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Abstract. Out of the public key (PK) we recover a polynomial
of the same shape as the private polynomial. Then we give an
algorithm for solving such a special-form polynomial. This fact
puts an eavesdropper in the same position with a legitimate user
in decryption. An upper bound for the complexity of that all is
O(n6) bit operations for n the degree of the field extension.

1. Introduction

The problem of solving systems of multivariate polynomial equations
is a well-known hard problem. In complexity theory, it is well-known to
be an NP-complete problem. Furthermore, even if we limit ourselves
to the problem of solving systems of multivariate polynomial of degree
two equations, we have again an NP-complete problem. Therefore, it
has been paid a lot of attention, since the invention of the idea of the
PK cryptography, by Diffie and Hellman [DH76].

A lot of cryptosystems have been proposed since then, where an
eavesdropper is asked to accomplish the hard task of solving systems
of quadratic equations. However, most of them had short lives. The
information that an eavesdropper had on the shape of the private key
usually sufficed to compromise the security. Some of their cryptanalyses
aimed to recover the private key, or something equivalent, in the sense
that gives the same privileges. Other cryptanalyses reduce the problem
to accessible exhaustive searches, and so on. Recall that the ultimate
task of the cryptanalysis is recovering cleartexts, and not recovering
meticulously the whole set of the values of the PK [COU].

In this paper we focus on HFE . It is a PK cryptosystem first pro-
posed by Patarin [Pat96]. It is one of the modifications of a cryp-
tosystem first proposed by Imai and Matsumoto [IM85], after having
successfully cryptanalyzed it.

In its main version, its PK is a system of n quadratic polynomial
equations in n variables with coefficients in a finite field Fq, practically
F2. Its private key is:

• a basis, up to an isomorphism, of an overfield K ⊃ Fq, [K :
Fq] = n, as an Fq-vector space;
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• a univariate polynomial f of a certain form, with coefficients
in K;

• two nondegenerate affine transformations of K.

Practically, p = q = 2. However, for simplicity, hereon we assume
only that p = q. The other case can be treated identically.

In the our cryptanalysis, we find another sparse univariate polyno-
mial, such that its knowledge reduces eavesdropping to the task of
solving a single univariate polynomial equation. We call it an alias of
the PK. All of this task can be performed within O(n6) bit operations.
Recall that n is actually the only security parameter to the legitimate
user, and that the trapdoor problem is subexponential in it.

We assume that the reader is already familiar with HFE .
Most of the symbolic manipulations throughout this paper are done

by means of Singular, Macaulay2, and CoCoA. If there ever are any
calculus mistakes, it is because of the little part done by hand. In any
case, the calculus errors in the examples do not prejudice the algorithms
they illustrate.

2. The Cryptosystem

Let the parties committed to the tasks be:

• Alice who wants to receive secure messages;
• Bob who wants to send her secure messages;
• Eve, the eavesdropper.

Alice chooses two finite fields Fq < K, and a basis β1, β2, . . . , βn of K
as an Fq-vector space. In practice, q = 2. However, it can be any pr,
for any p prime, and any r ∈ N.

Next she takes a univariate polynomial of the form:

(1) f(x) =
∑
i,j

γijx
qθij +qϕij

+
∑

i

αix
qξi + µ0,

with coefficients in K, and two affine transformations: S, T : K → K;
one left, one right. Let ∂f be the degree (private data) of f(x).

With manipulations that we skip in order to save space, she generates
her PK; a set of n quadratic polynomials of degree two, in n variables.
The interested reader can find details in [IM85, IM89, hfe, Tol03].

Her private key is:

• the basis B of K as an Fq-vector space;
• S, f , T .

3. The Cryptanalysis

Applying affine transformations is equivalent to composing with af-
fine polynomials. So, Eve knows that S ◦ f ◦ T in K[x] is a certain
univariate polynomial of the same form (1). Let Eve fix the canonical
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basis of K (or a basis at her choice, too). She may assume to apply
a nondegenerate linear transformation L (that she does not know, but
she need not) to the private basis B of K, and to S ◦ f ◦ T in K[x].
So, she obtains the canonical basis I of K, and another polynomial
A = S ◦f ◦T ◦L, of the same form like f in (1). So, it is rather sparse,
too. This is very easily seen if one thinks of the affine and linear trans-
formations as affine and linearized polynomials. Applying these affine
or linear transformations is equivalent to composing with such polyno-
mials. Now, if one observes the form of the polynomial compositum
for such polynomials, one can easily reach to the conclusion that it too
is of the form (1).

Alice has limitations on the degree f . Her decryption is exponen-
tially harder with its growth. Besides, if it is too big, the number
undesired solutions grows a lot. To discard them, she introduces other,
randomly chosen polynomials. This renders the PK overdefined. So,
the cryptosystem becomes particularly weak to certain attacks.

Eve may write down the pseudoquadratic polynomial of degree qn−1

in its general form:

(2) Adx
d + Ad−1x

d−1 + · · ·+ A1x + A0,

where she considers the Ai like variables. She includes in such a poly-
nomial only monomials which’s exponents have Hamming weight at
most two. So, her number of variables is at most n2.

Next, Eve has to do at most n2 evaluations to the PK. So, she
obtains a linear system of at most n2 equations in the n2 variables Ai.
Solving it in K enables Eve to recover A = S ◦ f ◦ T ◦L in the form of
a univariate polynomial with coefficients in K. It is a public knowledge
that A(x) exists, and is unique. So, we expect that n2 evaluations are
necessary, and suffice.

Now Eve has reduced eavesdropping problem to the problem of solv-
ing a single univariate polynomial equation of a certain form and struc-
ture within its field of coefficients. Almost the same like Alice. Eve
possesses the private key, indeed an alias of its. The only problem to
Eve is that such a polynomial generally is of a huge degree. However,
Eve knows that it is isomorphic to a very low degree polynomial of a
certain form.

3.1. Trying to Generate an m×m Quadratic System of Equa-
tions. Sometimes Eve may try to generate a “PK” out of the polyno-
mial that she finds. That is, she may fix a subfield S of K, [K : S] = m,
for m a number of variables that she can handle to calculate Gröbner
bases. Doing so, she can impose x

n
m − x = 0. Now she is assumed

able to solve the path of univariate equations that come out of the
calculation of a Gröbner basis, that she can, too.
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Another tool that Eve may appeal to is factorization. She may sub-
stitute a given ciphertext to the polynomial she finds, and try to factor
it within K. She is not interested on the irreducible factors. She can
find the cleartext among the first-degree factors.

3.2. For most of the rest of this paper we give a step by step example of
how do we practically recoverA(x), and then we focus the our attention
about finding the roots of such a very special-form polynomial. The toy
values of the parameters in the examples do not prejudice the generality
of the algorithms.

4. A Toy Example

We are given the following toy PK from Wolf [Wol03]:

(3)

 x1 + x3 + x1x2 + x1x3 + x2x3

x3 + x1x3 + x2x3

x1 + x2 + x3 + x1x2 + x2x3 + 1.

All what we know besides the PK equations, is that the base field is
F2, and that the degree of field extension is 3. In some fashion, we will
have these data public. Without them, Bob will be unable to encrypt.

We fix the basis t2, t, 1 of K = F23 as an F2-vector space. We choose
it at our pleasure. We take K = F2[t]/(t

3 + t + 1). Again, we choose
the irreducible polynomial of degree n from F2[t] for generating K at
our pleasure.

Now we write the general form of the polynomial we are looking for;
an alias of the private polynomial f . It has at most 32 = 9 terms.

Explicitely, in this case it is of the form:

(4) a + bx + cx2 + dx3 + ex4 + fx5 + gx6.

Now we evaluate the PK in 7 points: x = 0, 1, t, t+1, t2, t2 +1, t2 + t.
The toy values of the parameters render the wrong idea that we will

have to evaluate a generic-coefficients polynomial in the whole set of
the elements of the overfield. Indeed, it is very far from being like that.
We need only n2 evaluations. Card K = pn, instead.

From the evaluations we obtain the following system:



a = 1
a + b + c + d + e + f + g = t2

a + tb + t2c + (t + 1)d + (t2 + t)e + (t2 + t + 1)f + (t2 + 1)g = 0
a + (t + 1)b + (t2 + 1)c + t2d + (t2 + t + 1)e + tf + (t2 + 1)g = 0
a + t2b + (t2 + t)c + (t2 + 1)d + te + (t + 1)f + (t2 + t + 1)g = t2

a + (t2 + 1)b + (t2 + t + 1)c + (t2 + t)d + (t + 1)e + t2f + tg = t2 + 1
a + (t2 + t)b + tc + (t2 + t + 1)d + t2e + (t2 + 1)f + (t + 1)g = 1.
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We solve this system, and find the our alias key:

(5) A(x) = t2x6 +(t2 +1)x5 +(t2 + t+1)x4 +(t2 +1)x3 +(t2 + t)x2 +1.

As the polynomial we are looking for is unique, the solution to the
system above exists, and is unique. Now Eve has only to solve the
equation A(x) = y in order to recover x. Even though it is of an
enormous degree, the number of solutions that Eve finds is equal to
those that Alice is expected to find. This is a public knowledge. Eve,
too, can descard undesired solutions by the same means that Alice
does. Much the same like Alice.

Up to now we do not break HFE . However, having this polynomial
explicit, and for such a little computational effort does not help its
security. At least, Alice has now to care that the polynomial that Eve
finds must be hard to solve by all means. Besides, the coefficients of
this polynomial enclose a lot of informations about the coefficients of
the affine polynomials that were employed for its generation. Recall,
eg., that during the whole set of transformations the coefficients of
the quadratic monomials were not influenced by the coefficients of the
linearized monomials.

For the rest, the transformations that did we apply to f in order to
obtain A(x) may increase or decrease the degree of A(x), too. Besides,
Eve now can try to compose her polynomial A(x) with affine polyno-
mials modulo xpn − x, in order to obtain a lower-degree polynomial,
and pass in the position of Alice, or close to it, or even to decompose
it modulo xpn − x. This is the topic of the next section.

5. Composition and Decomposition Modulo xpn − x

Henceforth we get rid of the PK. Most of the remainder of this
paper deals with solving A(x). Henceforth we denote A(x) = a(x).
We give next a special-purpose rootfinding algorithm of a very modest
computational effort. We compose and decompose a(x) in some way
that makes its degree decrease.

Given a univariate polynomial, we can associate to it a Hamming
weight in several fashions. The following one is particularly useful for
the our purposes.

Definition 5.1. We call Hamming weight of a polynomial a(x) to be
the maximum of the Hamming weights of the exponents of its monomi-
als. We denote it by H(a).

If one of two polynomials has it equal to one, their compositum has
the Hamming weight equal to the other. The Hamming weight of a
remainder modulo (xpn − x) is equal to the Hamming weight of the
dividend. This is all what do we need about it.
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We are given a certain polynomial a(x). We assume it practically
infeasible for us to find its roots directly. Therefore, we want to try to
find some affine polynomial b(x), such that either a ◦ b, or b ◦ a are of a
moderate degree. Next, we may try to find a polynomial of moderate
degree c(x), and an affine polynomial d(x) such that either c ◦ d = a,
or d ◦ c = a.

Each of such informations that we may get, renders polynomial solv-
ing pretty easy to us.

Let us consider now the our case, ie, when H(a) = 2. We want to
find an affine polynomial d(x), such that d ◦ a mod (xpn − x) has a
moderate degree. Let us write the equation in its general form:

(6) (d ◦ a)(x) = b(x) · (xpn − x) + r(x).

We are interested on finding r(x) and d(x). The polynomial r(x) has
the same roots like (d ◦ a)(x). The polynomial d(x) instead is always
pretty easily invertible, in the sense that its roots can always be very
easliy found, independently of its degree. It takes a linear system of
equations.

So, knowing the roots of r(x) we can very easily detect the roots of
a(x), that we are interested to solve. In its general form, the polynomial
d has at most n coefficients.

On the polynomial r(x). We dont know its degree. Besides, it is not
unique. We know its form. It contains only monomials of Hamming
weight at most two. Among all its possible choices, we are interested to
take the one of lowest degree, without falling into degenerate cases. It
will be the hard part of polynomial solving. Well, we have already one
choice of r(x). It is a(x) itself. So, the polynomials we are searching
for, have at most (logp∂a)

2 terms. Clearly, we are not interested on the
other choices.

Now we are ready to write the relations among the polynomials in-
volved. We write both d(x) and r(x) in their general form. What dont
we know are their coefficients. We consider them variables.

We calculate (a(x))pi
mod (xpn − x) for i = 0, . . . , n − 1. We put

these polynomials respectively as coefficients of d ◦ a in its generic
form. So doing we have obtained essentially a single linear equation in
n + (logp∂a)

2 variables. Now to determine a set of suitable coefficients
we have only to make at most n + (logp∂a)

2 evaluations of the PK.
So, we have obtained a system of n + (logp∂a)

2 linear equations in
n + (logp∂a)

2 variables. If we only assume that ∂f◦T ◦L < ∂S◦f◦T ◦L, it
must have a solution. Besides, it may have other solutions, however.

Next, among all the solutions that we may find, we are particularly
interested about the unique one where the first nonzero coefficient of
r(x) has the index lowest possible (unique, if we take r(x) to be monic.
It is not any limitation.).
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Let us now give a step by step description of how do we determine
the coefficients of the polynomials we are interested for. Let us continue
with the example above. Again, due to the toy values we are not able at
all to make the whole set of required evaluations. However the example
is a best illustrative one.

6. Coefficient Determining

It is a public knowledge that a(x) is isomorphic to a low-degree
polynomial. We do best finalize our work if r(x) has low degree, and
d(x) is a permutation polynomial. If d(x) is not, it helps still, in the
sense that we decrypt most of the ciphertexts.

The general form of the our equation is:

(a + bx + cx2 + dx4 + ex6)◦
◦(t2x6 + (t2 + 1)x5 + (t2 + t + 1)x4 + (t2 + 1)x3 + (t2 + t)x2 + 1) =

= f + gx + hx2 + ix3 + jx4 + kx5 + mx6.

In order to increase the our chance on finding a permutation d(x),
we may impose b = 1, ie, the coefficient close to the monomial x of
d(x). However, in general we do not make any assumption.

In its full expansion, the identity above becomes:

a + b(t2x6 + t2x5 + t2x4 + t2x3 + t2x2 + tx4 + tx2 + x5 + x4 + x3 + 1)+
+c(t2x6 + t2x5 + t2x3 + tx6 + tx5 + tx4 + tx3 + tx + x6 + x3 + x + 1)+
+d(t2x2 + t2x + tx6 + tx5 + tx3 + x6 + x5 + x2 + 1)+
+e(t2x4 + t2x3 + t2x + tx7 + tx5 + tx4 + tx3 + tx2 + x7 + x2 + 1).

Doing all the n2 + n evaluations we provided, and in this tiny cryp-
tosystem all what we can, and less than provided, we obtain the fol-
lowing system of equations:



a + b + c + d + e = f
a + bt2 + c(t2 + t) + dt + e(t2 + t + 1) = f + g + h + i + j + k + m
a = f + gt + ht2 + i(t + 1) + j(t2 + t) + k(t2 + t + 1) + mt2 + m
a + b(t2 + t + 1) + c(t + 1) + d(t2 + 1) + et2 =
= f + g(t + 1) + h(t2 + 1) + it2 + j(t2 + t + 1) + kt + m(t2 + t)
a + bt2 + c(t2 + t) + dt + e(t2 + t + 1) =
= f + gt2 + h(t2 + t) + i(t2 + 1) + jt + k(t + 1) + m(t2 + t + 1)
a + b(t2 + 1) + c(t2 + t + 1) + d(t + 1) + et =
= f + g(t2 + 1) + h(t2 + t + 1) + i(t2 + t) + j(t + 1) + kt2 + mt
a + b + c + d + e =
= f + g(t2 + t) + ht + i(t2 + t + 1) + jt2 + k(t2 + 1) + m(t + 1)
a + bt + ct2 + d(t2 + t) + e(t2 + 1) =
= f + g(t2 + t + 1) + h(t + 1) + it + j(t2 + 1) + k(t2 + t) + mt2.
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Well, here is a first facility. Given a(x) and d(x), the polynomial
r(x) is uniquely determined. So, the rank of the matrix of the system
above is at most n, the number of coefficients of d(x). So, we need at
most n evaluations, and 2n variables.

What we are seeking for is a solution of its that renders zero the
coefficient of m and k and j, and so on, as many as possible, and, best
that may happen, that d(x) is a permutation polynomial. If this is
the position, we are done. However, any of the solutions of the above
system helps rootfinding.

Besides, at worst, it is however simple for us to calculate one couple
(d(x), r(x)) for each reasonable degree of r(x), ie take several solutions
of the above system.

6.1. We solve the system above by Gaussian elimination. We are in-
terested to get a r(x) nontrivial of smallest degree possible. Therefore,
we eliminate for last the coefficients from righthand side corresponding
to the highest degree monomials. Then we can decide to render zero
them all but one, and go up in the Gaussian stair.



h(t + 1) + i + j + mt = 0
g(t2 + t) + ht + i(t2 + t + 1) + jt2 + k(t2 + 1) + m(t + 1) = 0
e(t + 1) + h(t2 + t + 1) + i(t + 1) + jt2 + k + m = 0
d(t2 + 1) + e(t2 + 1) + gt2 + h(t2 + t) + it2 + j + k(t + 1) + mt = 0
c + d(t + 1) + e(t2 + 1) + gt2 + h + i(t2 + t) + k(t + 1) + m(t2 + t + 1) = 0
b + c + d + e + gt + ht2 + i(t + 1) + j(t2 + t) + k(t2 + t + 1) + m(t2 + 1) = 0
a + b + c + d + e + f = 0.

We have several choices now. We want to have lowest possible the
degree of r(x), without falling into trivial solutions. So, we want to
render zero as many as possible of the variables m > k > j > i >
h > g > f , in order. What can we do is to take few of them, then
choose. The first solution is: we render zero all of the variables in the
first equation. Then the system becomes:

(7)



h = i = j = m = 0
g(t2 + t) + k(t2 + 1) = 0
e(t + 1) + k = 0
d(t2 + 1) + e(t2 + 1) + gt2 + k(t + 1) = 0
c + d(t + 1) + e(t2 + 1) + gt2 + k(t + 1) = 0
b + c + d + e + gt + k(t2 + t + 1) = 0
a + b + c + d + e + f = 0.
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Now, if we choose k = 0, we fall into the trivial case. So, we choose
k 6= 0. Eg, k = t. By this case we have:

(8)


h = i = j = m = 0
k = t, g = t + 1, e = t2 + t
d = t2, c = t2 + 1, b = t2

a + f = t + 1.

So, one choice should be:

r1(x) = tx5+(t+1)x+1, d1(x) = (t2+t)x6+t2x4+(t2+1)x2+t2x+t.

If we take m = k = j = 0, we find one solution to be:

(9)

 m = k = j = 0, i = 1, h = t2 + t
g = 0, d = t2, c = 0, b = t2 + 1
a + f = t + 1.

Now we can choose:

r2(x) = x3 + (t2 + t)x2 + 1, d2(x) = (t + 1)x6 + t2x4 + (t2 + 1)x + t.

This is one of the best pairs we can hope for, as 3, the degree of r(x),
is the smallest number of Hamming weight two. Unfortunately, d2(x)
is not a permutation. However, with better choices of coefficients we
can obtain this condition, too.

6.2. Once we have a suitable d(x), r(x), it is pretty simple now to
solve a(x). Explicitely, if d(x) is a permutation polynomial, we find all
the roots ri of r(x), then calculate d(ri). So we obtain all the roots of
a(x). If d(x) is not a permutation polynomial, anyway we can calculate
most of the solutions of a(x).

Example 6.1. Encrypting t2 + 1, we obtain A(t2 + 1) = t2 + 1. Eve
knows t2 +1, this ciphertext. She solves r1(x) = t2 +1, and finds x = t.
She calculates d1(t) = t2 + 1, and has succeeded decryption.

Example 6.2. Encrypting t2 + t + 1, we have A(t2 + t + 1) = t. Eve
solves r2(x) = t, and finds x = t2+t+1. She calculates d2(t

2+t+1) = 1.
She did not succeed decryption. Surprizingly enough, the cleartext is the
root of the first equation.

7. The Rank

The final tile we miss in order to complete the cryptanalysis of HFE
is to prove that by the algorithm described in the previous section
we can always obtain good polynomials d(x) and r(x). Ie, that we can
find r(x) with degree of the same order of magnitude like f(x), in order
that then we are able to solve it directly, like Alice does. For that, it
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suffices that we prove that the rank of the matrix of the homogeneous
linear system of equations we are required to solve does not exceed the
number of nonzero coefficients of the private polynomial.

We omit the other problem of existence of a permutation d(x). It
does always exist. However, even if we do not make such an assump-
tion, the security of HFE is already prejudiced by the nonpermutation
polynomials d(x).

We can now get rid of the transformation S. If the PK is of the form
S ◦ P for some P , we know how to factor out S, or S and some other
factor of P . Ie, we know how to obtain r(x) of degree at most ∂P .

Being given A, the polynomial T ◦ L is uniquely determined by f .
So, there suffice to vary its coefficients in order to obtain the whole set
of matrices we use in order to factor A in the left side. So the rank of
any such a matrix does not exceed the number of the coefficients of f .

8. Conclusions

8.1. In HFE the PK hides a single univariate pseudoquadratic poly-
nomial. In any fashion, this polynomial is very sparse. It has no more
than n2 terms of a certain well-known shape. So, in any case, Eve can
recover it in O(n6) bit operations, for n the degree of the field exten-
sion. Recall that n is Alice’s only security parameter, and that the
trapdoor problem is already only subexponentially harder with it.

8.2. Even if we take the private polynomial to be of higher Hamming
weight, the amount of calculi required to recover it is almost the same.
Recall that the size of the PK is already almost impractical.

8.3. Solving univariate polynomial equations upon finite fields is a
time-honoured hard problem. So, it is reasonable to look for cryp-
tosystems that provide it as a trapdoor problem. The experience up to
now has shown that hiding polynomials does not help the security of a
cryptosystem, restricts choices, and renders the size of the PK imprac-
tical. The privileged position of a legitimate user must rely elsewhere.

9. Cryptosystems that Might be Secure

9.1. Alice takes a finite field Fpn . Next she chooses k polynomials:
f1, . . . , fk from Fpn [x], of any degree. Then she calculates:

(10) f1 ◦ f2 · · · ◦ fk = a(x) · (xpn − x) + r(x).

The ◦ stand for functional composition of polynomials. We assume
that the remainder is proper, i.e., a(x) 6= 0. If we did not provide
reductions modulo (xpn−x), the complexity of that all is O((log p)·n3).
The algorithm is refferred to as square and multiply, or repeated square.
Provided the reductions modulo (xpn − x), it all is far easier.

MAILTO:TOLI@POSSO.DM.UNIPI.IT


CRYPTANALYSIS OF HFE 11

Alice publishes r(x). It is her PK, together with the field Fpn , and
an alphabet. We assume r(x) is a polynomial of an enormous degree.
Best if it is as high as ≈ pn. An eavesdropper is assumed unable to
solve it directly. We assume that r(x) has no structure that renders it
easy to solve directly. That is, it may be nondecomposable, etc.

Bob to encrypt a message m ∈ Fpn , evaluates the public polynomial
in this point, and sends it to Alice.

Alice to decrypt finds all different roots of r(x) − r(m) within Fpn .
She can, as she can convert the task in finding roots of each composand.
As mpn − m = 0, it is easily seen that if m ∈ Fpn is a cleartext, we
have:

(11) f1 ◦ f2 · · · ◦ fk(m) = r(m).

Next, Alice has to limit the number of total solutions, and to distin-
guish the right solution among the others. This is a technical problem.
There exist already a lot of instruments to handle it.

A good way to limit the undesired solutions is to take all of the fi

to be permutation polynomials, but f1. The polynomial f1 is taken to
be of a very moderate degree. deg f1 is a bound on the number of the
solutions.

We may be attempted to take all of the fi to be permutation poly-
nomials. By this case, r(x), the PK, is a permutation polynomial, too.
So, decryption is deterministic. However, such polynomials have shown
to be particularly bad in cryptography.

Some of the polynomials employed in key generation may be per-
mutation polynomials, affine polynomials of a huge degree, and so on.
I mean that they can be chosen in order to render the task easier to
Alice. In any case, k will be a very small natural number. The affine
polynomials have the very nice property that if suitably chosen, they
have huge multiplicities. The suitable choices are a plethora.

9.2. A major variation of these settings may consist on generating the
PK to be a “randomly chosen” bivariate polynomial, again of very high
in x, and of a moderate degree in y. Given the moderate degree in y,
Bob is assumed to be able to solve it with respect to y, in order to find
a ciphertext.

9.3. Both Alice and Eve are interested on solving the public polyno-
mial within Fpn . That’s why we reduce modulo (xpn − x). If we take
the public polynomial bivariate, we reduce modulo (ypn − y), too.

In other variations, we may take the ciphertext to be longer than the
cleartext, i.e., rely in an overfield of Fpn , and so on.

9.4. Throughout, the only security parameter is the degree of the
public polynomial in x. The trapdoor is assumed to be exponentially
harder with it. The bigger n, the exponentially bigger can be taken the
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degree of the public polynomial. So, the trapdoor problem is assumed
to be twice exponentially hard with n.

9.5. A beautiful variation should be the following. Alice assumes there
will be a handful of very few impossible cleartexts m1, m2, . . . ,m` ∈
Fpn . She assumes herself unable to decrypt them, and assumes that
they will never be sent. Next she calculates:

(12) t(x) = (x−m1)·(x−m2) · · · (x−m`), then w(x) =
xpn − x

t(x)
.

Now she builds her PK to be r(x) as in:

(13) f1 ◦ f2 · · · ◦ fk = a(x) · w(x) + r(x).

Now everything that Eve knows is that the PK is the remainder of
some polynomial modulo some polynomial. It does not seem very much
for her to start a cryptanalysis. It seems to be a “zero-knowledge PK”.

9.6. Yet a lot of other variations are of course possible. Alice may, e.g.,
take w(x) as above. Next she takes a random polynomial g(x) ∈ Fpn [x],
and calculates:

(14) f1 ◦ f2 · · · ◦ fk = a(x) · g(x) · w(x) + r1(x),

and then:

(15) r1(x) = b(x) · (xpn − x) + r(x).

The polynomial r(x) is her PK.

9.7. One of the attentions of Alice is that the Hamming weight of
her PK polynomial is huge. So, even when Eve succeeds to factor it
somehow, she is still required to solve a huge-degree polynomial.
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