form given in [3], but
there is no direct correlation. An example probably best illustrates the form.
Consider

β = ∆2σ0σ1σ0σ2σ1σ1σ3σ1σ0σ2

= ∆2σ0σ1σ2σ0σ1σ1σ3σ1σ0σ2

= ∆2σ0σ1σ2σ3σ0σ1σ1σ1σ0σ2

= ∆2σ0σ1σ2σ3σ0σ1σ1σ1σ2σ0

The result is the factorization β = ∆2α0α1α2α3 where α0 = σ0σ1σ2σ3σ0σ1,
α1 = σ1, α2 = σ1σ2, and α3 = σ0. The standardization algorithm is dependent
on some other more basic algorithms that on the surface are less complex then
in practice. Two relatively symmetric algorithms are the commute left and
commute right algorithms.

A second convenient form is to express braids P ∈ Bn in the form P =
∆rA0 · · ·Ak−1 where Ai ∈ Σ̃n, where the decomposition into factors are such
that AiAi+1 is left-weighted [2]. The decomposition into permutation braids
induced by the max run form does not directly correlate into left weighted fac-
torization. It has not been investigated how the two decompositions relate, but
there does seem to be a tendency to induce left-weighted results, but not always.

Our permutation-based expression is formed from the max-run form. It is a
decomposition of a braid β = ∆rα0 · αm−1 in max run form, to an expression

5

of the form β = ∆rA0 · · ·Ak−1 where the Ais represent partitioning of the
elementary braids, without re-ordering, in such a way that Ai is of maximum
length.

4 Algorithms

A variety of algorithms are required to perform group operations using the
maximal run form. We will standardize on zero based indexing, that is all
arrays and consequently strands of a braid will start at the label 0. We will
use the notation b[m] to signify an array of length m, and b[i] to signify the ith

element in the array. Hopefully the distinction between an element in the array,
and the description of the array will be clear from the context

4.1 Permutation to Positive Braid Algorithm

We use the following convention when describing a permutation. We define a
permutation π = (2, 0, 1, 3) to be a permutation on 4 objects, zero indexed to
indicate the following mapping:

element at location 0 7→ location 2
element at location 1 7→ location 0
element at location 2 7→ location 1
element at location 3 7→ location 3

or π(0, 1, 2, 3) = (1, 2, 0, 3), or more symbolically π(a, b, c, d) = (b, c, a, d)

Algorithm 1. Permutation to Permutation Braid

Input: A permutation A = (a0, a1, ..., an−1), represented by an array a[n].
Output: A braid P = σb[0]...σb[m−1], represented by the array b[m]

1. Set i ← 0, set m ← 0, b ← ∅, and set l ← 0.

2. While i < n

(a) If a[i] = l, then

i. Set j ← i− 1
ii. While j > l − 1

6

A. Set b[m] ← j, m ← m + 1, a[j + 1] ← a[j], j ← j − 1
iii. Set l ← l + 1, i ← l.

(b) Otherwise i ← i + 1.

3. Output m and b[m]

The algorithm consists of a double loop, an outer loop where l ranges from 0 to
n− 1 and an inner loop where i ranges from l to n− 1. For each l we eventual
find a value i such that a[i] = l, and so advance l, and restart the i loop from
i = l to n− 1. Eventually l = n and the inside loop fails to find an i such that
a[i] = n, and the algorithm terminates. Runtime is O(n2).

The effect of each iteration over l is to move the element destined for location l by
means of elementary transpositions j− > j+1, and j+1− > j, 2-cycles (j, j+1).
This is then represented by the elementary braid σj . Starting at l = 0, an i0
is found such that a[i0] = 0, the ith0 element is then moved to 0th position, by
elementary transpositions, induced by elementary braids σi0−1 · σ0. We denote
the lth intermediate braid αl, and the updated permutation represented by the
array a[n] as πl. Now when n = 2 this algorithm as a mapping ψΣn −→ B+

n

takes ψ((0, 1)) = σ0, and ψ(e) = e, where σ0 ∈ Σ̃2. Suppose now that this is
true for all values k < n, and consider the mapping ψ : Σn −→ B+

n . Now for
some i ai = 0, and so α0 = σi−1 · · ·σ0, and πi = (0, a0, . . . ai−1, ai+1, . . . an−1.
πi is a permutation on n − 1 letters, and the algorithm (with a simple index
translation) produces a permutation braid β such that α = α0β. It suffices to
show then then α is a permutation braid. Since α0 moves the ith strand to the
0th position, and it does not induce any crosses between the remaining n − 1
strands; and the permutation braid β does not introduce more than one cross
between any of the other n − 1 strands, and does not include σ0 moving the
resting place of the ith strand, no double crosses appear in the product. Hence
the resulting braid is a permutation braid. It is a simple exercise to show the
permutation induced by the resulting braid P is in fact the permutation A.

The permutation p = (2, 0, 1, 3) results in the positive braid α = σ0σ1

The following results were obtained running un-optimized compiled C code on
an Intel Pentium 4, 2.0 Ghz CPU. The table lists the number of permutations
of a given braid index that are added to a empty braid. The timings, and all
subsequent timings are based on 1000 trial calculations using the performance
counter.

7

Braid Index Permutations Time ms
100 1 0.002091
100 5 0.087765
150 1 0.003532
150 5 0.081514
200 1 0.009485
200 5 0.144352
250 1 0.163379
250 5 0.899496

Table 1: Permutation to Braid

4.2 Commute Algorithms

We represent a positive braid P = σa[0]σa[1], ..., σa[m−1], as a zero-indexed array
a[m], where a[i] is the ith index of the elementary braid element, σa[i]. In
this way, the braid, P = σ0σ1, would be represented by the array a[2], where
a[0] = 0, and a[1] = 1. The following algorithm takes a source location s and a
destination location d, s < d, and attempts to commute the elementary element
at location s to location d using the braid group binary operation rules. An
analogous commute left algorithm is also given.

Algorithm 2. Commute Right

Input: A positive braid P = σa[0]σa[1], ..., σa[m−1], given in an zero-indexed
array a[m] and source and destination indexes, −1 < s < d < m
Output: A positive braid P = σb[0]σb[1], ..., σb[m−1], given in a zero-indexed
array b[m], and a resulting index i of the current location of the input generator
at location s

1. While s < d

(a) If a[s] = a[s + 1] Set i ← s, output the array b[m] = a[m] and STOP

(b) If |a[s]− a[s + 1]| > 1 then

i. Set tmp ← a[s + 1]
ii. Set a[s + 1] ← a[s]
iii. Set a[s] ← tmp

iv. Set s ← s + 1
v. Goto (1)

(c) Otherwise

i. j ← s− 1
ii. While (j > −1)

8

A. If a[j] = a[s + 1] then
Apply this algorithm to destination s− 1, and source j.
Set a[k] for k = 0, ..m− 1 to the output
If the resulting location is not s− 1,
set i ← s, Output the array b[m] = a[m] and STOP.
Else
a[s− 1] ← a[s]
a[s] ← a[s + 1]
a[s + 1] ← a[s− 1]

B. s ← s + 1
C. Goto (1)

iii. Else Set j ← j − 1

2. Set i ← s, Output b[m] = a[m], and STOP

This algorithm loops over the distance d − s, at each iteration it attempts to
move the element at location s to location s+1. The worse runtime case occurs
when the difference between the a[s] and a[s+1] is 1. In this case the algorithm
must locate another occurrence of the a[s+1] value to the left of a[s] (searching
a list of length s − 1) and move it to the s − 1 position (performing the same
algorithm on a shorter braid). In order to permute a[s] with a[s + 1] in this
case we use the binary operation rule σiσjσi = σjσiσj when |i − j| = 1. So
this algorithm runs in O(m2), so polynomial in the length m. Many braids will
have twists that prevent the commuting algorithm to succeed, this is expected.
It is also clear that since only applications of the relation defined by the group
operations are used the resulting braid is equal.

Algorithm 3. Commute Left

Input: A positive braid P = σa[0]σa[1], ..., σa[m−1], given in a zero-based indexed
array a[m] and source and destination indexes, −1 < s < d < m
Output: A positive braid P = σb[0]σb[1], ..., σb[m−1], given in a zero-based in-
dexed array b[m], and a resulting index i of the current location of the input
generator at location s

1. While s > d

(a) If a[s] = a[s + 1] Set i ← s, output the array b[m] = a[m] and STOP

(b) If |a[s]− a[s + 1]| > 1 then

i. Set tmp ← a[s− 1]
ii. Set a[s− 1] ← a[s]
iii. Set a[s] ← tmp

iv. Set s ← s− 1

9

v. Goto (1)

(c) Otherwise

i. j ← s + 1
ii. While (j < m)

A. If a[j] = a[s− 1] then
Apply this algorithm to destination s + 1, and source j.
Set a[k] for k = 0, ..m− 1 to the output
If the resulting location is not s− 1,
set i ← s, Output the array b[m] = a[m] and STOP.
Else
a[s− 1] ← a[s]
a[s] ← a[s + 1]
a[s + 1] ← a[s− 1]

B. s ← s− 1
C. Goto (1)

iii. Else Set j ← j + 1

2. Set i ← s, Output b[m] = a[m], and STOP

Table 2 lists the times required to commute an element a specified distance on
various length braids. The times are recorded in millisecons. No indication is
given whether the braid successfully commuted the entire distance.

Braid Index Length Distance Time ms
100 100 14 0.001197
100 500 284 0.001356
150 150 21 0.001251
150 750 428 0.001585
200 200 28 0.001249
200 1000 568 0.001468
250 250 35 0.001280
250 1250 712 0.002476

Table 2: Commute Left

4.3 Permutation Factorization Algorithm

This algorithm takes a positive braid and expresses it as a permutation factor-
ization.

10

Algorithm 4. Permutation Factorization

Input: An array a[m] which represents a positive braid in max run form P =
σa[0]σa[1] · · ·σa[m−1] in Bn

Output: A factorization into permutation braids P = A0A1 · · ·Ap−1 and per-
mutations π0, π1, . . . , πp−1.

1. Allocate and zeroize arrays I[n], B[m], s[n][n], set, p ← 1, k ← 0

2. Set I[i] ← i for i = 0, . . . ,m− 1

3. While k < m

(a) If s[I[a[k]]][I[a[k] + 1] = 1 Then

i. Set s[i][j] ← 0, for −1 < i, j < n

ii. Set B[p] ← k, p ← p + 1

(b) Otherwise

i. Set s[I[a[k]][I[a[k] + 1]] ← 1
ii. Set s[I[a[k] + 1]][I[a[k]]] ← 1
iii. Set t ← I[a[k]]
iv. Set I[a[k]] ← I[a[k] + 1]
v. Set I[a[k] + 1] ← t

(c) Set k ← k + 1

4. Set Ai = σa[B[j]] · · ·σa[B[j+1]−1] for −1 < i < p.

5. Set πi as the permutation induced by the permutation braid, Aj, for−1 <
i < p.

Table 3 contains timings in milliseconds for factoring a positive braid into per-
mutations. The resulting permutation braids are not left weighted, nor is the
starting positive braid considered to be in any specific form.

4.4 Positive Braid to Max Run Form Algorithm

This algorithm takes a positive braid and puts in to Max Run Form.

Note: Algorithm 1.3 uses an analogous algorithm to algorithm 1.2 which com-
mutes an elementary braid left (denoted commute left in the body of the algo-
rithm 1.4).

Note: This algorithm has been modified to put a positive braid into a max run
form, called the max run form.

11

Braid Index Length Time ms
100 200 0.019665
100 500 0.045279
150 300 0.043827
150 750 0.093849
200 400 0.066952
200 1000 0.126926
250 500 0.245058
250 1250 0.366513

Table 3: Permutation Factorization

Algorithm 5. Positive Braid to Max Run Form

Input: An array a[m] representing a positive braid P = σa[0]σa[1] · · ·σa[m−1] in
Bn

Output: An array b[s] and integer r such that the P is factorized into powers of
the fundamental braid and a max run form positive braid, P = ∆rσb[0]σb[1] · · ·σb[s−1]

1. Set b[k] ← a[k] for k = 0, . . . ,m − 1, set k ← 0, set t ← 0, l ← 0,
max ← n · dn/2e, e ← n− 2, level ← 0, r ← 0, s ← m

2. while (k < m)

(a) Set i ← k

(b) While (i < m)

i. If (a[i] = t)
A. Apply the commute left algorithm to b[m] with destination k

and starting position i, and set b[m] to the returning array j
the returning index valule.

B. If (j = k)
1. l ← l + 1
2. if (l = max) Set r ← r + 1, e ← n − 2, t ← −1, l ← 0,
s ← s−max, k ← −1, b[j] ← b[max + j], for j = 0, . . . , s.
3. Set k ← k + 1
4. If(t = e), set e ← e− 1, t ← −1

C. else, Set l ← 0

D. Set t ← t + 1 GOTO 2.c.

ii. set i ← i + 1

(c) If (i = m), set l ← 0, t ← t + 1

12

(d) If (t > e), set t ← 0, e ← e− 1
(e) If (e < 0)

i. Set l ← 0, e ← n− 2
ii. Set level ← level + 1
iii. If (level > 1), set k ← k + 1

3. Output b[s] and r where P = ∆rσb[0]σb[1] · · ·σb[s−1].

Table 4 contains the times in milliseconds for taking a positive braid and ex-
pressing it in max run form. Various braid lengths and braid indexes are used.

Braid Index Length Time ms
100 200 0.356913
100 500 2.050400
150 300 0.735445
150 750 4.116140
200 400 1.974683
200 1000 7.581301
250 500 2.441234
250 1250 10.044801

Table 4: Positive Braid to Max Run Form

4.5 Arbitrary Braid to Max Run Form Algorithm

Note: This is a newly expressed algorithm which takes a random braid and
converts it into a max run form and outputs both a positive braid form and a
permutation form.

Note: Some basic rules about braid groups are used here first is the notion of the
commutability of the fundamental braid ∆ . ∆σi = σn−2−i for i = 0, . . . , n− 2,
similarly for negative powers of the fundamental braid ∆−1σi = σn−2−i∆−1 for
i = 0, . . . , n− 2. Consequently for any integer r, we have the rule:

∆rσi =

{
σi∆r if r (mod n) = 0,
σn−2−i∆r otherwise.

Note: Converting inverses to a power of the fundamental braid. This is a simple
application that the fundamental braid ∆ can be written as a positive braid Hiσi

for any i = 0, . . . , n− 2. Therefore σ−1
i = ∆−1∆σ−1

i = ∆−1Hiσiσ
−1
i = ∆−1Hi.

This is accomplished using Algorithm 6. It is simply substituted here.

13

Note: Hi is of length max−1, where max = n·dn/2e, i.e. Hi = c[i][0], c[i][1] . . . , c[i][max−
1], for some c[n− 1][max− 1] matrix of integers, which can be computed using
Algorithm 6.

Algorithm 6. Arbitrary Braid to Max Run Form

Input: An arbitrary braid Q in Bn - the braid group on n-strings. Q =
σ

p[0]
a[0]σ

p[1]
a[1] · · ·σ

p[m−1]
a[m−1]. Where a[m] is an m-long array of integers in [0, n − 1]

and p[i] = 1, or −1, and the inversion matrix c[n− 1][max− 1]
Output: An array b[k] such that factorization of Q = ∆rσb[0] · · ·σb[k−1] in max
run form.

1. Set b[i] ← a[i] for i = 0, . . . , m − 1, set q ← m, t ← 0, r ← 0, max ←
n · dn/2e

2. While (t < q)

(a) If (p[t] = −1)

i. Set, r ← r − 1, i ← 0, q ← q + max− 1.
ii. While(i < t)

A. Set b[i] ← n− 2− b[i], i ← i + 1
iii. Set, i ← t + max− 1
iv. While (i < q)

A. Set b[i] ← b[i−max + 2], i ← i + 1
v. Set i ← 0
vi. While (i < max− 1)

A. Set b[t + i] ← c[d][i] for i = 0, . . . , max− 2
vii. t ← t + max− 1

(b) else, Set t ← t + 1

3. Apply Algorithm 1.4 to the positive braid σb[0] · · ·σb[q−1] this will result in
a braid in the max run form: ∆hσb[0] · · ·σb[k−1].

4. Set r ← r + h

5. Output the array b[k], and integer r where Q = ∆rσb[0] · · ·σb[k−1] as the
max run form

4.6 Elementary Inverse Algorithm

Note: This algorithm computes an expression for the inverse of an elemen-
tary braid in the form of an inverse of the fundamental braid and a positive
permutation braid.

14

Algorithm 7. Elementary Inverse

Input: An integer i in [0, n− 2] and a braid group Bn.
Output: An array c[max−1], where the inverse of σi is σ−1

i = ∆−1σc[0] · · ·σc[max−1]

1. Set max ← n · dn/2e, allocate b[max], j ← 0, k ← 0, t ← 0

2. While (t < n− 1)

(a) Set j ← 0

(b) While (j < n− 1− t)

i. Set b[k] ← j, k ← k + 1

3. Set j ← max− 1

4. While (j > −1)

(a) If (b[j] = i)

i. Set s ← j, d ← max− 1
ii. Apply Algorithm 1.2 to b[max] with s and d.
iii. Set c[k] ← b[k] for k = 0, . . . , max− 2
iv. Set j ← −1

(b) Else, Set j ← j − 1

5. Output c[max− 1]

4.7 Permutation Factorization to Positive Braid Algorithm

Note: This algorithm converts a permutation-based expression for a braid P =
∆rA0A1 · · ·Ap−1 to a positive braid based expression

Algorithm 8. Permutation Factorization to Positive Braid

Input: A permutation-based braid P = ∆rA0A1 · · ·Ap−1

Output: An array b[m] such that P = ∆rσb[0] · · ·σb[m−1]

1. Set k ← 0, i ← 0, b ← ∅
2. While (i < p)

(a) Apply Algorithm 1 to Ai and get output array a[t] an array of length
t.

(b) Set b[k + j] ← a[j] for j = 0, . . . , t− 1.

(c) Set k ← j + t, i ← i + 1

15

3. Set m ← k

4. Output b[m] where P = ∆rσb[0] · · ·σb[m−1].

4.8 Max Run Form Inverse Algorithm

This algorithm performs an inversion. It takes an arbitrary braid in maximum
run form, inverts it and puts the output in maximal run form.

Algorithm 9. Max Run Form Inverse

Input: An integer r, and an array a[m] representing a braid in maximal run
form P = ∆rσa[0]σa[1] · · ·σa[m−1], and the inversion matrix c[n − 1][max − 1],
where max = n · dn/2e
Output: An integer t and an array b[k] representing the braid P−1 in maximal
run form P−1 = ∆tσb[0]σb[1] · · ·σb[k−1].

1. Set b ← ∅, i ← m− 1, k ← 0

2. While (i > −1)

(a) Set j ← k − 1

(b) While (j > −1)

i. If (b[j] = a[i])
A. Set s ← j, and d ← m− 1.
B. Apply Algorithm 1.2 to b[k], s, and d, and get return values

c[k], and l.
C. Set b[v] ← c[v] for v = 0, . . . , k − 1
D. If (l = d), Set k ← k − 1, i ← i− 1 GOTO 2

ii. Set j ← j − 1.

(c) Set b[k + j] ← c[a[i]][j] for j = 0, . . .max− 1.

(d) Set k ← k + max− 1, t ← t− 1, i ← i− 1

3. Set t ← t + r

4. If (rmod2) == 1)

5. Set i = 0

6. While (i < k)

(a) Set b[i] ← n− 2− b[i], i ← i + 1

7. Output b[k], and t.

16

4.9 Other Computations

While the algorithms presented here are fast they do not combine to create
an effective braid group cryptosystem. This is primarily due to the lack of a
fast braid inversion algorithm for the representation used in this paper. The
algorithm to invert a particular elementary braid is quite trivial. But when
this algorithm is used element wise on a complex braid the resulting braid is
unwieldily and results in a massive braid for standardization. This section con-
tains timings for a number of basic operations required to perform cryptographic
computations. All computations were done on a Intel Pentium 4, 2.0Ghz CPU.

Table 5 contains times in milliseconds for a Standardization and Multiplication
Standardization operations.

Operation Braid Index Braid Length Time ms
Standardize 100 200 0.356913
Standardize 100 500 2.050400
Standardize 150 300 0.735445
Standardize 150 750 4.116140
Standardize 200 400 1.974683
Standardize 200 1000 7.581301
Standardize 250 500 2.441234
Standardize 250 1250 10.044801
Multiply and Standardize 100 100 0.434160
Multiply and Standardize 100 300 3.265176
Multiply and Standardize 150 150 0.739434
Multiply and Standardize 150 450 7.084434
Multiply and Standardize 200 200 1.104407
Multiply and Standardize 200 600 6.399480
Multiply and Standardize 250 250 3.634891
Multiply and Standardize 250 750 15.689327

Table 5: Various Computations

It seems plausible to use some basic properties of the fundamental braid to
develop a fast inversion and standardization technique for this representation.
In particular, the observation that for σ−1

i = ∆−1Bi, Bi has the property that
Bi = σjCi,j for all j! = n − 1 − i. This combined with the property that
∆σj = σn−1−j∆, will result in a reduction in running time by a half of on the
naive approach.

17

References

[1] E. Artin, ‘Theory of Braids,’ Ann. Math. 48, (1947), 101-126.

[2] Birman, J.S., Ko, K.H., and Lee, S.J. , ‘A new approach to the
word and conjugacy problems in the braid groups,’ Adv. Math.
139 (1998), 322-353.

[3] Cha, J. C., Ko, K. H., Lee S. J., Han, J. W., Cheon, J. H. ‘An Ef-
ficient Implementation of Braid Groups,’ AsiaCrypt 2001, LNCS
2248, pp. 148-156. Springer Verlag, Berlin, 2001.

[4] E.A. Elrifai, H.R. Morton, ‘Algorithms for Positive Braids,’
Quart. J. Math. Oxford (2) 45, (1994) 479-497. LNCS 2248
(2001), 144-156.

[5] F.A. Garside, ‘The braid group and other groups,’ Quart. J.
Math. Oxford (2) 78, (1969), 235-254

18

