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Abstract. Out of the public key (PK) we recover a polynomial
of the same degree as the private polynomial. This fact puts an
eavesdropper in the same position with a legitimate user in decryp-
tion. The complexity of that all is O(d3), for d an upper bound of
the degree of the private polynomial.

1. Introduction

The problem of solving systems of multivariate polynomial equations
is a well-known hard problem. In complexity theory, it is well-known to
be an NP-complete problem. Furthermore, even if we limit ourselves
to the problem of solving systems of multivariate polynomial of degree
two equations, we have again an NP-complete problem. Therefore, it
has been paid a lot of attention, since the invention of the idea of the
pubic key cryptography, by Diffie and Hellman [DH76].

A lot of cryptosystems have been proposed since then, where an
eavesdropper is asked to accomplish the hard task of solving systems
of quadratic equations. However, most of them had short lives. The
information that an eavesdropper had on the shape of the private key
usually sufficed to render eavesdropping quite accesible. Some of their
cryptanalyses aimed to recover the private key, or something equivalent,
in the sense that gives the same privileges. Other cryptanalyses reduce
the problem to accessible exhaustive searches, and so on.

In this paper we concentrate on HFE . It is a PK cryptosystem first
proposed by Patarin [Pat96]. In its main version, its PK is a system
of n quadratic polynomial equations in n variables with coefficients in
a finite field Fq, practically F2. Its private key is:

• a basis, up to an isomorphism, of an overfield K ⊃ Fq,
[K : Fq] = n, as an Fq-vector space;

• a univariate polynomial f of a certain form, with
coefficients in K;

• two affine transformations of K.

In the our cryptanalysis we find another polynomial of the same de-
gree with f , such that its knowledge would put an eavesdropper in the
same position as a legitimate user on recovering cleartexts. All of this
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task can be performed within O(d3) bit operations, where d = deg f .
The degree of the extension n is practically of no importance to an
eavesdropper.

2. The Cryptosystem

Let the parties committed to the tasks be:

• Alice who wants to receive secure messages;
• Bob who wants to send her secure messages;
• Eve, the eavesdropper.

Alice chooses two finite fields Fq < K, and a basis β1, β2, . . . , βn of K
as an Fq-vector space. In practice, q = 2. However, it can be any pr,
for any p prime, and any r ∈ N.

Next she takes a univariate polynomial of the form:

(1) f(x) =
∑
i,j

γijx
qθij +qϕij

+
∑

i

αix
qξi + µ0,

with coefficients in K, and two affine transformations: S, T : K → K;
one left, one right.

With manipulations that we skip in order to save space, she generates
her public key, a set of n quadratic polynomials of degree two, in n
variables. The interested reader can find details in [IM85, IM89, hfe,
Tol03]. Her private key is:

• the basis B of K as an F-vector space;
• S, T , f .

3. The Cryptanalysis

Let Eve fix the canonical basis of K. She may assume to apply a
nondegenerate linear transformation L to the private basis B of K, and
to f . So, she obtains the canonical basis of K, and another polynomial
f1, of the same form and degree like f .

Next, applying affine transformations S, T to f1 does not change
its degree. If it werent for the last translation, the public polynomial
S ◦ f ◦ L ◦ T is even of the same form like the polynomial f .

Alice has limitation on taking d = deg f . Her decryption becomes
exponentially harder with its growth. Besides, if it is big, the number
undesired solutions grows a lot. To discard them, she introduces other,
randomly chosen polynomials. This renders the public key overdefined.
So, the cryptosystem becomes particularly weak to certain attacks.

So, Eve may assume d bounded. She fixes a bound of it. Next, she
writes down the general polynomial of degree d:

(2) Adx
d + Ad−1x

d−1 + · · ·+ A1x + A0.

Nex, Eve has only to do d + 1 evaluations of the public key. So, she
obtains a linear system of d + 1 equations in the d + 1 variables Ai.
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Solving it enables Eve to recover S◦f ◦L◦T in the form of a univariate
polynomial with coefficients in K.

So, Eve is already in the same position with Alice in decryption.
With another calculus of no comutational effort, she can render her
polynomial even sparse, as much as possible.

Indeed, if d is the degree of the polynomial that she recovers, much
probably d − 1 does not qualify to be a power of a monomial of a
polynomial of the form (1). If this is the case, the shift is: x − Ad−1

Ad
.

Otherwise, the shift is easy to calculate, anyway, and anyway is not
essential to make Eve be at the same position as Alice in decryption.

4. A Variation that Would Resist such an Attack

So, the main flaw of HFE is the bounded degree of its private poly-
nomial. Here is a variation that seems to resist such an attack.

Alice takes an affine polynomial f of any degree. She generates
her set of polynomials upon the polynomial f 2 mod (xqn − x). This
polynomial is of the same form as (1), and does not have bound on
degree. So, the previous attack does not work.

In decryption, Alice calculates the square roots of the ciphertext,
and then has to solve a univariate affine polynomial equation on its
suqare roots.
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