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Abstract

Until recently, most research on the topic of secure computation focused on the stand-alone
model, where a single protocol execution takes place. In this paper, we construct protocols
for the setting of bounded-concurrent self composition, where a (single) secure protocol is run
many times concurrently, and there is a predetermined bound on the number of concurrent
executions. In short, we show that any two-party functionality can be securely computed under
bounded-concurrent self composition, without setup assumptions. Our protocol provides the
first feasibility result for general two-party computation without setup assumptions for any
model of concurrency. (All previous protocols assumed a trusted setup phase in order to obtain
a common reference string.) On the downside, the number of rounds of communication in our
protocol is super-linear in the bound on the number of concurrent executions. However, we
believe that our constructions will lead to more efficient protocols for this task.
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1 Introduction

In the setting of two-party computation, two parties with respective private inputs x and y, wish
to jointly compute a functionality f(x, y) = (f1(x, y), f2(x, y)), such that the first party receives
f1(x, y) and the second party receives f2(x, y). This functionality may be probabilistic, in which
case f(x, y) is a random variable. Loosely speaking, the security requirements are that nothing
is learned from the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). These security requirements must hold in
the face of a malicious adversary who controls one of the parties and can arbitrarily deviate from the
protocol instructions (i.e., in this work we consider static adversaries). Powerful feasibility results
have been shown for this problem, demonstrating that any two-party probabilistic polynomial-time
functionality can be securely computed, assuming the existence of trapdoor permutations [38, 22].

Security under concurrent composition. The above-described feasibility results relate only
to the stand-alone setting, where a single pair of parties run a single execution. A more general
(and realistic) setting relates to the case that many protocol executions are run concurrently within
a network. Unfortunately, the security of a protocol in the stand-alone setting does not necessarily
imply its security under concurrent composition. Therefore, an important research goal is to re-
establish the feasibility results of the stand-alone setting for the setting of concurrent composition.

We stress that the need for security under concurrent composition is not merely an issue of
efficiency. Specifically, one cannot claim that in order to ensure security, all executions should
just be carried out sequentially (recall that security under sequential composition is guaranteed by
the stand-alone definitions [7]). This is because the honest parties must actively coordinate their
executions in order to ensure sequentiality. However, the honest parties may not even know of each
other’s existence. Therefore, they cannot coordinate their executions, and a dishonest adversary
that interacts with a number of parties can schedule the executions concurrently. The protocol
being used must therefore be secure under concurrent composition.

The study of security under concurrent composition was initiated in the context of concurrent
zero-knowledge [15, 13]. In this scenario, a prover runs many copies of a protocol with many verifiers,
and zero-knowledge must be preserved. The feasibility of concurrent zero-knowledge in the plain
model (where no trusted setup or preprocessing phase is assumed) was first demonstrated by [36].
In general, the issue of concurrent zero-knowledge has received much attention, resulting in a rather
exact understanding of the round-complexity of black-box concurrent zero-knowledge [25, 37, 10,
24, 35]. Other specific problems that have been studied in the context of concurrent composition are
oblivious transfer [16] and authenticated Byzantine agreement [31]. In all of the above-mentioned
work, the setting that is considered is that of concurrent self composition, where a single protocol is
run concurrently any polynomial number of times in a network (we stress, that the secure protocol
in question is the only protocol being executed). Furthermore, all the executions are run by the
same set of parties, and each party plays the same role throughout all of these executions (e.g., for
zero knowledge, one party always plays the prover and the other party always plays the verifier).1

A different notion, called general composition, considers a very broad setting where many sets
of (possibly different) parties run many protocols, and secure protocols may run concurrently with
arbitrary other protocols.2 Such a setting realistically models the security needs of modern networks

1Actually, such a setting should be called concurrent self composition with a single set of parties. See [29] for a full
taxonomy of types of protocol composition.

2According to the taxonomy of [29], this should actually be called concurrent general composition with arbitrary sets
of parties.
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like the Internet, where many different arbitrary protocols are executed by many different sets of
parties (with possibly related inputs). The notion of concurrent general composition was first
studied by [34] who considered the case that a secure protocol is executed once concurrently with
another arbitrary protocol. The unbounded case, where a secure protocol can be run any polynomial
number of times in an arbitrary network, was then considered by the framework of universal
composability [8]. Loosely speaking, universal composability is a specific security definition with
the important property that any protocol that is proven secure under this definition is guaranteed
to remain secure under (unbounded) concurrent general composition. Due to the robust security
guarantees that are provided, universally composable protocols are highly desirable. Fortunately,
such protocols exist. In fact, it has been shown that assuming an honest majority, any multi-party
functionality can be securely computed in a universally composable way [8]. Furthermore, in the
common reference string model 3, any two-party or multi-party functionality can be computed under
this definition, for any number of corrupted parties.

On the negative side, in the plain model and without an honest majority (as in the two-party
case), there exist large classes of functionalities that cannot be securely computed according to the
definitions of universal composability [9, 8, 11]. Note that these impossibility results relate specifi-
cally to the definition of universal composability and not necessarily to the possibility of obtaining
protocols that are secure under concurrent general composition by some other definition. Never-
theless, impossibility results have also been demonstrated for any definition achieving concurrent
general composition [28], and even for concurrent self composition [30], where impossibility holds
in the plain model and in the case of no honest majority. (We note that the classes of functionali-
ties that cannot be securely computed are not exactly the same for all these impossibility results.
However, large classes of functionalities are ruled out in each case.)

Bounded versus unbounded concurrency. As we have described above, broad impossibility
results exist for both concurrent general and self composition. However, the impossibility results
in [30] for concurrent self composition rely inherently on the fact that the secure protocol in ques-
tion can be run concurrently any polynomial number times; this property is called unbounded
concurrency. In contrast, a more limited model of concurrency, first considered by [1], restricts
the number of concurrent executions to be some fixed, predetermined polynomial in the security
parameter. Furthermore, the protocol design can depend on this number (i.e., if the bound is n2,
then the protocol can be designed so that it is secure for at most n2 concurrent executions, and
no more). This model is called bounded concurrency, and when m is the maximum number of
concurrent executions, we talk about m-bounded concurrent composition (note that m = m(n) is
a fixed polynomial in the security parameter). Importantly, the possibility of obtaining protocols
that are secure under m-bounded concurrent self composition was not ruled out in [30].

The model of concurrency. Before proceeding to describe our results, we describe the model of
concurrency considered here in more detail. In this work, we consider self composition of two-party
protocols, where a single pair of parties run the same protocol many times concurrently. This is
actually equivalent to the case where many different pairs of parties run a protocol concurrently,
with the following adversarial limitation. Each party is designated to be either a first party P1 or
a second party P2 (this defines the role that it plays in the protocol execution). The adversary is
then only allowed to corrupt a subset of the parties playing P1 or a subset of the parties playing P2,
but cannot simultaneously corrupt parties playing P1 and parties playing P2. Such a scenario can

3In this model, all parties are given access to a string that is ideally chosen from some distribution.
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model some real-world scenarios, like a number of servers concurrently interacting with many clients
(and where we assume that there is no simultaneous corruption of a server and a client). As we
have mentioned above, this is the exact model considered in the entire body of work on concurrent
zero-knowledge. Note that this is a rather limited model, both because self composition (rather
than general composition) is considered, and because only a single set of parties is considered
(equivalently, the adversary is severely limited in its corruption capability). However, we stress
that no general feasibility results have been shown for any model of concurrency, without assuming
some trusted setup phase or an honest majority. This therefore serves as a good first step. (Note
also that the limitation of considering self, rather than general, composition is actually essential
due to the impossibility results of [28].)

Our results. In this work, we show that any two-party functionality can be securely computed
under bounded-concurrent self composition. More specifically, we prove the following theorem:

Theorem 1 Assume that enhanced trapdoor permutations4 and collision resistant hash functions
exist. Then, for any probabilistic polynomial-time two-party functionality f and for any m, there
exists a protocol Π that securely computes f under m-bounded concurrent composition.

We now provide a very brief and informal outline of the proof of the theorem. We begin by observing
that secure two-party computation that composes concurrently can be obtained in a hybrid model
where the parties have (concurrent) access to a trusted party computing the ideal zero-knowledge
functionality. This was formally demonstrated in [12]. Given this observation, the question is
whether or not one can transform protocols that use this ideal zero-knowledge functionality into
protocols that run in the real model (without any trusted help). Of course, this transformation
must preserve the concurrent composition, or bounded-concurrent composition, of the protocol.

A naive implementation of the above idea is to replace the ideal zero-knowledge calls with any
concurrent zero-knowledge protocol. However, two problems arise with this idea. First, as we have
mentioned, concurrent zero-knowledge considers a scenario where the protocol is run concurrently
with itself only. Thus, it is not clear that the zero-knowledge simulation can be accomplished if
the protocol is run concurrently to other protocols as well. Second, a problem relating to the
malleability of protocols arises. That is, during the concurrent executions, the adversary may
simultaneously verify and prove zero-knowledge proofs. Thus, it can execute a man-in-the-middle
attack on the zero-knowledge proofs, possibly enabling it to prove false statements. This is a
problem because in order for the simulation of the secure protocol to work, we must be sure that
the proofs provided by the adversary are sound. This second problem is solved by having the parties
use fundamentally different zero-knowledge proofs.5 Specifically, one party proves statements with
the black-box zero-knowledge protocol of [36], while the other party proves statements with the non
black-box zero-knowledge protocol of [1, 3]. It turns out that a careful choice of parameters for these
protocols solves the problem of malleability. However, the first problem (of concurrency with other
protocols) still remains. This is solved as follows. The protocol of [1] can easily be modified so that
it remains zero-knowledge when run concurrently with other protocols (intuitively, this is the case
because there is no rewinding). However, the protocol of [36] is more problematic. We therefore

4Enhanced trapdoor permutations have the property that a random element generated by the domain sampler is
hard to invert, even given the random coins used by the sampler; see [19, Appendix C]. We note that the construction
of [22] for secure two-party computation in the stand-alone model also assumes the existence of enhanced trapdoor
permutations.

5We note that the recent result of [2] for “non-malleable coin-tossing” does not solve this problem. This is because
[2] relies on a very specific scheduling which can be enforced in their scenario, but cannot be enforced here.
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devise a new black-box simulation strategy for [36] in the setting of m-bounded concurrency, that
enables it to be used directly as a sub-protocol of another protocol. Having solved these problems,
we are able to replace the ideal zero-knowledge calls in any protocol with the specific m-bounded
concurrent zero-knowledge protocols described above. Putting this transformation together with
a protocol that is secure when given access to the ideal zero-knowledge functionality, we obtain a
protocol that is secure under m-bounded concurrent composition in the real model. The number of
rounds of communication in our protocol is O(m ·κ(n)), where n is the security parameter and κ(·)
is any super-constant function (e.g., κ(n) = log log n). We note that a lower bound of m rounds for
protocols that are proven using only black-box simulation has been proven in [27]. Nevertheless,
our protocol is proven using both black-box and non black-box techniques (and is thus not a “tight”
upper-bound).

We conclude with a remark about efficiency. Our protocol requires O(mκ(n)) rounds to obtain
security for m concurrent executions. It is therefore far from being “reasonably efficient”. Never-
theless, the focus of this paper is not efficiency. Rather, we believe that establishing the feasibility
of obtaining secure computation in any reasonable model of concurrency is of great importance,
irrespective of efficiency. Furthermore, our constructions may lead to more efficient protocols (see
below in subsequent work).

Subsequent and related work. Subsequent to this work, a constant-round protocol for bounded-
concurrent secure two-party computation was presented in [33]. Their protocol builds on our work
and takes our exact framework, while replacing the specific zero-knowledge protocols with constant-
round ones. In comparison to our protocol, they achieve a constant number of rounds, which is a
drastic improvement. However, we note that their protocol relies on subexponential hardness as-
sumptions, while ours uses only standard polynomial hardness. In addition, their security reduction
is inherently non-uniform (and so the cryptographic assumptions needed are also non-uniform). In
contrast, our reduction is uniform (and so security against uniform adversaries can be obtained by
assuming that the cryptographic primitives used are only secure against uniform adversaries).

We also note that both our protocol and the protocol of [33] suffer from very high communi-
cation complexity in bandwidth. Specifically, for m concurrent executions, the bandwidth of the
protocols are at least Ω(mn2), where n is the security parameter. We note that some dependence
of the bandwidth on m is actually inherent. That is, it has been shown that there exist many func-
tionalities such that any protocol that securely computes these functionalities under m-bounded
concurrent self composition must have communication complexity of at least m [30].

Open questions. Our protocol (and the protocol of [33]) only solve the problem of two-party
computation. It is not known how to achieve multi-party secure computation for the setting of
bounded concurrent self composition. In addition, our protocol only works for the case that each
party plays the same role in each execution. Thus it cannot be used in a network where different
pairs of parties run the protocol, and any individual party may sometimes play the role of party 1
and sometimes the role of party 2. (In the taxonomy of [29], this would be called bounded concurrent
self composition with arbitrary sets of parties.) In this context, it would also be interesting to
consider the case of adaptive corruptions (we only consider static corruptions here).

2 Definitions: m-Bounded Concurrent Secure Computation

In this section we present the definition for m-bounded concurrent secure two-party computation.
The basic description and definition of secure computation follows [23, 32, 5, 7]. We denote com-
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putational indistinguishability by
c≡, and the security parameter (and, for simplicity, the lengths of

the parties’ inputs) by n. All parties and the adversary run in time that is polynomial in n.

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for
every pair of inputs (x, y), the output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs
of strings. The first party (with input x) wishes to obtain f1(x, y) and the second party (with input
y) wishes to obtain f2(x, y). We often denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)).
Thus, for example, the zero-knowledge proof of knowledge functionality for a relation R, is denoted
by ((x,w), x) 7→ (λ,R(x,w)). In the context of concurrent composition, each party actually receives
a vector of inputs of polynomial length, and the aim of the parties is to jointly compute f(xi, yi) for
every i. (According to this description, all the honest party’s inputs are fixed at the onset. However,
our protocols are also secure when the honest party’s inputs may be chosen adaptively throughout
the execution. This will be discussed later.) The fact that m-bounded concurrency is considered
relates to the allowed scheduling of messages by the adversary in the protocol executions; see the
description of the real model below.

We note that our results here also apply to reactive functionalities where inputs and outputs
are supplied over a number of stages. Such a functionality can be modeled by a probabilistic
polynomial-time interactive machine who receives inputs and supplies outputs. This machine can
keep state and thus the inputs from previous computations can influence the outputs of later ones.

Adversarial behaviour. In this work we consider a malicious, static adversary. That is, the
adversary controls one of the parties (who is called corrupted) and may then interact with the
honest party while arbitrarily deviating from the specified protocol. The focus of this work is not
on fairness. We therefore present a definition where the adversary always receives its own output
and can then decide when (if at all) the honest party will receive its output. The scheduling of
message delivery is decided by the adversary.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is trivially secure. This
is formalized by considering an ideal computation involving an incorruptible trusted third party to
whom the parties send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Unlike in the case of stand-alone computation,
here the trusted party computes the functionality many times, each time upon different inputs.
Loosely speaking, a protocol is secure if any adversary interacting in the real protocol (where no
trusted third party exists) can do no more harm than if it was involved in the above-described ideal
computation.

Concurrent execution in the ideal model. Let p(n) be a polynomial in the security pa-
rameter. Then, an ideal execution with an adversary who controls either P1 or P2 proceeds as
follows:

Inputs: The honest party and adversary each obtain a vector of p(n) inputs each of length n; denote
this vector by w (i.e., w = x or w = y).

Honest party sends inputs to trusted party: The honest party sends its entire input vector w to the
trusted party.
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Adversary interacts with trusted party: For every i = 1, . . . , p(n), the adversary can send (i, w′i) to
the trusted party, for any w′i ∈ {0, 1}n of its choice. Upon sending this pair, it receives back
its output based on w′i and the input sent by the honest party. (That is, if P1 is corrupted,
then the adversary receives f1(w′i, yi) and if P2 is corrupted then it receives f2(xi, w

′
i).) The

adversary can send the (i, w′i) pairs in any order it wishes and can also send them adaptively
(i.e., choosing inputs based on previous outputs). The only limitation is that for any i, at
most one pair indexed by i can be sent to the trusted party.6

Trusted party answers honest party: Having received all of its own outputs, the adversary specifies
which outputs the honest party receives. That is, the adversary sends the trusted party a
set I ⊆ {1, . . . , p(n)}. Then, the trusted party supplies the honest party with a vector v of
length p(n) such that for every i 6∈ I, vi = ⊥ and for every i ∈ I, vi is the party’s output
from the ith execution. (That is, if P1 is honest, then for every i ∈ I, vi = f1(xi, w

′
i) and if

P2 is honest, then vi = f2(w′i, yi) .)

Outputs: The honest party always outputs the vector v that it obtained from the trusted party.
The adversary may output an arbitrary (probabilistic polynomial-time computable) function
of its initial input and the messages obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗ be a functionality, where f = (f1, f2), and let S
be a non-uniform probabilistic polynomial-time machine (representing the ideal-model adversary).
Then, the ideal execution of f (on input vectors (x, y) of length p(n) and auxiliary input z to S),
denoted idealf,S(x, y, z), is defined as the output pair of the honest party and S from the above
ideal execution.

We note that the definition of the ideal model does not include any reference to the bound m
on the concurrency. This is because this bound is relevant only to the scheduling allowed to the
adversary in the real model; see below. However, the fact that a concurrent setting is considered can
be seen from the above-described interaction of the adversary with the trusted party. Specifically,
the adversary is allowed to obtain outputs in any order that it wishes, and can choose its inputs
adaptively based on previous outputs. This is inevitable in a concurrent setting where the adversary
can schedule the order in which all protocol executions take place.

Execution in the real model. We next consider the real model in which a real two-party pro-
tocol is executed (and there exists no trusted third party). Let p(n) and m = m(n) be polynomials,
let f be as above and let Π be a two-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine that controls either P1 or P2. Then, the real
m-bounded concurrent execution of Π (on input vectors (x, y) of length p(n) and auxiliary input z
to A), denoted realm

Π,A(x, y, z), is defined as the output pair of the honest party and A, resulting
from p(n) executions of the protocol interaction, where the honest party always inputs its ith input
into the ith execution. The scheduling of all messages throughout the executions is controlled by
the adversary. That is, the execution proceeds as follows. The adversary sends a message of the
form (i, α) to the honest party. The honest party then adds α to the view of its ith execution of Π

6The fact that the adversary can query the trusted party once for each execution is essential for obtaining meaning-
ful security. Otherwise, the adversary (controlling P2) could obtain a series of values f2(x, y), f2(x, y′), f2(x, y′′), . . .
for a single input value x belonging to the honest party. Furthermore, it may choose y, y′, y′′ etc. adaptively based
on previous outputs. This may reveal much more information than intended. For example, if f is the “less than”
function, then the adversary could conduct a binary search on the input range and find the exact value of x.
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and replies according to the instructions of Π and this view.7 The adversary continues by sending
another message (j, β), and so on. When unbounded concurrency is considered, any scheduling of
the messages by the adversary is allowed. In contrast, in the setting of m-bounded concurrency,
the scheduling by the adversary must fulfill the following condition: for every execution i, from the
time that the ith execution begins until the time that it ends, messages from at most m different
executions can be sent. (Formally, view the schedule as the ordered series of messages of the form
(index, message) that are sent by the adversary. Then, in the interval between the beginning and
termination of any given execution, the number of different indices viewed can be at most m.) We
note that this definition of concurrency covers the case that m executions are run simultaneously.
However, it also includes a more general case where many more than m executions take place, but
each execution overlaps with at most m other executions.

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition asserts
that a secure two-party protocol (in the real model) emulates the ideal model (in which a trusted
party exists). This is formulated by saying that for every real-model adversary there exists an ideal
model adversary that can simulate an execution of the secure real-model protocol.

Definition 1 (m-bounded concurrent secure computation): Let m = m(n) be a polynomial and
let f and Π be as above. Protocol Π is said to securely compute f under m-bounded concurrent
composition if for every real-model non-uniform probabilistic polynomial-time adversary A control-
ling party Pi for i ∈ {1, 2}, there exists an ideal-model non-uniform probabilistic polynomial-time
adversary S controlling Pi, such that for every polynomial p(n),

{
idealf,S(x, y, z)

}
n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

c≡
{
realm

Π,A(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

Remark – adaptively chosen inputs. Definition 1 is overly simplistic and limited in that it
assumes that the honest party’s inputs are fixed before any execution begins. However, our protocol
also works for a more general definition where inputs for later executions can depend on outputs of
earlier executions; see [30] for such a definition. We present this simpler definition for the sake of
clarity and because the issue of adaptively chosen inputs versus a-priori fixed inputs actually has
no effect on our construction.

3 Tools for our Protocol – Zero-Knowledge

In this section, we develop the basic tools needed for proving Theorem 1. As we have described
in the Introduction, this involves the construction of zero-knowledge proofs that can be used as
subprotocols within any other protocol, in the setting of bounded concurrency. We use the standard
definitions for zero-knowledge and proofs of knowledge, see [18], and assume familiarity with these
notions.

3.1 The Zero-Knowledge Arguments of Knowledge of [4]

The zero-knowledge arguments of knowledge of [4] have the interesting property that both simulation
and extraction take place by simulating zero-knowledge proofs (that are used as subprotocols).

7Notice that the honest party runs each execution of Π obliviously to the other executions. Thus, this is stateless
composition.

7



That is, the argument system is such that both the prover and verifier prove zero-knowledge proofs
of membership during the protocol.8 Then, the simulator strategy essentially just involves the
simulation of the subproof given by the prover to the verifier. Likewise, the extraction strategy
essentially just involves the simulation of the subproof given by the verifier to the prover. This
is helpful because we can focus on the one issue of simulating zero-knowledge within our setting,
and we obtain both zero-knowledge simulation and knowledge extraction. The remainder of this
section describes how this is achieved.

Commit-with-extract commitment schemes. A central tool in the construction of the zero-
knowledge arguments of knowledge of [4] is a perfectly-binding commitment scheme with the follow-
ing extraction property: for every committer, there exists a commitment extractor who is able to
extract the value being committed to by the committer. As we will see below, the extractor for the
commit-with-extract scheme of [4] works by simulating a zero-knowledge proof of membership. We
begin by describing how such a commitment scheme helps in obtaining zero-knowledge arguments
of knowledge:

Zero-knowledge arguments of knowledge using commit-with-extract. Given a commit-
with-extract commitment scheme, a zero-knowledge argument of knowledge can be constructed as
follows. The prover commits to a witness using the commit-with-extract scheme, and then proves
that it committed to a valid witness using a zero-knowledge proof of membership. Intuitively, a
knowledge extractor for the argument of knowledge simply uses the extractor of the commit-with-
extract scheme. By the soundness of the proof of membership provided by the prover in the second
stage of the argument of knowledge, we are guaranteed that the value obtained will be a correct
witness with probability only negligibly less than the probability that the verifier accepts the proof.
A simulator for this protocol is also easily obtained: just commit to garbage in the commit-with-
extract scheme and then simulate the proof of membership in the second stage. See [4] for more
details. The protocol description is as follows:

Protocol 1 (zero-knowledge argument of knowledge for R ∈ NP):
• Common Input: x

• Auxiliary input to prover: w such that (x,w) ∈ R.

• Part 1: P and V run a commit-with-extract protocol in which P commits to the witness w.

• Part 2: P proves to V that it committed to a valid witness w in the previous step, using a
zero-knowledge proof (or argument) of membership.9

We note that [4] also demonstrate the existence of a witness-extended emulator for Protocol 1, as
defined by [26]. Loosely speaking, a witness-extended emulator is a machine that not only outputs a
witness with the required probability (as is required from a knowledge extractor), but also outputs a
simulated transcript of the interaction between the prover and the verifier. Furthermore, whenever
the transcript of the interaction is such that the verifier accepts, then the witness that is obtained
is valid. To explain this further, consider a case that the prover convinces the verifier in a real

8In a proof of membership, the verifier is convinced that a certain statement is correct. However, in a proof of
knowledge, the verifier is also convinced that the prover actually holds a witness for this statement.

9Formally, let trans be the transcript of the commit-with-extract execution of part 1, and let d be the decommitment
message that P would use to decommit. Then, P proves the NP-statement that there exists a value d such that
(trans, d) defines the value w, and (x, w) ∈ R.
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interaction with probability p. Then, with probability negligibly close to p, the above-described
machine should output an accepting transcript and a valid witness. Furthermore, with probability
negligibly close to 1−p, the machine should output a rejecting transcript (and we don’t care about
the witness). We note that the transcript that is obtained is also publicly verifiable, meaning that
the verifier’s accept or reject decision can be efficiently obtained from the transcript. Witness-
extended emulation is often needed when a proof of knowledge is used as a subprotocol within a
larger protocol; as is the case for our constructions. See [4] for more discussion on witness-extended
emulation.

The commit-with-extract scheme of [4]. The scheme is based on the following non-interactive
commitment scheme that uses one-way permutations: Let f be a one-way permutation and let b be
a hard-core predicate of f . Then, in order to commit to a bit σ, the committer chooses r ∈R {0, 1}n,
lets y = f(r) and sends 〈y, v〉 to the receiver, where v = b(r) ⊕ σ. Loosely speaking, the commit-
with-extract scheme is defined in the same way except that the value y = f(r) is chosen jointly by
the committer and the receiver using a coin-tossing protocol. By the security of the coin-tossing
protocol, y is pseudorandom. Therefore, the hiding property remains essentially the same as in the
original scheme. Likewise, because f is a permutation, any y defines a unique value b(f−1(y)) = b(r)
and thus the scheme remains perfectly binding (i.e., given any pair (y, v), the committed value is
uniquely defined by v ⊕ b(f−1(y))). The novelty of the scheme is that the extractor can bias the
outcome of the coin-tossing protocol so that it knows the preimage f−1(y) of y. In this case, the
extractor can easily obtain the commitment value σ, as desired. We now describe the protocol:

Protocol 2 (commit-with-extract bit commitment scheme):
• Input: The committer has a bit σ to be committed to.

• Commit phase:

1. The committer chooses an enhanced trapdoor permutation:10

The committer chooses an enhanced trapdoor permutation f along with its trapdoor t and
sends f to the receiver.11

2. The parties run a coin-tossing protocol:

(a) The receiver chooses a random string r1 ∈R {0, 1}n and sends c = Commit(r1; s) to
the committer (using any perfectly-binding commitment scheme Commit and a random
string s).

(b) The committer chooses a random string r2 ∈R {0, 1}n and sends r2 to the receiver.
(c) The receiver sends r1 to the committer (without decommitting).
(d) The receiver proves that r1 is the value that it indeed committed to, using a zero-

knowledge argument system. Formally, the receiver proves that there exists a string s
such that c = Commit(r1; s).

(e) The output of the coin-tossing phase is r1 ⊕ r2.

3. The actual commitment:

The committer computes r = f−1(r1⊕ r2) and sends the value v = b(r)⊕σ to the receiver.
10See [19, Appendix C] for the definition of enhanced trapdoor permutations. For the sake of understanding the

protocol here, it suffices to think of the case that the domain of the permutation is {0, 1}n.
11For the sake of simplicity, we assume that the protocol uses certified [14] enhanced trapdoor permutations (for

which the receiver can efficiently verify that f is indeed a permutation). However, actually any enhanced trapdoor
permutation can be used; see [4].

9



• Reveal phase:

1. The committer sends the receiver the string r.

2. The receiver checks that f(r) = r1 ⊕ r2. If this is the case, then it computes b(r) ⊕ v
obtaining σ. Otherwise, it outputs ⊥.

First note that if the coin-tossing protocol ensures that r1 ⊕ r2 is pseudorandom, then the hiding
property of the commitment scheme is preserved. This is because the receiver cannot predict b(r)
from a (pseudo-)randomly chosen f(r) with probability greater than 1/2. We remark that as long
as the proof given by the receiver is sound, the security of the coin-tossing protocol holds.

We conclude by briefly describing how a commitment extractor CK can obtain the value σ
committed to by the committer. CK works by biasing the outcome r1 ⊕ r2 of the coin-tossing
protocol, so that it knows the preimage under f . More specifically, CK chooses a random string
r, computes f(r) and then makes the output r1 ⊕ r2 equal f(r). This is clearly not possible for a
real receiver to do (as the coin-tossing protocol ensures that f(r) is pseudorandom). However, CK
can run the simulator for the proof that the receiver provides in step 2d of the protocol. Thus,
CK sends a commitment to garbage in step 2a of the protocol and waits to receive the string r2

from the committer. Upon receiving r2, extractor CK computes r1 = f(r) ⊕ r2 and sends r1 to
the committer (where f(r) is obtained by choosing a random r and applying f to r). Now, with
overwhelming probability, this is not the string that CK committed to earlier. Thus CK cannot
honestly prove the proof of step 2d. Instead, it runs the simulator for it (and by the hiding property
of commitments, this looks indistinguishable from a real execution). The key point is that at the
conclusion of the protocol, the committer defines f(r) = r1 ⊕ r2 and sends v = b(r)⊕ σ. However,
CK knows the string r and can therefore obtain σ by computing v⊕b(r). Notice that the extraction
strategy relies only on the ability to simulate the zero-knowledge proof of membership in step 2d.
See [4] for a formal definition of commit-with-extract schemes and for a full proof of Protocol 2.

Summary. Consider the system of zero-knowledge arguments of knowledge of Protocol 1 where
the commit-with-extract scheme that is used is that of Protocol 2. Then, it holds that the simulation
of the combined protocol works by simulating the zero-knowledge proof of membership of Part 2
that is provided by P . Furthermore, the extraction strategy of the combined protocol works by
simulating the zero-knowledge proof of membership of Part 1 that is provided by V . Actually,
both the simulation and extraction strategies also involve other instructions, as described above.
However, these instructions do not require any “rewinding” or involved simulation strategies; rather
they can be generated using one-pass black-box simulation (specifically, these instructions can
be generated independently of the internal simulation of the subproofs and based solely on the
transcript of the other messages). Due to this fact, we have that if the zero-knowledge subproofs
can be simulated under concurrent composition (even with arbitrary other protocols), then both
simulation and extraction of Protocol 1 can be carried out under concurrent composition (even
with arbitrary other protocols). This important property is summarized in the following informal
lemma:

Lemma 3.1 (informal lemma): Let (P, V ) be the protocol obtained by plugging the commit-with-
extract scheme of Protocol 2 into Protocol 1. Furthermore, assume that the subproofs of membership
(in Protocol 2 and in part 2 of Protocol 1) constitute zero-knowledge proof or argument systems with
negligible soundness error, even when run concurrently with each other and arbitrary other protocols.
Then,
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1. (P, V ) is a zero-knowledge argument system, even when run concurrently with itself and ar-
bitrary other protocols.

2. (P, V ) is an argument of knowledge with negligible knowledge error, even when run concur-
rently with itself and arbitrary other protocols. Furthermore, there exists a witness-extended
emulator for (P, V ) in this setting.

The proof of this lemma follows directly from the proofs that Protocol 2 is a commit-with-extract
commitment scheme and that Protocol 1 is a system of zero-knowledge proofs of knowledge, as
shown in [4]. A formal version of Lemma 3.1 is stated and proved in Appendix A.

3.2 Black-Box Bounded Concurrent ZK

In this section we describe the concurrent zero-knowledge protocol of Richardson and Kilian [36],
with a certain setting of parameters relating to the number of rounds. It has been shown that the
protocol of [36] with a poly-logarithmic number of rounds is (unbounded) concurrent zero-knowledge
[24]. In contrast, we extend the protocol to have O(m·κ(n)) rounds, where m is the maximum num-
ber of concurrent executions and κ(·) is any super-constant function; i.e., κ(n) = ω(1).12 We then
show that this extended protocol is secure under m-bounded concurrent composition. Although
this is a far weaker claim (i.e., requiring more rounds and achieving only bounded concurrency),
the simulation strategies of [36, 24] are problematic when the protocol is used as a module within
another larger protocol (as will be the case here). We therefore increase the number of rounds and
provide a new simulation strategy that also succeeds when the protocol is plugged into another
(larger) protocol.

Before presenting the actual protocol of [36], we describe it on an informal level. The idea
behind the protocol is to provide the simulator with many opportunities to rewind the verifier.
This is achieved by having a preamble of many iterations, where rewinding in just one of the it-
erations suffices for simulating the entire proof. To demonstrate this idea, we consider the case
that the preamble consists of just one iteration. Then, the protocol begins with the verifier send-
ing a perfectly-hiding commitment to a random string r ∈R {0, 1}n. Next, the prover sends a
perfectly-binding commitment c = Commit(0n), after which the verifier decommits to r. (Note that
Commit(0n) is actually a randomized computation.) Finally, the prover proves a zero-knowledge
(or witness-indistinguishable [15]) proof to the verifier that either the statement in question is
true, or that its commitment c equals Commit(r). Now, the honest prover will always prove that
the statement in question is true. Furthermore, due to the fact that the verifier’s commitment is
perfectly-hiding, a cheating prover has no information on r when it sends c to the verifier. There-
fore, except with negligible probability, it will not be the case that c = Commit(r). Thus, if the
verifier is convinced, the statement in question must be true (by reduction to the soundness of the
zero-knowledge or witness-indistinguishable proof provided at the end). The fact that the proof is
zero-knowledge can be seen as follows: The simulator is able to rewind the verifier after obtaining
the decommitment value r. Then, it can continue the proof by providing a commitment c such
that indeed c = Commit(r). In this case, the simulator can prove the proof at the end using the
fact that its commitment is to r and without having any witness to the fact that the statement
in question is true. In the actual proof system, this preamble is repeated many times, presenting
many opportunities for rewinding the verifier. We now present the proof system:

12Actually, we will assume that κ(n) is at most polynomial in n; therefore, it cannot be any super-constant function.
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Protocol 3 (Protocol RKZK – concurrent ZK proof for a language L):
• Common input: x ∈ L and a security parameter n.

• Auxiliary input to the prover: a witness w for x ∈ L.

• Preamble length: `

• Part 1 – the preamble:

1. P sends V the first message of a two-round perfectly hiding commitment scheme.

2. V chooses ` random strings r1, . . . , r` ∈R {0, 1}n. Then, V sends P perfectly-hiding com-
mitments to r1, . . . , r`.

3. Repeat ` times (for j = 1, . . . , `):

(a) P computes a perfectly-binding commitment cj = Commit(0n) and sends it to V .
(b) V decommits, revealing rj.

• Part 2 – the proof:

1. P and V run any (efficient-prover) zero-knowledge or witness-indistinguishable proof for
NP for the following statement:

Either x ∈ L or there exists a j (1 ≤ j ≤ `) such that cj = Commit(rj).

Let RKZK(`) denote the instantiation of Protocol RKZK for the case that the number of iterations
in the preamble is `. Now, as we have mentioned above, it has been shown that RKZK(Õ(log2 n)) is
unbounded concurrent zero-knowledge [24]. Below, we will prove that RKZK(mκ(n)) is m-bounded
concurrent zero-knowledge. This is a far weaker claim than that of [24]. However, as we have
mentioned, we prove this in order to demonstrate our new simulation technique, that enables us
to later use RKZK as a subprotocol in another, different protocol. We remark that our proof that
RKZK(mκ(n)) is m-bounded concurrent zero-knowledge is far simpler than all known proofs for
the unbounded concurrency case. (Of course this is facilitated by the fact that in the model of
bounded concurrency we can make the protocol depend on the number of concurrent executions.)

Proposition 2 Let κ(·) be any super-constant function. Then, assuming the security of the pre-
scribed commitment schemes, Protocol RKZK(mκ(n)) is an m-bounded (black-box) concurrent zero-
knowledge proof system for the language L. Furthermore, the zero-knowledge simulator runs in strict
polynomial-time.

Proof: In order to prove this proposition, we need to show completeness, soundness and m-
bounded concurrent zero-knowledge. Completeness follows immediately from the completeness of
the zero-knowledge proof of part 2. We proceed to prove soundness:

Soundness: By the soundness of the proof in part 2, it suffices to show that the probability that
there exists a j such that cj = Commit(rj) is negligible. However, this follows immediately from the
fact that V commits using a perfectly-hiding commitment scheme. Therefore, P has no information
about rj when it generates its commitment cj .

m-bounded concurrent zero-knowledge: We begin by presenting some notation and terminol-
ogy. Denote by Πk the kth execution of the protocol and by Πj

k the jth iteration of the preamble in
the kth execution. We say that iteration Πj

k opens when the prover P sends the perfectly-binding
commitment cj in Πk, and that it closes when the verifier V ∗ decommits to rj in Πk. An execution
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is said to have been satisfied by the simulator S if V aborts the execution (by say, refusing to
decommit in some iteration), or if there exists a j such that cj = Commit(rj). Notice that once
an execution has been satisfied, the simulator can complete the simulation without any rewinding.
(In the case of an aborted execution, this is immediate. In the case that cj = Commit(rj), the
simulator can use this fact instead of a witness for x ∈ L in part 2 of the proof.) Therefore, the
simulation strategy is basically for S to satisfy every execution before it reaches part 2 of the proof.

Loosely speaking, the simulator S works by playing the honest prover until the first iteration
of an unsatisfied execution closes. Assume that this iteration is Πj

k, and let rj be the string
decommitted to by the verifier V ∗. Then, S rewinds V ∗ to the point in execution k that iteration j
opened and sends a new perfectly-binding commitment cj = Commit(rj). Next, S continues forward
(playing the honest prover) hoping that once again Πj

k is the first iteration to close. If this occurs
and V ∗ decommits, then with overwhelming probability execution k is satisfied. (Execution k may
not be satisfied in the case that V ∗ now decommits to a different string r′j 6= rj . However, due
to the computational binding of the commitment scheme used by the verifier, this happens with
only negligible probability.) If Πj

k is not the first iteration to close, then S repeats the process
again for a fixed polynomial number of times. If success is not obtained in any of these rewinding
attempts, then S abandons this attempt to satisfy the execution and continues in the same manner
as above. This strategy is used for all executions, and we show that eventually, all executions are
satisfied except with negligible probability. This high-level strategy is what also lies behind the
simulators of [36, 24]. The novelty of our strategy is that the simulator will iteratively fix the
transcript throughout the simulation, thereby limiting the rewinding (to the part not yet fixed).
Thus, we obtain a strategy which uses rewinding, but in a significantly more restricted way than
for previous simulators. This will be crucial for using the zero-knowledge proof as a subprotocol.
We now proceed to formally define the simulator:

The simulator S: We describe the simulation strategy of S for the remaining set of unsatisfied
executions (initially this set contains all executions). S’s high-level strategy is to satisfy an ex-
ecution, permanently fix the transcript until the point that the execution was satisfied (without
any further rewinding behind this point), and then continue to satisfy another execution from that
point on. Before continuing, we introduce some terminology. We call the point at which S fixes the
transcript a fixed point.13 Furthermore, the current fixed point is the last fixed point to be set by
S. Now, S holds a list of unsatisfied executions and attempts to satisfy an execution from this list
without rewinding behind its current fixed point. According to this strategy, only iterations that
were opened after the current fixed point may be rewound. Thus, we call an iteration potential if it
opened after the current fixed point. Now, S interacts with verifier V ∗(x, z, r) in a black-box man-
ner, playing the honest prover strategy for part 1 of the proof and waiting for one of the following
two events:

1. V ∗ aborts an unsatisfied execution: When this occurs, the execution is satisfied. Therefore, S
sets a fixed point at the “abort” message, removes this execution from the set of unsatisfied
executions and continues as described above. We note that an abort message is just any
detectably illegal message sent by V ∗.

2. A potential iteration closes: Let this iteration be Πj
k and let rj be the string decommitted to

by the verifier when Πj
k closed. Furthermore, let rS be the random coins used by S in the

simulation since the last fixed point was set. Now, S rewinds V ∗ back to the point at which
iteration Πj

k opened and sends cj = Commit(rj), instead of a commitment to 0n. Then, S

13Formally, “fixing the transcript” means fixing the prefix of all future oracle calls to V ∗.
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continues in the simulation with the hope that Πj
k will be the first iteration to close again.

We stress that S uses fresh random coins in this continuation (i.e., coins that are independent
from the coins used previously). Now, as we have mentioned, S’s aim in this rewinding is
to once again have Πj

k be the first potential iteration to close. Therefore, if V ∗ aborts an
execution or closes a different potential iteration before Πj

k closes, then S rewinds back to the
point at which Πj

k opened and tries again (with new random coins). S attempts this rewinding
2mn2 times. If in all of these attempts Πj

k does not close before another event causing a fixed
point occurs, then S abandons this attempt at satisfying Πk. Instead, S rewinds V ∗ to the
current fixed point and replays the honest prover strategy using the random coins rS that it
used the first time that Πj

k closed. Then, S fixes the transcript at the point that Πj
k closes

and continues as above. In such a case, we say that the fixed point set by S is a failed fixed
point. If at any point during the simulation it turns out that κ(n) consecutive fixed points
are failed, then S outputs failure and halts.

Now, if in one of the 2mn2 rewinding attempts, Πj
k is the first iteration to close (without

the other events occurring), then S does the following. Let r′j be the decommitment of V ∗

in the second time that Πj
k is the first iteration to close. If r′j 6= rj , then S outputs failure

and halts. Otherwise, the execution is satisfied (because cj = Commit(rj). Having satisfied
Πk, simulator S fixes the transcript at the point that Πj

k closes, removes Πk from the set of
unsatisfied executions and continues as above.

In addition to the above, whenever part 2 of a satisfied (and non-aborted) execution is reached,
S proves the proof using the witness to the fact that cj = Commit(rj) for some j. In contrast, if
part 2 of an unsatisfied execution is reached, then S outputs a special unsatisfied symbol and halts.
(In such a case cj 6= Commit(rj) for every j, and so S cannot prove the proof of part 2.) S continues
in this way until V ∗ concludes the interaction. This completes the description of S.

Proof of the simulation strategy: We first comment that the simulator runs in time that is
polynomial in n. This follows from the fact that the overall number of rewinding attempts in all of
the p(n) ·mκ(n) iterations (over all executions) is at most 2mn2 · p(n) ·mκ(n) = poly(n). (Recall
that m = m(n) equals the number of executions that are run simultaneously and p(n) equals the
total number of executions.)

Next, we demonstrate that S outputs a distribution that is computationally indistinguishable
from a real execution between P and V ∗. We first bound the probability that S outputs a special
failure or unsatisfied symbol.

Claim 3.2 The probability that S outputs failure is negligible.

Proof: There are two events that can cause S to output failure. We separately show that each of
these events can occur with at most negligible probability:

1. Event 1 – V ∗ decommits to some r′j 6= rj in one of the rewinding attempts: The fact that V ∗

decommits to the same rj before and after rewinding is due to the computational binding of
the commitment scheme. The proof of this is standard and is therefore omitted.

2. Event 2 – κ(n) consecutive fixed points are failed: In order to bound the probability that
this occurs, we first consider the probability that a single fixed point is failed. Let Πj

k be a
potential iteration that closed first, and let pj

k be the probability that given the transcript
until the point that Πj

k opens, iteration Πj
k closes before any other event causing a fixed point

occurs. Then, there are two possibilities:
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(a) pj
k ≥ 1

mn : In this case, the probability that Πj
k will not be the first to close in all of the

2mn2 rewinding attempts is negligible. This can be seen as follows. Denote by p̃j
k, the

probability that given the transcript until Πj
k opened, iteration Πj

k is the first iteration
to close during a rewinding attempt. Now, pj

k and p̃j
k may differ because the perfectly-

binding commitment provided by S before rewinding is to 0n and after rewinding is
to rj . However, by the computational hiding of the commitment, this difference can
be at most negligible. (The formal reduction to breaking the hiding of the scheme is
standard and is therefore omitted.) It therefore follows that p̃j

k > 1
2mn . In other words,

the probability that Πj
k is not the first to close in any given rewinding attempt is less

than (1 − 1
2mn). Therefore, the probability that it is not the first to close in all of the

2mn2 independent rewinding attempts is upper-bound by (1− 1
2mn)2mn2

< e−n, which
is negligible.

(b) pj
k < 1

mn : In this case, we cannot claim that with overwhelming probability, Πj
k will be

the first iteration to close again in at least one of the rewinding attempts. Rather, we
bound the probability that a potential iteration Πj

k with pj
k < 1/mn will be the first

iteration to close before any rewinding takes place. Let F denote the set of potential
iterations for which the probability that the iteration is the first to close is less than
1/mn. Then, since there are at most m potential iterations between any two fixed points
(at most one per execution), we have that |F | ≤ m. (The fact that every unsatisfied
execution can only have one potential iteration between any two fixed points follows
from the fact that as soon as a potential iteration closes, a fixed point is set. Thus,
a second potential iteration can only open after the previous one closed, meaning that
a fixed point separates them.) Therefore, by the union bound, the probability that an
iteration from F will be the first to close is less than 1/n.

Combining the above, we have that the probability of encountering any single failed fixed
point is less than 1/n + e−n < 2/n. Now, by the simulation strategy, S outputs failure if
κ(n) consecutive fixed points are failed. The probability that this occurs can be bound as
follows. For any given starting fixed point, the probability that κ(n) consecutive failed fixed
points are encountered from this starting point is less than ( 2

n)κ(n) (this is based on the above
analysis that bounds the probability of encountering a single failed fixed point, given the
previously fixed transcript, by 2/n). There are at most mκ(n) starting fixed points, and so
the overall probability of encountering κ(n) consecutive failed fixed points is upper bound
by mκ(n)( 2

n)κ(n), which is negligible as long as κ(n) is a super-constant function of n (e.g.,
κ(n) = log log n).

This completes the proof.

Next, we show that S never outputs the special unsatisfied symbol.

Claim 3.3 The probability that S outputs unsatisfied equals 0.

Proof: S only outputs unsatisfied in the case that it reaches part 2 of the proof in an execution
that it did not satisfy; let Πk be this execution. We can assume that S does not output failure
(because if it did, then it would not output unsatisfied). This implies that there are at most κ(n)−1
consecutive failed fixed points and that for all other fixed points, the execution for which the fixed
point was set is satisfied. Now, there are mκ(n) iterations in Πk’s preamble. Furthermore, as we
have mentioned, at most one iteration of any unsatisfied execution, including Πk, can be opened
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between every two fixed points. Therefore, S must have placed mκ(n) fixed points before part 2
of Πk is reached. Since there are at most κ(n)− 1 consecutive failed fixed points, by a pigeon-hole
argument we have that there must be m non-failed fixed points that were placed by S. However, a
non-failed fixed point is only placed when S satisfies an execution. Therefore, m different executions
were satisfied between the time that Πk started and finished. Since the setting here is of m-bounded
concurrency, there can be at most m−1 other executions that run simultaneously with Πk. We
therefore conclude that Πk must also have been satisfied.

Having established that S outputs a special symbol with at most negligible probability, we are
ready to prove that the simulation is successful. That is,

Claim 3.4 Let m = m(n) be a polynomial. Then, for every non-uniform probabilistic polynomial-
time verifier V ∗ who schedules the messages according to m-bounded concurrency and every poly-
nomial p(·),

{
〈P, V ∗(z, r)〉(x)

}
n∈N;x∈L

p(n)
n ;z,r∈{0,1}∗

c≡
{
SV ∗(x,z,r)(x)

}
n∈N;x∈L

p(n)
n ;z,r∈{0,1}∗

where Ln = L ∩ {0, 1}n.

Proof: We assume that S does not output failure or unsatisfied. This is fine because these events
happen with at most negligible probability. Next, consider the following hybrid experiment. Let
MV ∗ be a machine who is given a witness to the fact that x ∈ L and follows the strategy of S
exactly with the following exception. When M reaches part 2 of the proof for a satisfied execution,
it uses its knowledge of the witness to prove the proof in the same way as the honest prover, rather
than using the fact that cj = Commit(rj) for some j.

We first claim that the distribution generated by MV ∗ is computationally indistinguishable from
the distribution generated in a real execution between P and V ∗. Intuitively, the only difference
between the transcripts is regarding the prover commitments, which are to 0n in a real execution
and to rj in the simulation by MV ∗ . Therefore, the indistinguishability is due to the hiding prop-
erty of commitments. More formally, consider the following two experiments with a probabilistic
polynomial-time distinguishing machine D and a perfectly-binding commitment scheme Commit.
In the first experiment, D adaptively chooses n-bit values r1, r2, . . . and sends these values to an
oracle that returns cj = Commit(rj) for each j. Note that D chooses the rj values adaptively and
therefore rj is chosen after c1, . . . , cj−1 have been received. In the second experiment, D does the
same; however, for each oracle query it receives back a commitment cj = Commit(0n). (Of course,
all commitments are generated with independent random coins.) By the hiding property of the
commitments, these two experiments are indistinguishable; i.e., every such D outputs 1 in both
experiments with negligibly close probability. (This follows from a standard hybrid argument.)
Now, let M̃V ∗ be a machine who participates in the above experiments (playing the role of D).
Machine M̃V ∗ works exactly like MV ∗ except that instead of generating a prover-commitment to
a string rj by itself, it queries its oracle with rj and uses the response cj as if it is a commitment
to rj . (Note that we abuse notation here and ignore the fact that rj can be from any iteration and
any execution.) Now, on the one hand, if M̃V ∗ is involved in the first experiment (thereby receiving
commitments to rj), then it generates exactly the same distribution as MV ∗ . On the other hand,
if M̃V ∗ is involved in the second experiment (thereby receiving commitments to 0n), then we claim
that it generates a distribution that is statistically close to a real execution between P and V ∗. The
fact that the distribution is statistically close to a real execution requires justification because M̃V ∗

rewinds V ∗. Intuitively, this holds because in both cases, the commitments received by V ∗ are to
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0n; furthermore, the rewinding carried out by M̃V ∗ is such that it does not skew the distribution
of the transcript in any way. This is formally shown by induction over the fixed points. The base
case refers to an empty transcript (this is as if a fixed point is placed before the simulation begins).
Now, assume that indistinguishability holds until the ith fixed point is set; we now prove for the
i+1th fixed point. In order to prove this, first note that the setting of a fixed point can be viewed
as the following two-step process:

1. Sample the event that causes the next fixed point to be set in a real execution. There are at
most 2 such events that can occur for every execution: 1 event for the case that the verifier
aborts, and 1 event for the case that a potential iteration is the first to close.

2. Given the event that causes the next fixed point to be set, sample from all real transcripts
that result in this event occurring.

The above “sampling” is according to the distribution defined by V ∗(x, z, r, t), where x, z, r are
V ∗’s common-input, auxiliary-input and random-tape, respectively, and t is the transcript up to
the ith fixed point. Note that the distribution in question is dependent upon the prover’s coins only
(V ∗’s coins r are fixed here). Now, if M̃V ∗ does not carry out any rewinding in setting the i+1th

fixed point, then the portion of the transcript between the i and i+1th fixed point that is obtained,
is distributed exactly like the transcript of a real execution between P and V ∗. (Recall that in
this case M̃V ∗ sends commitments to 0n (just like the real prover) and furthermore, it uses a “real
witness” for proving the proof of part 2.) We note that although the transcript is sampled directly,
it implicitly follows the above described two-step process. Next, consider the case that rewinding
is carried out by M̃V ∗ . In this case, there are two possibilities. First, M̃V ∗ may output failure;
if this happens, then the resulting transcript is different from in a real execution. However, since
this happens with at most negligible probability (by Claim 3.2), this causes at most a negligible
difference. In contrast, if M̃V ∗ does not output failure, then the transcript that is output is either
the same one as before rewinding (as when a failed fixed point is set), or the last one after rewinding
(if M̃V ∗ succeeds in learning rj). However, both of these transcripts are uniformly chosen from the
set of transcripts in which the potential iteration in question is the first to close (i.e., the sampling
is done exactly according to the distribution over all transcripts, conditioned on the event that
causes the fixed point to be set). It follows that the transcript generated by M̃V ∗ in the second
experiment is statistically close to a real transcript between P and V ∗ (the only difference is in the
case that failure is output). In contrast, as shown above, the transcript generated by M̃V ∗ in the
first experiment is exactly the same as by MV ∗ . Therefore, by the indistinguishability of the two
experiments, we conclude that the transcript distribution generated by MV ∗ is computationally
indistinguishable from the transcript generated in a real execution.

Next, we consider the difference between the distribution generated by MV ∗ and the distribution
generated by S. The difference between these distributions is with respect to the witness used for
proving part 2 of the proofs. Specifically, M always uses the “real” witness for the statement being
proved, whereas S always uses the witness that cj = Commit(rj). Thus, the indistinguishability of
the distributions reduces to the zero-knowledge (or actually witness indistinguishability) property
of the proof in part 2 of the protocol. (We also rely here on the fact that witness indistinguishability
is preserved under concurrent composition [15].) This reduction is straightforward and is therefore
omitted.

This completes the proof of Proposition 2.

Remark 3.1 – on the length of the preamble. The number of iterations in the preamble is
chosen so that all executions are guaranteed to be satisfied before part 2 of the proof is reached;
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this is demonstrated in Claim 3.3. Specifically, it holds that the number of iterations needs to be
greater than or equal to κ(n) times the number of non-failed fixed points that are placed by the
simulator. In the context of bounded concurrent zero-knowledge, the number of non-failed fixed
points equals the number of concurrent executions that take place. We stress that we can extend
the preamble to be of any polynomial length (greater than or equal to mκ(n)), and the number of
non-failed fixed points required remains m only. This will become important when Protocol RKZK
is used for obtaining bounded-concurrent secure two-party computation.

Remark 3.2 – reducing the length of the preamble. We also remark that the length of
the preamble can be reduced to m, rather than mκ(n) by employing an expected polynomial-
time simulation strategy. The difference in the simulator is that when a potential iteration closes
first, the verifier is rewound repeatedly until that same iteration closes first again. (This is in
contrast to the above-described strategy where at most 2mn2 rewinding attempts are made.) We
note that this must be done carefully in order to make sure that the simulator remains expected
polynomial-time; techniques for such a simulation can be found in [20]. The reason that we use
strict polynomial-time simulation (at the expense of additional rounds) is due to the fact that the
zero-knowledge proof is used as a subprotocol in a larger protocol that utilizes “ideal calls” to zero-
knowledge. Furthermore, this larger protocol has been proven secure for strict polynomial-time
adversaries only. Now, if our zero-knowledge simulation ran in expected polynomial-time, then
we would encounter the following problem. In order to prove the security of our entire protocol
(i.e., the larger protocol combined with our zero-knowledge subprotocol), we first simulate the
zero-knowledge proofs, thereby obtaining an adversary for the larger protocol in a setting with
ideal zero-knowledge calls. Next, we derive security by applying the proof of security for the larger
protocol. Now, if the simulation of the zero-knowledge proof takes expected polynomial-time, then
we would obtain an expected polynomial-time adversary for the larger protocol. However, as we
have mentioned, this protocol has only been proven secure for strict polynomial-time adversaries.
The proof of security would therefore not go through.

3.3 Non-Black-Box Bounded Concurrent ZK

In this section, we describe the bounded concurrent zero-knowledge protocol of Barak [1]. The
high-level outline of the construction of [1] is as follows. In the first part of the protocol, the
prover and verifier run a “generation protocol” with the following property. A simulator is able to
obtain some trapdoor information from the verifier during the generation protocol (this trapdoor
will be used later on in the simulation). In contrast, in a real execution between the prover and
verifier, the prover has only a negligible chance of obtaining this trapdoor information. Then, the
second part of the zero-knowledge protocol is designed such that given the trapdoor information,
it is possible to complete the proof (without knowing any witness to the statement being proved).
Thus, the simulator works by obtaining the trapdoor information in the first part and then using
it to complete the proof in the second part. In contrast, in a real interaction the prover will not
obtain the trapdoor information and thus its proof must be based on the validity of the statement
being proved.

In this section, we will only describe the generation protocol of the first part of the protocol
of [1]. This suffices for our purposes here. For details regarding the second part, which uses
universal arguments, see [1, 3].

Easy-hard relations. The idea behind an easy-hard relation is that in a real interaction between
the prover and verifier, it is hard for the prover to “hit” the relation. In contrast, it is easy for
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the simulator to “hit” the relation. Thus, such a relation can be used for part 1 of the proof as
described above. In the definition below, we refer to Ntime(f(n)) relations; a relation R is said to
be in Ntime(f(n)) if there exists a non-deterministic Turing machine that upon input (x, y), runs
for at most f(|x|) steps and outputs 1 if and only if (x, y) ∈ R. We now present the definition:

Definition 3 (easy-hard Ntime(nlog log n) relations): Let R ⊆ {0, 1}∗×{0, 1}∗ be an Ntime(nlog log n)
binary relation. We say that R is an easy-hard relation14 if there exist two interactive probabilistic
polynomial-time generating algorithms P and V that satisfy the following two properties:

1. Hardness: For any (non-uniform) probabilistic polynomial-time machine P ∗, if τ is the tran-
script of the interaction of P ∗ and V on input 1n, then the probability that P ∗ outputs σ such
that (τ, σ) ∈ R is negligible in n.

2. Easiness: There exists a polynomial-time computable transformation that takes any (non-
uniform) probabilistic polynomial-time machine V ∗ and outputs a (non-uniform) probabilistic
polynomial-time simulator S∗ such that S∗ outputs a pair (v, σ) and:

(a) The first string v is computationally indistinguishable from the actual view of V ∗ when
interacting with P . (The view of a party consists of the contents of its tapes and the
messages that it receives.)

(b) Let τ be the transcript that is derived from v (note that the transcript of an execution
can be derived deterministically from either party’s view). Then, except with negligible
probability, (τ, σ) ∈ R.

The pair (P, V ) is called a generation protocol for R.

The witness σ for τ is the trapdoor information that was mentioned in the motivating discussion
above. The “hardness” requirement says that a real prover will not be able to obtain such a σ;
whereas the “easiness” requirement says that the simulator will obtain a σ as required. In the
second part of the argument system of [1], the prover essentially proves that either the original
statement is true or that it knows σ from the generation protocol.

We remark that we have chosen to denote the generating algorithms by P and V as they are
played by the prover and verifier in the zero-knowledge protocol. However, this notion can be
defined independently of zero-knowledge (and indeed, the above is independent of the statement
being proved).

Barak showed that assuming the existence of hash functions that are collision-resistant against
nlog log n-time adversaries, it suffices to prove the existence of an Ntime(nlog log n) easy-hard relation
in order to derive zero-knowledge. Furthermore, if the hardness and easiness properties hold in the
bounded concurrent model, then bounded concurrent zero-knowledge is obtained [1]. We note that
the hardness assumption regarding the hash functions has been reduced so that it suffices for them to
be collision resistant against any polynomial-time adversary [3]. However, this requires some special
properties in the construction of the easy-hard relation as well. We ignore these technicalities and
just remark that the weaker hardness assumption suffices for the results presented here. We now
proceed to describe the easy-hard relation of [1] for achieving bounded concurrent zero-knowledge.

14Such a relation is called interactive strong easy-hard in [1]. For the sake of brevity, we drop “interactive” and
“strong” from the name.
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The Barak easy-hard relation: The main idea behind the relation is to have the transcript τ
contain a “proof” that P knows the next message function of V . The hardness property follows
from the fact that P ∗ cannot know V ’s next message function (and in particular, P ∗ cannot guess
V ’s random-tape). In contrast, the simulator S∗ does hold V ∗’s next message function and can
therefore succeed in generating this “proof”. Of course, the only question remaining is what does
it mean for P to “prove” that it holds the next message function of V ? This was solved by [1] in
the following way: P sends V a commitment c to a machine M , and V replies with some random
string r. Then, we say that P knows V ’s next message function if M(c) = r (i.e., when applying
the committed machine M to the commitment value c, the output is exactly the message sent by V
upon receiving the commitment value c). The key point behind the hardness is that if r is of high
enough entropy, then P ∗ cannot succeed in committing to the correct M . In contrast, since the
simulator S∗ actually holds the code of V ∗, it can just set M = V ∗ (including the contents of all of
V ∗’s tapes). Then, of course, it holds that M(c) = V ∗(c) and so the simulator indeed commits to
the correct next message function.

The above works for the stand-alone case. However, in the bounded concurrent model, V ∗ will
not necessarily respond immediately with r. In particular, it may send messages belonging to other
executions first. Therefore, it will not hold that M(c) = r. The solution to this problem is to say
that P holds the next message function if there exists a “short” string y such that M(c, y) = r.
By “short”, we mean that y should be at least n bits shorter than the random string r sent by
V . The length of r is fixed to be some polynomial `(n), where `(n) bounds the length of all
messages received by V during all the concurrent executions. We now describe why this fulfills the
requirements of being an easy-hard relation.
• Hardness: In order for a cheating P ∗ to succeed, it must be that M(c, y) = r. However, M and

c are fixed before V chooses r. Furthermore, |r| ≥ |y|+n. Therefore, the Kolmogorov complexity
of r is too high for it to be predicted by y, and P ∗ can “hit” the relation with at most negligible
probability.

• Easiness: As in the stand-alone case, the simulator S∗ commits to M = V ∗. However, here S∗

must also determine the string y. This string y is set to be all the P -messages sent by S∗ from
the time that S∗ committed to M (in this execution) until the time that V ∗ replies with r (in
this execution). Since M = V ∗, it turns out that indeed M(c, y) = r. Notice also that since the
total length of all P -messages in all concurrent execution is less than `(n), it is possible for S∗

to define y in this way. Thus, the “easiness” requirement holds.
For more details, see [1]. The generation protocol and easy-hard relation of Barak are as follows:

Construction 1 (Barak generation protocol for an easy-hard relation R):
• Common input: 1n

• Length parameter: `(n)

• The protocol:

1. V chooses h ∈R {0, 1}n (where h defines a collision-resistant hash function with range in
{0, 1}n) and sends it to P .

2. P sends V a commitment c = Commit(0n).

3. V chooses r ∈R {0, 1}`(n) and sends r to P .

We now define the easy-hard relation R for which the above is a generation protocol. Loosely
speaking, the relation consists of pairs (c, r) and (M,y) such that c = Commit(M) and M(c, y) =
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r. In other words, the relation is “hit” if the prover succeeds in committing to a machine that
outputs the verifier’s response to the commitment itself (as described in the motivation above).
We note that the actual relation also includes h (the hash function from the protocol) and s (the
random coins used in generating the commitment c to M). Formally, let R be the relation of pairs
{((h, c, r), (M, s, y))} for which the following holds:

1. M is a program of length at most nlog log n where n
def= |h|.

2. c is a commitment to a hash of M using coins s. That is, c = Commit(h(M); s). Note that
|h(M)| = n.

3. U(M, c, y) outputs r within nlog log n steps, where U is a universal Turing machine.

4. |y| ≤ |r| − n.

Barak has shown that Construction 1 is a generation protocol in the bounded concurrent model
for the easy-hard relation R, as long as `(n) (that determines the length of r) fulfills the following
requirement: The total length of all messages sent by P between the time that P sends the com-
mitment c and V replies with r ∈R {0, 1}`(n) is less than `(n) − n. Thus, both the soundness and
zero-knowledge properties of the protocol of [1] hold as long as this condition is fulfilled.

We note that the length of the messages sent by P in part 2 of the zero-knowledge protocol
of [1] can be bound by n2. Since P only sends n bits in the generation protocol, we can bound the
total size of all P -messages in the protocol of [1] by n2 +n. Therefore, for m concurrent executions,
one can set `(n) = 2mn2 and it is guaranteed that r is long enough.

4 A Special-Purpose Composition Theorem

In this section, we consider a model where the parties run a real protocol that uses ideal calls to
a zero-knowledge proof of knowledge functionality (computed by a trusted third party). We then
present a composition theorem that demonstrates that in the setting of m-bounded concurrency,
a protocol in this model can be transformed into a different protocol for the real model (with no
trusted party), such that the output distributions from the two protocols are essentially the same.
This composition theorem is the central tool in our construction of m-bounded concurrent secure
two-party computation.

4.1 The ZK-Hybrid Model

In general, a hybrid model is one where parties send protocol messages to each other (like in the
real model), but also have access to a trusted party that computes some functionality (like in the
ideal model). Thus, this model is a hybrid of the real and ideal models. A protocol that is designed
for a hybrid model contains two types of messages: real messages that are sent directly between the
parties, and ideal messages that are sent between the parties and the trusted third party.

In the ZK-hybrid model, the parties have access to a trusted party who computes the following
ideal zero-knowledge functionality:

((v, w), λ) 7→ (λ, (v,R(v, w)))

where R is an NP-relation. That is, the first party (the prover) sends a statement v and a witness
w to the trusted party computing the functionality. The second party (the verifier) then receives
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the statement v and a bit b signalling whether or not the prover provided a valid witness for v. We
note that this functionality is actually a proof of knowledge because the prover must provide an
actual witness to the trusted party. In order to model a situation where the verifier may reject a
proof of even a true statement, we define a special symbol ⊥ such that for every relation R and
every v, it holds that (v,⊥) /∈ R. Thus, upon receiving (v,⊥), the trusted party always sends (v, 0)
to the verifier.

Let p(n) be a polynomial and let x, y ∈ ({0, 1}n)p(n) and z ∈ {0, 1}∗. Then, we denote by
zk-hybridm

Π,A(x, y, z) the output distribution of p(n) concurrent executions of protocol Π in the
ZK-hybrid model, where the scheduling is according to what is allowed in the model of m-bounded
concurrency. We stress that the only difference between this model and the real model, is that the
protocol Π also contains ideal messages which are dealt with by the trusted party who computes
the above zero-knowledge functionality.

4.2 Motivation for the Composition Theorem

Informally speaking, the composition theorem states that in the setting of m-bounded concurrent
composition, a real-model protocol Π can be constructed from any ZK-hybrid model protocol Π′

so that the following holds: for any real model adversary A running Π there exists a ZK-hybrid
model adversary A′ running Π′ so that the output distributions in both cases are essentially the
same. In other words, the ideal zero-knowledge calls can be replaced by a real protocol, and the
result is the same. Jumping ahead, this basically means that it suffices to obtain a secure protocol
for the ZK-hybrid model, and we can infer the existence of a secure protocol for the real model. As
we will see in Section 5, such protocols already exist, and so our goal is fulfilled.

The basic idea behind the theorem is to construct Π from Π′ by replacing the ideal calls to
the zero-knowledge functionality with concurrent zero-knowledge protocols. However, two main
problems arise when attempting to implement such a strategy:

1. Malleability/Soundness: Assume that in protocol Π′, both parties prove zero-knowledge proofs
(as is indeed the case for all known protocols for secure two-party computation). Then, we
must ensure that the adversary cannot maul the zero-knowledge proof of the honest party
in order to cheat. On a technical level this problem arises because in the hybrid model, the
zero-knowledge proofs are simulated, and such simulation essentially constitutes “cheating”.
Therefore, if the adversary could cheat by mauling the simulated proofs, this would mean
that the result of a real execution (where the adversary cannot cheat) and a hybrid execution
(where it can) would be different. In short, the problem here is of soundness and we remark
that a naive instantiation of the ideal calls with zero-knowledge protocols would definitely
suffer from this problem.

2. Simulation under concurrency with other protocols: In the setting of concurrent zero-knowledge,
the protocol in question is run concurrently to itself only; that is, it runs in the context of self
composition only. In contrast, here the zero-knowledge protocol is run concurrent to itself and
to other protocols, as in the case of general composition. Therefore, one cannot automatically
claim that the zero-knowledge property holds here. In fact, rewinding techniques (used in
all black-box zero-knowledge protocols) are very problematic in this context. In order to see
this, notice that the natural way to construct the ZK-hybrid model adversary A′ from the
real model adversary A is to have A′ simulate the zero-knowledge proofs for A, while all the
other messages (i.e., the messages from the ZK-hybrid model protocol Π′) are forwarded to
the external honest party. This causes a problem because messages from the zero-knowledge
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proofs in some executions may be interleaved with messages of Π′ in other executions. Since
the messages of Π′ are forwarded by A′ to an external party, A′ cannot rewind A at these
points. This may conflict with the necessity to rewind in order to simulate the zero-knowledge
protocol (if the simulation strategy is indeed based on rewinding).

We solve the first problem by using different zero-knowledge protocols so that the adversary can-
not maul one protocol in order to cheat in the other. Specifically, we have one of the parties
prove statements with the non-black-box zero-knowledge protocol of [1] (see Section 3.3), while the
other party proves statements with the black-box zero-knowledge protocol of [36] (see Section 3.2).
Loosely speaking, it turns out that these protocols are both non-malleable (or more accurately,
simulation-sound) with respect to each other. That is, both of the protocols remain sound even if
the adversary proves one protocol while simultaneously receiving a simulated proof of the other.

The second problem of concurrency with other protocols is solved as follows. First, the simu-
lation strategy for the protocol of [1] does not use rewinding. Therefore, no problem arises. (We
remark that there are parameters for the protocol of [1] that must be modified in this scenario, but
this is reasonably straightforward.) In contrast, the simulation strategy of the protocol of [36] does
use rewinding, which as we have described is problematic here. We solve this problem by using
the simulation strategy demonstrated in Section 3.2. Recall that this strategy is almost “straight-
line”. That is, the simulator deals sequentially with each execution and places fixed points behind
which it never needs to rewind. The simulation succeeds as long as the number of iterations in the
preamble is greater than or equal to the number of non-failed fixed points that need to be placed.
Thus, we increase the length of the preamble so that the simulator can place a fixed point for every
Π′-message that is sent. Then, since rewinding only takes place between fixed points, this ensures
that no rewinding behind a Π′-message is necessary. This strategy is based on the methodology
used by [21] to solve the problem of simulating zero-knowledge while external messages may be
sent.

4.3 The Composition Theorem

In this section we show that any protocol Π′ that runs in the ZK-hybrid model can be transformed
into a protocol Π in the real model. The transformation is such that any real-model adversary A
for Π can be simulated by a ZK-hybrid model adversary A′ for Π′ in the setting of m-bounded
concurrency. We remark that the protocol Π depends both on Π′ and on the concurrency bound m.

Theorem 4 Let Π′ be a two-party protocol for the ZK-hybrid model and let m(·) be a polynomial.
Then, assuming the existence of enhanced trapdoor permutations and collision resistant hash func-
tions, there exists a protocol Π for the real model with the following property. For every non-uniform
probabilistic polynomial-time adversary A running Π in the real model, there exists a non-uniform
probabilistic polynomial-time adversary A′ running Π′ in the ZK-hybrid model such that for every
polynomial p(n),
{
zk-hybridm

Π′,A′(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗
c≡

{
realm

Π,A(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

Proof: We begin by showing how to construct Π. Denote the participating parties by P1 and
P2. Then, both P1 and P2 may “prove” zero-knowledge proofs in Π′ (recall that in Π′ this in-
volves interaction with the trusted party only). Protocol Π is obtained by replacing all the ideal
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zero-knowledge calls of Π′ with the zero-knowledge arguments of knowledge of [4], described in Sec-
tion 3.1. We denote this protocol by POK. Recall that in this system of arguments of knowledge,
both the prover and verifier play the role of prover in zero-knowledge proofs of membership; we call
these the subproofs. Now, all the zero-knowledge subproofs in which P1 is the prover are proven
using the black-box concurrent zero-knowledge protocol of [36], described in Section 3.2; denote
this protocol by RKZK. Furthermore, all the zero-knowledge subproofs in which P2 is the prover
are proven using the concurrent zero-knowledge protocol of [1], described in Section 3.3; denote
this protocol by BZK. That is, when P1 plays the prover in the zero-knowledge proof of knowledge
POK, then P2 uses Protocol BZK when proving its subproof from the commit-with-extract scheme
and P1 uses Protocol RKZK when proving its subproof in part 2 of POK. Conversely, when P2

plays the prover in the zero-knowledge proof of knowledge POK, then P1 uses Protocol RKZK when
proving its subproof from the commit-with-extract scheme and P2 uses Protocol BZK when proving
its subproof in part 2 of POK. The important thing to remember is that all the subproofs in which
P1 plays the prover use Protocol RKZK, and all the subproofs in which P2 plays the prover use
Protocol BZK. We note that the proof of knowledge POK and the subproofs RKZK and BZK can all
be implemented assuming the existence of enhanced trapdoor permutations and collision resistant
hash functions.

Before continuing, we formally define what it means to “replace” an ideal zero-knowledge call
with protocol POK:
• Prover: If a party is instructed in Π′ to send (v, w) to the trusted party computing the zero-

knowledge functionality, then it plays the prover in the POK zero-knowledge proof of knowledge
protocol, using the witness w that it has. The messages that it sends and receives within this
proof are not recorded on its transcript for Π′.

• Verifier: If in Π′ a party is to receive a message (v, b) from the trusted party computing the zero-
knowledge functionality, then it plays the verifier in the POK zero-knowledge proof of knowledge
protocol. If it accepts the proof, then it writes (v, 1) on its transcript for Π′. Otherwise it writes
(v, 0). As above, the messages within the proof are not recorded on its transcript for Π′.
As we have described above, the RKZK and BZK protocols are used as subproofs in POK. Both

of these protocols are parameterized: the RKZK protocol by the number of iterations k in the
preamble and the BZK protocol by the length `(n) of the verifier message r. Recall that in the
scenario of m-bounded concurrent zero-knowledge, in RKZK the parameter k is set to mκ(n), and
in BZK the parameter `(n) is set to 2mn2. Now, we denote by rounds(Prot) the number of rounds
in Protocol Prot, and by length(Prot) the total length (i.e., number of bits) of all the messages
sent in Protocol Prot. Furthermore, we denote by ζ the total number of ideal calls made by both
parties to the ideal zero-knowledge functionality in Π′. Finally, when we refer to rounds(POK) and
length(POK), we mean the number of rounds and the total length of the messages in the proof of
knowledge without the subproofs RKZK and BZK. The parameters for the zero-knowledge subproofs
are set as follows. Let κ(·) be any super-constant (and sub-linear) function. Then, in RKZK we set

k = ζmκ(n) + mκ(n)·
(
rounds(Π′) + ζ ·rounds(POK) + ζ ·rounds(BZK)

)

and in BZK we set

`(n) = 2ζmn2 + m·
(
length(Π′) + ζ ·length(POK) + ζ ·length(RKZK)

)

In other words, the number of iterations in the RKZK preamble is ζmκ(n) plus mκ(n) times the
combined number of rounds in Π excluding the RKZK subproofs; this combined number of rounds
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comes to rounds(Π′) + ζ · rounds(POK) + ζ · rounds(BZK). (The first ζmκ(n) iterations are used to
cover the ζm executions of RKZK, as discussed in Remark 3.1. The number of additional iterations
is fixed so that there are κ(n) iterations for every non-RKZK message that is sent in all m executions
of the protocol.)

Likewise, the length `(n) of the message r in BZK is set to 2ζmn2 (as in ζm-bounded concurrent
zero-knowledge) plus m times the length of all other messages sent. This ensures that r is at least
n bits longer than all the messages sent by P2 in m executions of Π. We remark that there is no
problem setting the parameters in such a way. That is, although `(n) is dependent on length(RKZK),
the number of rounds in BZK is not dependent on RKZK. Thus, we can first set k and then `(n).
We digress here for a moment and comment that in our final protocol, rounds(Π′) and ζ are both
constants and thus the final number of rounds in Π is O(mκ(n)), where κ(n) is any super-constant
function (e.g., κ(n) = log log n).

We now show that for every real model adversary A running Π, there exists a ZK-hybrid model
A′ running Π′ such that the output distributions generated by A and A′ are indistinguishable.
Intuitively, this is because for m-bounded concurrency the zero-knowledge arguments of knowledge
as described constitute “good” replacements for the ideal calls to the zero-knowledge functionality.
Loosely speaking, we construct A′ from A as follows. A′ internally incorporates A and externally
forwards all the Π′-messages (i.e., the messages not belonging to the zero-knowledge proofs) between
A and the external party with which A′ interacts. In contrast, A′ internally simulates the zero-
knowledge proofs that A expects to see. Specifically, upon receiving a message (v, 1) from the
trusted party computing the ideal zero-knowledge functionality, A′ simulates the zero-knowledge
proof of knowledge for v, where A plays the verifier. Likewise, when A proves a proof of knowledge
for a statement v, the ZK-hybrid model adversary A′ runs the extractor for the proof. If A′ obtains
a valid witness w, then it sends (v, w) to the trusted third party; otherwise, it sends (v,⊥). Such
a strategy ensures that the output distribution generated by A′ in a run of Π′ (in the ZK-hybrid
model) is indistinguishable from the output distribution generated by A in a run of Π (in the
real model). Of course, the main challenge (and one of the central contributions of this work),
is in showing how to carry out the simulation and extraction when the zero-knowledge proofs of
knowledge are subprotocols within a larger protocol that is executed in the setting of m-bounded
concurrency. We stress that it does not suffice to prove the correctness of the simulation and
extraction within the context of m-bounded concurrent zero-knowledge. This is because now the
zero-knowledge proof is run concurrently with Π′, and not only concurrently with itself. We now
formally prove the existence of a ZK-hybrid model adversary A′ for every real model adversary A.
We separately deal with the cases that P1 and P2 are corrupted.

4.3.1 Party P1 is Corrupted

Let A be a real-model adversary for Π. We construct an adversary A′ who internally incorporates A
and works in the ZK-hybrid model interacting with P2 in protocol Π′. Adversary A′ sends internal
and external messages. Internal messages are sent by A′ to the internally incorporated A, whereas
external messages are sent by A′ to the external honest party P2 and to the external trusted party
computing the ideal zero-knowledge functionality. As we have mentioned, all the Π′-messages are
defined to be external, whereas all of the messages belonging to POK are defined to be internal.
Thus, except for the ideal zero-knowledge calls, A′ forwards all of the Π′-messages unmodified
between A and P2. In addition:
• Whenever A, controlling P1, proves a zero-knowledge proof of knowledge for some statement v,
A′ runs the extraction strategy for POK, possibly obtaining a valid witness w for v. (Actually,
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it runs the witness-extended emulator for POK, and obtains both a transcript of an execution
along with a value that is possibly a witness. See the short discussion in Section 3.1 on witness-
extended emulation.) This involves simulating Protocol BZK for A as the verifier (because
the subproof of part 1 that is simulated is given by P2 to P1) and honestly verifying Protocol
RKZK where A is the prover (because the subproof of part 2 is given by P1). (In addition,
the receiver messages of the commit-with-extract scheme of part 1 are chosen according to the
extraction strategy; see Section 3.1.) As we have mentioned, from this extraction procedure (or,
actually, witness-extended emulation), A′ receives some string w, which is possibly a witness for
v, and a transcript of an execution of the proof. A′ verifies that the transcript constitutes an
accepting proof (this can be publicly verified by the construction of Protocol POK). If yes, then
A′ externally sends (v, w) to the trusted party computing the ideal zero-knowledge functionality.
Otherwise, it sends (v,⊥).

• Whenever A′ receives an external message (v, 1) from the trusted party, it internally simulates
the zero-knowledge proof of knowledge POK for A. This involves honestly verifying Protocol
RKZK where A is the prover (from part 1 of POK) and simulating BZK for A as the verifier
(from part 2 of POK). (In addition, the value committed to by A′ in the commit-with-extract
scheme of part 1 is garbage; see Section 3.1.)
(We note that A′ never receives a message (v, 0) from the trusted party because P2 is honest
and we assume that honest provers always check that they have a correct witness before they
send anything to the trusted party or attempt to prove POK.)

The simulation of protocol BZK is carried out using the simulator S∗ of [1], as described in Sec-
tion 3.3. Notice that in the above simulation, all of the subproofs in which A is the prover are
RKZK, and all of the subproofs in which A is the verifier are BZK. Having described the simulation
by the ZK-hybrid model adversary A′, we proceed to prove that it generates a distribution that is
indistinguishable from a real model execution.

Proof outline. Intuitively, the simulation strategy by A′ works as long as Protocol RKZK is
sound and the simulator of BZK succeeds in generating a view that is indistinguishable from a
real execution of BZK. However, in order to prove this, we need to define a hybrid experiment that
isolates the RKZK and BZK executions. We do this by defining an ideal zero-knowledge functionality
that is a proof of membership, and not a proof of knowledge. We then show that replacing the
RKZK and BZK subproofs by this ideal functionality makes at most a negligible difference. This
enables us to deal with the RKZK and BZK subproofs separately.

The hybrid experiment. The hybrid experiment involves an ideal zero-knowledge proof of
membership functionality, parameterized by an NP-language L, and defined by the following:

(v, λ) → (λ, (v, χL(v)))

where χL(v) = 1 if and only if v ∈ L. That is, the proving party sends a statement v to the trusted
party, who then sends (v, 1) to the verifying party if v ∈ L, and (v, 0) if v /∈ L. In order to reflect
the possibility that a prover may fail to prove a correct statement in a protocol execution that
replaces this ideal functionality, we define that if the statement has the symbol ⊥ appended to it
(i.e., if it is of the form v ◦ ⊥), then the trusted party sends (v, 0) to the verifier irrespective of
whether or not v ∈ L. We note that this ideal functionality may not be efficient (in particular,
if L is a hard language, then verifying whether or not v ∈ L may take super-polynomial time);
nevertheless this suffices here. We denote this hybrid experiment by memberzk-hybrid.
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Step 1 – replacing BZK with an ideal zero-knowledge proof of membership. We
now define a protocol Π̂ that works in the memberZK-hybrid model. Π̂ is the same as the real-
model protocol Π except that instead of P2 proving a statement v to P1 using the subproof BZK, it
sends v to the trusted party computing the ideal zero-knowledge proof of membership functionality.
Subproofs given by P1 using RKZK are unmodified.

We now show that for every real-model adversary A for Π, there exists an adversary Â for Π̂,
such that Â interacts with P2 in the memberZK-hybrid model and generates an output distribution
that is indistinguishable from an execution of A with Π in the real model. Notice that the only
difference between Π and Π̂ is whether proofs given by P2 (who in this case is honest) are carried
out by running BZK or by using the zero-knowledge proof of membership functionality. Thus, the
proof of indistinguishability is based on the zero-knowledge (or simulatability) property of BZK in
this scenario.

The adversary Â for Π̂ works as follows. Â internally incorporates A and externally forwards
all Π′, POK and RKZK messages between A and P2. However, messages of BZK are internally
simulated for A by Â. That is, whenever Â receives a message (v, 1) from the trusted party
computing the ideal zero-knowledge proof of membership functionality, it simulates an execution
of BZK with A as the verifier. We now prove that

{
memberzk-hybridm

Π̂,Â(x, y, z)
}

c≡
{
realm

Π,A(x, y, z)
}

(1)

The difference between an execution of Π with A and an execution of Π̂ with Â is that in Π party P2

proves real BZK proofs, whereas in Π̂ they are simulated. Thus, as we have mentioned Eq. (1) follows
from the zero-knowledge property of BZK. It remains to show that the BZK simulation “works” in
this scenario (i.e., within Π̂). However, as we have discussed in Section 3.3, the simulator for BZK
works on the condition that the total length of all the messages sent by the prover (i.e., P2) from the
time that it sends the commitment c in BZK until the time that P1 returns r ∈ {0, 1}`(n) is less than
`(n)− n. In order to see that this holds, recall that in the setting of m-bounded concurrency, the
scheduling is such that from the time that any given execution begins until it terminates, messages
from at most m different executions are sent. Therefore, the length of all messages sent by P2 from
the time that it sends c until P1 replies with r is upper-bound by m times the length of all the
messages sent by P2 in an execution of Π. However, this follows immediately from the way `(n)
was chosen.

Step 2 – replacing RKZK with an ideal zero-knowledge proof of membership. We
now define a protocol Π̃ which is the same as Π except that both the subproofs RKZK and BZK are
proven using calls to the ideal zero-knowledge proof of membership functionality. Thus, the only
difference between Π̂ and Π̃ is whether proofs provided by the corrupted P1 to the honest P2 are
given by running RKZK or by using the zero-knowledge proof of membership functionality. Thus,
the proof of indistinguishability is based on the soundness of RKZK in this scenario.

We show that for every adversary Â for Π̂, there exists an adversary Ã for Π̃, such that the
output distributions in the executions of Π̂ and Π̃ are essentially the same. The adversary Ã works
in exactly the same way as Â except that it internally verifies the zero-knowledge subproofs of
RKZK provided by Â. Formally, Ã internally incorporates Â and externally forwards all Π′, POK
and ideal zero-knowledge proof of membership calls that already existed in Π̂. However, messages
of RKZK are dealt with internally. That is, whenever Â proves a statement v using RKZK, Ã
internally verifies the proof by playing the honest verifier strategy. If Ã accepts the proof, then it
sends v to the trusted party computing the ideal zero-knowledge proof of membership functionality.
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Otherwise, it sends v ◦ ⊥ to the trusted party. We prove that
{
memberzk-hybridm

Π̃,Ã(x, y, z)
}

c≡
{
memberzk-hybridm

Π̂,Â(x, y, z)
}

(2)

First, assume that Ã accepts a (false) RKZK subproof for v /∈ L from Â with at most negligible
probability. In this case, we show that the output distributions of an execution of Π̃ with Ã
and an execution of Π̂ with Â are statistically close. This can be seen as follows. In verifying
the RKZK subproofs, both Ã and P2 behave identically; specifically, they both follow the honest
verifier strategy. However, if Ã accepts a subproof for a statement v from Â in Π̃, then it sends v
to the trusted party computing the zero-knowledge proof of membership functionality. The trusted
party then sends (v, 1) to P2 if v ∈ L, and (v, 0) otherwise. Finally, P2 writes whatever it receives
from the trusted party directly on its transcript. This describes the process in Π̃. In contrast,
in Π̂, if P2 accepts such a subproof from Â, then it immediately writes (v, 1) on its transcript in
Π̂, without any other conditions. Therefore, a difference in the output distributions can occur if
Ã accepts a subproof for v, but v 6∈ L. In such a case, P2 would write (v, 1) on its transcript in
Π̂, but would write (v, 0) on its transcript in Π̃. However, by the above assumption, this event
occurs with at most negligible probability. Therefore, the output distributions are negligibly close.
(Another possible difference can occur if Ã rejects a subproof for v, but v ∈ L. However, if Ã
rejects a subproof for v, then it sends v ◦ ⊥ to the trusted party, who then always forwards (v, 0)
to P2, irrespective of whether or not v ∈ L. Therefore, in this case, party P2 writes (v, 0) on its
transcript in both Π̃ and Π̂.)

It remains to show that Ã accepts a proof for v /∈ L from Â with at most negligible probability.
That is, Eq. (2) follows from the soundness of RKZK. Since the soundness of RKZK is uncondi-
tional, it suffices for us to construct an all-powerful cheating prover P ∗. Specifically, assume by
contradiction that for some set of inputs x, y and z, adversary Â successfully proves a false state-
ment to Ã with non-negligible probability. Then, P ∗ computes the coins of Â, Ã and P2 which
maximize the probability of Â successfully proving the false statement; actually, P ∗ computes the
coins for all messages sent by Ã except for those used in verifying the false proof from Â. Then,
P ∗ internally emulates the entire execution with Â, Ã and P2, except for the RKZK subproof of
the false statement proven by Â; the messages of this subproof are sent externally to the verifier V .
(Notice that this emulation can be carried out perfectly by P ∗, including the ideal zero-knowledge
proof of membership calls, because P ∗ is not computationally bounded.) Now, since Ã verifies
RKZK subproofs from Â using the honest verifier strategy and it accepts the false proof with non-
negligible probability, the probability that V accepts the false proof from Â (as forwarded by P ∗) is
also non-negligible. This contradicts the soundness of the RKZK subproof and thus Eq. (2) follows.

Remark: This soundness argument is facilitated (in part) by the fact that the simulation by Â and
Ã requires no rewinding. Rewinding would cause a problem because then the same verifier message
to be sent by V may appear a number of times. However, V is an external party that sends each
message only once and cannot be rewound.

Step 3 – conclusion. The proof of the case that P1 is corrupted is concluded by showing that
the distribution generated by Ã in Π̃ in the memberZK-hybrid model, is indistinguishable from
the distribution generated by A′ in Π′ in the ZK-hybrid model. (The strategy of adversary A′ is
described above and is the same as Ã except for the treatment of POK messages.) That is, we show
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the following:15

{
zk-hybridm

Π′,A′(x, y, z)
}

c≡
{
memberzk-hybridm

Π̃,Ã(x, y, z)
}

(3)

Before proving Eq. (3), we describe A′ in terms of Ã. That is, our initial description of A′ is such
that it internally incorporates the real-model adversary A and runs all the simulations. However,
we have considered these same simulations separately by Â and Ã. Therefore, we can rewrite
A′ as follows: Adversary A′ internally incorporates Ã and simulates the POK messages that Ã
expects to receive in Π̃. A′ also plays the trusted party for the zero-knowledge proof of membership
functionality that replaces the subproofs in POK (we will describe below how this emulation of the
trusted party is carried out). All other Π′ messages are forwarded by A′ to the external party P2.
Now, when A′ receives (v, 1) from its trusted party (recall that A′ works in the ZK-hybrid model),
then it runs the simulation strategy of POK. Likewise, when Ã proves a statement v in an execution
of POK in Π̃, then A′ runs the extraction strategy (or actually the witness-extended emulation),
and obtains a witness w. If the execution of POK was accepting, then A′ sends (v, w) to its trusted
party; otherwise, it sends (v,⊥).

In the above simulation and extraction, it is necessary for A′ to simulate the trusted party for
the zero-knowledge proof of membership functionality. However, this trusted party may need to
run in time that is super-polynomial in order to verify if some statement v′ is in the language L
or not. Therefore, A′ simply works as follows: if Ã sends v′ to its trusted party, then A′ assumes
that v′ ∈ L and continues the simulation/extraction strategy under this assumption. On the other
hand, if Ã sends v′ ◦ ⊥ to its trusted party, then A′ continues as if v′ /∈ L. (Note that Ã may send
v′ ◦ ⊥ even if v′ ∈ L; however, the simulation and extraction strategies are the same for this case
and when v′ /∈ L.) This completes the description of A′.

Now, by Lemma 3.1, if the subproofs of Protocol POK have negligible soundness error and
can be simulated (i.e., are zero-knowledge), then the simulation and extraction strategies for POK
succeed. The zero-knowledge property of the subproofs is straightforward because here A′ emulates
the trusted party who just sends (v′, 1) every time. (When simulating the subproofs, the case in
question is where the honest P2 is the prover; therefore, only correct statements v′ are sent to
the trusted party and so Ã always receives (v′, b) with b = 1.) On the other hand, the soundness
property of the subproofs is due to the fact that by the construction of Ã, we know that the
probability that it sends v′ (and not v′ ◦ ⊥) to the trusted party for v′ /∈ L is negligible. We
can therefore apply Lemma 3.1 and we have that the simulation and extraction strategies for
POK succeed. In other words, the outcome of an execution of Π′ with A′ is computationally
indistinguishable from the outcome of an execution of Π̃ with Ã, proving Eq. (3). This proof is
somewhat lacking due to the fact that Lemma 3.1 is informally stated, and thus so is its application.
In Appendix A, we state and prove a formal version of Lemma 3.1, and show how it can be used
to obtain Eq. (3).

The theorem for the case that P1 is corrupt follows by combining Equations (1), (2) and (3).

Before proceeding to the case that P2 is corrupted, we present a summary of the flow of the above
proof for the case that P1 is corrupted; see Table 1.

15We stress an important subtlety in our proof here. We do not prove that for every adversary Ã there exists an
adversary A′ for which the output distributions are indistinguishable. Rather, we show this for the specific adversary
Ã described above. Specifically, it is crucial to our proof that Ã would sends a false statement v to the trusted party
computing the ideal zero-knowledge proof of membership functionality with at most negligible probability. If this
were not the case (like with general adversaries), we would be “stuck” because we may not be able to verify whether
or not v ∈ L.
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Step Protocol Zero-knowledge POK and subproofs
Π All real: POK, BZK and RKZK

1 Π̂ BZK replaced with ideal memberZK; POK and RKZK real
2 Π̃ BZK, RKZK replaced with ideal memberZK, POK real
3 Π′ All ideal: POK, BZK and RKZK replaced with ideal-ZK

Table 1: Proof outline for the case that P1 is corrupted

4.3.2 Party P2 is Corrupted

We construct the ZK-hybrid model adversary A′ in a similar way to the previous case. Before
describing A′, recall that P1 proves all of its subproofs with RKZK, and P2 proves all of its subproofs
with BZK. Adversary A′ internally incorporates A and externally forwards all Π′-messages between
A and P1. In addition:
• Whenever A, controlling P2, proves a zero-knowledge proof of knowledge for some statement v,
A′ runs the extraction strategy for POK, possibly obtaining a valid witness w for v. (Actually,
it runs the witness-extended emulator for POK, and obtains both a transcript of an execution
and a possible witness; see Section 3.1.) This involves simulating Protocol RKZK for A as
verifier (because the subproof of part 1 of POK that is simulated is given by P1 to P2), and
honestly verifying Protocol BZK where A is the prover (because the subproof of part 2 is given
by P2). (In addition, the receiver messages of the commit-with-extract scheme of part 1 are
chosen according to the extraction strategy; see Section 3.1.) As we have mentioned, from this
extraction procedure, or actually witness-extended emulation, A′ receives some string w which
is possibly a witness for v, and a transcript of an execution of the proof. A′ verifies that the
transcript constitutes an accepting proof. If yes, then A′ externally sends (v, w) to the trusted
party computing the ideal zero-knowledge functionality. Otherwise, it sends (v,⊥).

• Whenever A′ receives an external message (v, 1) from the trusted party, it internally simulates
the zero-knowledge proof of knowledge POK for A. This involves honestly verifying Protocol
BZK where A is the prover (from part 1 of POK) and simulating RKZK for A as the verifier
(from part 2 of POK). In addition, the value committed to by A′ in the commit-with-extract
scheme of part 1 is garbage; see Section 3.1.

We now describe how A′ carries out the simulation of RKZK. The simulation uses a very similar
strategy to that described in the proof of Proposition 2 (see Section 3.2). In our description here, we
will use notation and terminology taken from the proof of Proposition 2 (and we therefore assume
familiarity with the details of that proof). A′ interacts with A in a black-box manner and externally
forwards all Π′-messages to P1. Likewise, replies from P1 are returned to A. Furthermore, A′ sets
a fixed point after any of the following events:

1. A non-RKZK message is sent by A; this includes all messages belonging to Π′, BZK and POK.
(Recall that when we refer to POK, we mean the proof of knowledge not including the BZK
and RKZK subproofs.)

2. An execution of Protocol RKZK is aborted.

3. A potential iteration closes.
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Recall that no rewinding ever takes place behind a fixed point. Now, A′ works in exactly the
same way as the simulator S in the proof of Proposition 2. Specifically, whenever a fixed point
of type (1) or (2) above is sent, A′ fixes the transcript until (and including) the current message.
Furthermore, if the fixed point is due to an execution of RKZK being aborted, then this execution is
satisfied. Therefore, A′ removes the execution from the set of unsatisfied executions. The treatment
of a fixed point of type (3) is different. That is, whenever a potential iteration closes, A′ carries
out 2mn2 rewinding attempts: in each one, A′ rewinds A back to the point that the iteration
opened and provides it with a commitment to rj instead of 0n. A′ then continues, hoping that this
iteration will once again close before any non-RKZK messages are sent or any executions of RKZK
are aborted. If none of the 2mn2 rewinding attempts succeed, then A′ sets a fixed point, records
it as a failed fixed point, and continues. If at any stage of the simulation κ(n) consecutive failed
fixed points are set, then A′ outputs failure and halts. Likewise, the other instructions that cause
the RKZK-simulator S to output failure or unsatisfied are also followed by A′; see Section 3.2 for
more details. This completes the description of A′.

We begin by noting that A′ runs in time that is polynomial in n. Specifically, the overall number
of rewinding attempts is bounded by 2mn2 times the overall number of fixed points, and all other
work also takes polynomial time. Next, we prove that the output distribution of an execution of
Π′ with A′ is computationally indistinguishable from the output distribution of an execution of Π
with A. We prove this using the same hybrid experiment as in the case that P1 is corrupted.

Step 1 – replacing RKZK with an ideal zero-knowledge proof of membership. We
define the protocol Π̃ for the memberZK-hybrid model in a similar way as for the case that P1

is corrupted. That is, in this protocol, ideal calls to the zero-knowledge proof of membership
functionality are used instead of running the RKZK subproofs, but the rest (i.e., POK and BZK)
stays the same. We now show that for every real-model adversary A for Π, there exists an adversary
Ã for Π̃ in the memberZK-hybrid model, such that the output distribution of an execution of Π̃ with
Ã is indistinguishable from an execution of Π with A (in the real model). Ã internally incorporates
A and forwards all non-RKZK messages between A and the external P1. However, when Ã receives
a message (v, 1) from the trusted party computing the ideal zero-knowledge proof of membership
functionality, it simulates a RKZK execution for A using exactly the same strategy described above
for A′. We now prove that,

{
memberzk-hybridm

Π̃,Ã(x, y, z)
}

c≡
{
realm

Π,A(x, y, z)
}

(4)

Proving Eq. (4) involves showing that the simulation by Ã is indistinguishable from a real proof
by P1 (this is the only difference between Π and Π̃). This follows very similar lines to the proof of
Proposition 2. We first claim that Ã outputs failure with only negligible probability:

Claim 4.1 The probability that Ã outputs failure is negligible.

The proof of this claim is almost identical to the proof of Claim 3.2. (Recall that there are two
events that can cause Ã to output failure. In the first, for some commitment cj , A generates two
different decommitments rj 6= r′j during rewinding. In the second, κ(n) consecutive failed fixed
points are set by Ã. Regarding the first event, the only difference here from the proof of Claim 3.2 is
that there are ζm executions of RKZK instead of m and the reduction to the computational binding
includes emulating all of the Π′ and BZK messages as well. However, this emulation can be carried
out because the machine attempting to break the binding property of the commitments is given
both input vectors x and y. Regarding the second event, the proof remains the same. That is, we
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first consider the case that pj
k ≥ 1/mn; in this case the probability that none of the 2mn2 rewinding

attempts succeeds is negligible. Next, we consider the case that pj
k < 1/mn and use the same proof

to show that the probability that such an iteration was chosen is at most 1/n. It therefore follows
that κ(n) consecutive iterations are encountered with at most negligible probability.)

Next, we claim that Ã never outputs unsatisfied:

Claim 4.2 The probability that Ã outputs unsatisfied equals 0.

Proof: As in the proof of Claim 3.3, it suffices to show that if there are not κ(n) consecutive failed
fixed points, then every execution of RKZK must have been satisfied. Here, this follows from the
fact that the number of iterations in the preamble of RKZK is ζmκ(n) plus the number of rounds in
the rest of the protocol times κ(n). Notice that Ã sets at most one non-failed fixed point for every
execution of RKZK (ζm in total) and one non-failed fixed point for every message from the rest of
the protocol (consisting of Π′, POK and BZK). That is, the maximum number of non-failed fixed
points set by Ã equals ζm + m · (rounds(Π′) + rounds(POK) + rounds(BZK)), and if this number of
non-failed fixed points are set, then all executions of RKZK are guaranteed to have been satisfied.

Now, recall that at most one iteration of an unsatisfied execution can begin between every
two fixed points. Therefore, if part 2 of an unsatisfied execution is reached, it must be that
ζmκ(n) + mκ(n) · (rounds(Π′)+ rounds(POK) + rounds(BZK)) fixed points were set. Assuming that
there are not κ(n) consecutive failed fixed points, this means that at least ζm + m · (rounds(Π′) +
rounds(POK)+rounds(BZK)) non-failed fixed points were set. However, this equals the total number
of non-failed fixed points that can be set, in which case, all executions are RKZK are guaranteed
to have been satisfied. We conclude that when part 2 of an execution of RKZK is reached, it must
already have been satisfied.

Having established the above, the indistinguishability of the distributions follows with an analogous
hybrid argument to the proof of Claim 3.4. Specifically, we define a hybrid adversary/simulator M
who receives the witnesses for each proof being proved (from the honest P1) and runs part 2 of the
proof of RKZK as P1 would (i.e., using the witness). However, all other parts of the experiment are
run exactly according to the instructions of Ã (including the simulation of the preamble of RKZK).
The proof continues as for Claim 3.4. This completes the proof of Eq. (4).

Step 2 – replacing BZK with an ideal zero-knowledge proof of membership. Again,
as in the case that P1 is corrupted, we define a protocol Π̂ in which both the subproofs RKZK and
BZK are proven using the ideal zero-knowledge proof of membership functionality (but the POK
messages remains unchanged). We show that for every adversary Ã for Π̃ there exists an adversary
Â for Π̂ such that the output distribution of the two executions are indistinguishable. Adversary
Â internally incorporates Ã and externally forwards all Π′-messages and POK-messages between
Ã and P1. In addition, Â forwards all ideal messages from the trusted party who computes the
zero-knowledge proof of membership functionality to Ã (recall that Ã works in a model where it
only receives ideal messages from the trusted party). However, when Ã proves a BZK subproof of
a statement v, Â verifies this internally. If Â accepts the proof, it sends v to the trusted party
computing the ideal zero-knowledge proof of membership functionality; otherwise, it sends v ◦ ⊥.
We now prove that

{
memberzk-hybridm

Π̂,Â(x, y, z)
}

c≡
{
memberzk-hybridm

Π̃,Ã(x, y, z)
}

(5)

Naturally, we prove Eq. (5) by showing that the soundness of BZK holds in the simulation by Â.
As we have discussed in Section 3.3, the soundness of BZK holds as long as the string r sent by
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the verifier is at least n bits longer than the allowed length of y. This is of course true (by the
definition of y). However, we must still show that the soundness is not affected when BZK is run
concurrently with Π′ and RKZK. The key point here is that Â never rewinds Ã. Therefore, it is
possible to use Ã in order to construct a cheating prover P ∗.

Formally, let x and y be the respective input vectors of P1 and P2. Then, we construct a
cheating prover P ∗ who interacts with an honest verifier V in a single execution of Protocol BZK.
The probability that P ∗ successfully proves a false statement will be polynomially related to the
probability that Â accepts the proof of a false statement from Ã in an execution of Π̂ (when x and
y are the parties’ input vectors). P ∗ internally incorporates Ã and works as follows. P ∗ uniformly
chooses one of the ζp(n) BZK protocol executions in the p(n) executions of Π and internally emulates
the entire simulation of Â for Ã, except with respect to the selected BZK execution. We stress that
P ∗ emulates the memberZK-hybrid simulation by Â for Ã, and does not emulate a real execution
of Π or an execution of Π̃. For now, assume that this emulation can be perfectly carried out by P ∗

(we will show how this is done later).16 Now, when Ã reaches the selected BZK execution, P ∗ sends
the statement being proved in this execution to V and externally forwards the messages of this
execution between Ã and V . We stress that all other messages that are sent concurrently to this
BZK execution are internally simulated by P ∗. Since Â plays the honest verifier in its emulation,
the view of Ã in the emulation by Â is identical to its view in this emulation by P ∗. Noting that
there are ζp(n) proofs of BZK supplied by Ã, we conclude that the probability that P ∗ successfully
proves a false statement to V equals 1/ζp(n) times the probability that Â accepts the proof of a
false statement from Ã in the emulation. By the (stand-alone) soundness of BZK, this probability
must therefore be negligible. Eq. (2) follows.

The above analysis assumes that the emulation can be carried out perfectly by P ∗. We now
show that this is the case. First, the emulation of parties P1 and Â can be carried out because P ∗

knows the inputs x and y. However, P ∗ cannot emulate the trusted party for the zero-knowledge
proof of membership functionality. This is because the functionality cannot be efficiently computed.
We solve this problem as follows. If Ã successfully proves a statement v, then in the emulation, P ∗

assumes that v is correct (and emulates the trusted party sending (v, 1) to P1). If v is a correct
statement, then the emulation is perfect. If v is incorrect, then the emulation may not be correct.
However, up until the conclusion of this proof (where the emulation is “messed up”), the emulation
was perfect. Therefore, with probability 1/ζp(n), this statement will be the one that V is verifying,
and the contradiction will be derived.

Step 3 – conclusion. The proof is concluded by showing that the distribution generated by Â
in Π̂ is indistinguishable from the distribution generated by A′ in Π′. This is identical to the proof
of Eq. (3) for the case that P1 is corrupted. (Notice that in Π̂ all subproofs are proven using the
ideal zero-knowledge proof of membership functionality. Therefore, the proof is the same if it is
P1 or P2 that is corrupted.) Thus the proof of the case that P2 is corrupted follows by combining
Equations (4), (5) and an analog of Eq. (3).

This concludes the proof of Theorem 4.

16The problem that arises here is that the zero-knowledge proof of membership functionality cannot be efficiently
computed for hard languages L. Note that any proofs provided by P1 are fine, because P1 is honest and so only sends
proofs of correct statements v ∈ L. However, when Ã sends a value v to the trusted party, Â cannot know whether
or not v ∈ L.
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Remark: We call attention to the fact that in the proof of Theorem 4, the ZK-hybrid model
adversary A′ either verifies RKZK and simulates BZK (when P1 is corrupt), or simulates RKZK and
verifiers BZK (when P2 is corrupt). That is, there is never a time that A′ has to simultaneously
verify and simulate the same zero-knowledge protocol. This is a crucial point in our proof and is
what enables us to ensure the soundness of the subproofs during the ZK-hybrid simulation.

4.4 Generalizing the Composition Theorem

Theorem 4 is stated so that the same ZK-hybrid model protocol Π′ is executed concurrently.
However, there is really no need to consider the same protocol. Rather, the theorem can be stated
with respect to possibly different protocols for the ZK-hybrid model Π′1,Π′2, . . . The composition
theorem will still hold as long as all the protocols replace the ideal zero-knowledge calls in the
same way (as described in the proof of Theorem 4). Thus, we really demonstrate the feasibility of
obtaining m-bounded concurrent composition in the real model of arbitrary protocols that are all
designed in the ZK-hybrid model.

5 Obtaining Bounded Concurrent Two-Party Computation

In this section, we show that by Theorem 4, it suffices to provide protocols that are secure in the
ZK-hybrid model. We then show that such protocols exist. First, however, we formally define
security in the ZK-hybrid model.

Secure computation in the ZK-hybrid model – definition. Let Π′ be a two-party protocol
that is designed in the ZK-hybrid model. That is, Π′ contains regular interaction between the
parties as well as ideal calls to the zero-knowledge proof of knowledge functionality ((v, w), λ) 7→
(λ, (v,R(v, w)). Security in the ZK-hybrid model is defined in the natural way. That is,

Definition 5 (security in the ZK-hybrid model): Let m(·) be a polynomial, f a functionality and
Π′ a protocol for the ZK-hybrid model. Then, we say that Π′ securely computes f in the ZK-hybrid
model under m-bounded concurrent composition if for every non-uniform probabilistic polynomial-
time ZK-hybrid adversary A′ running Π′ there exists a non-uniform probabilistic polynomial-time
ideal-model adversary S such that for every polynomial p(n),
{
idealf,S(x, y, z)

}
n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗

c≡
{
zk-hybridm

Π′,A′(x, y, z)
}

n∈N;x,y∈({0,1}n)p(n);z∈{0,1}∗
(6)

Security in the ZK-hybrid model suffices. An important corollary of Theorem 4 is the fact
that in order to obtain m-bounded concurrent secure two-party computation in the real model, it
suffices to obtain m-bounded concurrent secure two-party computation in the ZK-hybrid model.

Corollary 6 (bounded-concurrent secure two-party computation): Assume that there exists a two-
party protocol Π′ that securely computes a functionality f in the ZK-hybrid model under m-bounded
concurrent composition. Then, assuming the existence of enhanced trapdoor permutations and
collision resistant hash functions, there exists a two-party protocol Π that securely computes f in
the real model under m-bounded concurrent composition.
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Proof: The protocol Π in the corollary statement is the one that is guaranteed to exist by the
transformation of Π′ that is stated in Theorem 4. The proof that the real-model protocol Π
securely computes f works by showing the existence of an ideal-model adversary S for every real-
model adversary A. Let A be a probabilistic polynomial-time real-model adversary for Π. Then,
by Theorem 4, there exists a probabilistic polynomial-time adversary A′ for Π′ in the ZK-hybrid
model such that {

zk-hybridm
Π′,A′(x, y, z)

}
c≡

{
realm

Π,A(x, y, z)
}

(7)

Next, by the assumption that Π′ securely computes f in the ZK-hybrid model, we have that for every
probabilistic polynomial-time adversary A′ there exists a probabilistic polynomial-time adversary
S for the ideal model such that

{
idealf,S(x, y, z)

}
c≡

{
zk-hybridm

Π′,A′(x, y, z)
}

(8)

By combining Equations (7) and (8) we obtain that the real-model protocol Π securely computes
f under m-bounded concurrent composition.

Bounded concurrent secure computation in the plain model. By Corollary 6, all that
remains is for us to demonstrate the existence of a protocol that securely computes any two-party
functionality in the ZK-hybrid model under m-bounded concurrent composition. However, such
a protocol is already known to exist. In particular, assuming the existence of enhanced trapdoor
permutations, it has been shown that any two-party functionality can be securely computed in the
ZK-hybrid model under the definition of universal composability [12].17 Since universal compos-
ability implies m-bounded concurrent composition, we obtain the following theorem:

Theorem 7 (Theorem 1 – restated): Assume that enhanced trapdoor permutations and collision
resistant hash functions exist. Then, for any probabilistic polynomial-time two-party functionality
f and for any polynomial m(·), there exists a protocol Π that securely computes f under m-bounded
concurrent composition.

Round complexity. The number of rounds in our protocol for m-bounded concurrent secure
two-party computation (in the real model) is in the order of mκ(n) times the number of rounds
in the protocol of [12]. We remark that the construction of [12] for the case of static adversaries
can be made constant-round by using the semi-honest protocol of Yao [38]. Therefore, the round
complexity of our protocol is O(mκ(n)).
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17Technically, the results of [12] do not hold for any efficient functionality, but for a subset that they call “well-
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dently of the set of corrupted parties (in the setting of universal composability, this information on who is corrupted
is provided to the functionality). In our model, the trusted party is anyway not given this information and therefore
there is no limitation on the functionalities that can be computed.
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A A Formal Proof of Equation (3) in Section 4.3

The proof of Theorem 4 relies on Eq. (3), both for the case that P1 is corrupted and for the
case that P2 is corrupted. However, our proof that Eq. (3) holds relies on Lemma 3.1 which is
informally stated. A formal statement of this lemma and its proof can be derived from the proofs
of [4]. However, the lemma is actually not proved there. In this appendix, we provide a formal
proof of Eq. (3). This mainly involves providing a proof that Protocol 1 from [4] is a system
of zero-knowledge arguments of knowledge in the memberZK-hybrid model. Actually, we prove
something stronger. That is, loosely speaking, we prove that Protocol 1 securely realizes the ideal
zero-knowledge proof of knowledge functionality in the memberZK-hybrid model, even when it is
used as a subprotocol in some larger protocol Π that runs in the setting of m-bounded concurrency.

In our presentation here, we recap on some of the basic concepts used. However, we assume
that the reader is familiar with Sections 3.1 and 4 (and so much of the motivation and high-level
ideas are not repeated). We begin by recalling the memberZK and ZK-hybrid models, as defined
in Section 4.

The memberZK-hybrid model. Recall that in a hybrid model, the parties interact with each
other as in the real model. However, in addition to this interaction, they have access to a trusted
party who computes some functionality for them. In the memberZK-hybrid model, this function-
ality is defined as follows. Let L be an NP-language. Then, the trusted party receives a statement
v from the proving party and sends (v, χL(v)) to the verifying party, where χL(v) = 1 if and only
if v ∈ L. That is, the functionality computed by the trusted party is:

(v, λ) 7→ (λ, (v, χL(v)))

Note that if L /∈ BPP, this functionality is not efficiently computable. Nevertheless, it suffices for
our needs here. We also recall that if the statement received by the trusted party is of the form
v ◦ ⊥, then it always sends (v, 0) to the verifying party, irrespective of whether or not v ∈ L. This
is needed in order to model the situation that a (cheating) prover may cause the verifier to reject
a proof, even if the statement is true.

The ZK-hybrid model. The ZK-hybrid model is similar to the memberZK-hybrid model, except
that the functionality is a proof of knowledge, and not just a proof of membership. This also means
that the functionality can be efficiently computed. Let R be an NP-relation. Then, the ideal
zero-knowledge proof of knowledge functionality is defined as follows:

((v, w), λ) 7→ (λ, (v,R(v, w)))

Recall that we define a special symbol ⊥ such that for every relation R, it holds that R(v,⊥) = 0.
Again, this is used to model the case that a verifier rejects a true statement.

The protocol. We now rewrite Protocol 1 so that it is cast in the memberZK-hybrid model. We
also combine the commit-with-extract part directly into the protocol, with a slight modification.
Specifically, we have the prover choose the trapdoor permutation after it receives the commitment
from the verifier (unlike the protocol description in Section 3.1 where the trapdoor permutation
is chosen before the “coin-tossing” phase). This simplifies the proof to some extent, but is not
necessary.
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Protocol 4 (zero-knowledge argument of knowledge for R ∈ NP in the memberZK-hybrid model):
• Common Input: v

• Auxiliary input to prover: w such that (v, w) ∈ R. For simplicity, assume that |v| = |w| = n.

• Part 1 – Commit-with-Extract: The prover commits to its auxiliary-input witness w.

1. The parties run a coin-tossing protocol:

(a) The verifier chooses a random string r1 ∈R {0, 1}n and sends c = Commit(r1) to the
prover (using any perfectly-binding commitment scheme Commit).

(b) The prover chooses an enhanced trapdoor permutation: The prover chooses an enhanced
trapdoor permutation f along with its trapdoor t and sends f to the verifier.18 The
verifier checks that f is a permutation, and aborts if not.

(c) The prover chooses a random string r2 ∈R {0, 1}n and sends r2 to the verifier.
(d) The verifier sends r1 to the prover (without decommitting).
(e) The verifier proves that r1 is the value that it indeed committed to. That is, the verifier

sends (c, r1) to the trusted party computing the zero-knowledge proof of membership
functionality for the language {(c, r) | c = Commit(r)}.

(f) The prover receives ((c, r1), σ) from the trusted party and aborts unless σ = 1.
(g) The output of the coin-tossing phase is r = r1 ⊕ r2.

2. The actual commitment: Let b be a hard-core bit of f . Then, the prover computes the
sequence r̃ = b(f−n(r))b(f−n+1(r)) · · · b(f−1(r)).
The prover sends the value c̃ = r̃ ⊕ w to the verifier.

• Part 2 – Proof of Correctness: The prover proves to the verifier that it committed to a
valid witness w for v in the previous step:

1. Define the language

L =
{
(v, c̃, f, r)

∣∣∣ R(v, c̃⊕ r̃) = 1 where r̃ = b(f−n(r))b(f−n+1(r)) · · · b(f−1(r))
}

Then, the prover sends (v, c̃, f, r) to the trusted party computing the zero-knowledge proof
of membership functionality.

2. The verifier accepts if and only if it receives ((v, c̃, f, r), 1) from the trusted party, where v
is its common input, and (c̃, f, r) are as generated in part 1.

Non-abusing adversaries. For the sake of clarity, we use the notion of non-abusing adversaries,
introduced by [33]. A non-abusing adversary works in the memberZK-hybrid model and is such
that it sends a false statement v /∈ L to the trusted party that is not of the form v′ ◦ ⊥ with at
most negligible probability. That is, such an adversary attempts to “lie” with at most negligible
probability. Note that when non-abusing adversaries are considered, the functionality can be effi-
ciently computed. Specifically, there is no need to check whether or not v ∈ L; all that is necessary
is to check whether or not the statement is of the form v ◦⊥. (We assume that honest provers also
only send correct statements.)

18For the sake of simplicity, we assume that the protocol uses certified [14] enhanced trapdoor permutations (for
which the verifier can efficiently verify that f is indeed a permutation). However, actually any enhanced trapdoor
permutation can be used by having the prover prove that f is a permutation; see [4]. (Of course, here this proof is
carried out using the zero-knowledge proof of membership functionality.)
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We are now ready to present the formal analog of Lemma 3.1 that will then be used to derive
Eq. (3).

Lemma A.1 Let Π′ be a two-party protocol that is designed in the ZK-hybrid model and let m(·)
be a polynomial. Let Π be a two-party protocol that is obtained from Π′ by replacing the ideal zero-
knowledge calls with Protocol 4 that is designed in the memberZK-hybrid model. Then, assuming
the existence of enhanced trapdoor permutations, for every probabilistic polynomial-time non-abusing
adversary A for Π there exists a probabilistic polynomial-time adversary A′ for Π′ such that

{
zk-hybridm

Π′,A′(x, y, z)
}

c≡
{
memberzk-hybridm

Π,A(x, y, z)
}

(9)

where the ensembles in Eq. (9) are over n ∈ N, x, y ∈ ({0, 1}n)p(n) and z ∈ {0, 1}∗.

Proof: Much of the technical content in the proof of this lemma is the same as in [4]. The main
differences are due to the model and definitions used. First, Lemma A.1 is stated in a setting of
composition, whereas [4] relates to the stand-alone setting only. Second, here we construct Proto-
col 4 in the memberZK-hybrid model and show that it securely realizes the ideal zero-knowledge
proof of knowledge functionality. In contrast, the protocol in [4] is constructed with zero-knowledge
subproofs of membership, where these subproofs are assumed to fulfill the standard definition of
zero-knowledge. Likewise, they prove that Protocol 4 is a zero-knowledge proof of knowledge,
again by the standard definition and not in terms of an ideal functionality. Finally, [4] consider
any efficient adversary, whereas here we limit ourselves to non-abusing adversaries (which suffices
for our purpose). Another presentational difference is that they separately prove that part 1 is a
commit-with-extract scheme and then show that this suffices for obtaining a zero-knowledge proof
of knowledge. In contrast, we prove the entire protocol as one unit. For motivational discussion on
the protocol and its proof of security, see [4]; we provide a technical proof here only.

In our proof below, we consider the case that P1 is corrupted. The case that P2 is corrupted is
exactly the same. Note that the adversary A that controls P1 in Π sends three types of messages:
real messages belonging to Π′, real messages belonging to Protocol 4 and ideal messages for the
trusted party computing the zero-knowledge proof of membership functionality.

We now describe the adversary A′ for Π′. A′ works in the ZK-hybrid model and therefore
interacts with a trusted party who computes the zero-knowledge proof of knowledge functionality.
That is, A′ sends two types of messages: real messages belonging to Π′ and ideal messages for its
trusted party. A′ internally incorporates A and forwards all of the Π′-messages between A and the
external party P2. In contrast, the messages of Protocol 4 and the ideal messages that A sends
to the trusted party for memberZK are internally dealt with by A′. Informally speaking, in the
case that A is proving a statement v, adversary A′ must extract a witness w in order to send
(v, w) to its trusted party (who computes the zero-knowledge proof of knowledge functionality).
On the other hand, in the case that A is verifying a statement v, adversary A′ must simulate an
execution of Protocol 4 for A. At the conclusion of the simulation of all Π′-messages and executions
of Protocol 4, adversary A′ outputs whatever A does.

As we have mentioned, all Π′-messages are forwarded by A′ between A and P2. In contrast,
the messages of Protocol 4 are dealt with internally. We describe the simulation (and present
the analysis) separately for the case that A is the prover and the case that A is the verifier. In
the simulation described below, there is no rewinding or dependence on Π′-messages that are sent.
Therefore, the simulation of Protocol 4 is not affected by the Π′-messages that A′ forwards between
A and the external P2. We now describe the internal simulation of Protocol 4.
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Simulating Protocol 4 when A is the prover. In this case, A provides a proof for a statement
v using Protocol 4. Since A′ works in the ZK-hybrid model it must send a pair (v, w) to its trusted
party, such that if P2 would have accepted the proof from A in Π then R(v, w) = 1, but if P2

would have rejected the proof then R(v, w) = 0. (Recall that for every R it holds that R(v,⊥) = 0
and so A′ can send (v,⊥) to the trusted party in the case that P2 would have rejected.) We now
demonstrate how this is done.

Informally speaking, A′ works by biasing the outcome of r = r1⊕r2 of the coin-tossing protocol,
so that it knows f−n(r). In this case, it will be able compute r̃ and then derive w = c̃ ⊕ r̃. Note
that A′ must generate a view for A that is indistinguishable from its view in a real execution, in
addition to extracting w. Formally, A′ works as follows:

1. A′ biases the outcome of the coin-tossing protocol:

(a) A′ passes c = Commit(0n) to A (this is a commitment to “garbage”).

(b) A chooses a trapdoor permutation: A′ receives the description of a permutation f from
A. Adversary A′ checks that f is indeed a permutation. If not, A′ simulates P2 aborting
and sends (v,⊥) to the trusted party (causing the real, external P2 to abort).

(c) A′ obtains a string r2 from A.

(d) A′ chooses s ∈R {0, 1}n, computes r = fn(s) and passes A the string r1 = r⊕r2. (Notice
that r1 is chosen irrespective of the initial commitment c, and that f−n(r1 ⊕ r2) =
f−n(r) = s.)

(e) A′ passes A the pair ((c, r1), 1) as if it was sent by the trusted party for the zero-
knowledge proof of membership functionality.

2. A sends the actual commitment:

A′ receives a string c̃ from A.

3. Witness extraction:

A′ computes r̃ and derives w = r̃ ⊕ c̃. (Note that A′ knows f−n(r) and so can compute r̃.)

4. A “proves” that it committed to a valid witness:

(a) A′ obtains the ideal message that A intends to send to its trusted party.

(b) If the ideal messages was (v, c̃, f, r), where v is the common input and c̃, f and r are
as were generated in the above simulation of part 1 of the protocol, then A′ sends its
trusted party the pair (v, w). Otherwise, if the values in the message are incorrect or
the message is concatenated with ⊥, then A′ sends its trusted party the pair (v,⊥).

First, note that the view of A in the simulation by A′ is computationally indistinguishable from its
view in a real execution. In fact, the only difference between the views is that in the simulation,
A′ sends r1 that is not the value committed to in c, whereas the honest P2 would send r1 such
that c = Commit(r1). The indistinguishability therefore follows directly from the hiding property
of commitments. In order to show this formally, the entire concurrent execution (including the
Π′ executions and all the executions of Protocol 4) must be simulated. However, the machine
that distinguishes commitments to 0n from commitments to r1 may be given the inputs to all of
these Π′ executions. Therefore, the simulation of Π′ is straightforward. Regarding the executions
of Protocol 4, a standard hybrid argument is used. Specifically, let N be the total number of
executions of Protocol 4. Then, define the ith hybrid to be such that the first i executions of
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Protocol 4 are simulated by A′ following the above instructions, and the last N−i executions are
run following the honest P2’s instructions. The indistinguishability of the ith and i+1th hybrids
then follows from the hiding property of a single commitment. Details are omitted.

Next, notice that the view of A defines a unique value w that is “committed to”. This holds
because f is a permutation. Therefore f and r define a unique r̃, and c̃ and r̃ define a unique w.
Furthermore, this view fully defines P2’s output, both in a real execution of Π and in the simulated
execution of Π′ with A′. In order to see this, let VA be the view of A. Then, we separately consider
two cases:

1. Case 1 – A’s view VA defines a valid witness w: If in VA the message sent by A to the trusted
party in part 2 of the protocol equals (v, c̃, f, r), where v is the common input and (c̃, f, r) are
as were generated in part 1, then P2 accepts the proof (i.e., outputs (v, 1)) in both Π and Π′.
This holds in Π because (v, c̃, f, r) ∈ L and so the trusted party for the zero-knowledge proof
of membership functionality sends ((v, c̃, f, r), 1) to P2, causing it to accept. Likewise, in the
simulation by A′ in Π′, adversary A′ would send (v, w) to its trusted party, where w is a valid
witness. This trusted party computes the zero-knowledge proof of knowledge functionality
and so sends the message (v, R(v, w)) = (v, 1) to P2, causing it to accept.

In contrast, if in VA, the message sent by A to the trusted party in part 2 does not equal
(v, c̃, f, r) as above, then P2 rejects the proof (i.e., outputs (v, 0)) in both Π and Π′. If the
message sent by A concludes with ⊥, then P2 would reject in Π because the trusted party for
memberZK always sends 0 in this case. Likewise, in this case, A′ sends (v,⊥) to its trusted
party and so in Π′ party P2 also rejects. On the other hand, if the message sent by A just
contains the “wrong” values (e.g., the wrong statement or not consistent with part 1), then
again P2 always rejects.

2. Case 2 – A’s view VA defines a value w′ such that R(v, w′) = 0: In this case, P2 always rejects
in both Π and Π′. This holds in Π because the statement sent by A in part 2 must either be
false (in which case, the trusted party for the zero-knowledge proof of membership sends 0
to P2), or it must contain “wrong” values (in which case, P2 always rejects). Likewise, in Π′,
adversary A′ will either send (v,⊥) or (v, w′) to its trusted party; in both cases P2 receives
(v, 0) and so rejects.

We conclude that the view of A in a real execution of Π is computationally indistinguishable from
its view in the simulation by A′ in Π′. Furthermore, this view fully defines the output of P2 from
Protocol 4. Therefore, the joint distribution of A’s view and P2’s output in Π where Protocol 4 is
run, is indistinguishable from the joint distribution generated by A′ in Π′.19

Simulating Protocol 4 when A is the verifier. In this case, A′ receives an ideal message
(v, 1) from its trusted party (that computes the zero-knowledge proof of knowledge functionality)
and must generate a simulation of an execution of Protocol 4 for A. This is achieved as follows:
A′ follows the instructions for the honest prover in part 1 of the protocol; with the exception that
instead of committing to a valid witness w in Step 2, it commits to 0n instead. (Recall that A′
cannot commit to w because it doesn’t know the value.) Let c̃, f and r be the values that result from

19We remark that in the analysis of this case where A is the prover, we do not need to assume that A is non-abusing;
this is needed for the case that A is the verifier. However, note that if any trapdoor permutation is used (rather than
just certified permutations – see Footnote 18), then the prover must prove that the function f is a permutation. Our
proof would then need to assume that A is non-abusing, even for the case that it plays the prover.
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the execution in part 1. Then, in order to simulate part 2, A′ just hands A the tuple ((v, c̃, f, r), 1)
as if it was sent from the trusted party. This completes the simulation.

Intuitively, the view of A in this simulation with A′ is indistinguishable from its view in a real
execution of Π with P2. The only difference is whether the tuple (c̃, f, r) defines a commitment
to a real witness w or to 0n. Thus, indistinguishability follows from the hiding property of this
commitment. Note that part 2 of the protocol is exactly the same in the simulation and in a real
execution because A′ plays the role of the trusted party computing the zero-knowledge proof of
membership functionality.

The hiding property of the commitment c̃ here follows from the hiding property of the non-
interactive commitment scheme of [6], and the security of the coin-tossing protocol. In par-
ticular, if r = r1 ⊕ r2 is uniform (or pseudorandom), then distinguishing between a commit-
ment to w ∈ {0, 1}n and a commitment to 0n is essentially equivalent to distinguishing between
{fn(Un), (b(Un) · · · b(fn−1(Un)))⊕ w} and {f(Un), (b(Un) · · · b(fn−1(Un)))}. Since b is a hard-core
bit of f , it is infeasible to distinguish between these distributions in polynomial time. The hiding
property therefore follows from the security of the coin-tossing protocol that ensures that r1 ⊕ r2

is pseudorandom.
We provide a proof for the case that a single execution of Protocol 4 takes place. The general

case follows from a standard hybrid argument. Specifically, let N be the number executions of
Protocol 4. Then, the first i executions are such that the real witness w is committed to in c̃, and
the last N−i executions are such that 0n is committed to. (Note that the simulation of the Π′

messages and the other executions of Protocol 4 can be carried out because the distinguisher for
the commitments may be given the inputs to all the Π′ executions. For example, the distinguisher
would therefore know the real witnesses w, as required.) Indistinguishability of the neighbouring
hybrids then follows from the proof of a single execution.

We now prove the case of a single execution. Let A be a probabilistic polynomial-time verifier,
and denote by V A

n (v, α) the distribution over A’s view when it interacts with a party who when
running Protocol 4 with common input v, follows the honest prover’s instructions except that it
sends the value c̃ = r̃ ⊕ α in Step 2. Note that in a real execution with the honest prover, A’s
view is V A

n (v, w) where w is a valid witness for v, whereas in the simulation with A′ its view is
V A

n (v, 0n). (Recall that this is the only difference between a real execution and the simulation by
A′.) Then, we prove the following: for any probabilistic polynomial-time verifier A, it holds that

{
V A

n (v, w)
}

v∈{0,1}n,w∈R(v)

c≡
{
V A

n (v, 0n)
}

v∈{0,1}n
(10)

where R(v) denotes the witness set of v (i.e., R(v) = {w | (v, w) ∈ R}. (Note that this is actually
an abuse of notation because v is dependent on the inputs to Π′.)

As we have mentioned, the hiding property is derived from the hiding property of the non-
interactive commitment scheme defined by

Cn(α) def= 〈fn(Un), (b(Un) · · · b(fn−1(Un)))⊕ α〉 (11)

Loosely speaking, the only difference between the commit-with-extract part of Protocol 4 and the
commitment scheme Cn, is that in Protocol 4 the value fn(Un) is chosen jointly by both parties
(and is not determined solely by the sender). We therefore reduce Eq. (10) to the hiding property
of Cn. Assume by contradiction, that there exists a probabilistic polynomial-time receiver A, a
polynomial-time distinguisher D and a polynomial p(·) such that for infinitely many v’s

advD
v

def=
∣∣∣Pr[D(V A

n (v, w)) = 1]− Pr[D(V A
n (v, 0n)) = 1]

∣∣∣ ≥ 1
p(|v|) (12)
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This implies that for infinitely many n’s, there exists a v (|v| = n) such that advD
v ≥ 1/p(n). For

simplicity, we will consider a single v for every such n. We will therefore write advD
n from now on,

instead of advD
v . We will now use D and A to construct a distinguisher D′ that contradicts the

security of the commitment scheme Cn defined in Eq. (11). Intuitively, D′ receives a commitment

Cn(α) = 〈fn(s), (b(s) · · · b(fn−1(s)))⊕ α〉
for input (where s ∈R {0, 1}n) and works by invoking A and obtaining an execution of Protocol 4 in
which r1⊕ r2 = fn(s). Then, since D has an advantage in distinguishing α = w from α = 0n given
f, r1, r2 and c̃ = (b(s) · · · b(fn−1(s)))⊕α, this translates to D′ having an advantage in distinguishing
α = w from α = 0n given Cn(α). We first informally describe how D′ obtains an execution with
A where r1 ⊕ r2 = fn(s). This is achieved using the following strategy. D′ invokes A and obtains
a commitment c = Commit(r1) from A. D′ then attempts to learn r1 by running the continuation
of the coin tossing protocol with A. If it succeeds, then it rewinds A and sends r2 = fn(s) ⊕ r1,
where fn(s) is part of its input commitment Cn(α). The result of the coin-tossing protocol is thus
fn(s), as desired. We now proceed with the formal proof.

Before defining D′, we prove the following fact:

Fact A.2 Let εAn denote the probability that A does not abort during a real execution with the
honest prover. Then, εAn ≥ advD

n .

Proof: The only place in which the honest prover uses the witness w is in Step 2 of Part 1 of
Protocol 4. Note that if A aborts, it must be before this step (because after this step A only
receives messages). Therefore, in any execution where A aborts, the view of A is independent of
the value w that is committed to in Step 2. Therefore, the advantage of D in executions where A
aborts is exactly zero. Thus, advD

n ≤ εAn , and the fact follows.

By the assumption in Eq. (12), for infinitely many n’s, advD
n ≥ 1/p(n). Therefore, it also holds

that for all of these n’s, εAn ≥ 1/p(n). We are now ready to describe D′.
Distinguisher D′ receives for input a one-way permutation f and a commitment ĉ = Cn(α) =

〈fn(s), c̃ = (b(s) · · · b(fn−1(s))⊕α〉, where s ∈R {0, 1}n. Then, D′ simulates an execution for A as
follows. All of the Π′ messages are perfectly simulated using the inputs that are known to D′. In
addition, the (single) execution of Protocol 4 is simulated according to the following instructions:

1. First simulation of the coin-tossing protocol:

(a) D′ receives a commitment c = Commit(r1) from A.

(b) D′ follows the instructions for the honest prover and uniformly chooses an enhanced
trapdoor permutation g and a random string r2 ∈R {0, 1}n. D′ passes g and r2 to A.

(c) D′ obtains some string r1 from A, and a message z that A intended to send to the
trusted party.

(d) If z = (c, r1), then D′ continues. Otherwise if z = (c, r1) ◦ ⊥ or it doesn’t contain the
correct values c and r1, then D′ outputs fail and halts.

2. Second simulation of the coin-tossing protocol:

(a) D′ rewinds A to the beginning and once again receives the same commitment c =
Commit(r1) from A.

(b) D′ sends A the permutation f and the string r2 = fn(s) ⊕ r1, where r1 is the value
obtained in Step 1c and (f, fn(s)) are from its input.
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(c) D′ obtains some string r′1 from A, and a message z′ that A intended to send to the
trusted party. There are three possibilities at this point:

i. If z′ is not equal to (c, r′1) (either because it has different values or because it equals
(c, r′1) ◦⊥), then D′ jumps to Step 4. (This is interpreted as an abort from A, as in
a real execution.)

ii. If z′ = (c, r′1) but r′1 6= r1, then D′ halts and outputs bad.
iii. If z′ = (c, r′1) and r′1 = r1, then D′ proceeds to Step 3 below.

3. Simulation of the actual commitment: D′ passes the string c̃ (from its input commitment ĉ)
to A.

4. Output: At the end of the simulation, D′ passes the view output by A to D, and outputs
whatever D does. (Without loss of generality, we assume that A always outputs its view.)

Informally speaking, if D′ does not output fail or bad, then the view generated for A is identical
to its view in a real execution. Furthermore, this view is such that r1 ⊕ r2 = fn(s), as desired.
Of course, this is only helpful if D′’s probability of outputting fail or bad is small. Now, D′ can
output bad if r′1 6= r1, as in Step 2(c)ii. However, intuitively this cannot happen with non-negligible
probability, due to the binding property of commitments and the fact that A is non-abusing.20 In
addition to the above, D′ can output fail if it does not receive z = (c, r1) from A in Step 1c. Loosely
speaking, the main observation here is that by combining Fact A.2 with Eq. (12), we have that
A’s non-abort probability is at least 1/p(n). Therefore, with probability at least 1/p(n) it must be
that A convinces D′ in Step 1c (otherwise, A has aborted). We now formally prove a bound on
D′’s probability of failing.

Claim A.3 Denote the probability that D′ outputs fail upon receiving input drawn from Cn(α) by
failD

′
n (α). Then, for every α and for every n for which advD

n ≥ 1/p(n), it holds that failD
′

n (α) <
1− 1/p(n).

Proof: First, failD
′

n (α) is the same for every α because D′ only uses the value c̃ after all checks
enabling fail have passed. Since c̃ is the only value that is dependent on α, we have that D′’s fail
probability is independent of α.

Next, we show that for any α ∈ {0, 1}n, failD
′

n (α) < 1 − 1/p(n). Now, machine D′ outputs fail
if the value z that it received in Step 1c is not equal to (c, r1). In order to bound this probability,
notices that A’s view in the first simulation of the coin-tossing with D′ is identical to its view in a
real execution. Therefore, A’s non-abort probability until this point in the simulation is the same
as in a real execution. By Fact A.2, A’s non-abort probability εAn is greater than or equal to advD

n .
Therefore, for any n where advD

n ≥ 1/p(n), A’s non-abort probability in a real execution is at
least 1/p(n). By the above, we have that for these n’s, A’s non-abort probability in the simulated
execution with D′ is also at least 1/p(n). D′ outputs fail if A aborts, and so the probability that
D′ outputs fail is at most 1− 1/p(n).

We now show that, conditioned on the fact that D′ does not output fail, D′ distinguishes commit-
ments to w from commitments to 0n with non-negligible probability:

Claim A.4 If D′ does not output fail, then D′ distinguishes Cn(w) from Cn(0n) with advantage
that is negligibly close to advD

n . That is, for every n:
∣∣Pr[D′(Cn(w)) = 1 | D′(Cn(w)) 6= fail]− Pr[D′(Cn(0n)) = 1 | D′(Cn(0n)) 6= fail]

∣∣ > advD
n − µ(n)

20In this proof, it is essential that A is non-abusing.
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Proof: In this claim, we consider the case in which A behaves in such a way that D′ never
outputs fail. There are two possible cases. In the first case, D′ outputs bad. Then, D′’s advantage
of distinguishing Cn(w) from Cn(0n) may be 0. However, this case can occur with at most negligible
probability. In the second case, D′ does not output bad. Therefore, when r1 and r2 appear in A’s
output view (as is the case when A does not abort), it holds that r1⊕ r2 = fn(s), where (f, fn(s))
is part of D′’s input commitment Cn(α). Furthermore, when α = w, the distribution over A’s
final view in the simulation is identical to its view V A

n (v, w) in a real execution with the honest
prover. On the other hand, when α = 0n, the distribution over A’s final view in the simulation
with D′ is identical to its view V A

n (v, 0n) in a simulated execution with A′. We stress that the two
simulations by D′ of the coin-tossing are completely independent. Therefore, the conditioning over
D′ not outputting fail has no effect over the view of A.

We therefore have that for both cases of α = w and α = 0n,
∣∣∣Pr[D′(Cn(α)) = 1 | D′(Cn(α)) 6= fail]− Pr[D(V A

n (v, α)) = 1]
∣∣∣ < µ(n)

where the negligible difference of µ(n) is due to the case that D′ may output bad. Therefore,
∣∣Pr[D′(Cn(w)) = 1 | D′(Cn(w)) 6= fail]− Pr[D′(Cn(0n)) = 1 | D′(Cn(0n)) 6= fail]

∣∣ ≥ advD
n − 2µ(n)

This completes the proof of the claim.

Combining Claims A.3 and A.4, we have that for any n for which advD
n ≥ 1/p(n),

∣∣Pr[D′(Cn(w)) = 1]− Pr[D′(Cn(0n)) = 1]
∣∣ >

advD
n − µ(n)
p(n)

By the assumption in Eq. (12), there are infinitely many n’s for which advD
n ≥ 1/p(n). Therefore,

we conclude that there are infinitely many n’s for which
∣∣Pr[D′(Cn(w)) = 1]− Pr[D′(Cn(0n)) = 1]

∣∣ >
1

p(n)2
− µ(n)

in contradiction to the hiding property of the commitment scheme Cn. Eq. (10) therefore follows,
and we obtain that the simulation by A′ is indistinguishable. That is, the view of A in a real
execution of Π is indistinguishable from its view in Π′ with the simulation by A′. This suffices
because the view of P2 when it plays the prover always contains the statement v only. (Recall that
honest parties do not write the contents of Protocol 4 onto their Π′ transcript.) Therefore, the
joint distribution over the view of A and output of P2 in Π is indistinguishable from in Π′.

Conclusion. As we have mentioned, all of the Π′-messages are forwarded unmodified by A′
between A and P2. In addition, the executions of Protocol 4 are simulated so that the joint
distribution of A’s view and P2’s output in all executions of Protocol 4 in Π is indistinguishable
from in Π′. This holds both when A plays the prover and the verifier. Finally, A′ outputs whatever
A does. Combining all this together, we obtain that the joint distributions over A and P2’s output
in Π is indistinguishable from the joint distribution over A′ and P2’s output in Π′. This completes
the proof.

Obtaining Equation (3). In order to formally prove Eq. (3), take the protocol Π in Lemma A.1
to be Protocol Π̃ from Eq. (3). Note that Π̃ is exactly of the form Π that is described in Lemma A.1.
Next, notice that adversary Ã from Eq. (3) is non-abusing. This follows from the construction of
Ã, and is discussed in Footnote 15. We can therefore apply Lemma A.1 and so obtain Eq. (3).

47


