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Abstract

In this paper we study the feasibility of obtaining protocols for general two-party compu-
tation that remain secure under concurrent composition. (A general protocol can be used for
obtaining secure computation of any functionality.) We consider a scenario where no trusted
setup is assumed (and so, for example, there is no common reference string available to the
parties); this is also called the “plain model”. We present both negative and positive results
for this model. Specifically, we show that a general two-party protocol that remains secure
for m concurrent executions and can be proven via black-box simulation, must have more than
m rounds of communication. An important corollary of this result is that there do not exist
protocols for black-box secure general two-party computation for the case of unbounded con-
currency (where any polynomial number of concurrent executions may be run). On the positive
side, we show that under general cryptographic assumptions, there exist secure protocols for
general two-party computation in the model of bounded concurrent composition (in this model
the number of concurrent executions is fixed and the protocol design may depend on this num-
ber). Our protocol has O(m) rounds of communication, where m is the bound on the number
of concurrent executions, and uses both black-box and non black-box techniques. We note that
this protocol constitutes the first feasibility result for general two-party computation without
setup assumptions for any model of concurrency.

Keywords: secure two-party computation, concurrent composition, black-box and non black-box
simulation.

∗An extended abstract of this paper appeared in the 35th STOC, 2003. This is a preliminary full version.
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1 Introduction

In the setting of two-party computation, two parties with respective private inputs x and y, wish
to jointly compute a functionality f(x, y) = (f1(x, y), f2(x, y)), such that the first party receives
f1(x, y) and the second party receives f2(x, y). This functionality may be probabilistic, in which
case f(x, y) is a random variable. Loosely speaking, the security requirements are that nothing
is learned from the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). These security requirements must hold in
the face of a malicious adversary who controls one of the parties and can arbitrarily deviate from the
protocol instructions (i.e., in this work we consider static adversaries). Powerful feasibility results
have been shown for this problem, demonstrating that any two-party probabilistic polynomial-time
functionality can be securely computed, assuming the existence of trapdoor permutations [40, 25].

Security under concurrent composition. The above-described feasibility results relate only
to the stand-alone setting, where a single pair of parties run a single execution. A more general
(and realistic) setting relates to the case that many protocol executions are run concurrently within
a network. Unfortunately, the security of a protocol in the stand-alone setting does not necessarily
imply its security under concurrent composition. Therefore, an important research goal is to re-
establish the feasibility results of the stand-alone setting for the setting of concurrent composition.

We stress that the need for security under concurrent composition is not merely an issue of
efficiency. Specifically, one cannot claim that in order to ensure security, all executions should
just be carried out sequentially (recall that security under sequential composition is guaranteed by
the stand-alone definitions [7]). This is because the honest parties must actively coordinate their
executions in order to ensure sequentiality. However, the honest parties may not even know of each
other’s existence. Therefore, they cannot coordinate their executions, and a dishonest adversary
that interacts with a number of parties can schedule the executions concurrently. The protocol
being used must therefore be secure under concurrent composition.

The study of security under concurrent composition was initiated in the context of concurrent
zero-knowledge [16, 14]. In this scenario, a prover runs many copies of a protocol with many verifiers,
and zero-knowledge must be preserved. The feasibility of concurrent zero-knowledge in the plain
model (where no trusted setup or preprocessing phase is assumed) was first demonstrated by [37].
In general, the issue of concurrent zero-knowledge has received much attention, resulting in a rather
exact understanding of the round-complexity of black-box concurrent zero-knowledge [30, 39, 10,
29, 35]. Another specific problem that has been studied in the context of concurrent composition
is that of oblivious transfer [18].

In this paper, we consider the question of concurrent composition for general secure two-party
computation. (A general protocol is one that can be used for obtaining secure computation of any
efficient functionality.) The problem of concurrent composition can be defined in many different
ways. One possibility is the model used in the framework of universal composability [8]. This
framework considers a very general setting where many sets of (possibly different) parties run
many protocols, and secure protocols may run concurrently with arbitrary other protocols. The
problem of universally composable two-party computation has been studied with the following
results. It is possible to securely compute any two-party functionality in a universally composable
way, in the common reference string model1 [12]. In contrast, in the plain model, the possibility
of obtaining universally composable two-party computation has been ruled out for a very large
class of functionalities [9, 8, 11]. However, these impossibility results relate specifically to the

1In this model, all parties are given access to a string that is ideally chosen from some distribution.
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definition of universal composability and not necessarily to the composition operation guaranteed
to hold under this definition. Thus it may be possible to obtain concurrent secure computation for
other definitions and/or other models of concurrency. One specific model of interest is the model
considered for concurrent zero-knowledge, where two parties run the same protocol many times
concurrently. We remark that apart from the work on universal composability, there has been no
work on the feasibility of concurrent secure two-party computation in the plain model (for any
model of concurrency).

Thus, one could loosely sum up our current understanding of concurrent composition as fol-
lows. In the common reference string model, the feasibility of universally composable two-party
computation has been demonstrated. However, in the plain model, almost all known results relate
specifically to concurrent zero-knowledge. In particular, nothing is known about the feasibility of
obtaining concurrent general secure two-party computation in the plain model for definitions other
than those of universal composability. Thus, a fundamental question that remains unanswered is
the following:

Can general secure two-party computation that composes concurrently be obtained in the
plain model?

This question is of both theoretical interest and practical importance. (We note that in many
settings, it is not clear how to reasonably obtain the trusted setup of a common reference string.)
The aim of this work is take a first step in providing an answer to this question.

The model of concurrency. The notion of concurrent composition relates to a large number of
possible scenarios. These scenarios range from two parties running the same protocol many times
concurrently, to many pairs of different parties running many arbitrary protocols concurrently. In
this work we consider the first case of two parties running the same protocol many times concur-
rently. We note that this is actually equivalent to the case where many different pairs of parties
run a protocol concurrently, with the following adversarial limitation. Each party is designated to
be either a first party P1 or a second party P2 (this defines the role that it plays in the protocol
execution). The adversary is then only allowed to corrupt a subset of the parties playing P1 or
a subset of the parties playing P2; but cannot simultaneously corrupt parties playing P1 and par-
ties playing P2. Such a scenario can model some real-world scenarios, like a server concurrently
interacting with many clients (and where we assume that there is no simultaneous corruption of
a server and a client). From here on, when we talk of “concurrent composition”, we mean this
model. We remark that this is the exact model considered in the entire body of work on concurrent
zero-knowledge. Although this is a rather limited model, we believe that it serves as a good first
step to understanding concurrent composition of secure protocols. Furthermore, we stress that
even in this limited model, nothing is currently known when no trusted setup is assumed.

An important parameter which must be considered when defining the model is the “amount
of concurrency” that is allowed. In most of the literature on concurrent zero-knowledge, security
must hold for any polynomial number of executions. We call this model unbounded concurrency. In
contrast, [1] considered a model where the number of concurrent executions is a fixed polynomial
in the security parameter, and the protocol design can depend on this number. This model is called
bounded concurrency, and when m is the maximum number of concurrent executions, we talk about
m-bounded concurrent composition (m = m(n) is a fixed polynomial in the security parameter).
Our protocol for general secure two-party computation is cast in the setting of bounded concurrent
composition.
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Our Results

As we have described, in this work we consider the case of a single pair of parties running the
same protocol, in the setting of m-bounded concurrent composition. The definition of security that
we use is a natural extension of the ideal-model based definitions of [26, 33, 5, 7] for the stand-
alone setting. We present both negative and positive results relating to the feasibility of (bounded)
concurrent secure two-party computation in the plain model, under this definition. We begin by
stating our negative result, which is actually a black-box lower bound:

Negative results (black-box lower bound): We show that secure two-party computation with
black-box simulation2 is “hard” to achieve, even in the model of bounded concurrency:

Theorem 1.1 (lower bound): There exists an efficient functionality f such that every protocol Π
that securely computes f under m-bounded concurrent composition, and is proven using black-box
simulation, must have more than m rounds of communication.

We remark that the specific functionality referred to in the theorem is a natural one. Specifically,
we show our lower bound for blind signatures [13], and 1-out-of-2 oblivious transfer [36, 15]. This
result seemingly contradicts the fact that protocols for concurrent oblivious transfer have been
demonstrated [18]. However, in the model of [18], all the inputs in all the executions are independent
of each other. In contrast, we consider a more standard model where quantification is over all inputs,
and in particular, over possibly correlated inputs.

The proof of Theorem 1.1 works by showing that when concurrent composition is considered, the
“rewinding capability” of the simulator is severely limited. In fact, for a protocol of m rounds that
is run m times concurrently, there exists a scheduling of messages so that in one of the executions,
the simulator is unable to carry out any rewinding of the adversary. However, informally speaking,
a black-box simulator must rewind in order to successfully simulate.

Theorem 1.1 implies two important corollaries. First, it demonstrates a black-box lower bound
for general two-party computation (i.e., protocols that can be used for obtaining secure computation
of any efficient functionality). Second, it shows that black-box secure protocols for the unbounded
concurrent model do not exist. This is because the number of rounds of a protocol must be bounded
by a fixed polynomial. However, Theorem 1.1 states that when the number of concurrent executions
is greater than this number of rounds (as can happen in the model of unbounded concurrency),
security cannot hold. In summary, we have the following corollary:

Corollary 1.2 There do not exist secure protocols for general two-party computation in the un-
bounded concurrent model, that can be proven using black-box simulation.

This corollary stands in stark contrast to the setting of concurrent zero-knowledge, where black-
box simulation does suffice for obtaining unbounded concurrent composition [37]. Thus, obtaining
concurrent secure computation is strictly harder than obtaining concurrent zero-knowledge. This
result also highlights a limitation on concurrent zero-knowledge. Specifically, the model for concur-
rent zero-knowledge considers the case that the zero-knowledge protocol is run concurrently with
itself only. However, arguably the most important application of zero-knowledge is its use as a

2In the setting of secure computation, security is proven by demonstrating that for every real-model adversary
A there exists an ideal-model adversary/simulator S such that the output distribution generated by S in an ideal
execution is indistinguishable from that generated by A in a real execution of the protocol; see Definition 1. We say
that an ideal-model simulator S is black-box if it is given only oracle access to the real-model adversary A.
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building block in larger secure protocols. Thus, one would hope that concurrent zero-knowledge
could be “plugged-in” to a larger protocol, in order to obtain concurrent security for the larger
protocol. Our lower bound proves that this cannot be done in a generic way.3 Despite this, our
upper bound does use concurrent zero-knowledge protocols and techniques (in a non-generic way)
in order to achieve bounded concurrent secure two-party computation; see below.

We note that Theorem 1.1 holds even if at any given time, at most two executions are running
simultaneously. (Loosely speaking, in such a case the m-bounded concurrency means that m
different protocol executions may overlap.) This shows that the lower bound does not stem from
deep protocol nesting as in the case in concurrent zero-knowledge. Indeed, a nesting depth of at
most two is needed here.

Positive results (feasibility): Our positive result states that any efficient two-party function-
ality can be securely computed under bounded concurrent secure computation:

Theorem 1.3 (upper bound): Assume that enhanced trapdoor permutations4 and collision resis-
tant hash functions exist. Then, for any two party functionality f and for any m, there exists a
protocol Π that securely computes f under m-bounded concurrent composition.

We remark that Theorem 1.3 is the first feasibility result for general two-party computation in the
plain model, for any model of concurrency.

We now provide a very brief and informal outline of the proof of the theorem. We begin by
observing that secure two-party computation that composes concurrently can be obtained in a
hybrid model where the parties have (concurrent) access to a trusted party computing the ideal
zero-knowledge functionality. This was formally demonstrated in [12]. Given this observation,
the question is whether or not one can transform protocols that use this ideal zero-knowledge
functionality into protocols that run in the real model (without any trusted help). Of course, this
transformation must preserve the concurrent composition, or bounded concurrent composition, of
the protocol.

A naive implementation of the above idea is to replace the ideal zero-knowledge calls with any
concurrent zero-knowledge protocol. However, two problems arise with this idea. First, as we have
mentioned, concurrent zero-knowledge considers a scenario where the protocol is run concurrently
with itself only. Thus, it is not clear that the zero-knowledge simulation can be accomplished if the
protocol is run concurrently to other protocols as well. Second, a problem relating to the malleability
of protocols arises. That is, during the concurrent executions, the adversary may simultaneously
verify and prove zero-knowledge proofs. Thus, it can execute a man-in-the-middle attack on the
zero-knowledge proofs, possibly enabling it to prove false statements. This is a problem because in
order for the simulation of the secure protocol to work, we must be sure that the proofs provided
by the adversary are sound. This second problem is solved by having the parties use fundamentally
different zero-knowledge proofs.5 Specifically, one party proves using the black-box zero-knowledge

3To explain this more rigorously, we note that black-box secure protocols that use ideal calls to zero-knowledge
and compose concurrently exist [12]. Thus, one would hope that a concurrent zero-knowledge protocol could be used
to replace such an ideal call and the resulting protocol would remain secure. However, when the zero-knowledge
protocol is black-box zero-knowledge, such a strategy would result in a black-box secure protocol that composes
concurrently, in contradiction to Corollary 1.2.

4Enhanced trapdoor permutations have the property that a random element generated by the domain sampler is
hard to invert, even given the random coins used by the sampler; see [21, Appendix C]. We note that the construction
of [25] for secure two-party computation in the stand-alone model assumes the existence of enhanced trapdoor
permutations.

5We note that the recent result of [2] for “non-malleable coin-tossing” does not solve this problem. This is because
[2] relies on a very specific scheduling which can be enforced in their scenario, but cannot be enforced here.
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protocol of [35, 37], while the other party proves using the non black-box zero-knowledge protocol
of [1, 3]. It turns out that a careful choice of parameters for these protocols solves the problem of
malleability. However, the first problem (of concurrency with other protocols) still remains. This is
solved as follows. The protocol of [1] can easily be modified so that it remains zero-knowledge when
run concurrently with other protocols (intuitively, this is the case because there is no rewinding).
However, the protocol of [35] is more problematic. We therefore devise a new black-box simulation
strategy for [35] in the setting of m-bounded concurrency, that enables it to be used directly as a
sub-protocol of another protocol.

Having solved these problems, we are able to replace the ideal zero-knowledge calls in any proto-
col with the specific m-bounded concurrent zero-knowledge protocols described above. Putting this
transformation together with a protocol that is secure when given access to the ideal zero-knowledge
functionality, we obtain a protocol that is secure under m-bounded concurrent composition in the
real model. We note that our protocol has O(m) rounds and uses both black-box and non black-box
techniques (thus, our upper bound does not “match” the lower bound).

We conclude with a remark about efficiency. Our protocol requires O(m) rounds to obtain secu-
rity for m concurrent executions. It is therefore far from being “reasonably efficient”. Nevertheless,
the focus of this paper is not efficiency. Rather, we believe that establishing the feasibility of obtain-
ing secure computation in a reasonable model of concurrency is of great importance, irrespective
of efficiency.

2 Definitions: m-Bounded Concurrent Secure Computation

In this section we present the definition for m-bounded concurrent secure two-party computation.
The basic description and definition of secure computation follows [26, 33, 5, 7]. We denote com-
putational indistinguishability by

c≡, and the security parameter (and, for simplicity, the lengths of
the parties’ inputs) by n.

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for
every pair of inputs (x, y), the output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs
of strings. The first party (with input x) wishes to obtain f1(x, y) and the second party (with input
y) wishes to obtain f2(x, y). We often denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)).
Thus, for example, the zero-knowledge proof of knowledge functionality for a relation R, is denoted
by ((x,w), x) 7→ (λ,R(x,w)). In the context of concurrent composition, each party actually receives
a vector of inputs of polynomial length, and the aim of the parties is to jointly compute f(xi, yi)
for every i. The fact that m-bounded concurrency is considered relates to the allowed scheduling of
messages by the adversary in the protocol executions; see the description of the real model below.

We note that our results here also apply to reactive functionalities where inputs and outputs
are supplied over a number of stages. Such a functionality can be modeled by a probabilistic
polynomial-time interactive machine who receives inputs and supplies outputs. This machine can
keep state and thus the inputs from previous computations can influence the outputs of later ones.

Adversarial behavior. In this work we consider a malicious, static adversary. That is, the
adversary controls one of the parties (who is called corrupted) and may then interact with the
honest party while arbitrarily deviating from the specified protocol. The focus of this work is not
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on fairness. We therefore present a definition where the adversary always receives its own output
and can then decide when (if at all) the honest party will receive its output. The scheduling of
message delivery is decided by the adversary.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is trivially secure. This
is formalized by considering an ideal computation involving an incorruptible trusted third party to
whom the parties send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Unlike in the case of stand-alone computation, here
the trusted party computes the functionality m times, each time upon different inputs. Loosely
speaking, a protocol is secure if any adversary interacting in the real protocol (where no trusted
third party exists) can do no more harm than if it was involved in the above-described ideal
computation.

Concurrent execution in the ideal model. Let p(n) be a polynomial in the security pa-
rameter. Then, an ideal execution with an adversary who controls either P1 or P2 proceeds as
follows:

Inputs: The honest party and adversary each obtain a vector of p(n) inputs of length n; denote
this vector by w (i.e., w = x or w = y).

Honest party sends inputs to trusted party: The honest party sends its entire input vector w to the
trusted party.

Adversary interacts with trusted party: For every i = 1, . . . , p(n), the adversary can send (i, w′i) to
the trusted party, for any w′i ∈ {0, 1}n of its choice. Upon sending this pair, it receives back
its output based on w′i and the input sent by the honest party. (That is, if P1 is corrupted,
then the adversary receives f1(w′i, yi) and if P2 is corrupted then it receives f2(xi, w

′
i).) The

adversary can send the (i, w′i) pairs in any order it wishes and can also send them adaptively
(i.e., choosing inputs based on previous outputs). The only limitation is that for any i, at
most one pair indexed by i can be sent to the trusted party.

Trusted party answers honest party: Having received all of its own outputs, the adversary specifies
which outputs the honest party receives. That is, the adversary sends the trusted party a
set I ⊆ {1, . . . , p(n)}. Then, the trusted party supplies the honest party with a vector v of
length p(n) such that for every i 6∈ I, vi = ⊥ and for every i ∈ I, vi is the party’s output
from the ith execution. (That is, if P1 is honest, then for every i ∈ I, vi = f1(xi, w

′
i) and if

P2 is honest, then vi = f2(w′i, yi) .)

Outputs: The honest party always outputs the vector v that it obtained from the trusted party.
The adversary may output an arbitrary (probabilistic polynomial-time computable) function
of its initial input and the messages obtained from the trusted party.

Let f : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗×{0, 1}∗ be a functionality, where f = (f1, f2), and let S be a non-
uniform probabilistic expected polynomial-time machine (representing the ideal-model adversary).
Then, the ideal execution of f (on input vectors (x, y) of length p(n) and auxiliary input z to S),
denoted idealf,S(x, y, z), is defined as the output pair of the honest party and S from the above
ideal execution.
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We note that the definition of the ideal model does not include any reference to the bound m
on the concurrency. This is because this bound is relevant only to the scheduling allowed to the
adversary in the real model; see below. However, the fact that a concurrent setting is considered can
be seen from the above-described interaction of the adversary with the trusted party. Specifically,
the adversary is allowed to obtain outputs in any order that it wishes, and can choose its inputs
adaptively based on previous outputs. This is inevitable in a concurrent setting where the adversary
can schedule the order in which all protocol executions take place. (In particular, the adversary
can schedule the executions sequentially, thereby learning previous outputs before defining the next
input.)

Execution in the real model. We next consider the real model in which a real two-party pro-
tocol is executed (and there exists no trusted third party). Let p(n) and m = m(n) be polynomials,
let f be as above and let Π be a two-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine that controls either P1 or P2. Then, the real
m-bounded concurrent execution of Π (on input vectors (x, y) of length p(n) and auxiliary input z
to A), denoted realm

Π,A(x, y, z), is defined as the output pair of the honest party and A, resulting
from p(n) executions of the protocol interaction, where the honest party always inputs its ith input
into the ith execution.

The scheduling of all messages throughout the executions is controlled by the adversary. That
is, the execution proceeds as follows. The adversary sends a message of the form (i, α) to the honest
party. The honest party then adds α to the view of its ith execution of Π and replies according to
the instructions of Π and this view.6 The adversary continues by sending another message (j, β),
and so on. When unbounded concurrency is considered, any scheduling of the messages by the
adversary is allowed. In contrast, in the setting of m-bounded concurrency, the scheduling by the
adversary must fulfill the following condition: for every execution i, from the time that the ith

execution begins until the time that it ends, messages from at most m different executions can be
sent. (Formally, view the schedule as the ordered series of messages of the form (index, message)
that are sent by the adversary. Then, in the interval between the beginning and termination of
any given execution, the number of different indices viewed can be at most m.) We note that this
definition of concurrency covers the case that m executions are run simultaneously. However, it also
includes a more general case where many more than m executions take place, but each execution
overlaps with at most m other executions.

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition asserts
that a secure two-party protocol (in the real model) emulates the ideal model (in which a trusted
party exists). This is formulated by saying that for every real-model adversary there exists an ideal
model adversary that can simulate an execution of the secure real-model protocol.

Definition 1 (m-bounded concurrent secure computation): Let m = m(n) be a polynomial and let
f and Π be as above. Protocol Π is said to securely compute f under m-bounded concurrent composi-
tion if for every real-model non-uniform probabilistic polynomial-time adversary A controlling party
Pi for i ∈ {1, 2}, there exists an ideal-model non-uniform probabilistic expected polynomial-time

6Notice that the honest party runs each execution of Π obliviously to the other executions. Thus, this is stateless
composition.
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adversary S controlling Pi, such that for every polynomial p(n),
{
idealf,S(x, y, z)

}
n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

c≡
{
realm

Π,A(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

Definition 1 follows a liberal interpretation of “efficient simulation” in that it allows the ideal-model
simulator/adversary to run in expected polynomial-time. Formally, an interactive machine M1 is
expected polynomial-time if there exists a (single) polynomial q(·) such that for every (possibly un-
bounded) machine M2, the expected running time of M1 (upon input of length n) when interacting
with M2 is bounded by q(n).

Black-box security. We say that a protocol Π for securely computing f is proven using black-box
simulation if S is given only oracle access to A. That is, there exists an ideal-model adversary S
such that for every real-model adversary A,

{
idealf,SA(z)(x, y, z)

}
c≡

{
realm

Π,A(x, y, z)
}

We stress that in this case, S is not given the auxiliary input z, but rather has oracle access to A(z)
only.7

Remark. Definition 1 is rather simplistic in that it assumes that all inputs are fixed before any
execution begins. We remark that our upper bound also holds for a more general definition where
inputs for later executions can depend on outputs of earlier executions.

3 Lower Bounds

In this section we prove our black-box lower bounds for m-bounded concurrent secure two-party
computation. Specifically, we show the existence of an efficient functionality f , such that every
protocol that securely computes f under m-bounded concurrent composition, and is proven using
black-box simulation, must have more than m rounds of communication. In order to simplify the
exposition, we count a round of communication to be a pair of messages sent between the parties.
Thus, in more common terminology, we actually show that more than 2m rounds are required for
obtaining m-bounded concurrent composition.

3.1 The Main Result

As described above, two-party protocols are proven secure by demonstrating that for every real
model adversary A controlling one of the parties, there exists an ideal model adversary/simulator
S who can simulate a real execution for A. The adversary S interacts with the trusted third
party to whom it sends input and receives output. Typically, S extracts an input used by A and
sends this to the trusted party. The trusted party then computes the output (based on the input
sent by S and the input of the honest party) and returns the output to S. Having received this
output, S completes the simulation, ensuring that A’s view is consistent with the output received
from the trusted party. Since the output of A depends on the input of the honest party, S must

7The proof of our lower bound (Theorem 1.1) relies on the fact that the black-box simulator S is not given the
adversary’s auxiliary input. Withholding the auxiliary input from S is standard practice, and is used in an essential
way in all black-box lower bounds for zero-knowledge. Indeed, most known (zero-knowledge) black-box lower bounds
are known to not hold when the simulator receives the adversary’s auxiliary input [1].
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query the trusted party in order to complete the simulation. The fact that S needs to interact
with the trusted party is crucial to the lower bound. This is fundamentally different to the case
of zero-knowledge where the verifier’s output is always the same (i.e., a bit saying accept). Thus
a simulator for zero-knowledge need not have any interaction with an external trusted third party.
This difference explains why our lower bound does not apply to concurrent zero-knowledge.

Continuing the above idea, it follows that for S to simulate m executions of a secure protocol,
it must query the trusted party m times. Another key observation is that once the input of an
execution has been sent to the trusted party, further rewinding of A is problematic. This is because
A may choose its inputs depending on the messages it has seen. Therefore, rewinding A may result
in A modifying its input. Since this modified input would also need to be sent to the trusted party
and only one input can be sent to the trusted party in each execution, it is not possible to rewind
A in an effective way.

Next, consider the following scheduling of messages in a concurrent execution: Between every
round of messages in the first execution, place a complete protocol execution. We remark that this
scheduling is possible if the protocol has m rounds and remains secure for m concurrent executions.
(Also, notice that at any given time, at most two different protocol executions are actually running
simultaneously.) Then, by the above discussion, S must send an input to the trusted party between
every round of the first execution (otherwise S can simulate a complete execution without conversing
with the trusted party). Since S cannot rewind A behind the points at which input is sent to the
trusted party, this implies that S cannot rewind A at all in the first execution. However, S is a
black-box simulator and it must be able to rewind in order to successfully simulate. We conclude
that one cannot obtain a secure protocol that has m rounds and remains secure for m concurrent
executions. We now proceed to the formal proof.

Theorem 2 There exists a probabilistic polynomial-time functionality f such that every protocol
that securely computes f under m-bounded concurrent composition and is proven using black-box
simulation, must have more than m rounds of communication.

Proof: We prove this theorem under the assumption that one-way functions exist. This suffices
because it has been shown that secure coin tossing (even for a single execution) implies the existence
of one-way functions [28]. Therefore, if one-way functions do not exist, the coin tossing functionality
already fulfills the requirement of the theorem statement.

Our proof is based on the motivating discussion above and is according to the following outline.
We begin by defining a functionality f for which the lower bound holds, and assume by contradiction
that there exists an m-round protocol Π that securely computes f under m-bounded concurrent
composition. Next, a specific real-model adversary A is constructed who controls P2 and interacts
with P1 in an execution of Π. By the security of Π, there exists an ideal-model simulator S for A.
The adversary A is constructed so that we can claim certain properties of the simulator S. One
important claim about S will be that in one of the executions, it is essentially unable to rewind
A. Furthermore, in this execution, A basically plays the role of an honest P2. Therefore, we have
that S can actually “simulate” while interacting with an honest P2, whom it cannot rewind. This
observation is used to construct a new adversary A′ who controls P1 and attacks P2. In this attack,
A′ invokes S who proceeds to “simulate” for P2. The proof is then concluded by showing that
this enables A′ to obtain information that cannot be obtained in the ideal-model, contradicting the
security of Π.

As mentioned in the above outline, we begin by defining a functionality f for which the lower
bound holds. The functionality definition refers to a secure signature scheme [27] which can be
constructed from any one-way function [38]. It actually suffices for us to use a one-time signature
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scheme. Before defining the functionality, we present an informal definition of secure one-time
signature schemes. A signature scheme is a triplet of algorithms (Gen, Sign, Verify), where Gen is a
probabilistic generator that outputs a pair of signing and verification keys (sk, vk), Sign is a signing
algorithm and Verify is a verification algorithm. Without loss of generality, we assume that the sign-
ing key sk explicitly contains the verification key vk. The validity requirement for signature schemes
states that except with negligible probability, honestly generated signatures are almost always ac-
cepted; i.e., for almost every (vk, sk) ← Gen(1n) and for every message x, Verifyvk(x,Signsk(x)) = 1.
The security requirement of a signature scheme states that the probability that an efficient forging
algorithm M can succeed in generating a valid forgery is negligible. This should hold even when
M is given a signature to any single message of its choice. That is, in order for M to succeed, it
must generate a valid signature on any message other than the one for which it received a signa-
ture. More formally, the following experiment is defined: The generator Gen is run, outputting a
key-pair (vk, sk). Next, M is given vk and outputs a message x. Finally, M is given a signature
σ = Signsk(x) and outputs a pair (x∗, σ∗). Then, we say that M succeeded if Verifyvk(x∗, σ∗) = 1
and x∗ 6= x. (That is, M output a valid signature on a message other than x.) We say that a
one-time signature scheme is secure if for every non-uniform polynomial-time M , the probability
that M succeeds is negligible.

We are now ready to define the functionality f , which can be seen as a “blind signature” type
functionality [13]:

The functionality f :

• Inputs:

• P1 has a signing-key sk (for a secure one-time signature scheme).

• P2 has a verification-key vk and an input α ∈ {0, 1}n.

• Output:

• P1 receives no output and P2 receives σ = Signsk(α).
That is, the functionality can be defined as follows:

(sk, (vk, α)) 7→ (λ,Signsk(α))

There are three important features of this functionality. First, in the ideal model, in order to
compute the output of P2, the trusted third party must be queried. (Otherwise, a signature would
be generated without access to sk and this would constitute a forgery.) Second, if the verification-
key vk given to P2 is the key associated with sk, then party P2 can check by itself that it received
the correct output. Combined with the first observation, this means that P2 can essentially check
whether or not the trusted party was queried in an ideal execution. Third, P1 learns nothing about
P2’s input. These features are central in the proof of the lower bound.

We note that secure computation requirements are for all inputs and all sufficiently large n’s.
Therefore, the security of a protocol must also hold when P1 and P2 are given randomly generated
associated signing and verification keys (i.e., vk and sk such that (vk, sk) ← Gen(1n)). From here
on, we assume that the inputs of the parties P1 and P2 are always such that they have associated
keys. We also assume that P2’s input α and A’s auxiliary input z are uniformly distributed in
{0, 1}n. (Once again, since security holds for all inputs, it also holds for uniformly distributed
inputs.)
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Proving the lower bound. In the remainder of the proof, we show that any m-bounded concur-
rent secure two-party protocol for computing f must have more than m rounds. By contradiction,
assume that there exists such a protocol Π with exactly m rounds (if it has less, then empty mes-
sages can just be added). Without loss of generality, assume also that the first message of Π is sent
by P2.

We consider a scenario where p(n) = m(n) (see Definition 1) and thus there are exactly m
executions overall; denote these m executions of Π by Π1, . . . ,Πm and denote the ith round of
execution Πj by Πj(i). Also, denote the messages sent by P1 and P2 in Πj(i) by Πj(i)1 and Πj(i)2,
respectively. Finally, denote the inputs of P1 and P2 in the ith execution by ski and (vki, αi),
respectively, where each (vki, ski) is independently generated of all other pairs (vkj , skj).8 We now
define an adversary A for Π.

The adversary A: Adversary A corrupts party P2 and schedules the m executions as follows. A
plays Π1(1) (i.e., the first round of Π1) and then runs the entire execution of Π2. Next, Π1(2)
is run and then the entire execution of Π3. In general, the (i−1)th round of Π1 is run followed
by the entire execution of Πi. Since there are m rounds in Π1 and m concurrent executions, we
have that between every two rounds Π1(i−1) and Π1(i) of Π1, there is a complete execution of
Πi. See Figure 1 for a diagram of the schedule.
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Π1(1)
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Π1(3)

Π1(m−1)

Π1(m)

Figure 1: The schedule of the adversary. The arrows refer to messages from execution Π1.

We now describe A’s strategy within each execution. For the first execution Π1, adversary
A replaces its input (vk1, α1) with (vk1, z); recall that z is A’s auxiliary input and that it is
uniformly distributed in {0, 1}n. Then, A runs execution Π1 on this input, following the protocol

8We could have used the same pair (sk, vk) in all m executions and define the functionality f using a many-time
signature scheme.
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instructions exactly. So, apart from replacing part of its input, A plays exactly like the honest
P2 in execution Π1.
For all other executions Πi, adversary A behaves as follows. Recall that execution Πi follows
immediately after round Π1(i−1) (i.e., immediately after A receives message Π1(i−1)1). Now,
A takes the input (vki, αi) of P2 and replaces αi with Π1(i−1)1. Actually, the input αi to f
must be of length n. Therefore, A uses a pseudorandom function F [22] with a random key k,
and replaces αi with Fk(Π1(i−1)1). Formally, the key k must be randomly chosen and included
in A’s auxiliary input; we omit this in order to simplify notation. (Recall that pseudorandom
functions can be constructed from any one-way function, as needed.) After replacing αi with
Fk(Π1(i− 1)1), adversary A honestly follows the protocol instructions of P2 in Πi. By the
definition of f , A’s output from Πi should be a value σi that constitutes a valid signature on
Fk(Π1(i−1)1) using signing-key ski (i.e., σi is such that Verifyvki

(σi, Fk(Π1(i−1)1)) = 1). Now, A
checks that this holds for σi. If yes, A proceeds as in the above-described schedule. Otherwise,
A sends ⊥, outputs the output values from already completed executions (i.e., σ2, . . . , σi−1) and
aborts. At the conclusion, A outputs all of its inputs and outputs from the protocol executions.

(Before proceeding with the proof, we provide some motivation to this construction of the adversary
A. The basic idea is to prevent any simulator S from effectively “rewinding” A in the execution
of Π1. This is achieved as follows. First, A aborts unless its output from Πi is a valid signature
on Fk(Π1(i−1)1), where validity is with respect to vki. Second, in an ideal-model execution, S
can obtain at most one signature that is valid with respect to the verification key vki. (This is
because S does not know the signing key ski. Therefore, unless S can forge signatures, it can only
obtain a signature by querying the trusted third party. However, the trusted party can only be
queried once in each execution, and so only provides a single signature with key ski.) Third, by the
collision resistance of pseudorandom functions,9 S cannot generate a message Π1(i−1)′1 such that
Fk(Π1(i−1)′1) = Fk(Π1(i−1)1). Putting this together, we have that there is at most one Π1(i−1)1
message seen by A for which it does not abort. That is, S is unable to see A’s response on different
Π1(i−1)1 messages, or in other words, S is unable to rewind A in Π1. We note that this heavily
utilizes the first two features of the functionality f as described above.

The above explains why S cannot rewind A in execution Π1. This, in itself, does not lead to
any contradiction. However, recall that in order for S to simulate A, it must send A’s input to the
trusted third party. This means that S must successfully extract A’s input from all executions, and
in particular from Π1. We conclude that S can extract A’s input in Π1 without rewinding A. Such
an S can therefore be used by an adversary who controls P1 and attacks P2, in order to extract
P2’s input (P2 cannot be rewound, but S does not need to rewind it). Since P2’s input remains
secret in f , this contradicts the security of the protocol. This last point utilizes the third feature
of f described above; i.e., the fact that the signature is “blind”.)

Ideal-model simulation of A. By the assumption that Π is black-box secure, we have that there
exists a black-box simulator S such that the result of an ideal execution with S is indistinguishable
from the result of a real execution of A running Π1, . . . , Πm. We now make some claims regarding
the behavior of S. Recall that S is given oracle access to the adversary A. Thus, the oracle given
to S is a next message function that receives a series of messages and computes A’s response in the
case that A received these messages in an execution. We note that if A would abort after receiving
only a prefix of the messages in an oracle query, then its reply to the query is ⊥. We now prove a

9We use pseudorandom functions and not collision resistant hash functions so that we can rely on the existence
of one-way functions only.
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special property of all oracle calls in which A does not abort.

Claim 3.1 For every i, let Qi be the set of all oracle queries sent by S to A during the ideal-model
execution which include all messages from the Πi execution and where A does not abort.10 Then,
except with negligible probability, the same message Π1(i−1)1 appears in every q ∈ Qi.

Proof: The proof of this claim is based on the security of the signature scheme and the collision
resistance property of random (and thus pseudorandom) functions. First, we claim that except
with negligible probability, S does not produce two oracle queries q and q′ containing Π1(i−1)1 6=
Π1(i−1)′1, such that Fk(Π1(i−1)1) = Fk(Π1(i−1)′1). Otherwise, we can construct a machine
M that distinguishes Fk from a random function. Machine M works by emulating the entire
experiment with A and S, including choosing all inputs. The only difference is that instead of A
computing αi = Fk(Π1(i−1)1), machine M queries its oracle with Π1(i−1)1 and sets αi to equal
its oracle response. (Recall that M has oracle access to a function that is either truly random or
equals Fk(·), for a random key k.) Now, on the one hand, if M has oracle access to Fk(·), then
M ’s emulation for S is perfect. Therefore, with non-negligible probability M obtains from S two
messages Π1(i−1)1 6= Π1(i−1)′1 such that its oracle response is the same. On the other hand, if
M has oracle access to a random function, then it will see such a collision with at most negligible
probability. Therefore, with non-negligible probability, M distinguishes a pseudorandom function
from a random one.

We now prove the claim under the assumption that such oracle queries q and q′ are never
produced by S. Intuitively, in this case, the claim follows from the security of the signature scheme.
That is, S is allowed to query the trusted party for the ith execution only once, and this query
provides S with a signature such that if the signature is on the message x where x = Fk(Π1(i−1)1),
then A does not abort. Now, if there are two oracle queries with different Π1(i−1)1 messages (and
thus with different Fk(Π1(i−1)1) values) such that A does not abort in either of them, then it must
be that S provided A with valid signatures on both Fk(Π1(i−1)1) values. Since only one signature
could have been obtained from the trusted party, S must have generated a forgery.

More formally, we construct a forging algorithm M that is given vk and simulates A and the
trusted party for S. That is, M chooses the inputs for both parties in every execution Πj for
j 6= i. This means that M knows the signing-key skj for all of these executions. In contrast, the
verification-key vki of the ith execution is set to be the verification-key vk received by M . The
forger M then perfectly emulates an ideal-model execution for S. This involves emulating A and
the trusted party. Note that the trusted party can be emulated with no problem in all executions
except for Πi (because M knows all the inputs, including the signing keys). In contrast, in order
to emulate the trusted party for the ith execution, M needs to be able to sign with the key that is
associated with vk. M does this by querying its signing oracle. Thus, the emulation is perfect.

Now, assume that with non-negligible probability, there exist two queries q, q′ ∈ Qi with different
messages Π1(i−1)1 and Π1(i−1)′1, respectively. Since A does not abort, it must have received valid
signatures for both Fk(Π1(i−1)1) and Fk(Π1(i−1)′1) under the verification key vki = vk. (Recall
that in this case, Fk(Π1(i−1)1) 6= Fk(Π1(i−1)′1).) Now, when A halts and its view includes the
prefix q, its output includes a signature on Fk(Π1(i−1)1) (because A outputs the output it received
in all executions before it possibly aborts). Likewise, when A halts and its view includes the prefix
q′, its output includes a signature on Fk(Π1(i−1)′1). We conclude that by continuing the emulation

10That is, we consider all of the oracle queries made by S to A throughout the simulation and take the subset of
those queries which include all the messages of Πi. By the scheduling described in Figure 1, such a query defines the
ith message of Π1 that is sent by A (i.e., Π1(i)2).
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with both these prefixes, M can obtain (Fk(Π1(i−1)1), σ) and (Fk(Π1(i−1)′1), σ′) that constitute
two valid message/signature pairs for the key vk. However, during the ideal-model execution, S
can only query the trusted party once for the ith execution. Therefore, M queried its signing oracle
with at most one of these messages. The other pair thus constitutes a valid forgery and M succeeds
with non-negligible probability, in contradiction to the security of the signature scheme.

Next, we claim that S must obtain the input z that is used by A in the execution of Π1. That is,

Claim 3.2 At some point in the ideal execution, except with negligible probability, S must send the
trusted party the pair (∗, z) where z is A’s auxiliary input and ∗ denotes any string.

Proof: In a real execution of Π1, . . . , Πm, the output ofA from Π1 equals σ1 where Verifyvk1
(z, σ1) =

1. This is because A plays the honest party’s strategy in this execution with input (vk1, z), and
thus the execution of Π1 is exactly like an execution between two honest parties. (It is easy to show
that in an execution of a secure protocol with two honest parties, except with negligible probability,
the output of the parties must be according to the functionality definition.) Therefore, it follows
that in an ideal execution with S, except with negligible probability, the output of A must also be
a valid signature σ1 for z. This holds because, otherwise, a distinguisher D who receives all the
parties’ inputs and outputs, including A’s auxiliary input z, could easily distinguish the real and
ideal executions.

Now, in an ideal execution, S is given no information about sk1 and z. Thus, if S queries the
trusted party with (∗, z), it will obtain the necessary signature σ1 on z. Otherwise, it must forge a
signature on z, so that verification with the key vk1 succeeds. Formally, if S can obtain a correct
σ1 without querying the trusted party with (∗, z), then we can construct a forging algorithm M
who breaks the one-time signature scheme. The actual reduction is essentially the same as in the
proof of Claim 3.1 and the details are therefore omitted.

Essentially, Claim 3.1 tells us that for every i, there is only a single Π1(i−1)1 message sent by S
to A for which A does not abort. Thus, any “rewinding” of A is of no help (i.e., in any rewinding,
S will either have to replay the same messages as before, or A will just abort). Furthermore,
Claim 3.2 tells us that S succeeds in “extracting” the input z used by A in the execution of Π1.
These claims are central to our construction of an adversary A′ who corrupts P1 and uses S to
“attack” P2. (Notice that we are switching the identity of the corrupted party here.) The adversary
A′ will internally invoke S and forward all messages from Π1 between S and the honest P2 (instead
of between S and A). Now, since S has only black-box access to A and cannot rewind A, its
interaction with A is the same as its interaction with P2. Recall further that A actually plays
the role of the honest P2 in Π1, and so it makes no difference to S whether it is running an ideal
execution with A or a real execution with P2. This implies that if S can extract A’s input in the
ideal model execution, then A′ (internally running S) can extract P2’s input in a real execution.
However, this will result in a contradiction because P2’s input should not be revealed in a secure
protocol execution (by the definition of the functionality f).

The adversary A0: Let A′ be an adversary for a single execution of Π who corrupts P1 and
interacts with P2. In this execution, P1’s input is a signing key sk and P2’s input is the
associated verification key vk and a uniformly chosen α ∈R {0, 1}n. A′ internally incorporates
S and emulates the concurrent executions of Π1, . . . , Πm while externally interacting in a single
execution of Π with P2. A technicality that arises with such a strategy is that A′ is a strict
polynomial-time machine, whereas S is allowed to run in expected polynomial-time. Therefore,
let q(n) be the polynomial that bounds the expected running time of S. Then, if in the emulation,
S exceeds 2q(n) steps, A′ truncates the execution and outputs time-out. This ensures that A′
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runs in strict polynomial-time. Furthermore, by Markov’s inequality, A′ outputs time-out with
probability at most 1/2.
Notice that S interacts with a trusted third party and with A; therefore, A′’s emulation involves
emulating both of these entities. S also expects to receive the input vector (vk1, α1, . . . , vkp(n), αp(n))
that A receives, and so A′ must provide this in the emulation as well. (Note that S does not re-
ceive A’s auxiliary input z.) Below, we will refer to P2 as the external P2 in order to differentiate
between real interaction with P2 and internal emulation.
The executions Π2, . . . ,Πm are all internally emulated by A′. That is, A′ selects all the inputs
(for both parties) and emulates both A and the trusted party for S. This emulation can be
carried out perfectly because A′ knows all inputs, including the signing keys. However, the
emulation of Π1 is carried out differently. That is, A′ sets S’s input in Π1 to be (vk, α′) where
vk is the verification key associated with sk and α′ ∈R {0, 1}n. (Recall that sk is A′’s input
in the single execution with the external P2 and that, by assumption, sk explicitly contains a
description of vk. Notice also, that α′ has no correlation with the external P2’s input α.) Having
set the input, we now describe how A′ emulates S’s interaction with A in Π1. This emulation
works by having the external P2 play the role of A. That is, let q be an oracle query from S to
A, such that A’s response to q is the ith message of execution Π1. Then, if A would abort upon
receiving q or any prefix of q, adversary A′ emulates A aborting. (Note that A′ can know if A
would abort because this depends only on A’s output from executions Π2, . . . ,Πm, which are all
internally emulated by A′.) Otherwise, q is such that A does not abort, but rather replies with
the ith message of Π1 (i.e., Π1(i)2). Now, if the external P2 has already sent the ith message of
Π, then A′ replays this same message to S as A’s reply. Otherwise, A′ extracts the Π1(i−1)1
message from q and sends it to the external P2, who replies with Π1(i)2. A′ records this message
and passes it to S as A’s reply from the query q. This describes how the role of A in Π1 is
emulated. (The above description implicitly assumes that, without loss of generality, S queries
A with all prefixes of q before querying q.) In order to complete the emulation, A′ also needs to
emulate the trusted party in Π1. However, this is straightforward because A′ knows the signing
key sk (it is its input), and can therefore provide the output as generated by the trusted party.
At the conclusion, A′ outputs its view, including all the messages sent by S to the trusted third
party. This completes the description of A′.

Deriving a contradiction. We first claim that S’s view in the emulation by A′ is statistically
close to its view in an ideal execution with oracle-access to A. The emulation of A and the trusted
third party in executions Π2, . . . ,Πm is clearly identical. We now demonstrate statistical closeness
for execution Π1. First, note that the input distribution for Π1 is the same. That is, S is given a
pair (vk, α′) for P2’s input, and the external P2 really uses the pair (vk, α). (Recall that α and α′ are
independent uniformly distributed n-bit strings.) This is exactly the same as in an ideal execution
where S’s input in Π1 equals (vk, α); yet A replaces α with z and really uses the pair (vk, z) for
input. (Recall that α and z are also independent and uniformly distributed n-bit strings.) Second,
we claim that the distribution over the messages sent by P2 is statistically close to the distribution
over the non-abort messages answered by A. This follows from the fact that both A and P2 follow
the instructions of Π and from the following observation. Denote by Q the set of all oracle queries
q which result in A′ sending a message to the external P2. Then, except with negligible probability,
the same Π1(i)1 messages appear in every q ∈ Q, for every i. This follows directly from Claim 3.1;
i.e., otherwise, with non-negligible probability, there exists a j for which Qj contains two different
Π1(j−1)1 messages. Thus, A’s non-abort replies are consistent with an honest party who receives a
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single series of messages Π1(1)1, . . . ,Π1(m)1. This also implies that the messages replayed from P2

to S are the same as would be sent by A to S, except with negligible probability. Third, A′ sends
⊥ to S in the emulation if and only if A would send ⊥ to S in an ideal execution. Finally, note
that since A′ has the signing key sk, it plays the trusted party’s role perfectly in the emulation.
Combining the above, we have that S’s view in the emulation by A′ is statistically close to its view
in an ideal execution. That is, all abort and non-abort oracle replies received by S in the emulation
by A′ are statistically close to what S would see in an ideal execution with A. Furthermore, the
output from the emulated trusted party that S receives from A′ is identically distributed to the
output that S would receive from the real trusted party in an ideal execution. In conclusion, all
messages seen by S in the two scenarios are statistically close.

Now, by Claim 3.2, except with negligible probability, S must send (∗, z) to the trusted third
party at some stage of the ideal execution, where z is the auxiliary input of A that it uses as input
in Π1. Therefore, with probability at most negligibly less than 1/2, S must send (∗, α) in the above
emulation by A′, where α is the input used by P2 in Π. In such a case, α is included in A′’s output.
(Recall that A′ truncates S’s execution after 2q(n) steps. Therefore, with probability 1/2, S may
not terminate and so may not output (∗, z). This is the reason that A′ obtains α with probability
only 1/2.) In summary, in a real execution of A′ with P2, adversary A′ obtains P2’s input with
probability almost 1/2. Intuitively, this yields a contradiction because P2’s input is not revealed
by the functionality definition. Formally, consider the ideal-model execution for this scenario; let
S ′ be the ideal-model adversary that is guaranteed to exist for A′ in Π. By the security of the
protocol, it must be that S ′ outputs P2’s input α with probability at most negligibly less than 1/2.
(Otherwise, the real and ideal executions can be easily distinguished.) However, in such an ideal
execution, S ′ is given no information on P2’s input α. Since α is uniformly distributed in {0, 1}n

it follows that S ′ can output this value with at most negligible probability. We therefore conclude
that such a protocol Π does not exist.

Notice that Theorem 2 holds if the simulator for the case that P2 is corrupted is black-box, irre-
spective of whether or not the simulator for a corrupt P1 is also black-box (of course, the roles of
P1 and P2 can be reversed). We remark that for our upper bound (Theorem 1.3), one corruption
case is proven using black-box simulation and the other is proven using non black-box simulation.
Therefore, Theorem 2 states that any protocol using such a strategy must have round complexity
greater than m.

Impossibility of (black-box) unbounded concurrent composition. The following impor-
tant corollary demonstrates a severe limitation of black-box simulation in the setting of concurrent
secure two-party computation:

Corollary 3 There exists a probabilistic polynomial-time functionality f for which there does not
exist a protocol that securely computes f under unbounded concurrent composition and is proven
using black-box simulation.

We stress that this does not rule out the possibility of obtaining concurrent protocols for specific
(non-trivial) functionalities; rather, our result holds for the specific “blind signature” functionality
and thus also for general protocols.

Non-uniform versus uniform adversaries. Our proof of the lower bound uses the non-
uniformity of the adversary A in an essential way. That is, we require that A use its auxiliary
input z in the execution of Π1. This is important because, on the one hand, the simulator S must
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not have access to the input used by A. On the other hand, the distinguisher must know which
input is used by A in order to check that the signature generated by S is on the “correct” input. We
solve this by using A’s auxiliary input which is not given to S (but is given to the distinguisher).
We remark that we do not know whether or not Theorem 2 holds also for uniform adversaries.

3.2 Impossibility For Concurrent Oblivious Transfer

Although Theorem 2 and Corollary 3 suffice for ruling out general protocols, we cannot infer a lower
bound from them to any specific functionality other than that of blind signatures. Nevertheless,
we do show that, as a corollary to the above proof, concurrent secure computation of the oblivious
transfer functionality can be ruled out. Recall that 1-out-of-2 oblivious transfer is defined by:
((x0, x1), σ) 7→ (λ, xσ), where x0, x1 ∈ {0, 1}n and σ ∈ {0, 1} [15].

Corollary 4 There does not exist a protocol that securely computes the 1-out-of-2 oblivious transfer
functionality under unbounded concurrent composition and is proven using black-box simulation.

Proof Sketch: We show that a protocol for 1-out-of-2 oblivious transfer that remains secure
under unbounded concurrent composition can be used to obtain a protocol for the blind signature
functionality that remains secure under unbounded concurrent composition. Since we have already
proven an impossibility result for the blind signature functionality, this implies an impossibility
result for the oblivious transfer functionality as well.

We now describe the protocol for blind signatures that uses the 1-out-of-2 oblivious transfer
functionality. We remark that since the concurrent setting that we consider is where only a single
protocol is run many times concurrently, our protocol for blind signatures must use invocations of
the oblivious transfer functionality and nothing else. Our protocol uses the specific construction
of [31] for a one-time signature schemes. The signature scheme of [31] is defined as follows. Let
f be a one-way function. Then, the signing-key equals 2n random points x0

1, x
1
1 . . . , x0

n, x1
n, and

the verification key equals y0
1, y

1
1 . . . , y0

n, y1
n, where for every i, y0

i = f(x0
i ) and y1

i = f(x1
i ). Now,

a signature on the message w = w1 · · ·wn ∈ {0, 1}n equals xw1
1 , . . . , xwn

n . The verification of a
signature is carried by simply checking that for every i, f(xwi

i ) = ywi
i . We are now ready to present

the protocol:

Protocol 1 (blind signatures from oblivious transfer):
• Inputs: Party P1 (the signer) has (x0

1, x
1
1 . . . , x0

n, x1
n), and P2 has (y0

1, y
1
1 . . . , y0

n, y1
n) and w ∈

{0, 1}n.

• The Protocol:

1. P1 and P2 run n copies of a protocol for 1-out-of-2 oblivious transfer that remains secure
under concurrent composition.

2. In the ith execution, P1 inputs (x0
i , x

1
i ) and P2 inputs wi.

3. At the conclusion, P2 outputs xw1
1 , . . . , xwn

n .

The proof of security of the protocol is straightforward. That is, in the case that P1 is corrupted,
the ideal-model simulator/adversary obtains all the xb

i ’s from A. This is because A must send
each xb

i to the oblivious transfer functionality. These strings constitute the entire signing key and
thus the simulator sends them to the trusted party. Likewise, in the case that P2 is corrupted,
the wi’s sent to each copy of the oblivious transfer protocol constitute the entire input w. There-
fore, the ideal-model simulator can send the input to the trusted party and obtain the required
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signature. The key point is that since the oblivious transfer functionality remains secure under
unbounded concurrent composition, the same is true of the blind signature functionality. However,
this contradicts Corollary 3.

We note that the exact lower bound on the number of rounds of oblivious transfer derived
above is as follows: any protocol that securely computes the oblivious transfer functionality under
m-bounded concurrent composition must have more than m/n rounds. This loss of a factor of n
is due to the fact that n copies of the oblivious transfer functionality are needed for every blind
signature execution.

Remark. Notice that Corollary 4 seems to contradict the existence of a protocol for concurrent
oblivious transfer as shown in [18]. However, the model of concurrency of [18] is different to ours in
an essential way. Specifically, they assume that the inputs of the parties are chosen independently
in every execution. Formally, they define the distribution over the inputs as follows: The inputs
of P1 and P2 are chosen according to 2p(n) efficiently samplable distributions X1, . . . , Xp(n) and
Y1, . . . , Yp(n), respectively. Furthermore, the random coins used in each Xi and Yj are independent.
This means that P1 and P2’s inputs are not correlated, and that each party’s inputs in different
executions are also not correlated.

In contrast, our model follows the more standard definition where quantification is over all
inputs (and, in particular, over correlated inputs). Specifically, our definition implies security even
in the case that a single distribution XY outputs all 2p(n) of the party’s inputs (using a single
random tape). Furthermore, we use this correlation in an essential way in our lower bound.

3.3 Extensions of the Lower Bounds

We now show extensions of our lower bounds to more relaxed definitions of security.

Restricting the input correlations. As described above, the current formulation of the lower
bound considers a case where all inputs can be correlated. However, the bound can also be shown
to hold when some independence of inputs exists. We consider a number of possible models:

1. First consider a model where the inputs of P1 and P2 may be correlated in any given execution,
but the inputs between different executions are independent. Formally, in this model the
inputs are chosen according to a series of (known) distributions XY1, . . . , XYp(n), where for
each i, XYi(ri) outputs a pair of inputs (xi, yi) for the parties, and for every i 6= j, the random
coins used by XYi and XYj are independent. We claim that the lower bound holds also for
this model. In fact, the proof of Theorem 2 holds without any modification. This follows
from the fact that the input distribution considered in the proof is such that the inputs in
each execution are chosen independently of each other. Specifically, in each execution, we
choose a pair of signature keys (vk, sk) ← Gen(1n) and a random string α ∈R {0, 1}n. Then,
P1’s input is set to sk, and P2’s input is set to (vk, α). Furthermore, in every execution,
new signing keys are used. Therefore, the random coins used in generating the inputs are
independent in every execution.

2. In the above model, the parties have correlated inputs, but the auxiliary input of the adver-
sary is independent. However, one can also consider a model where the parties’ inputs are
independent of each other, but the adversary’s auxiliary input may be correlated. That is, de-
fine the input distributions as X1, Y1, Z1, . . . , Xp(n), Yp(n), Zp(n), where the random coins used
in each Xi and Yj are independent (including when i = j). However, Zi may be correlated to
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Xi and Yi (formally, give Zi the coins rx
i and ry

i used by Xi and Yi, respectively). As above,
the proof of Theorem 2 also works here. The only difference is that A’s auxiliary input is
defined to be (z, vk1, . . . , vkm), where z ∈R {0, 1}n and vki is the verification key associated
with ski that P1 receives for input in the ith execution. In such a case, the input of P2 does
not include vki (since this would constitute correlated input); rather, P2 receives a random
αi only. The rest of the proof remains the same.

In contrast to the above models where Theorem 2 holds, consider a further relaxation where the
inputs of the parties are chosen independently of each other and independently of the inputs in
other executions. This is the model considered by [18]. Since they demonstrated the feasibility of
oblivious transfer in the model, we know that Theorem 2 does not hold here. We remark that this
model is rather restricted as it does not allow any correlation of inputs between the parties, or any
correlated auxiliary knowledge given to the adversary.

Quasi-polynomial time simulation. Recently, it was suggested that quasi-polynomial time
simulation can be used to solve the difficulties arising in the concurrent composition of protocols [34].
However, assuming sub-exponential hardness, our lower bounds also hold when the simulator is
allowed to run in quasi-polynomial time; i.e., in time npolylog(n). Specifically, the computational
primitives that we use in our proof are pseudorandom functions and one-time signature schemes.
If the security of these primitives holds even in the face of quasi-polynomial time adversaries, then
Theorem 2 and Corollaries 3 and 4 hold even when quasi-polynomial time simulation is allowed.
We note that such security can be obtained assuming the existence of one-way functions that are
hard to invert in time 2nε

, for some constant ε.

4 Tools for our Protocol – Zero-Knowledge

In this section, we develop the basic tools needed for proving Theorem 1.3 (our positive result).
We use standard definitions for zero-knowledge; see [20].

4.1 The Zero-Knowledge Proof of Knowledge of [4]

The zero-knowledge arguments of knowledge of [4] have the interesting property that both simulation
and extraction take place by simulating zero-knowledge proofs (that are used as subprotocols).
That is, the argument system is such that both the prover and verifier prove zero-knowledge proofs
(of membership) during the protocol. Then, the simulator strategy essentially just involves the
simulation of the subproof given by the prover to the verifier. Likewise, the extraction strategy
essentially just involves the simulation of the subproof given by the verifier to the prover. This is
helpful because we can focus on the one issue of simulating zero-knowledge within our setting, and
we obtain both zero-knowledge simulation and knowledge extraction.

Commit-with-extract commitment schemes. A central tool in the construction of the zero-
knowledge arguments of knowledge of [4] is a perfectly-binding commitment scheme with the fol-
lowing extraction property: for every committer, there exists a commitment extractor who is able
to extract the value being committed to by the committer. We first describe how such a scheme
helps in obtaining zero-knowledge arguments of knowledge:

19



Zero-knowledge arguments of knowledge using commit-with-extract. Given a commit-
with-extract commitment scheme, a zero-knowledge argument of knowledge can be constructed as
follows. The basic idea is that the prover commits to a witness using the commit-with-extract
scheme, and then proves that it committed to a valid witness using a zero-knowledge proof of
membership. Intuitively, a knowledge extractor for the argument of knowledge simply uses the
extractor of the commit-with-extract scheme. By the soundness of the proof of membership in
the second stage of the argument of knowledge, we are guaranteed that the value obtained will
be a correct witness with probability only negligibly less than the probability that the verifier
accepts the proof. A simulator for this protocol is also easily obtained: just commit to garbage in
the commit-with-extract scheme and then simulate the proof of membership in the second stage.
See [4] for more details. The protocol description is as follows:

Protocol 2 (zero-knowledge argument of knowledge for R ∈ NP):
• Common Input: x

• Auxiliary input to prover: w such that (x,w) ∈ R.

• Part 1: P and V run a commit-with-extract protocol in which P commits to the witness w.

• Part 2: P proves to V that it committed to a valid witness w in the previous step, using a
zero-knowledge proof (or argument) of membership.11

The commit-with-extract scheme of [4]. The scheme is based on the following non-interactive
commitment scheme that uses one-way permutations: Let f be a one-way permutation and let b be
a hard-core predicate of f . Then, in order to commit to a bit σ, the committer chooses r ∈R {0, 1}n,
lets y = f(r) and sends 〈y, b(r) ⊕ σ〉 to the receiver. Loosely speaking, the commit-with-extract
scheme is defined in the same way except that the value y = f(r) is chosen jointly by the committer
and the receiver using a coin-tossing protocol. Since y is chosen uniformly, the hiding property
remains as in the original scheme. Likewise, because f is a permutation, y defines a unique value
b(f−1(y)) and thus the scheme remains perfectly binding. The novelty of the scheme is that the
extractor can bias the outcome of the coin-tossing protocol so that it knows the preimage f−1(y)
of y. In this case, the extractor can easily obtain the commitment value σ, as desired. We now
describe the protocol:

Protocol 3 (commit-with-extract commitment scheme):
• Input: The committer has a bit σ to be committed to.

• Commit phase:

1. The committer chooses an enhanced trapdoor permutation:12

The committer chooses an enhanced trapdoor permutation f along with its trapdoor t and
sends f to the receiver.13

11Formally, let trans be the transcript of the commit-with-extract execution of part 1, and let d be the decommitment
message that P would use to decommit. Then, P proves the NP-statement that there exists a value d such that
(trans, d) defines the value w, and (x, w) ∈ R.

12See [21, Appendix C] for the definition of enhanced trapdoor permutations. For the sake of understanding the
protocol here, it suffices to think of the case that the domain of the permutation is {0, 1}n.

13For the sake of simplicity, we assume that the protocol uses certified [17] enhanced trapdoor permutations (for
which the receiver can efficiently verify that f is indeed a permutation). However, actually any enhanced trapdoor
permutation can be used; see [4].
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2. The parties run a coin-tossing protocol:

(a) The receiver chooses a random string r1 ∈R {0, 1}n and sends c = Commit(r1) =
Cn(r1; s) to the committer (using any perfectly-binding commitment scheme Cn and a
random string s).

(b) The committer chooses a random string r2 ∈R {0, 1}n and sends r2 to the receiver.
(c) The receiver sends r1 to the committer (without decommitting).
(d) The receiver proves that r1 is the value that it indeed committed to, using a zero-

knowledge argument system. Formally, the receiver proves that there exists a string s
such that c = Cn(r1; s).

(e) The output of the coin-tossing phase is r1 ⊕ r2.

3. The actual commitment:

The committer computes r = f−1(r1⊕ r2) and sends the value v = b(r)⊕σ to the receiver.

• Reveal phase:

1. The committer sends the receiver the string r.

2. The receiver checks that f(r) = r1 ⊕ r2. If this is the case, then it computes b(r) ⊕ v
obtaining σ. Otherwise, it outputs ⊥.

First note that if the coin-tossing protocol ensures that r1 ⊕ r2 is pseudorandom, then the hiding
property of the commitment scheme is preserved. This is because the receiver cannot predict b(r)
from a (pseudo-)randomly chosen f(r) with probability greater than 1/2. We remark that as long
as the proof given by the receiver is sound, the security of the coin-tossing protocol holds.

We conclude by briefly describing the commitment extractor CK for the protocol. CK works
by biasing the outcome r1⊕ r2 of the coin-tossing protocol, so that it knows the preimage under f .
More specifically, CK chooses a random string r, computes f(r) and then makes the output r1⊕r2

equal f(r). This is clearly not possible for a real receiver to do (as the coin-tossing protocol ensures
that f(r) is pseudorandom). However, CK can run the simulator for the proof that B provides
in step 2d of the protocol. Thus, CK sends a commitment to garbage in step 2a of the protocol
and waits to receive the string r2 from the committer. Upon receiving r2, extractor CK computes
r1 = f(r)⊕ r2 and sends r1 to the committer (where f(r) is obtained by choosing a random r and
applying f to r). Now, with overwhelming probability, this is not the string that CK committed
to earlier. Thus CK cannot prove the proof of step 2d. Instead, it runs the simulator for it (and
by the hiding property of commitments, this looks indistinguishable from a real execution). The
key point is that at the conclusion of the protocol, the committer defines f(r) = r1 ⊕ r2 and sends
v = b(r)⊕ σ. However, CK knows the string r and can therefore obtain σ by computing v ⊕ b(r).
Notice that the extraction strategy relies only on the ability to simulate zero-knowledge proofs.

We remark that the extractor for the zero-knowledge protocol can be made to extract a valid
witness with probability that is negligibly close to the probability that the honest verifier accepts
the proof. This extractor works by running the extractor of the commit-with-extract scheme (that
always extracts the value committed to). The extractor then verifies the proof of membership of
part 2, playing the honest verifier. If it accepts the proof, the extractor outputs the value obtained.
Otherwise, it outputs a special symbol ⊥ that is not a valid witness for any statement.

4.2 Black-Box Bounded Concurrent ZK

In this section we describe the concurrent zero-knowledge protocol of Prabhakaran et al. [35] with
a small modification. Whereas the [35] protocol has Õ(log n) rounds, we extend the protocol to
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have O(m) rounds, where m is the maximum number of concurrent executions. Although the
original [35] protocol is concurrent zero-knowledge for any (unbounded, yet polynomial) number
of concurrent executions, their simulation strategy is problematic when the protocol is used as a
module within another larger protocol (as will be the case here). We therefore modify the original
protocol (only with respect to the number of rounds) and provide a new simulation strategy that
also succeeds when the protocol is plugged into another (larger) protocol. We remark that our proof
that the resulting protocol is m-bounded concurrent zero-knowledge is far simpler than all known
proofs for the full concurrency case. (Of course this is facilitated by the fact that in the model of
bounded concurrency we can make the protocol depend on the number of concurrent executions.)
We now present the modified protocol that we denote PRS:

Protocol 4 (Protocol PRS – concurrent ZK proof of Hamiltonicity):
• Common input: a graph G and a security parameter n.

• Preamble length: k

• Part 1 – the preamble:

1. P sends V the first message of a two-round perfectly hiding commitment scheme.

2. V chooses q ∈R {0, 1}n and two series of n · k random strings {q0
i,j} and {q1

i,j} such that
q0
i,j ⊕ q1

i,j = q for every i, j (1 ≤ i ≤ n, 1 ≤ j ≤ k). Then, V sends P perfectly-hiding
commitments to all of the above strings.

3. Repeat k times (for j = 1, . . . , k):

(a) P chooses bj = b1,j , . . . , bn,j ∈R {0, 1}n and sends bj to V .

(b) V decommits to q
b1,j

1,j , . . . , q
bn,j

n,j .

• Part 2 – the proof:

1. P sends the first message of the proof of Hamiltonicity of Blum [6]; see Appendix A.

2. V decommits to q, {q0
i,j} and {q1

i,j} for every i, j.

3. P verifies the validity of the decommitments, and that q0
i,j ⊕ q1

i,j = q for every i, j. If yes,
P sends the second prover-message of the proof of Hamiltonicity, where the verifier query
string is taken as q.

Denote by PRS(k) the protocol where the number of iterations in the preamble equals k. Then,
as we have mentioned, Prabhakaran et al. showed that PRS(Õ(log n)) is unbounded concurrent
zero-knowledge [35]. Nevertheless, we provide a simple proof to the following weaker claim:

Proposition 5 Assuming the security of the described commitment schemes, Protocol PRS(2m)
is an m-bounded (black-box) concurrent zero-knowledge proof system for Hamiltonicity.

Proof: In order to prove this proposition, we need to show completeness, soundness and m-
bounded concurrent Zero-Knowledge. Completeness follows immediately from the completeness of
the Blum’s proof of Hamiltonicity in part 2 [6]. We proceed to prove soundness:

Soundness: By the soundness of the proof of Hamiltonicity of Blum, it suffices to show that
before the verifier query string q is revealed in part 2, it is uniformly distributed (or statistically
close to uniform) relative to P ’s view. However, this follows immediately from the fact that V
commits using a perfectly hiding commitment scheme. Notice that during the preamble, for every
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i, j at most one of q0
i,j and q1

i,j is revealed. Therefore, P obtains no information about q from these
decommitments.

m-bounded concurrent zero-knowledge: We begin by defining some notation and terminology.
Denote by Πk the kth execution of the protocol and by Πj

k the jth iteration of the preamble in the
kth execution. We say that iteration Πj

k opens when the prover P sends bj ∈R {0, 1}n and that it
closes when the verifier V ∗ decommits to q

b1,j

1,j , . . . , q
bn,j

n,j . An execution is said to have been satisfied
by the simulator S if V aborts the execution (by say, refusing to decommit in some iteration), or
if there exists an i and j such that S received decommitments to both q0

i,j and q1
i,j (recall that

q = q0
i,j ⊕ q1

i,j and thus receiving both of these decommitments means that q is revealed). Notice
that once an execution has been satisfied, the simulator can complete the simulation without any
rewinding. In the case of an aborted execution, this is immediate. In the case that q is revealed,
it is possible for S to generate a prover commitment that convinces the verifier, without knowing
a Hamiltonian cycle; see Appendix A. (Actually, this holds only if V ∗ does not decommit later to
a different q′. However, this follows from the computational binding of the commitment scheme.)

Loosely speaking, the simulator S works by playing the honest prover until the first iteration
of an unsatisfied execution closes. Assume that this iteration is Πj

k. Then, S rewinds to the point
in execution k that iteration j opened and sends a new randomly chosen string bj to V ∗. Next, S

continues forward (playing the honest prover) hoping that once again Πj
k is the first iteration to

close. If this occurs and V ∗ decommits, then with overwhelming probability execution k is satisfied.
(Execution k may not be satisfied in the case that the new string bj equals the old one. However,
this happens with probability 2−n only. In all other cases, there exists at least one i for which the
new and old bj ’s differ. For all such i’s, S receives q0

i,j and q1
i,j and thus the execution is satisfied.)

If Πj
k is not the first iteration to close, then S repeats the process again, until it is. We remark that

the expected number of such rewinds is inversely proportional to the probability that Πj
k was the

first potential iteration to close the first time. The simulation then continues in the same manner
until all executions are satisfied. We now proceed to formally define the simulator:

The simulator S: We describe the simulation strategy of S for the remaining set of unsatisfied
executions (initially this set contains all executions). S’s high-level strategy is to satisfy an ex-
ecution, permanently fix the transcript until the point that the execution was satisfied (without
any further rewinding behind this point), and then continue to satisfy another execution from that
point on. Before continuing, we introduce some terminology. We call the point at which S fixes the
transcript a fixed point.14 Furthermore, the current fixed point is the last fixed point to be set by
S. Now, S holds a list of unsatisfied executions and attempts to satisfy an execution from this list
without rewinding behind its current fixed point. According to this strategy, only iterations that
were opened after the current fixed point may be rewound. Thus, we call an iteration potential if
it opened after the current fixed point. Now, S interacts with V ∗(x, z, r) in a black-box manner,
playing the honest prover strategy and waiting for one of the following three events:

1. S receives the verifier commitments q, {q0
i,j}, {q1

i,j} in some execution: When this happens,
S fixes the transcript to this point (i.e., S re-marks the current fixed point to be the mes-
sage containing the verifier commitments) and continues as above. (No execution has been
satisfied; however, we never wish to rewind behind such messages.)

2. V ∗ aborts an unsatisfied execution: When this occurs, the execution is satisfied. Therefore, S
sets a fixed point at the “abort” message, removes this execution from the set of unsatisfied

14Formally, “fixing the transcript” means fixing the prefix of all future oracle calls to V ∗.
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executions and continues as described above. We note that an abort message is just any
detectably illegal message sent by V ∗.

3. A potential iteration closes: Let this iteration be Πj
k and denote the simulator-generated

prover message of this iteration by b
old

j . Furthermore, let r be the random coins used by S
in the simulation since the last fixed point was set. Now, S attempt to learn q0

i,j and q1
i,j

for some i by rewinding V ∗ back to the current fixed point and playing the honest prover
strategy again, using new random coins. (We stress that S does not rewind V ∗ back only
to the opening of Πj

k, but rather rewinds V ∗ all the way back to the current fixed point.15)
Now, S’s aim in these rewindings is to once again have Πj

k be the first potential iteration to
close. Therefore, if V ∗ sends verifier commitments, aborts an execution, or closes a different
potential iteration before Πj

k closes, then S rewinds back to the current fixed point and tries
again (with new random coins). S continues until Πj

k is the first iteration to close (without the
other events occurring). Let b

new

j be the simulator-generated prover message of Πj
k when this

occurs. Then, if b
new

j = b
old

j , simulator S halts outputting a special failure symbol. Otherwise,
there exists at least one i for which b

new

i,j 6= b
old

i,j . Since V ∗ decommitted according to both b
new

j

and b
old

j , we have that S received both q0
i,j and q1

i,j (and thus can compute q = q0
i,j ⊕ q1

i,j).
Therefore, the execution is satisfied.

Having satisfied Πk, simulator S rewinds V ∗ to the current fixed point one more time and
replays the honest prover strategy using the random coins r that it used the first time that
Πj

k closed. Then, S fixes the transcript at the point that Πj
k closes, removes Πk from the

set of unsatisfied executions and continues as above. (We remark that Πj
k definitely closes

because the same coins are used as before and thus the process is deterministic.)

S continues in this way until V ∗ concludes the interaction. However, there are two bad events that
can happen during the described simulation:

1. Part 2 of the proof of an unsatisfied execution is reached: If this happens, then S is stuck
because it does not know q and cannot prove the proof. Therefore, S halts outputting a
special unsatisfied symbol.

2. V ∗ decommits to a different q′ 6= q in part 2 of the proof: That is, let q be the string obtained
by S in some satisfied (non-aborted) execution and let q′ 6= q be the string decommitted to
by V ∗ in part 2 of the proof of that execution, If this happens, then once again S cannot
complete the proof (because it only knows how to answer the query string q and q′ 6= q).
Therefore, S halts and outputs failure.

This completes the description of S.

Proof of the simulation strategy: We begin by showing that the expected running-time of
S is polynomial in n.

Claim 4.1 The expected-time taken by the simulator S to set each fixed point is polynomial in n.

Proof: At any stage of the simulation there are at most 3m possible events that can cause S to
set a fixed point:

15This simplifies the analysis later and explains why fixed points are also set after verifier commitments are sent.
Specifically, if the current fixed point happened to be before the verifier commitments of Πk were sent, then after a
rewinding, V ∗ may change the q and qb

i,j values, rendering the rewinding useless.
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1. V ∗ sends the verifier commitments in one of the executions: The time it takes for S to deal
with each of these (m possible) events is polynomial in the number of messages sent since
the previous fixed point. Specifically, S plays the honest prover strategy in part 1 of some
executions and uses the simulation strategy of part 2 of other executions (when given q).
Since all of these messages can be computed in a fixed polynomial-time and there are at most
a fixed polynomial number of messages (m times the number of rounds in PRS), this event
contributes at most a fixed polynomial amount of work.

2. One of the unsatisfied executions is aborted by V ∗: As in the previous case, S does a fixed
polynomial amount of work here. Also, as above, the number of such possible events is at
most m.

3. A potential iteration in any of the (unsatisfied) executions is closed: Unlike the previous cases,
here S may do a lot of work. We first remark that there are only m different events that
can occur here. This holds because each unsatisfied execution can have only one potential
iteration between any two fixed points. (As soon as the first potential iteration closes, a new
fixed point is set. Therefore, no execution can open two iterations between two fixed points.)
Thus, the kth event is the case that the potential iteration that closes belongs to execution
Πk. We proceed to show that the expected-time taken by S in the simulation for each of
these events is polynomial in n. The sum of all these times is then a (coarse) upper bound
on the expected time taken to set a fixed point due to such an event.

Let pj
k be the probability that Πj

k is the potential iteration that closes before any other event
causing a fixed point occurs. (As we have mentioned, this probability is non-zero for only
one iteration j in execution k.) We remark that this probability is a function of V ∗’s input
tapes (x, z, r) and the transcript t that is fixed until this point and that the probability is
taken over S’s coins only. Now, the expected number of repetitions by S until it satisfies Πk

or outputs failure is exactly 1/pj
k. This is because S plays the honest prover strategy16 for all

repetitions, with the only difference being that new uniformly chosen coins are used in each
repetition. In each repetition S does a polynomial amount of work. Therefore, the overall
contribution to the expected-time is

pj
k ·

1
pj

k

· poly(n) = poly(n)

The proof is completed by summing over the expected time for all of the 3m possible events.
We thus have that the expected time taken by the simulator to set a fixed point is bounded by
O(m · poly(n)) = poly(n).

Now, recall that in the simulation, S places at most 2m fixed points, where m = poly(n). Therefore,
the following claim is derived from Claim 4.1 and the linearity of expectations:

Claim 4.2 The simulator S runs in expected-time that is polynomial in n.

Next, we demonstrate that S outputs a distribution that is computationally indistinguishable from
a real execution between P and V ∗. We first bound the probability that S outputs a special failure
or unsatisfied symbol.

16To be exact, S may deviate from the honest prover strategy if part 2 messages are sent during the rewinding.
However, the important point to notice is that even in this case, S generates exactly the same distribution in the
first attempt and in later rewindings (because it deviates in the same way also in the first attempt). The expected
number of repetitions is therefore exactly 1/pj

k.
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Claim 4.3 The probability that S outputs failure is negligible.

Proof: S outputs failure if for some j it happens that b
new

j = b
old

j or if V ∗ decommits to some
q′ 6= q in part 2 of the proof. Now, the probability that S outputs failure due to the first reason is
negligible. This is because b

new

j = b
old

j can happen only if the same random n-bit string is chosen
in two rewinding attempts (when simulating the case that a potential iteration closes first). Since
S runs in expected polynomial-time (as already proven), there exists a polynomial q(·) such that
the probability that S exceeds q(n) steps is at most µ(n), where µ(·) is a negligible function. In
particular, this means that except with negligible probability, the number of rewinding attempts
overall is bound by q(n). We therefore have that the probability that there exists a j for which
b
new

j = b
old

j , is bounded by q(n)/2n + µ(n), which is negligible.
Next, we claim that the probability that V ∗ decommits to q′ 6= q is negligible. This is shown

by reducing this to the computational binding of the commitment scheme. The proof of this is
straightforward and is therefore omitted. (An identical argument is shown in [23, Claim 3].)

Next, we show that S never outputs the special unsatisfied symbol.

Claim 4.4 The probability that S outputs unsatisfied equals 0.

Proof: S only outputs unsatisfied in the case that it reaches part 2 of the proof in an execution
that it did not satisfy. We can assume that S does not output failure (because if it did, then it would
not output unsatisfied). This implies that whenever S finds a potential iteration that closes, the
execution to which this iteration belongs is satisfied. Thus, it suffices to show that every execution
which is not aborted has a potential iteration which is the first to close after some fixed point.

This follows from the following argument. Assume that Πk is not satisfied when it reaches part 2
of its proof. Now, there are 2m iterations in Πk’s preamble. Furthermore, as we have mentioned
above, every unsatisfied execution can only open at most one iteration between every two fixed
points. Therefore, S must have placed 2m fixed points before part 2 of Πk is reached. However, S
only places fixed points when verifier commitments are sent (at most m) and when executions are
satisfied (at most m, including Πk). Thus, Πk must have been satisfied.

Having established that S outputs a special symbol with at most negligible probability, we are
ready to prove that the simulation is successful. That is,

Claim 4.5 Let L be the language of Hamiltonian graphs. Then, for every polynomial-time verifier
V ∗, it holds that

{
〈P, V ∗(z, r)〉(G)

}
G∈L,z,r∈{0,1}∗

c≡
{
SV ∗(G,z,r)(G)

}
G∈L,z,r∈{0,1}∗

Proof: We assume that S does not output failure or unsatisfied. This is fine because these events
happen with at most negligible probability. Now, we define the following hybrid experiment. Let
MV ∗ be a machine who is given a Hamiltonian cycle to the graph G and works as follows. M
follows the strategy of S exactly with the following exception. When M reaches part 2 of the proof
for a satisfied execution, it uses its knowledge of the witness to prove the proof in the same way as
the honest prover (rather than using its knowledge of the query string q as S does).

We first claim that the distribution generated by MV ∗ is identical to the distribution generated
in a real execution between P and V ∗. This can be seen by separately considering segments of the
transcripts between fixed points. Clearly, all such segments for which S (and therefore M) does
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no rewinding are identical. However, notice that even when M does rewind (i.e., in the case that
an iteration closes), the final transcript of that segment is according to the random coins used by
M before any rewinding took place. Therefore, the transcript is exactly the same as for an honest
prover who does no rewinding.

Next, we consider the difference between the distribution generated by MV ∗ and the distribution
generated by S. The difference between these distributions is with respect to the values committed
to in the prover commitments of part 2 of the proof. Specifically, M always commits to a random
permutation of the graph whereas S sometimes commits to a graph containing a simple cycle only
(see Appendix A). Thus, the indistinguishability of the distributions reduces to the computational
hiding of the prover-commitments in part 2 of the protocol. The actual reduction is straightforward
and is therefore omitted.

This completes the proof of Proposition 5.

On the length of the preamble. The number of iterations in the preamble is chosen so that all
executions are guaranteed to be satisfied before part 2 of the proof is reached; this is demonstrated
in Claim 4.4. Specifically, it holds that the number of iterations needs to be greater than or
equal to the number of fixed points that are placed by the simulator. In the context of bounded
concurrent zero-knowledge, this number of fixed points depends only on the number of concurrent
executions that take place. We stress that we can extend the preamble to be of any polynomial
length (greater than or equal to 2m), and the number of fixed points required remains 2m only.
This will become important when Protocol PRS is used for obtaining bounded-concurrent secure
two-party computation.

We also remark that the length of the preamble can be reduced to m (rather than 2m). This
is achieved by setting a fixed point only when an execution is satisfied, and not when verifier
commitments are sent. Once a potential iteration closes, the simulator rewinds only to the point
at which that iteration opened. Nevertheless, we chose to have a preamble of length 2m because
this makes the analysis simpler (which we believe to be preferable for this work).

On the choice of the [35] protocol. There are currently two known protocols that solve the
problem of concurrent zero-knowledge in the plain model and with no timing assumptions. The
first is that of Richardson and Kilian [37] and the second is that of Prabhakaran et al. [35] that
we use here. The reason why we chose to use the protocol of [35] rather than that of [37] is
that it allows for a simpler and cleaner analysis. First, the simulation strategy of [35] is such
that the simulator generates exactly the same distribution in every rewinding (see the proof of
Claim 4.2 above and Footnote 16 therein). This is in contrast to the [37] protocol where there is a
negligible difference between the distributions generated in the first pass and in later rewindings.
This negligible difference introduces technical difficulties which are solvable (as shown in [23]), but
nevertheless complicate the analysis. Another (secondary) advantage of the [35] proof is that it is
possible to have the simulator output the transcript based on what it saw in the first pass (see the
description of the simulator in the proof above). Thus it is easy to justify that the output of the
simulator is indistinguishable from the output generated in a real proof. (We remark that in the
proof of [37], the simulator must output the transcript based on what it saw in a later rewinding.)

4.3 Non-Black-Box Bounded Concurrent ZK

In this section, we describe the bounded concurrent zero-knowledge protocol of Barak [1]. The
high-level outline of the construction of [1] is as follows. In the first part of the protocol, the
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prover and verifier run a “generation protocol” with the following property. A simulator is able
to obtain some trapdoor information during the generation protocol that will later enable it to
simulate the proof. In contrast, in a real execution between the prover and verifier, the prover has
only a negligible chance of obtaining this trapdoor information. Then, the second part of the zero-
knowledge protocol is designed such that given the trapdoor information, it is possible to complete
the proof (without knowing any witness to the statement being proved). Thus, the simulator works
by obtaining the trapdoor information in the first part and then using it to complete the proof in the
second part. In contrast, in a real interaction the prover will not obtain the trapdoor information
and thus its proof must be based on the validity of the statement being proved.

In this section, we will only describe the generation protocol of the first part of the protocol
of [1]. This suffices for our purposes here. For details regarding the second part, which uses
universal arguments, see [1, 3].

Easy-hard relations. The idea behind an easy-hard relation is that in a real interaction between
the prover and verifier, it is hard for the prover to “hit” the relation. In contrast, it is easy for
the simulator to “hit” the relation. Thus, such a relation can be used for part 1 of the proof as
described above. Formally,

Definition 6 (easy-hard Ntime(nlog log n) relations): Let R ⊆ {0, 1}∗×{0, 1}∗ be an Ntime(nlog log n)
binary relation. We say that R is an easy-hard relation17 if there exist two interactive probabilistic
polynomial-time generating algorithms P and V that satisfy the following two properties:

1. Hardness: For any (non-uniform) polynomial-time machine P ∗, if τ is the transcript of the
interaction of P ∗ and V on input 1n, then the probability that P ∗ outputs σ such that (τ, σ) ∈ R
is negligible in n.

2. Easiness: There exists a polynomial-time computable transformation that takes any (non-
uniform) polynomial-time machine V ∗ and outputs a (non-uniform) probabilistic polynomial-
time simulator S∗ such that S∗ outputs a pair (v, σ) and:

(a) The first string v is computationally indistinguishable from the actual view of V ∗ when
interacting with P . (The view of a party consists of the contents of its tapes and the
messages that it receives.)

(b) Let τ be the transcript that is derived from v (note that the transcript of an execution
can be derived deterministically from either party’s view). Then, except with negligible
probability, (τ, σ) ∈ R.

The pair (P, V ) is called a generation protocol for R.

The witness σ for τ is the trapdoor information that was mentioned in the motivating discussion
above. The “hardness” requirement says that a real prover will not be able to obtain such a σ;
whereas the “easiness” requirement says that the simulator will obtain a σ as required. In the
second part of the argument system of [1], the prover essentially proves that either the original
statement is true or that it knows σ from the generation protocol.

We remark that we have chosen to denote the generating algorithms by P and V as they are
played by the prover and verifier in the zero-knowledge protocol. However, this notion can be

17Such a relation is called interactive strong easy-hard in [1]. For the sake of brevity, we drop “interactive” and
“strong” from the name.
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defined independently of zero-knowledge (and indeed, the above is independent of the statement
being proved).

Barak showed that assuming the existence of hash functions that are collision-resistant against
nlog log n-time adversaries, it suffices to prove the existence of an Ntime(nlog log n) easy-hard relation
in order to derive zero-knowledge. Furthermore, if the hardness and easiness properties hold in the
bounded concurrent model, then bounded concurrent zero-knowledge is obtained [1]. We note that
the hardness assumption regarding the hash functions has been reduced so that it suffices for them to
be collision resistant against any polynomial-time adversary [3]. However, this requires some special
properties in the construction of the easy-hard relation as well. We ignore these technicalities and
just remark that the weaker hardness assumption suffices for the results presented here. We now
proceed to describe the easy-hard relation of [1] for achieving bounded concurrent zero-knowledge.

The Barak easy-hard relation: The main idea behind the relation is to have the transcript τ
contain a “proof” that P knows the next message function of V . The hardness property follows
from the fact that P ∗ cannot know V ’s next message function (and in particular, P ∗ cannot guess
V ’s random-tape). In contrast, the simulator S∗ does hold V ∗’s next message function and can
therefore succeed in generating this “proof”. Of course, the only question remaining is what does
it mean for P to “prove” that it holds the next message function of V ? This was solved by [1] in
the following way: P sends V a commitment c to a machine M , and V replies with some random
string r. Then, we say that P knows V ’s next message function if M(c) = r (i.e., when applying
the committed machine M to the commitment value c, the output is exactly the message sent by
V upon receiving the commitment value c). The key point behind the hardness is that if r is of
high enough entropy, then P ∗ cannot succeed in committing to the correct M . In contrast, since
the simulator S∗ actually holds the code of V ∗, it can just set M = V ∗ (including the contents of
all of V ∗’s tapes). Of course, in this case it indeed commits to the correct next message function.

The above works for the stand-alone case. However, in the bounded concurrent model, V ∗ will
not necessarily respond immediately with r. In particular, it may send messages belonging to other
executions first. Therefore, it will not hold that M(c) = r. The solution to this problem is to say
that P holds the next message function if there exists a “short” string y such that M(c, y) = r.
By “short”, we mean that y should be at least n bits shorter than the random string r sent by
V . The length of r is fixed to be some polynomial `(n), where `(n) bounds the length of all
messages received by V during all the concurrent executions. We now describe why this fulfills the
requirements of being an easy-hard relation.
• Hardness: In order for a cheating P ∗ to succeed, it must be that M(c, y) = r. However, M and

c are fixed before V chooses r. Furthermore, |r| ≥ |y|+n. Therefore, the Kolmogorov complexity
of r is too high for it to be predicted by y, and P ∗ can “hit” the relation with at most negligible
probability.

• Easiness: As in the stand-alone case, the simulator S∗ commits to M = V ∗. However, here S∗

must also determine the string y. This string y is set to be all the P -messages sent by S∗ from
the time that S∗ committed to M (in this execution) until the time that V ∗ replies with r (in
this execution). Since M = V ∗, it turns out that indeed M(c, y) = r. Notice also that since the
total length of all P -messages in all concurrent execution is less than `(n), it is possible for S∗

to define y in this way. Thus, the “easiness” requirement holds.
For more details, see [1]. The generation protocol and easy-hard relation of Barak are as follows:

Construction 1 (Barak generation protocol for an easy-hard relation R):
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• Common input: 1n

• Length parameter: `(n)

• The protocol:

1. V chooses h ∈R {0, 1}n (where h defines a collision-resistant hash function with range in
{0, 1}n) and sends it to P .

2. P sends V a commitment c = Cn(0n).

3. V chooses r ∈R {0, 1}`(n) and sends r to P .

We now define the easy-hard relation R for which the above is a generation protocol. Let R be the
relation of pairs {((h, c, r), (M, s, y))} for which the following holds:

1. M is a program of length at most nlog log n where n
def= |h|.

2. c is a commitment to a hash of M using coins s. That is, c = Cn(h(M); s). Note that
|h(M)| = n.

3. U(M, c, y) outputs r within nlog log n steps, where U is a universal Turing machine.

4. |y| ≤ |r| − n.

Barak has shown that Construction 1 is a generation protocol in the bounded concurrent model
for the easy-hard relation R, as long as `(n) (that determines the length of r) fulfills the following
requirement: The total length of all messages sent by P in all executions is less than `(n) − n.
Thus, both the soundness and zero-knowledge properties of the protocol of [1] hold as long as this
condition is fulfilled.

We note that the length of the messages sent by P in part 2 of the zero-knowledge protocol
of [1] can be bound by n2. Since P only sends n bits in the generation protocol, we can bound the
total size of all P -messages in the protocol of [1] by n2 +n. Therefore, for m concurrent executions,
one can set `(n) = 2mn2 and it is guaranteed that r is long enough.

5 A Special-Purpose Composition Theorem

In this section, we define a model whereby the parties run a protocol while being given access to an
ideal zero-knowledge (proof of knowledge) functionality. We then present a composition theorem
for this model. This theorem is the central tool in our construction of m-bounded concurrent secure
two-party computation.

5.1 The ZK-Hybrid Model

In the ZK-hybrid model, all parties have access to many concurrent copies of the following ideal
zero-knowledge functionality, parameterized by an NP-relation R:

((v, w), λ) 7→ (λ, (v,R(v, w)))

That is, the first party (the prover) sends a statement v and a witness w to the trusted party
computing the functionality. The second party (the verifier) then receives the statement v and
a bit b signalling whether or not the prover provided a valid witness for v. We note that this
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functionality is actually a proof of knowledge. In order to model a situation where the verifier may
reject a proof of even a true statement, we define a special symbol ⊥ such that for every relation
R and every v, it holds that (v,⊥) /∈ R.

Let p(n) be a polynomial and let x, y ∈ {0, 1}p(n) and z ∈ {0, 1}∗. Then, we denote by
zk-hybridm

Π,A(x, y, z) the output distribution of p(n) concurrent executions of protocol Π in the
ZK-hybrid model, where the scheduling is according to what is allowed in the model of m-bounded
concurrency. We stress that the only difference between this model and the real model, is that the
zero-knowledge proofs are provided using “trusted help”.

5.2 Motivation for the Composition Theorem

Informally speaking, the composition theorem states that a real-model protocol Π can be con-
structed from any ZK-hybrid model protocol Π′ so that the following holds: for any real model
adversary A running Π there exists a ZK-hybrid model adversary A′ running Π′ so that the output
distributions in both cases are essentially the same.

The basic idea behind the theorem is to construct Π from Π′ by replacing the ideal calls to
the zero-knowledge functionality with concurrent zero-knowledge protocols. However, two main
problems arise when attempting to implement such a strategy:

1. Malleability/Soundness: Assume that in the protocol Π′ both parties prove zero-knowledge
proofs (as is indeed the case for all known protocols for secure two-party computation). Then,
we must ensure that the adversary cannot maul the zero-knowledge proof of the honest party
in order to cheat. On a technical level this problem arises because the simulation of a zero-
knowledge proof is actually “cheating”. Therefore, we need to prevent the adversary from
utilizing our cheating/simulation in order to cheat in its proofs. In short, the problem here is
of soundness and we remark that a naive instantiation of the ideal calls with zero-knowledge
protocols would definitely suffer from this problem.

2. Simulation under concurrency with other protocols: In the setting of concurrent zero-knowledge,
the protocol in question is run concurrently to itself only. In contrast, here the zero-knowledge
protocol is run concurrent to itself and to other protocols. Now, the natural way to construct
the ZK-hybrid model adversary A′ from the real model adversary A is to have A′ simulate
the zero-knowledge proofs for A, while all the other messages (i.e., the messages from the
ZK-hybrid model protocol Π′) are forwarded to the external honest party. This causes a
problem because messages from the zero-knowledge proofs in some executions may be inter-
leaved with messages of Π′ in other executions. Since the messages of Π′ are forwarded by A
to an external party, A cannot rewind A′ at these points. This may conflict with the necessity
to rewind in order to simulate the zero-knowledge (if the simulation strategy is indeed based
on rewinding).

We solve the first problem by using different zero-knowledge protocols so that the adversary cannot
maul one protocol in order to cheat in the other. Specifically, we have one of the parties pro-
vide proofs using the (non black-box) zero-knowledge protocol of [1] (see Section 4.3), while the
other party provides proofs using the modified (black-box) zero-knowledge protocol of [35] (see Sec-
tion 4.2). Loosely speaking, it turns out that these protocols are both non-malleable with respect
to each other. That is, both of the protocols remain sound even if the adversary proves one protocol
while simultaneously receiving a simulated proof of the other.

The second problem is solved as follows. First, the protocol of [1] does not use rewinding
for the simulation. Therefore, no problem arises. (We remark that there are parameters for the
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protocol of [1] that must be modified in this scenario, but this is reasonably straightforward.) In
contrast, the protocol of [35] does use rewinding. We solve this problem by using the simulation
strategy demonstrated in Section 4.2. Recall that this strategy is almost “straight-line”. That is,
the simulator deals sequentially with each execution and places fixed points behind which it never
needs to rewind. The simulation succeeds as long as the number of iterations in the preamble
is greater than or equal to the number of fixed points that are placed. Thus, we increase the
length of the preamble so that the simulator can place a fixed point for every Π′-message that is
sent. This ensure that no rewinding behind a Π′-message is necessary. This strategy is based on
the methodology used by [24] to solve the problem of simulating zero-knowledge while external
messages may be sent.

5.3 The Composition Theorem

In this section we show that any protocol Π′ that runs in the ZK-hybrid model can be transformed
into a protocol Π in the real model. The transformation is such that any real-model adversary A
for Π can be simulated by a ZK-hybrid model adversary A′ for Π′ in the setting of m-bounded
concurrency. We remark that the protocol Π depends both on Π′ and on the concurrency bound m.

An important technicality of the transformation is that the ZK-hybrid model adversary A′ runs
in expected polynomial-time, irrespective of the distribution over the Π′-messages that it receives.
That is, even if the distribution over the Π′-messages that it receives could not be generated by any
machine, A′ still remains expected polynomial-time.18 This will be used later in order to ensure
that the ideal-model adversary (obtained in Section 6) runs in expected polynomial-time.

Theorem 7 Let Π′ be a two-party protocol for the ZK-hybrid model and let m(·) be polynomial
in n. Then, assuming the existence of enhanced trapdoor permutations and collision resistant hash
functions, there exists a protocol Π for the real model with the following property. For every
non-uniform probabilistic polynomial-time adversary A running Π in the real model, there exists
a non-uniform probabilistic expected polynomial-time adversary A′ running Π′ in the ZK-hybrid
model such that for every polynomial p(n),
{
zk-hybridm

Π′,A′(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n));z∈{0,1}∗
c≡

{
realm

Π,A(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

Furthermore, the expected running-time of A′ is polynomial for every distribution over the messages
of Π′ that it may receive.

Proof: We begin by showing how to construct Π. Denote the participating parties by P1 and P2.
Then, both P1 and P2 may prove zero-knowledge proofs in Π′. Protocol Π is obtained by replacing
all the ideal zero-knowledge calls of Π′ with the zero-knowledge arguments of knowledge of [4],
described in Section 4.1. We denote this protocol by POK. Recall that in this argument system,
both the prover and verifier prove a statement in zero-knowledge; we call these the subproofs.
Now, all the zero-knowledge subproofs in which P1 is the prover are proven using the PRS zero-
knowledge protocol of Section 4.2. Furthermore, all the zero-knowledge subproofs in which P2 is the

18This would be trivial if A′ was strict polynomial-time. However, an expected polynomial-time interactive machine
is only required to be expected polynomial-time when it interacts with another machine, and thus when it receives
messages distributions that are generated through such interactions. Therefore, there may be message distributions
in which such a machine always runs an exponential number of steps. Of course, such message distributions would
not be obtainable through real interaction, but may be generated in simulation. See [32, Appendix A.2] for such an
example.

32



prover are proven using the concurrent zero-knowledge protocol of [1], denoted BZK, as described in
Section 4.3. That is, when P1 plays the prover in the zero-knowledge proof of knowledge POK, then
P2 provides a subproof (as the receiver in the commit-with-extract scheme of part 1) using Protocol
BZK and P1 provides a subproof (proving the correctness of its commitment in part 1) using Protocol
PRS. Conversely, when P2 plays the prover in the zero-knowledge proof of knowledge POK, then
P1 provides a subproof (as the receiver in the commit-with-extract scheme) using Protocol PRS
and P2 provides a subproof (proving the correctness of its commitment in part 1) using Protocol
BZK. The important thing to remember is that all the subproofs going from P1 to P2 use PRS and
all the subproofs going from P2 to P1 use BZK. We note that the proof of knowledge POK and
the subproofs PRS and BZK can all be implemented assuming the existence of enhanced trapdoor
permutations and collision resistant hash functions.

Before continuing, we formally define what it means to “replace” an ideal zero-knowledge call
with a protocol:
• Prover: If a party is instructed in Π′ to send (v, w) to the trusted party computing the zero-

knowledge functionality, then it plays the prover in the zero-knowledge proof of knowledge
protocol, using the witness w that it has. The messages that it sends and receives within this
proof are not recorded on its transcript for Π′.

• Verifier: If in Π′ a party is to receive a message (v, b) from the trusted party computing the
zero-knowledge functionality, then it plays the verifier in the zero-knowledge proof of knowledge
protocol. If it accepts the proof, then it writes (v, 1) on its transcript for Π′. Otherwise it writes
(v, 0). As above, the messages within the proof are not recorded on its transcript for Π′.
As we have described above, the PRS and BZK protocols are used as subproofs in POK. Both of

these protocols are parameterized: the PRS protocol by the number of iterations k in the preamble
and the BZK protocol by the length `(n) of the verifier message r. Recall that in the scenario
of m-bounded concurrent zero-knowledge, in PRS the parameter k is set to 2m, and in BZK the
parameter `(n) is set to 2mn2. Now, we denote by rounds(Prot) the number of rounds in Protocol
Prot and by length(Prot) the total length (i.e., number of bits) of all messages sent in Protocol
Prot. Furthermore, we denote by ζ the total number of ideal calls made by both parties to the ideal
zero-knowledge functionality in Π′. Finally, when we refer to rounds(POK) and length(POK), we
mean the number of rounds and the length of the proof of knowledge without the subproofs PRS
and BZK. The parameters for the zero-knowledge subproofs are set as follows: In PRS we set

k = 2ζm + m·
(
rounds(Π′) + ζ ·rounds(POK) + ζ ·rounds(BZK)

)

and in BZK we set

`(n) = 2ζmn2 + m·
(
length(Π′) + ζ ·length(POK) + ζ ·length(PRS)

)

In other words, the number of iterations in the PRS preamble is 2ζm (there are ζm executions of
PRS and 2 iterations are needed in the preamble for each of these executions), plus m times the
combined number of rounds in Π excluding the PRS subproofs; this combined number of rounds
comes to rounds(Π′) + ζ ·rounds(POK) + ζ ·rounds(BZK).

Likewise, the length of the message r in BZK is set to 2ζmn2 (as in ζm-bounded concurrent
zero-knowledge) plus m times the length of all other messages sent. This ensures that r is at least
n bits longer than all the messages sent by P2 in all m executions. We remark that there is no
problem setting the parameters in such a way. That is, although `(n) is dependent on length(PRS),
the number of rounds in BZK is not dependent on PRS. Thus, we can first set k and then `(n).
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We digress here for a moment and comment that in our final protocol, rounds(Π′) and ζ are both
constants and thus the final number of rounds in Π is O(m).

We now show that for every real model adversary A running Π, there exists a ZK-hybrid model
A′ running Π′ such that the output distributions generated by A and A′ are indistinguishable.
Intuitively, this is because for m-bounded concurrency the zero-knowledge arguments of knowledge
as described constitute “good” replacements for the ideal calls to the zero-knowledge functionality.
Loosely speaking, we construct A′ from A as follows. A′ internally incorporates A and externally
forwards all the Π′-messages (i.e., the messages not belonging to the zero-knowledge proofs) between
A and the external party with which A′ interacts. In contrast, A′ internally simulates the zero-
knowledge proofs that A expects to see. Specifically, upon receiving a message (v, 1) from the
trusted party computing the ideal zero-knowledge functionality, A′ simulates the zero-knowledge
proof of knowledge for v, where A plays the verifier. Likewise, when A proves a proof of knowledge
for a statement v, the ZK-hybrid model adversary A′ runs the extractor for the proof. If A′ obtains
a valid witness w, then it sends (v, w) to the trusted third party; otherwise, it sends (v,⊥). Such
a strategy ensures that the output distribution generated by A′ in a run of Π′ (in the ZK-hybrid
model) is indistinguishable from the output distribution generated by A in a run of Π (in the
real model). Of course, the main challenge (and one of the central contributions of this work),
is in showing how to carry out the simulation and extraction when the zero-knowledge proofs of
knowledge are subprotocols within a larger protocol that is executed in the setting of m-bounded
concurrency. We stress that it does not suffice to prove the correctness of the simulation and
extraction within the context of m-bounded concurrent zero-knowledge. This is because now the
zero-knowledge proof is run concurrently with Π′, and not only concurrently with itself. We now
formally prove the existence of a ZK-hybrid model adversary A′ for every real model adversary A.
We separately deal with the cases that P1 and P2 are corrupted.

Party P1 is corrupted. Let A be a real-model adversary for Π. We construct an adversary A′
who internally incorporates A and works in the ZK-hybrid model interacting with P2 in protocol
Π′. Adversary A′ sends internal and external messages. Internal messages are sent by A′ to the
internally incorporated A, whereas external messages are sent by A′ to the external honest party
P2 and to the external trusted party computing the ideal zero-knowledge functionality. As we have
mentioned, all the Π′-messages are defined to be external, whereas all of the messages belonging to
POK are defined to be internal. Thus, except for the ideal zero-knowledge calls, A′ forwards all of
the Π′-messages unmodified between A and P2. In addition:
• Whenever A, controlling P1, proves a zero-knowledge proof of knowledge for some statement v,
A′ runs the extraction strategy for POK. (Actually, what is needed is witness-extended emula-
tion; see [32, 4] for details.) This involves simulating Protocol BZK for A as the verifier (because
the subproof of part 1 that is simulated is given by P2 to P1) and honestly verifying Protocol
PRS where A is the prover (because the subproof of part 2 is given by P1). (In addition, the
receiver messages of the commit-with-extract scheme of part 1 are chosen according to the ex-
traction strategy; see Section 4.1.) From this extraction procedure, A′ receives some string w
(which is “hopefully” a witness for v). A′ verifies that (v, w) ∈ R. If yes, then A′ externally
sends (v, w) to the trusted party computing the ideal zero-knowledge functionality. Otherwise,
it sends (v,⊥).

• Whenever A′ receives an external message (v, 1) from the trusted party, it internally simulates
the zero-knowledge proof of knowledge POK for A. This involves honestly verifying Protocol
PRS where A is the prover (from part 1 of POK) and simulating BZK for A as the verifier (from
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part 2 of POK). (In addition, the value committed to by A′ in the commit-with-extract scheme
of part 1 is garbage; see Section 4.1.)
(We note that A′ never receives a message (v, 0) from the trusted party because P2 is honest
and we assume that honest provers always check that they have a correct witness before they
send anything to the trusted party or attempt to prove POK.)

The simulation of protocol BZK is carried out using the simulator of [1], as described in Section 4.3.
Having described the simulation by the ZK-hybrid model adversary A′, we proceed to prove that
it generates a distribution that is indistinguishable from a real model execution.

Proof outline. Intuitively, the simulation strategy by A′ works as long as Protocol PRS is
sound and the simulator of BZK succeeds in generating a view that is indistinguishable from a
real execution of BZK. However, in order to prove this, we need to define a hybrid experiment
that isolates the PRS and BZK executions. We do this by defining a weaker ideal zero-knowledge
functionality that is not a proof of knowledge. We then show that replacing the PRS and BZK
subproofs by this ideal functionality makes at most a negligible difference. This enables us to deal
with the PRS and BZK subproofs separately.

The hybrid experiment. The hybrid experiment involves a (weaker) ideal zero-knowledge func-
tionality, parameterized by an NP-language L and defined by the following:

(v, λ) → (λ, (v, χL(v)))

where χL(v) = 1 if and only if v ∈ L. That is, the proving party sends a statement v to the trusted
party, who then sends (v, 1) to the verifying party if v ∈ L, and (v, 0) if v /∈ L. In order to reflect
the possibility that a prover may fail to prove a correct statement (in a protocol execution that
replaces this ideal functionality), we define that if v has the symbol ⊥ appended to it (i.e., if it
is of the form v ◦ ⊥), then the trusted party sends (v, 0) to the verifier irrespective of whether or
not v ∈ L. We note that this ideal functionality may not be efficient (in particular, if L is a hard
language, then verifying whether or not v ∈ L may take super-polynomial time); nevertheless this
suffices here. We denote this hybrid experiment by weakzk-hybrid. (There is nothing really weak
about this ideal functionality except that it is not a proof of knowledge.)

Step 1 – replacing BZK with (weak) ideal zero-knowledge. We now define a protocol
Π̂ that works in the weakZK-hybrid model. Π̂ is the same as the real-model protocol Π except
that instead of P2 proving a statement v to P1 using the subproof BZK, it sends v to the trusted
party computing the ideal weak zero-knowledge functionality. Subproofs given by P1 using PRS
are unmodified.

We now show that there exists an adversary Â for Π̂ that interacts with P2 in the weakZK-
hybrid model and who generates an output distribution that is indistinguishable from an execution
of A with Π in the real model. Notice that the only difference between Π and Π̂ is whether proofs
given by P2 (who in this case is honest) are carried out by running BZK or by using the weak zero-
knowledge functionality. Thus, the proof of indistinguishability is based on the zero-knowledge
property of BZK in this scenario.

The adversary Â for Π̂ works as follows. Â internally incorporates A and externally forwards all
Π′, POK and PRS messages between A and P2. However, messages of BZK are internally simulated
for A by Â. That is, whenever Â receives a message (v, 1) from the trusted party computing the
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ideal weak zero-knowledge functionality, it simulates an execution of BZK with A as the verifier.
We now prove that

{
weakzk-hybridm

Π̂,Â(x, y, z)
}

c≡
{
realm

Π,A(x, y, z)
}

(1)

The difference between an execution of Π with A and an execution of Π̂ with Â is that in Π party P2

proves real BZK proofs, whereas in Π̂ they are simulated. Thus, as we have mentioned Eq. (1) follows
from the zero-knowledge property of BZK. It remains to show that the BZK simulation “works” in
this scenario (i.e., within Π̂). However, as we have discussed in Section 4.3, the simulator for BZK
works as long as the total number of messages sent by the prover (here P2) in all the executions of
Π is less than `(n)− n. However, this follows immediately from the way `(n) was chosen.

Step 2 – replacing PRS with (weak) ideal zero-knowledge. We now define a protocol
Π̃ which is the same as Π except that both the subproofs PRS and BZK are proven using calls to
the ideal weak zero-knowledge functionality. Thus, the only difference between Π̂ and Π̃ is whether
proofs given by P1 (who in this case is controlled by the adversary) to P2 are given by running PRS
or by using the weak zero-knowledge functionality. Thus, the proof of indistinguishability is based
on the soundness of PRS in this scenario.

We define an adversary Ã who works in exactly the same way as Â except that it internally
verifies the zero-knowledge subproofs of PRS provided by Â. Formally, Ã internally incorporates
Â and externally forwards all Π′, POK and ideal weak zero-knowledge calls that already existed in
Π̂. However, messages of PRS are dealt with internally. That is, whenever Â proves a statement
v using PRS, Ã internally verifies the proof (playing the honest verifier strategy). If Ã accepts the
proof, then it sends v to the trusted party computing the ideal weak zero-knowledge functionality.
Otherwise, it sends v ◦ ⊥ to the trusted party. We prove that

{
weakzk-hybridm

Π̃,Ã(x, y, z)
}

c≡
{
weakzk-hybridm

Π̂,Â(x, y, z)
}

(2)

First, assume that Ã never accepts a proof v from Â when v /∈ L. Under this assumption, the
outputs of Â and P2 are identical in Π̂ and Π̃ (recall that P2’s output is determined by its Π′-
transcript only). This can be seen as follows. First, when Ã verifies PRS subproofs from Â in
Π̃, it plays the honest verifier, exactly like P2 in Π̂. Therefore, Â’s view is the same in both
cases. Furthermore, the probability that Ã accepts a proof from Â in Π̃ is exactly the same as the
probability that P2 accepts a proof from Â in Π̂. Now, if Ã accepts a proof from Â, then P2 receives
(v, 1) in Π̃. This is because in this case Ã sends v to the trusted party computing the ideal weak
zero-knowledge functionality, and by the above assumption, it must hold that v ∈ L. The trusted
party therefore sends (v, 1) to P2. Likewise, if P2 accepts a proof from Â in Π̂, then it writes (v, 1)
on its Π′-transcript. Similarly, when Ã rejects a proof in Π̃, it sends v ◦⊥ to the trusted party and
P2 receives (v, 0) (irrespective of whether or not v ∈ L). However, this is exactly what P2 would
write on its transcript in Π̂ if it rejected a proof from Â. We conclude that the output distribution
of Ã and P2 in Π̃ is identical to the output distribution of Â and P2 in Π̂.

The above argument assumes that Ã never accepts a proof from Â for which v 6∈ L. Thus, in
order to prove Eq. (2), it suffices to show that the soundness of PRS holds here. That is, we show
that the probability that Ã accepts a proof when v 6∈ L is negligible in the security parameter n.
(Note that if this “bad event” was to occur, then P2 would write (v, 1) on its Π′-transcript in Π̂ but
would receive (v, 0) from the trusted party in Π̃.) Since the soundness of PRS is unconditional, it
suffices for us to construct an all-powerful cheating prover P ∗. Specifically, assume by contradiction
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that for some set of inputs x, y and z, adversary Â successfully proves a false statement to Ã with
non-negligible probability. Then, P ∗ computes the coins of Â, Ã and P2 which maximize the
probability of Â successfully proving the false statement; actually, P ∗ computes the coins for all
messages sent by Ã except for those used in verifying the false proof from Â. Then, P ∗ internally
emulates the entire execution with Â, Ã and P2, except for the PRS subproof of the false statement
proven by Â; the messages of this subproof are sent externally to the verifier V . (Notice that this
emulation can be carried out perfectly by P ∗, including the ideal weak zero-knowledge calls, because
P ∗ is not computationally bounded.) Now, since Ã verifies PRS subproofs from Â using the honest
verifier strategy and it accepts the false proof with non-negligible probability, the probability that
V accepts the false proof from Â (as forwarded by P ∗) is also non-negligible. This contradicts the
soundness of the PRS subproof and thus Eq. (2) follows.

Remark: This soundness argument is facilitated (in part) by the fact that the simulation by Â and
Ã requires no rewinding. Rewinding would cause a problem because then the same verifier message
to be sent by V may appear a number of times. However, V is an external party that sends each
message only once and cannot be rewound.

Step 3 – conclusion. The proof of the case that P1 is corrupted is concluded by showing
that the distribution generated by Ã in Π̃ in the weakZK-hybrid model, is indistinguishable from
the distribution generated by A′ in Π′ in the ZK-hybrid model. (The strategy of adversary A′ is
described above and is the same as Ã except for the treatment of POK messages.) That is, we show
the following:19

{
zk-hybridm

Π′,A′(x, y, z)
}

c≡
{
weakzk-hybridm

Π̃,Ã(x, y, z)
}

(3)

The difference between an execution of Π̃ with Ã and Π′ with A′ is as follows. In Π̃, the messages
of POK that do not belong to the zero-knowledge subproofs BZK and PRS are sent by the external
party P2. However, in Π′, these messages are internally simulated by A′ for Ã. Now, the simulation
and extraction strategy for POK succeeds as long as the subproofs in which the adversary plays the
verifier are “properly” simulated, and as long as soundness is preserved in the subproofs in which
the adversary plays the prover; see the brief description above, and [4] for details. The simulation
of the subproofs is already taken care of by the fact that Π̃ works in the ideal weak zero-knowledge
hybrid model. Likewise, by the construction of Ã, we know that except with negligible probability
it only sends v to the trusted party computing the weak ideal zero-knowledge functionality if v is a
correct statement (otherwise it sends v ◦⊥). Therefore, upon receiving v from Ã, adversary A′ can
assume that v is correct. We conclude that the simulation of POK by A′ in Π′ yields a distribution
that is indistinguishable from that of Ã in Π̃. Eq. (3) follows. The theorem for the case that P1 is
corrupt follows by combining Equations (1), (2) and (3).

We now proceed to the case that P2 is corrupted.

Party P2 is corrupted. We construct the ZK-hybrid model adversary A′ in a similar way to
the previous case. A′ internally incorporates A and externally forwards all Π′-messages between A
and P1. In addition:

19We stress an important subtlety in our proof here. We do not prove that for every adversary Ã there exists an
adversary A′ for which the output distributions are indistinguishable. Rather, we show this for the specific adversary
Ã described above. Specifically, it is crucial to our proof that Ã would sends a false statement v to the trusted party
computing the weak ideal zero-knowledge functionality with at most negligible probability. If this were not the case
(like with general adversaries), we would be “stuck” because we may not be able to verify whether or not v ∈ L.
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• Whenever A, controlling P2, proves a zero-knowledge proof of knowledge for some statement
v, A′ runs the extraction strategy for POK. This involves simulating Protocol PRS for A as
verifier (because the subproof of part 1 of POK that is simulated is given by P1 to P2), and
honestly verifying Protocol BZK where A is the prover (because the subproof of part 2 is given
by P2). (In addition, the receiver messages of the commit-with-extract scheme of part 1 are
chosen according to the extraction strategy; see Section 4.1.) From this extraction procedure,
A′ receives some string w. A′ verifies that (v, w) ∈ R. If yes, then A′ externally sends (v, w) to
the trusted party computing the ideal zero-knowledge functionality. Otherwise, it sends (v,⊥).

• Whenever A′ receives an external message (v, 1) from the trusted party, it internally simulates
the zero-knowledge proof of knowledge POK for A. This involves honestly verifying Protocol
BZK where A is the prover (from part 1 of POK) and simulating PRS for A as the verifier (from
part 2 of POK). (In addition, the value committed to by A′ in the commit-with-extract scheme
of part 1 is garbage; see Section 4.1.)

We now describe how A′ carries out the simulation of PRS. The simulation uses a very similar
strategy to that described in the proof of Proposition 5 (see Section 4.2). In our description here,
we will use notation and terminology taken from the proof of Proposition 5 (and we therefore assume
familiarity with the details of that proof). A′ interacts with A in a black-box manner and externally
forwards all Π′-messages to P1. Likewise, replies from P1 are returned to A. Furthermore, A′ sets
a fixed point after any of the following events:

1. A non-PRS message is sent by A; this includes all messages belonging to Π′, BZK and POK.
(Recall that when we refer to POK, we mean the proof of knowledge not including the BZK
and PRS subproofs.)

2. A verifier commitment message from an execution of PRS is sent by A.

3. An execution of Protocol PRS is aborted.

4. A potential iteration closes.

Recall that no rewinding ever takes place behind a fixed point. Now, A′ works in exactly the same
way as the simulator S in the proof of Proposition 5. Specifically, whenever a fixed point of type
(1), (2) or (3) above is sent, nothing is done by A′ except to fix the transcript until (and including)
the current message. (This is analogous to S’s behavior when a verifier commitment message is
sent.) Furthermore, whenever an execution of PRS is aborted, this execution is satisfied. Finally,
whenever a potential iteration closes, A′ repeatedly rewinds A to the current fixed point until this
iteration is once again the first to close (without any other event causing a fixed point to be set
occurring). We stress that in each of these repetitions, A′ uses new uniformly chosen random coins.
Furthermore, if A sends a non-PRS message, then A′ does not send it externally to P1 (because
this would prevent any further rewinding). Rather, whenever a different event causing a fixed point
to be set occurs, A′ immediately rewinds A to the current fixed point and starts again. Now, when
A′ succeeds in having the same potential iteration close a second time, it repeats the execution
from the previous fixed point using the same random coins that it used the first time (in exactly
the same way that S does in the proof of Proposition 5). Recall that at this point, the execution is
satisfied with overwhelming probability and A′ knows the query string q. Thus, A′ can successfully
simulate part 2 of the proof in this execution of PRS (unless it outputs failure). We remark that A′
outputs failure or unsatisfied based on exactly the same events as S. This completes the description
of the simulation. We begin by proving that A′ runs in expected polynomial-time. We start with
the following claim.
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Claim 5.1 The expected-time taken by A′ for setting each fixed point is polynomial in n.

This follows using the same analysis as in Claim 4.1. (The only difference is that there are additional
events causing a fixed point to be set – specifically, the sending of a non-PRS message. However,
each of these only require a fixed polynomial number of steps and the number of events overall is
still polynomial.) In order to conclude the analysis of A′’s running-time, notice that there are only
a polynomial number of possible fixed points (bounded by the number of Π′ and BZK messages
plus twice the number of PRS executions). The fact that A′ runs in expected polynomial-time is
therefore derived from Claim 5.1 and the linearity of expectations. However, we actually need to
prove that the expected running-time of A′ is polynomial, for every distribution over the messages
of Π′. This follows from the fact that no rewinding is carried out over Π′-messages. That is, a
fixed point is set every time a Π′-message is forwarded by A′ to A. Therefore, the running-time
of A′ can be divided into the time that it takes to set the fixed points, plus the time that it takes
for A to reply to the Π′-messages. Above, we have shown that the expected time it takes to set
the fixed points is polynomial. Regarding the Π′-messages, since A runs in strict polynomial-time,
these account for a polynomial number of steps, irrespective of the distribution over the messages,
as required. We therefore have the following claim:

Claim 5.2 A′ runs in expected-time that is polynomial in n. Furthermore, this holds for every
distribution over the messages of Π′ that A′ may receive.

We remark that in the proof of Proposition 5, the complexity of the verifier V ∗ was not included
in S’s running-time (since S is a black-box simulator). In contrast, here we do need to incorporate
the running-time of A into the complexity of A′. However, since A is a (strict) polynomial-time
adversary, this only increases the complexity of A′ by a fixed polynomial. Having established that
A′ runs in expected polynomial-time, we proceed to prove that the resulting distribution of A′ in
Π′ is computationally indistinguishable from the resulting distribution of A with Π. We prove this
using the same hybrid experiment as in the case that P1 is corrupted.

Step 1 – replacing PRS with (weak) ideal zero-knowledge. We define the protocol Π̃
for the weakZK-hybrid model in the same way as in the case that P1 is corrupted. Therefore,
in this protocol, ideal calls to the weak zero-knowledge functionality are used instead of running
the PRS subproofs. We now demonstrate the existence of an adversary Ã such that the output
distribution of an execution of Π̃ with Ã is indistinguishable from an execution of Π with A (in
the real model). Ã internally incorporates A and forwards all non-PRS messages between A and
the external P1. However, when Ã receives a message (v, 1) from the trusted party computing the
ideal weak zero-knowledge functionality, it simulates a PRS execution for A using exactly the same
strategy described above for A′. We now prove that,

{
weakzk-hybridm

Π̃,Ã(x, y, z)
}

c≡
{
realm

Π,A(x, y, z)
}

(4)

Proving Eq. (4) involves showing that the simulation by Ã is indistinguishable from a real proof
by P1 (this is the only difference between Π and Π̃). This follows very similar lines to the proof of
Proposition 5. We first claim that Ã outputs failure with only negligible probability:

Claim 5.3 The probability that Ã outputs failure is negligible.
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The proof of this claim is almost identical to the proof of Claim 4.3. (The only difference is that
there are ζm executions of PRS instead of m and the reduction to the computational binding
includes emulating all of the Π′ and BZK messages as well. However, this emulation can be carried
out because the machine attempting to break the binding property of the commitments is given
both inputs vectors x and y.) Next, we claim that Ã never outputs unsatisfied:

Claim 5.4 The probability that Ã outputs unsatisfied equals 0.

Proof: As in the proof of Claim 4.4, it suffices to show that every PRS execution which is
not aborted has a potential iteration which is the first to close after some fixed point. This is
demonstrated by counting the number of iterations and the number of fixed points, and noticing
that at most one iteration can be opened between each two fixed points. Now, the number of fixed
points that are set by Ã during the simulation equals exactly

2ζm + m ·
(
rounds(Π′) + ζ ·rounds(POK) + ζ ·rounds(BZK)

)

This number is reached as follows. The number of executions of PRS equals ζm. Thus, there are
at most 2ζm fixed points for all of these executions (ζm for the verifier commitments and ζm for
when each one is satisfied). Furthermore, a fixed point is set for each of the non-PRS messages
(these messages are from Π′, BZK, and POK). For m concurrent executions, we have m · rounds(Π′)
messages from Π′, m · ζ · rounds(POK) from POK, and m · ζ · rounds(BZK) messages from BZK.
Summing these up we obtain the exact number k of iterations in the preamble of PRS.

Now, no unsatisfied execution of PRS can reach part 2 (of PRS) before k fixed points are set.
Furthermore, k fixed points can only be set once all executions are satisfied. Thus we conclude that
every execution of PRS must be satisfied before part 2 of an unsatisfied PRS subproof is reached.

Having established the above, the indistinguishability of the distributions follows with an analogous
hybrid argument to the proof of Claim 4.5. Specifically, we define a hybrid adversary/simulator S̃
who receives the witnesses for each proof being proved (from the honest P1) and runs part 2 of the
proof of PRS as P1 would (i.e., using the witness). However, all other parts of the experiment are
run exactly according to the instructions of Ã (including the simulation of the preamble of PRS).

Now, the transcript of the PRS messages in the experiment with S̃ is identical to the transcript
of the PRS messages in Π. This can be seen as follows. The messages sent between fixed points in
which no rewinding was done are clearly distributed identically in Π and in the experiment with
S̃. (Notice that the messages of part 2 of PRS may be included here. However, S̃ proves part 2
using the same witness as P1; therefore the distributions are the same.) The same is also true of
the messages sent between fixed points in which S̃ does rewind. This can be seen because after the
rewinding has concluded, S̃ replays the execution using the same random coins as the first time.
Therefore, the distribution is the same as when no rewinding takes place.

Next, we claim that the output distribution in the experiment with S̃ is computationally indis-
tinguishable from the execution of Π̃ with Ã. This follows from the fact that the only difference
between the two experiments relates to the commitments used in proving part 2 of the PRS sub-
proofs. This can therefore be reduced to the hiding property of the commitment scheme. This is
straightforward and details are thus omitted. This completes the proof of Eq. (4).

Step 2 – replacing BZK with (weak) ideal zero-knowledge. Again, as in the case that P1

is corrupted, we define a protocol Π̂ in which both the subproofs PRS and BZK are proven using the
ideal weak zero-knowledge functionality. Furthermore, an adversary Â is defined who incorporates
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Ã and externally forwards all Π′-messages between Ã and P1. However, when Ã proves a BZK
subproof of a statement v, Â verifies this internally, If Â accepts the proof, it sends v to the trusted
party computing the ideal weak zero-knowledge functionality; otherwise, it sends v ◦ ⊥. We now
prove that {

weakzk-hybridm
Π̂,Â(x, y, z)

}
c≡

{
weakzk-hybridm

Π̃,Ã(x, y, z)
}

(5)

Naturally, we prove Eq. (5) by showing that the soundness of BZK holds in the simulation by Â.
As we have discussed in Section 4.3, the soundness of BZK holds as long as the string r sent by
the verifier is at least n bits longer than the allowed length of y. This is of course true (by the
definition of y). However, we must still show that the soundness is not affected when BZK is run
concurrently with Π′ and PRS. The key point here is that Â never rewinds Ã past a BZK message
that has been sent (a fixed point is set whenever such a message is sent). Therefore, it is possible
to use Ã in order to construct a cheating prover P ∗.

Formally, let x and y be the respective input vectors of P1 and P2. Then, we construct a
cheating prover P ∗ who interacts with an honest verifier V in a single execution of Protocol BZK.
The probability that P ∗ successfully proves a false statement will be polynomially related to the
probability that Â accepts the proof of a false statement from Ã in an execution of Π̂ (when x and
y are the parties’ input vectors). P ∗ internally incorporates Ã and works as follows. P ∗ uniformly
chooses one of the ζp(n) BZK protocol executions in the p(n) executions of Π and internally emulates
the entire simulation of Â for Ã, except with respect to the selected BZK execution. We stress that
P ∗ emulates the weakZK-hybrid simulation by Â for Ã, and does not emulate a real execution of
Π or an execution of Π̃. For now, assume that this emulation can be perfectly carried out by P ∗

(we will show how this is done later). Now, when Ã reaches the selected PRS execution, P ∗ sends
the statement being proved in this execution to V and externally forwards the messages of this
execution between Ã and V . We stress that all other messages that are sent concurrently to this
PRS execution are internally simulated by P ∗. Since Â plays the honest verifier in its emulation,
the view of Ã in the emulation by Â is identical to its view in this emulation by P ∗. Noting that
there are ζp(n) proofs of PRS supplied by Ã, we conclude that the probability that P ∗ successfully
proves a false statement to V equals 1/ζp(n) times the probability that Â accepts the proof of a
false statement from Ã in the emulation. By the (stand-alone) soundness of PRS, this probability
must therefore be negligible. Eq. (2) follows.

The above analysis assumes that the emulation can be carried out perfectly by P ∗. We now
show that this is the case. First, the emulation of parties P1 and Â can be carried out because
P ∗ knows the inputs x and y. However, P ∗ cannot emulate the trusted party for the weak zero-
knowledge functionality. This is because the functionality cannot be efficiently computed. We solve
this problem as follows. If Ã successfully proves a statement v, then in the emulation, P ∗ assumes
that v is correct (and emulates the trusted party sending (v, 1) to P1). If v is a correct statement,
then the emulation is perfect. If v is incorrect, then the emulation may not be correct. However, up
until the conclusion of this proof (where the emulation is “messed up”), the emulation was perfect.
Therefore, with probability 1/ζp(n), this statement will be the one that V is verifying, and the
contradiction will be derived.

Step 3 – conclusion. The proof is concluded by showing that the distribution generated by Â
in Π̂ is indistinguishable from the distribution generated by A′ in Π′. This is identical to the proof
of Eq. (3) for the case that P1 is corrupted. (Notice that in Π̂ all subproofs are proven using the
ideal weak zero-knowledge functionality. Therefore, the proof is the same if it is P1 or P2 that is
corrupted.) Thus the proof of the case that P2 is corrupted follows by combining Equations (4), (5)
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and an analog of Eq. (3).

This concludes the proof of Theorem 7.

Remark: We call attention to the fact that in the proof of Theorem 7, the ZK-hybrid model
adversary A′ either verifies PRS and simulates BZK (when P1 is corrupt), or simulates PRS and
verifiers BZK (when P2 is corrupt). That is, there is never a time that A′ has to simultaneously
verify and simulate the same zero-knowledge protocol. This is a crucial point in our proof and is
what enables us to ensure the soundness of the subproofs during the ZK-hybrid simulation.

5.4 Generalizing the Composition Theorem

Theorem 7 is stated so that the same ZK-hybrid model protocol Π′ is executed concurrently.
However, there is really no need to consider the same protocol. Rather, the theorem can be stated
with respect to possibly different protocols for the ZK-hybrid model Π′1,Π′2, . . . The composition
theorem will still hold as long as all the protocols replace the ideal zero-knowledge calls in the
same way (as described in the proof of Theorem 7). Thus, we really demonstrate the feasibility
of obtaining m-bounded concurrent composition in the real model of arbitrary protocols that are
designed in the ZK-hybrid model.

6 Obtaining Bounded Concurrent Two-Party Computation

In this section, we show that by Theorem 7, it suffices to provide protocols that are secure in the
ZK-hybrid model. We then show that such protocols exist. First, however, we formally define
security in the ZK-hybrid model.

Secure computation in the ZK-hybrid model – definition. Let Π′ be a two-party protocol
that is designed in the ZK-hybrid model. That is, Π′ contains regular interaction between the
parties as well as ideal calls to the zero-knowledge functionality. Security in the ZK-hybrid model
is defined in the natural way. That is,

Definition 8 (security in the ZK-hybrid model): Let m(·) be a polynomial, f a functionality and
Π′ a protocol for the ZK-hybrid model. Then, we say that Π′ securely computes f in the ZK-hybrid
model under m-bounded concurrent composition if for every non-uniform polynomial-time ZK-hybrid
adversary A′ running Π′ there exists a non-uniform polynomial-time ideal-model adversary S such
that for every polynomial p(n),
{
idealf,S(x, y, z)

}
n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

c≡
{
zk-hybridm

Π′,A′(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗
(6)

We will actually require that the ideal-model adversary S of Definition 8 is black-box (as de-
fined in the paragraph following Definition 1) and carries out no rewinding of A′. This is called
straight-line or one-pass black-box simulation. Furthermore, we require that S “succeeds” even if A′
runs in expected polynomial-time, where success means that Eq. (6) holds and S remains (strict)
polynomial-time (of course, while counting each oracle call to A′ as a single step only).20 For the

20We stress that, in general, it is not guaranteed that A′’s expected running time remains polynomial when it
interacts with a simulator. This will be dealt with later on.
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lack of a better term, we call an ideal-model adversary S who fulfills these additional requirements a
strong simulator. We note that strong simulation is needed due to problems arising from composing
expected polynomial-time adversaries. (If the adversary A′ obtained from Theorem 7 ran in strict
polynomial-time, then we could use any ideal-model adversary that fulfills Definition 8.)

Security in the ZK-hybrid model suffices. An important corollary of Theorem 7 is the fact
that in order to obtain m-bounded concurrent secure two-party computation in the real model,
it suffices to obtain m-bounded concurrent secure two-party computation in the ZK-hybrid model
with strong simulation (see above).

Corollary 9 (bounded-concurrent secure two-party computation): Assume that there exists a two-
party protocol Π′ that securely computes a functionality f in the ZK-hybrid model under m-bounded
concurrent composition. Furthermore, the ideal-model adversary for Π′ is a strong simulator. Then,
assuming the existence of enhanced trapdoor permutations and collision resistant hash functions,
there exists a two-party protocol Π that securely computes f in the real model under m-bounded
concurrent composition.

Proof: The proof of security works by showing the existence of an ideal-model adversary S for
every real-model adversary A. Now, let A be a real-model adversary for Π. Then, by Theorem 7,
there exists an expected polynomial-time adversary A′ for Π′ in the ZK-hybrid model such that

{
zk-hybridm

Π′,A′(x, y, z)
}

c≡
{
realm

Π,A(x, y, z)
}

(7)

Next, by the assumption that Π′ securely computes f in the ZK-hybrid model, we have that for
every polynomial-time adversary A′ there exists a polynomial-time adversary S for the ideal model
such that {

idealf,S(x, y, z)
}

c≡
{
zk-hybridm

Π′,A′(x, y, z)
}

(8)

If A′ was a (strict) polynomial-time adversary, then this would complete the proof. However, A′ is
expected polynomial-time and thus we have no guarantee that S succeeds for such an A′. Therefore,
in order to complete the proof, we utilize three facts:

1. S remains strict polynomial-time and “successfully” simulates even when A′ runs in expected
polynomial-time,

2. S uses one-pass black-box access to A′,
3. The expected running-time of A′ is polynomial for every distribution over the messages of Π′

that A′ may receive.

(The first two facts hold because S is strong; the third holds by Theorem 7.) First, since S success-
fully simulates even when A′ is expected polynomial-time, we have that Eq. (8) holds. It remains
to show that the combined running time of S and A′ is expected polynomial-time. The fact that S
contributes a strict polynomial number of steps to this running time is also due to the assumption
that S is a strong simulator. The fact that A′ contributes an expected polynomial number of steps
can be seen as follows: Since S uses one-pass black-box access to A′ in its simulation of Π′, the
simulation actually just involves S invoking A′ on some distribution over the messages of Π′. Again,
by the assumption on A′, it remains expected polynomial-time for every distribution, and so also
in this simulation. We conclude that for every expected polynomial-time ZK-hybrid adversary A′
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obtained via Theorem 7, there exists an expected polynomial-time ideal-model adversary S such
that Eq. (8) holds.

By combining Equations (7) and (8) we obtain that Π securely computes f in the real model
and under m-bounded concurrent composition.

Bounded concurrent secure computation in the plain model. By Proposition 9, all that
remains is for us to demonstrate the existence of a protocol that securely computes any two-party
functionality in the ZK-hybrid model and under m-bounded concurrent composition. Furthermore,
there should exist a strong simulator for this protocol. However, such a protocol is already known
to exist. In particular, Canetti et al. [12] show that under the assumption of the existence of
enhanced trapdoor permutations, universally composable protocols exist in the ZK-hybrid model
for any two-party functionality. The [12] ideal-model adversary uses one-pass black-box simulation
and succeeds even when the adversary runs in expected polynomial-time (this is easily verified).
Therefore, since universal composability implies m-bounded concurrent composition, we obtain the
following theorem:

Theorem 10 (Theorem 1.3 restated): Assume that enhanced trapdoor permutations and collision
resistant hash functions exist. Then, for any two-party functionality f and for any polynomial m(·),
there exists a protocol Π that securely computes f under m-bounded concurrent composition.

Round complexity. The number of rounds in our protocol for m-bounded concurrent secure two-
party computation (in the real model) is in the order of m times the number of rounds in the [12]
protocol. We remark that the [12] construction (for the case of static adversaries) can be made
constant-round by using the semi-honest protocol of Yao [40]. Therefore, the round complexity of
our protocol is O(m).

Future Work

This work leaves open a number of interesting questions. First, our protocol for the m-bounded
concurrent model uses both black-box and non black-box techniques, whereas the lower bound
relates only to black-box simulation. So, can a black-box secure protocol be achieved with O(m)
or more rounds (i.e., without using non black-box techniques)? Conversely, can a non black-box
protocol be achieved for m-bounded concurrent composition that has less than m rounds? Taking
a step beyond m-bounded concurrency, is it possible to achieve unbounded concurrent secure two-
party computation? Another step beyond this model relates to a more general setting where many
pairs of parties run a protocol and the adversary can corrupt any subset of them. Very little is
known for this setting in the plain model. Finally, we note that we do not know how to extend our
techniques for obtaining bounded concurrent secure two-party computation to the case of multi-
party computation for an honest minority. This extension would also be of interest.
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A Blum’s Protocol for Hamiltonicity [6]

The zero-knowledge proof of [35] uses n parallel repetitions of the following basic proof system for
the NP-complete Hamiltonian Cycle (HC) problem. We consider directed graphs (and the existence
of directed Hamiltonian cycles).

Construction 2 (Basic proof system for HC):

• Common Input: a directed graph G = (V, E) with n
def= |V |.

• Auxiliary Input to Prover: a directed Hamiltonian Cycle, C ⊂ E, in G.

• Prover’s first step (P1): The prover selects a random permutation, π, of the vertices V ,
and commits (using a perfectly-binding commitment scheme) to the entries of the adjacency
matrix of the resulting permuted graph. That is, it sends an n-by-n matrix of commitments
so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0
otherwise.

• Verifier’s first step (V1): The verifier uniformly selects σ ∈ {0, 1} and sends it to the prover.

• Prover’s second step (P2): If σ = 0 then the prover sends π to the verifier along with the
revealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the verifier
only the commitments to entries (π(i), π(j)) with (i, j) ∈ C. In both cases the prover also
supplies the corresponding decommitments.

• Verifier’s second step (V2): If σ = 0 then the verifier checks that the revealed graph is indeed
isomorphic, via π, to G. Otherwise, the verifier just checks that all revealed values are 1 and
that the corresponding entries form a simple n-cycle. In both cases the verifier checks that the
decommitments are proper (i.e., that they fits the corresponding commitments). The verifier
accepts if and only if the corresponding condition holds.

Proposition 11 The protocol which results by n parallel repetitions of Construction 2 is an inter-
active proof of Hamiltonicity with soundness error 2−n.
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An important property of Construction 2 is that it is possible to simulate if given the n-bit verifier-
query string q = q1, . . . , qn before the prover’s P1 message is sent. Specifically, in the ith repetition,
if qi = 0 then the simulator generates a commitment to a random permutation of the input graph,
and if qi = 1 then it generates a commitment to a graph that contains a random simple n-cycle
only. Clearly, the simulator can then answer the verifier queries.
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