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Abstract

We introduce CWC, the first patent-free and parallelizable dedicated block cipher mode of
operation capable of encrypting and authenticating data at 10 Gbps in hardware using con-
ventional ASIC technology. In addition to being designed for use with future 10 Gbps IPsec
network devices, CWC was also designed to be efficient in software on modern CPUs. CWC is
also provably secure under the standard “authenticated encryption with associated data” notion
assuming that the underlying block cipher is a secure pseudorandom permutation, which is a
reasonable assumption if the underlying block cipher is AES. All other “authenticated encryp-
tion” block cipher modes are either patent-encumbered (e.g., OCB) or are not parallelizable
and therefore not capable of processing data beyond about 2 Gbps in hardware with a single
processing unit (e.g., CCM and EAX). Although CWC requires more chip area than OCB,
our calculations suggest that the extra silicon costs less than the intellectual property fees for
the patented modes. Furthermore, we remark that at least one standardization body (IEEE
802.11) has rejected patented-encumbered modes in favor of patent-free modes, suggesting that
the demand for patent-free modes is very high.



1 Introduction

There has recently been a thrust toward producing dedicated block cipher modes of operation
capable of simultaneously encrypting and authenticating data. Such modes of operation are often
called authenticated encryption (AE) modes or, if the modes are capable of authenticating more
data than they encrypt, authenticated encryption with associated data (AEAD) modes. Despite the
previous work in this area, however, there remains at least one area of deficiency: of the previously-
existing modes, none of the patent-free ones are capable of encrypting and authenticating data faster
than about 2 Gbps in hardware. Yet future high-speed IPsec network devices will be expected to
process data at a rate of 10 Gbps.

We address this deficiency in this paper by presenting a patent-free and parallelizable AEAD
mode of operation (CWC) capable of encrypting and authenticating data at 10 Gbps using con-
ventional ASIC technology. We do not, however, sacrifice performance in software. In fact, in
addition to requiring high-performance in hardware, high-performance in software was an explicit
design criterion. We also required that our mode be provably-secure, under the standard AEAD
notion [16], assuming that the underlying block cipher is a secure pseudorandom permutation,
which is a reasonable assumption if the underlying block cipher is AES. Our resulting construction
has other desirable properties as well. For example, it is clean and simple (in our opinion), can
process the data online (in the algorithmic sense), uses a single key (thereby avoiding expensive
memory accesses in hardware), and allows for pre-processing of associated data and other header
fields. Finding a patent-free solution that simultaneously satisfied our hardware, software, and
provable-security goals proved to be one of our main challenges; we believe that we have met that
challenge.

Let us continue by elaborating on some of the motivations for CWC.

Why do we want dedicated authenticated encryption modes? The traditional approach
to achieving authenticated encryption is to combine some standard encryption mode (e.g., CBC
mode) with some standard message authentication scheme (e.g., HMAC). This is known as the
generic-composition approach and was first formally explored in [1] and [10]. Unfortunately, such
generic-composition constructions are often ad hoc and, as illustrated in [1] and [10], it is very
easy to accidentally combine secure encryption modes with secure MACs and still get insecure
authenticated encryption modes.

One of the biggest advantages of dedicated AEAD modes over generic-composition AEAD modes
is that dedicated AEAD modes are not prone to such accidental errors. That is, since dedicated
AEAD modes clearly specify how to achieve both privacy and authenticity, there is no longer the
risk of someone accidentally combing a privacy/encryption component with an authenticity/MAC
component in an insecure fashion. Furthermore, since most applications that require privacy also
require integrity, it is logical to focus on tools capable of providing both services simultaneously.
There is thus great value in developing and standardizing dedicated AEAD modes, as evidenced
by a wealth of papers in this area [8, 5, 7, 17, 21, 16, 2].

Patents. Pragmatically, patents are a major impediment to the standardization and wide-spread
deployment of some of the modes presented in the above-mentioned papers. In particular, three
independent parties have applied for patents on single-pass authenticated encryption modes. It is
not our purpose to describe the specifics of these patent applications (and, indeed, the specifics
are not completely known to the public). Rather, we point out that the existence of these patent
applications makes many existing authenticated encryption modes less attractive, and therefore
less amenable to standardization and deployment. To exemplify this point, we note that although
Rogaway, Bellare, Black, and Krovetz’s OCB mode [17] is very efficient and elegant, it was appar-
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ently rejected from the IEEE 802.11 wireless working group largely because of the fact that it was
covered by patent applications from multiple parties.

What is needed? Noting the need for patent-free dedicated AEAD modes, Whiting, Ferguson,
and Housley proposed a patent-free AEAD mode called CCM [21] which, apparently because of
its patent-free nature, has been adopted by the IEEE 802.11 working group. CCM was recently
followed by another construction, called EAX, by Bellare, Rogaway, and Wagner [2]. Since CCM
and EAX are based on the generic-composition approach (they both essentially combine standard
counter (CTR) mode encryption with variants of CBC-MAC message authentication), CCM and
EAX do not fall under the aforementioned patent applications.

There is, however, one significant disadvantage with both CCM and EAX: the CCM and EAX
encryption and decryption operations are not parallelizable. That is, although the CTR mode
portions of CCM and EAX are clearly parallelizable, their CBC-MAC portions are not. Paralleliz-
ability is, however, very important. For example, without the ability to parallelize the encryption
process, using current technology it does not seem possible to build a single hardware engine for
CCM or EAX capable of encrypting beyond approximately 2 Gbps.1 Although 2 Gbps might be
adequate for today’s applications, such speeds will not be adequate for the coming 10 Gbps network
devices.

Therefore, there is a need for a patent-free dedicated mode of operation capable of encrypting
and authenticating data at 10 Gbps in hardware. One major motivating example is future IPsec
network devices, which may soon have to process data at 10 Gbps.

The CWC solution. We propose a general AEAD paradigm, called CWC, that addresses all the
aforementioned issues. Our preferred instantiation of CWC for 128-bit block ciphers is un-patented,
provably-secure, parallelizable, and efficient in both hardware and software. The parallelizability
enables high-speed hardware implementations to encrypt at 10 Gbps when using AES.

The general CWC paradigm is based on what is called the “Encrypt-then-Authenticate generic
composition paradigm.” In particular, CWC essentially combines a Carter-Wegman message au-
thentication scheme [20] with CTR mode encryption in an Encrypt-then-Authenticate manner.
The general idea is as follows: given a pair of strings (A,M) and a nonce N as input, the CWC
encapsulation algorithm encrypts M with CTR mode to get some intermediate ciphertext σ. It
then uses a Carter-Wegman MAC and the nonce N to MAC the pair (A, σ). If we let τ denote the
resulting MAC tag, then the output of the CWC encapsulation algorithm is the concatenation of
σ and τ . CWC is designed to protect the privacy of M and the integrity of both A and M . We
defer the intricacies of our specific construction to the body of this paper.

Although based on the Encrypt-then-Authenticate generic composition paradigm, CWC is not a
generic composition construction; for example, for efficiency reasons the CWC encryption and MAC
components share the same block cipher key. This means, among other things, that we had to prove
the security of CWC directly, rather than invoke previous results about the generic composition
paradigm. Additionally, because of our performance goals, we developed a new, parallelizable
Carter-Wegman MAC for use with our specific CWC instantiation. We again stress that our design
was influenced by both our hardware and software goals and our provable-security goals (as well
as our patent-free requirement). For example, we rejected designs that performed favorably in
software but not in hardware, and we rejected designs that were slightly more efficient but that
had weaker provable-security bounds than we desired.

The CWC instantiation for 128-bit block ciphers. Throughout the body of this paper
1It is always possible to build two totally independent units and process two packets at a time, but this is

dramatically more complex, requiring twice the area, plus a load balancer.
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we will focus on our instantiation of the CWC paradigm for 128-bit block ciphers.2 In particular,
we focus on CWC-AES, a CWC instantiation with AES as the underlying block cipher. When our
results apply to AES with with specific key lengths, we shall state so explicitly. Instead of writing
CWC-AES, we shall write CWC-BC or simply CWC when we mean the general CWC paradigm
instantiated like CWC-AES but with any 128-bit block cipher BC in place of AES.

Note the difference in font between CWC, the general paradigm, and CWC, our specific proposal.

Achieving parallelism. Clearly the CTR mode portion of CWC is parallelizable. Furthermore,
the core of the Carter-Wegman MAC portion of CWC (a.k.a. the universal hashing portion of
CWC) can be made parallelizable. In the case of CWC, the universal hashing step essentially works
by computing

Y1x
n + Y2x

n−1 + Y3x
n−2 + Y4x

n−3 + · · ·+ Ynx + Yn+1 mod 2127 − 1 .

where Y1, . . . , Yn are 96-bit integers and Yn+1 is a 127-bit integer corresponding to the pair (A, σ)
and x is an integer modulo the prime 2127 − 1. It is well-known that the computation of this
polynomial is parallelizable. For example, if we have two engines available, we can rewrite the
above polynomial as(

Y1y
m + Y3y

m−1 + · · ·+ Yn

)
x +

(
Y2y

m + Y4y
m−1 + · · ·+ Yn+1

)
mod 2127 − 1 ,

where y = x2 mod 2127 − 1, m = (n− 1)/2, and we assume for illustrative purposes that n is odd.
We can then compute both the left and the right portions of the above in parallel. Additional
parallelism can be achieved by further splitting the original polynomial into j polynomials in y′ =
xj mod 2127 − 1.

Performance. Let (A,M) be some input to the CWC encapsulation algorithm (recall that A is the
associated data and M is the message to encrypt). Assuming that the universal hashing subkey is
maintained across invocations, encapsulating (A, M) takes d|M |/128e+2 block cipher invocations.
The polynomial used in CWC’s universal hashing step will have degree d = d|A|/96e + d|M |/96e.
There are several ways to evaluate this polynomial (details in Section 4). As noted above, we could
evaluate it in parallel. Serially, assuming no precomputation, we could evaluate this polynomial
using d 127x127-bit multiplies. As another example, assuming n precomputed powers of the hash
subkey, which are cheap to maintain in software for reasonable n, we could evaluate the polynomial
using d−m 96x127-bit multiplies and m 127x127-bit multiplies, where m = d(d + 1)/ne − 1.

As noted before, it is possible to implement CWC-AES in hardware at 10 Gbps using conventional
ASIC technology. Specifically, at 0.13 micron, it takes approximately 300 Kgates to reach 10 Gbps
throughput. Table 1 relates the software performance, on a Pentium III, of CWC-AES to the two
other patent-free AEAD modes CCM and EAX. The implementations used to compute Table 1
were written in C by Brian Gladman [4] and all use 128-bit AES keys; the current CWC-AES
implementation does not use the above-mentioned precomputation approach for evaluating the
polynomial. Table 1 shows that the current implementations of the three modes have comparable
performance in software, the relative “best” depending on the OS/compiler and the length of the
message. Using the above-mentioned precomputation approach and switching to assembly, we
anticipate reducing the cost of CWC’s universal hashing step to around 8 cpb, thereby significantly
improving the performance of CWC-AES in software compared to CCM-AES and EAX-AES (since
the authentication portions of CCM-AES and EAX-AES are limited by the speed of AES). For
comparison, Bernstein’s related hash127, which also evaluates a polynomial modulo 2127 − 1 but

2If desired, it is possible to instantiate the general CWC paradigm with 64-bit block ciphers, although certain
limitations (e.g., nonce size) apply to such variants. We do not present a 64-bit CWC variant here since we are
primarily concerned with new, high-speed systems using AES, not legacy applications.
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Linux (gcc-3.2.2) Windows 2000/Visual Studio 6.0
Payload message lengths (bytes) Payload message lengths (bytes)

Mode 128 256 512 2048 8192 128 256 512 2048 8192
CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0
CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7
EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1

Table 1: Software performance (in clocks per byte) for the three patent-free dedicated AEAD modes
on a Pentium III. All implementations were in C and written by Brian Gladman [4] and use 128-bit
AES keys. Values are averaged over 50 000 samples. Please see the text for additional information
and discussion.

whose specific structure makes it less attractive in hardware, runs around 4 cpb on a Pentium III
when written in assembly and using the precomputation approach.

We do not claim that CWC-AES will be particularly efficient on low-end CPUs such as 8-bit
smartcards. However, our goal was not to develop an efficient AEAD mode for such low-end
processors. Rather, our goal was to develop a parallelizable and efficient AEAD mode for 10 Gbps
hardware and for modern CPUs.

1.1 Background and related work

The notion of an authenticated encryption (AE) mode was formalized by Katz and Yung [8] and
by Bellare and Namprempre [1] and the notion of an authenticated encryption with associated data
(AEAD) mode was formalized by Rogaway [16]. In [1, 10], Bellare–Namprempre and Krawczyk
explored ways to combine standard encryption modes with MACs to achieve authenticated en-
cryption. A number of dedicated AE and AEAD modes also exist, including RPC [8], XCBC [5],
IACBC [7], OCB [17], CCM [21], and EAX [2]. Within the scope of dedicated block cipher-based
AEAD modes, CWC’s closest relatives are CCM and EAX, which also use two passes and are un-
patented. From a broader perspective, CWC is similar to the combination of McGrew’s UST [14]
and TMMH [13], where one of the main advantages of CWC over UST+TMMH is CWC’s small key
size, which can be a bottleneck for UST+TMMH in hardware at high speeds.

Rogaway and Wagner recently released a critique of CCM [18]. For each issue raised in [18], we
find that we have already addressed the issue (e.g., we designed CWC to be on-line) or we disagree
with the issue (e.g., we feel that it is sufficient for new modes of operation to handle arbitrary
octet-length, as opposed to arbitrary bit-length, messages3).

The integrity portion of CWC builds on top of the Carter-Wegman universal hashing approach to
message authentication [20]. Like Bernstein’s hash127 [3], CWC’s universal hash function evaluates
a polynomial over the integers modulo the prime 2127 − 1. One of the main difference between
hash127 and CWC’s universal hash function is that hash127 uses signed 32-bit coefficients and
CWC uses unsigned 96-bit coefficients. See Remark 3.2 and Section 4 for discussions on why we
chose to use 96-bit coefficients.

In April 2003 we introduced an Internet-Draft, within the IRTF Crypto Forum Research Group,
specifying the CWC-AES mode of operation. The latest version of the Internet-Draft can be found
at http://www.zork.org/cwc or on the IETF website http://www.ietf.org.

3Although we stress that, if desired, it is easy to modify CWC to handle arbitrary bit-length messages. See
Remark 3.9.
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1.2 Outline

We begin in Section 2 with some preliminaries and then describe the CWC mode of operation in
Section 3. In Section 4 we discuss the performance of CWC and in Section 5 we present our provable-
security results for CWC. Appendix A contains our intellectual property statement. Appendix B
presents a summary of CWC’s properties. Appendix C contains the formal proofs of security for
CWC, as well as a description of our general CWC paradigm. Appendix D contains test vectors.

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits (not octets). Let ε denote the empty
string. If x and y are two equal-length strings, then x⊕y denotes the xor of x and y. If x and y are
strings, then x‖y denotes their concatenation. If N is a non-negative integer and l is an integer such
that 0 ≤ N < 2l, then tostr(N, l) denotes the encoding of N as an l-bit string in big-endian format.
If x is a string, then toint(x) denotes the integer corresponding to string x in big-endian format (the
most significant bit is not interpreted as a sign bit). For example, toint(10000010) = 27 + 2 = 130.
Let x ← y denote the assignment of y to x. If X is a set, let x

$← X denote the process of uniformly
selecting at random an element from X and assigning it to x. If f is a randomized algorithm, let
x

$← f(y) denote the process of running f with input y and a uniformly selected random tape.
When we refer to the time of an algorithm or experiment in the provable security section of this
paper, we include the size of the code (in some fixed encoding). There is also an implicit big-O
surrounding all such time references.

Authenticated encryption modes with associated data. We use Rogaway’s notion of
an authenticated encryption with associated data (AEAD) mode [16]. An AEAD mode SE =
(Ke, E ,D) consists of three algorithms and is defined over some key space KeySpSE , some nonce space
NonceSpSE = {0, 1}n, n a positive integer, some associated data (header) space AdSpSE ⊆ {0, 1}∗,
and some payload message space MsgSpSE ⊆ {0, 1}∗. We require that membership in MsgSpSE and
AdSpSE can be efficiently tested and that if M,M ′ are two strings such that M ∈ MsgSpSE and
|M ′| = |M |, then M ′ ∈ MsgSpSE .

The randomized key generation algorithm Ke returns a key K ∈ KeySpSE ; we denote this
process as K

$← Ke. The deterministic encryption algorithm E takes as input a key K ∈ KeySpSE ,
a nonce N ∈ NonceSpSE , a header (or associated data) A ∈ AdSpSE , and a payload message
M ∈ MsgSpSE , and returns a ciphertext C ∈ {0, 1}∗; we denote this process as C ← EN,A

K (M) or
C ← EK(N, A,M). The deterministic decryption algorithm D takes as input a key K ∈ KeySpSE ,
a nonce N ∈ NonceSpSE , a header A ∈ AdSpSE , and a string C ∈ {0, 1}∗ and outputs a message
M ∈ MsgSpSE or the special symbol INVALID on error; we denote this process as M ← DN,A

K (C).
We require that DN,A

K (EN,A
K (M)) = M for all K ∈ KeySpSE , N ∈ NonceSpSE , A ∈ AdSpSE , and

M ∈ MsgSpSE . Let l(·) denote the length function of SE ; i.e., for all keys K, nonces N , headers A,
and messages M , |EN,A

K (M)| = l(|M |).
Under the correct usage of an AEAD mode, after a random key is selected, the application

should never invoke the encryption algorithm twice with the same nonce value until a new key is
randomly selected. In order to ensure that a nonce does not repeat, implementations typically use
nonces that contain counters. We use the notion of a nonce, rather than simply a counter, because
the notion of a nonce is more general and allows the developer the freedom to structure the nonce
as he or she desires.

Block ciphers. A block cipher E : {0, 1}k × {0, 1}L → {0, 1}L is a function from k-bit keys and
L-bit blocks to L-bit blocks. We use EK(·), K ∈ {0, 1}k, to denote the function E(K, ·) and we
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use f
$← E as short hand for K

$← {0, 1}k ; f ← EK . Block ciphers are families of permutations;
namely, for each key K ∈ {0, 1}k, EK is a permutation on {0, 1}L. We call k the key length of E
and we call L the block length.

3 The CWC mode of operation

We now describe the CWC mode of operation for 128-bit block ciphers. See Appendix C for a
description of the general CWC construction.

If BC denotes a block cipher with 128-bit blocks and kl-bit keys, and if tl ≤ 128 is the desired
tag length for CWC in bits, then let CWC-BC-tl denote the CWC mode of operation instantiated
with BC using tag length tl. Throughout the remainder of this section, fix BC and tl and let
CWC-BC-tl = (K,CWC-ENC,CWC-DEC).

We associate to CWC-BC-tl the following sets:

MsgSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxMsgLen }
AdSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxAdLen }

KeySpCWC-BC-tl = {0, 1}kl

NonceSpCWC-BC-tl = {0, 1}88

where MaxMsgLen and MaxAdLen are both 128 · (232−1). That is, the payload and associated data
spaces for CWC-BC-tl consist of all strings of octets that are at most 232 − 1 blocks long.

3.1 The CWC core

The key generation algorithm K returns a randomly selected key from KeySpCWC-BC-tl (i.e., the key
generation returns a random kl-bit string). The encryption algorithm CWC-ENC works as follows:

Algorithm CWC-ENCK(N,A, M) // CWC encryption
σ ← CWC-CTRK(N, M)
τ ← CWC-MACK(N, A, σ)
Return σ‖τ

where CWC-CTR and CWC-MAC are described in Section 3.2. The decryption algorithm CWC-DEC
works as follows:

Algorithm CWC-DECK(N,A, C) // CWC decryption
If |C| < tl then return INVALID
Parse C as σ‖τ where |τ | = tl
If A 6∈ AdSpCWC-BC-tl or σ 6∈ MsgSpCWC-BC-tl then return INVALID
If τ 6= CWC-MACK(N,A, σ) then return INVALID
Return CWC-CTRK(N, σ)

3.2 The CWC subroutines

The remaining CWC algorithms are defined as follows:

Algorithm CWC-CTRK(N, M) // CWC counter mode module
α ← d|M |/128e
For i = 1 to α do
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ksi ← BCK(107‖N‖tostr(i, 32)) // Note that 107 means a one bit followed by 7 zeros
σ ← (first |M | bits of ks1‖ks2‖ · · · ‖ksα)⊕M
Return σ

Algorithm CWC-MACK(N,A, σ) // CWC authentication module
R ← BCK(CWC-HASHK(A, σ))
τ ← BCK(107‖N‖032)⊕R
Return first tl bits of τ

Algorithm CWC-HASHK(A, σ) // CWC universal hashing module
Z ← last 127 bits of BCK(110126)
Kh ← toint(Z) // The same Kh value is used in every invocation of CWC-HASHK .
l ← minimum integer such that 96 divides A‖0l

l′ ← minimum integer such that 96 divides σ‖0l′

X ← A‖0l‖σ‖0l′ ; β ← |X|/96 ; lσ ← |σ|/8 ; lA ← |A|/8
Break X into chunks X1, X2, . . . , Xβ // |X1| = |X2| = · · · = |Xβ | = 96
For i = 1 to β do

Yi ← toint(Xi)
Yβ+1 ← 264 · lA + lσ // Include the lengths of A and σ in the polynomial.
R ← Y1K

β
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1

Return tostr(R, 128) // Note: first bit of result will always be 0

3.3 Remarks

We now highlight some features of CWC, explain some of our design decisions, and discuss some of
the alternatives we explored. We have additional remarks in Section 5.4.

Remark 3.1 [Computing the CWC-HASH polynomial.] The polynomial

Y1K
β
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1

in CWC-HASH can be computed using Horner’s Rule as

((((Y1)Kh + Y2)Kh + · · · )Kh + Yβ)Kh + Yβ+1 mod 2127 − 1 .

Alternatively, if the values Ki
h are precomputed, the polynomial can be computed directly.

Furthermore, as discussed in the introduction, computation of the polynomial in CWC-HASH
can be parallelized by splitting the polynomial into multiple polynomials in Ki

h for some i.
As we will see in Section 4, different implementations will want to evaluate the polynomial in

different ways. For example, in software it is advantageous to precompute the powers of the Kh and
evaluate the polynomial directly. To avoid unnecessary memory accesses, hardware implementations
will likely evaluate the polynomial using Horner’s rule (perhaps by first splitting the polynomial in
order to exploit CWC-HASH’s parallelism).

Remark 3.2 [On the size of the CWC-HASH coefficients.] All the coefficients Y1, . . . , Yβ

in CWC-HASH are 96-bit integers. When evaluating the polynomial using precomputed powers
of Kh, the cost for each coefficient includes the cost of a 96x127-bit multiply. When evaluating
the polynomial using Horner’s rule, the cost for each coefficient includes the cost of a 127x127-bit
multiply (since the accumulated value will be 127 bits long). (See Remark 5.4 for why we chose
not to use 96-bit hash subkeys and, particularly relevant here, the fact that when we split the
polynomial and evaluate two polynomials in Ki

h, i ≥ 2, Ki
h will likely be 127 bits long even if Kh is
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96 bits). Since we are are already performing 127x127-bit multiplies, to increase the performance
when using Horner’s rule it would easily be possible to define CWC to use coefficients up to 126-bits
in size. Such an approach would speed up the Horner’s rule computation by a ratio of 126/96
(nearly 4:3), but would require considerable additional complexity to perform bit and byte shifting
within the coefficients. Note that Bernstein’s related hash127 [3] uses smaller 32-bit coefficients,
which makes it more costly in hardware when evaluating the polynomial using Horner’s rule, but
cheaper in software when using precomputed powers of the hash subkey. We use 96-bit coefficients
because it provides for fast hardware implementations (using Horner’s rule) and fast (although
not as fast as hash127) software implementation when using precomputation. See Section 4 for
additional discussion. (Finally, the final Yβ+1 may be larger than 96-bits since Yβ+1 does not have
to be multiplied with anything.)

Remark 3.3 [Why a single key.] It would be perfectly acceptable from a security perspective to
make the block cipher key K and hash key Kh independent. The main motivation for using a single
key, and deriving the hash key Kh from the block cipher key K, was simplicity of key management.
From a performance perspective, we note that fetching key material can be a bottleneck in high-
speed hardware.

Remark 3.4 [Separating block cipher inputs.] The input to the block cipher when generating
the hash key Kh begins with the bits 11. All the inputs when generating CTR mode keystream
begin with the bits 10. The input to the keystream generator in CWC-MAC has the last 32 bits all
zero and the input to the block cipher in CWC-CTR never has the last 32 bits zero. All the outputs
of CWC-HASH begin with a 0 bit. These properties ensure that there is never an overlap in the
inputs between the different uses of the underlying block cipher. For example, the output of the
universal hash function (which is enciphered with the block cipher) will never collide with one of
the inputs to the block cipher in CWC-CTR. Essentially, separating the block cipher inputs in this
way is what allows us to use a single block cipher key in all applications of the block cipher.

Remark 3.5 [Why not derive multiple keys from a single key?] It would be possible
to define a mode of operation that takes a single master key and that derives “independent”
encryption and MAC block cipher keys from the master key. Doing so would eliminate the need to
be careful about separating inputs to the block cipher (Remark 3.4), but would require additional
computations (most likely block cipher invocations) to derive the encryption and MAC keys if
implementations only store the master in memory. Furthermore, unless implementations store the
expanded keys in memory, there would be the additional cost of expanding the key schedules for
the derived encryption and MAC keys. Since we can provably use the same block cipher key for all
applications of the underlying block cipher (Remark 3.4 and Section 5), since our solution avoids
unnecessary precomputation steps, and since we believe our solution is still clean and simple, we
chose not to derive “independent” encryption and MAC block cipher keys from a single master key.

Remark 3.6 [Computing the universal hash subkey.] Although CWC-HASH shows the hash
subkey Kh being computed upon every invocation, it is possible to compute Kh in the key generation
step of CWC. Doing so would save one block cipher application per message but would require
maintaining an additional 128 bits across invocations. We anticipate that in hardware, where
fetching key material can be expensive, the hash subkey will be re-computed on every invocation
of the encryption and decryption algorithms. In software, however, we anticipate that the subkey
Kh will be computed once and maintained across invocations.
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Remark 3.7 [On the choice of parameters.] The parameters (e.g., the nonce length and the
way the nonce is encoded in the input to the block cipher) are fixed for CWC. This is in order to
promote interoperability. In CWC the block counter length is set to 32 bits in order to allow CWC
to be used with IPsec jumbograms and other large packets up to 232 − 1 blocks long. The nonce
length is set to 88 bits in order to handle future IPsec sequence numbers.

Remark 3.8 [Byte ordering.] CWC uses big-endian byte ordering. We do so for consistency
purposes and in order to maintain compatibility with McGrew’s ICM Internet-Draft [12] and the
IETF, which strongly favors the big-endian byte-ordering.

Remark 3.9 [Handling arbitrary bit-length messages.] Although we could have specified
CWC to take arbitrary bit-length messages as input (just change the definitions of the message
spaces and compute lA ← |A| and lσ ← |σ| in CWC-HASH), we do not specify CWC this way simply
because there does not appear to be a significant need to handle arbitrary bit-length messages and
we do not consider it a good trade-off to define a mode for arbitrary bit-length messages at the
expense of octet-oriented systems.

If, in the future, such a need arises, it will still be possible to modify the current CWC construc-
tion to take arbitrary bit-length messages as input without affecting interoperability with existing
CWC implementations when octet-strings are communicated. Although other possibilities exist,
one method would be to augment the computation of Yβ+1 in CWC-HASH as follows:

rA ← |A| mod 8 ; rσ ← |σ| mod 8 ; Yβ+1 ← 2120 · rA + 2112 · rσ + 264 · lA + lσ .

Remark 3.10 [64-bit block ciphers.] It is possible to instantiate the general CWC paradigm
(Appendix C) with 64-bit block ciphers like DES and 3DES. We do not do so in this paper since
we are targeting future high-speed cryptographic applications.

Remark 3.11 [Initial counter for CTR-mode.] Motivated by EAX2 [2], one possible alter-
native to CWC might be to use BCK(11105‖N) both as the value to encrypt R in CWC-MAC and
as the initial counter to CTR mode-encrypt M (with the first two bits of the counter always set
to 10). Other EAX2-motivated constructions also exist. For example, the tag might be set to
BCK(h(X0‖N))⊕BCK(h(X1‖A))⊕BCK(h(X2‖σ)), where X0, X1, X2 are strings, none of which is
a prefix of the other, and h is a parallelizable universal hash function, like CWC-HASH but hashing
only single strings (as opposed to pairs of strings). Compared to CWC, these alternatives have the
ability to take longer nonces as input, and, from a functional perspective, can be applied to strings
up to 2126 blocks long. But we do not view this as a reason to prefer these alternatives over CWC.
From a practical perspective, we do not foresee applications needing nonces longer than 11 octets,
or needing to encrypt messages longer than 232 − 1 blocks. Moreover, from a security perspective,
applications should not encrypt too many packets between rekeyings, implying that even 11 octet
nonces are more than sufficient.

4 Performance

4.1 Hardware

Since one of our main goals is to achieve 10 Gbps in hardware, and in particular for future high-
speed IPsec network devices, let us focus first on hardware costs. As noted in the introduction, using
0.13 micron CMOS ASIC technology, it should take approximately 300 Kgates to achieve 10 Gbps
throughput for CWC-AES. This estimate, which is applicable to AES with all key lengths, includes
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four AES counter-mode encryption engines, each running at 200 MHz and requiring about 25Kgates
each. In addition, there are two 32x128-bit multiply/accumulate engines, each running at 200 MHz
with a latency of four clocks, one each for the even and odd polynomial coefficients. Of course,
simply keeping these engines “fed” may be quite a feat in itself, but that is generally true of any 10
Gbps path. Also, there may well be better methods to structure an implementation, depending on
the particular ASIC vendor library and technology, but, regardless of the implementation strategy,
10 Gbps is quite achievable because of the inherent parallelism of CWC.

Since OCB is CWC’s main competitor for high-speed environments, it is worth comparing CWC
with OCB instantiated with AES (we do not compare CWC with CCM and EAX here since the
latter two are not parallelizable). We first note that CWC-AES saves some gates because we only
have to implement AES encryption in hardware. However, at 10 Gbps, OCB still probably requires
only about half the silicon area of CWC-AES. The main question for many hardware designers is
thus whether the extra silicon area for CWC-AES costs more than three royalty payments, as well as
negotiation costs and overhead. Our estimates indicate that, given today’s silicon costs, the extra
silicon for CWC-AES is probably cheaper than the IP fees for OCB.

4.2 Software

CWC-AES can also be implemented efficiently in software. Table 1 shows timing information for
CWC-AES, as well as CCM-AES and EAX-AES, on a 1.133GHz mobile Pentium III dual-booting
RedHat Linux 9 (kernel 2.4.20-8) and Windows 2000 SP2. The numbers in the table are the clocks
per byte for different message lengths averaged over 50 000 runs and include the entire time for
setting up (e.g., expanding the AES key-schedule) and encrypting. All implementations were in C
and written by Brian Gladman [4] and use 128-bit AES keys. The Linux compiler was gcc version
3.2.2; the Windows compiler was Visual Studio 6.0.

From Table 1 we conclude that the three patent-free modes, as currently implemented by Glad-
man, share similar software performances. The “best” performing one appears to depend on
OS/compiler and the length of the message being processed. On Linux, it appears that CWC-AES
performs slightly better than EAX-AES for all message lengths that we tested, and better than
CCM-AES for the longer messages, whereas Gladman’s CCM-AES and EAX-AES implementations
slightly outperform his CWC-AES implementation on Windows for all the message lengths that we
tested.

Note, however, that all the implementations used to compute Table 1 were written in C. Fur-
thermore, the current CWC-AES code does not make use of all of the optimization techniques (and
in particular precomputation) that we describe below. By switching to assembly and using the
additional optimization techniques, we anticipate the speed for CWC-HASH to drop to better than
8 clocks per byte, whereas the speed for the CBC-MAC portion of CCM-AES and EAX-AES will
be limited by the speed of AES (the best reported speed for AES on a Pentium III is 14.1 cpb,
due to a proprietary library by Helger Lipmaa; Gladman’s free hand-optimized Windows assembly
implementation runs at 17.5 cpb [11]). Returning to the speed of CWC-HASH, for reference we
note that Bernstein’s related hash127 [3] runs around 4 cpb on a Pentium III when written in
assembly and using the precomputation approach. Bernstein’s hash127 also works by evaluating
a polynomial modulo 2127 − 1; the main difference is that the coefficients for hash127 are 32 bits
long, whereas the coefficients for CWC-HASH are 96 bits long (recall Remark 3.2, which discusses
why we use 96-bit coefficients).
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4.2.1 Implementing CWC-HASH in software

Since the implementation of CWC-HASH is more complicated than the implementation of the
CWC-CTR portion of CWC, we devote the rest of this section to discussing CWC-HASH.

Precomputation. As noted in Remark 3.1, there are two general approaches to implementing
CWC-HASH in software. The first is to use Horner’s rule. The second is to evaluate the polynomial
directly, which can be faster if one precomputes powers of the hash key Kh at setup time (here the
powers of Kh can be viewed as an expanded key-schedule). In particular, as noted in Remark 3.2,
evaluating the polynomial using Horner’s rule requires a 127x127-bit multiply for each coefficient,
whereas evaluating the polynomial directly using precomputed powers of Kh requires a 96x127-bit
multiply for each coefficient.4 The advantage with precomputation was first observed by Bernstein
in the context of hash127 [3].

The above description of the precomputation approach assumed that if the polynomial is
Y1K

γ−1
h + · · · + Yγ−1Kh + Yγ (i.e., the polynomial has γ coefficients), then we had precomputed

the powers of Ki
h for all i ∈ {1, . . . , γ − 1}. The precomputation approach extends naturally to the

case where we have precomputed the powers Kj
h, j ∈ {1, . . . , n}, for some n ≤ γ−1. For simplicity,

first assume that we know the polynomial has a multiple of n coefficients. For such a polynomial,
one processes the first n coefficients (to get Y1K

n−1
h + . . . + Yn−1Kh + Yn), then multiplies the in-

termediate result by Kn
h (to get Y1K

2n−1
h + . . . + Yn−1K

n+1
h + YnKn

h ). After that, one can continue
processing data with the same precomputed values (to get Y1K

2n−1
h + . . .+Y2n−1Kh +Y2n), and so

on. Note that each chunk of n coefficients takes (n− 1) 96x127-bit multiplies, and all but the last
chunk takes an additional 127x127-bit multiply. Now assume that the number of coefficients m in
the polynomial is not necessarily a multiple of n. If m is known in advance, one could first process
m mod n coefficients, multiply by Kn

h , then process in n-coefficient chunks as before. Alternately,
as long as the end of the message is known n coefficients in advance, one could process n-coefficients
chunks, and then finish off the final m mod n coefficients using Horner’s rule. Or, if the number of
coefficients in the polynomial is not known until the final coefficient is reached, one could process
the message in n-coefficient chunks and then multiply by a precomputed power of K−1

h once the
end of the message hash been reached.

Naturally, precomputation requires extra memory, but that is usually cheap and plentiful in
a software-based environment. Using 32-bit multiplies, the precomputation approach requires 12
32-bit multiplies per 96-bit coefficient, as well as 17 adds, all of which may carry. In assembly, most
of these carry operations can be implemented for free, or close to it by using a special variant of
the add instruction that adds in the operand as well as the value of the carry from the previous
add operation. But when implemented in C, they will generally compile to code that requires
a conditional branch and an extra addition. An implementation using Horner’s rule requires an
additional four multiplies and three additions with carry per coefficient, adding about 33% overhead,
since the multiplies dominate the additions. A 64-bit platform only requires four multiplies and
four adds (which may all carry), no matter the implementation strategy taken. The multiply being
far more expensive than other operations, we would thus expect a 64-bit integer implementation to
run in one third the time of a 32-bit implementation, assuming that the cost of primitive operations
does not increase.

Exploiting the parallelism of some instruction sets. On most platforms, it turns out that
the integer execution unit is not the fastest way to implement CWC-HASH. Many platforms have
multimedia instructions that can be used to speed up the implementation. As another alternative,

4As an aside, see Remark 5.4 for why we did not make the hash subkey 96-bits, which could have sped up a serial
Horner’s rule implementation.
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Bernstein demonstrated that, on most platforms, the floating point unit can be used to implement
this class of universal hash functions far more efficiently than can be done in the integer unit. This
is particularly true on the x86 platform where, in contrast to using the standard registers, two
floating point multiples can be started in close proximity without introducing a pipeline stall. That
is, the x86 can effectively perform two floating-point operations in parallel. The disadvantage of
using floating-point registers is that the operands for the individual multiplies need to be small,
so that the operations can be done without loss of precision. On the x86, Bernstein multiplies
24-bit values, allowing the sums of product terms to fit into double precision values with 53 bits
of precision without loss of information. Bernstein details many ways to optimize this sort of
calculation in [3].

As noted before, there are only two main differences between the structure of the polynomials of
Bernstein’s hash127 and CWC-HASH. The first is that Bernstein uses signed coefficients, whereas
CWC-HASH uses unsigned coefficients; this should not have an impact on efficiency. The other dif-
ference is that Bernstein uses 32-bit coefficients, whereas CWC-HASH uses 96-bit coefficients. While
both solutions average one multiplication per byte when using integer math, Bernstein’s solution
requires only .75 additions per byte, whereas CWC-HASH requires 1.42 additions per byte, nearly
twice as many. Using 32-bit multiplies to build a 96x127 multiplier (assuming precomputation),
CWC-HASH should therefore perform no worse than at half the speed of hash127. When using 24-
bit floating point coefficients to build a multiply (without applying any non-obvious optimizations),
hash127 requires 12 multiplies and 16 adds per 32-bit word. CWC can get by with 8 multiples per
word and 12.67 additions per word. This is because a 96-bit coefficient fits exactly into four 24-bit
values, meaning we can use a 6x4 multiply for every three words. With 32-bit coefficients, we need
to use two 24-bit values to represent each coefficient, resulting in a single 6x2 multiply that needs
to be performed for each word.

Gladman’s implementation of CWC-HASH uses floating point arithmetic, but uses Horner’s
rule instead of performing precomputation to achieve extra speed. Nothing about the CWC hash
indicates that it should run any worse than half the speed of hash127, if implemented in a similar
manner, in assembly, and using the floating point registers and precomputation. This upper-bound
paints an encouraging picture for CWC performance, because hash127 on a Pentium III runs around
4 cpb when implemented in assembly and using the floating point registers and precomputation.
This indicates that a well-optimized software version of CWC-HASH should run no slower than 8
cycles per byte.

Finally, it may be possible to further improve the performance of CWC-HASH. For example,
literature from the gaming community [6] indicates that one can use both integer and floating point
registers in parallel. Although we have not tested this approach, it seems reasonable to conclude
that one might be able to interleave integer operations, and thereby obtain additional speedups.

5 Theorem statements

In addition to parallelizability and performance, provable-security was one of our major design
requirements (we rejected several constructions that had weaker provable-security results than we
desired). Consequently, the CWC mode is a provably secure AEAD mode assuming that the under-
lying block cipher (e.g., AES) is a secure pseudorandom permutation. This is a quite reasonable
assumption since most modern block ciphers (including AES) are believed to be pseudorandom.
Furthermore, all provably-secure block cipher modes of operation that we are aware of make the
same assumptions we make (and some modes, e.g. OCB [17], make even stronger, albeit still rea-
sonable, assumptions).
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The specific results for CWC appear as Theorem 5.1 and Theorem 5.2 below. In Appendix C
we also present results for the general CWC paradigm, from which Theorems 5.1 and 5.2 follow.

5.1 Preliminaries

Before presenting our provable security results, we must first formally describe what we mean
by privacy and integrity/authenticity. Our privacy and integrity/authenticity notions for AEAD
modes come from [17]. We must also describe the notion of a pseudorandom permutation.

Privacy of AEAD modes. Let SE = (Ke, E ,D) be an AEAD mode with length function l(·).
Let $(·, ·, ·) be an oracle that, on input (N,A, M) ∈ NonceSpSE × AdSpSE × MsgSpSE , returns a
random string of length l(|M |). Let B be an adversary with access to an oracle and that returns a
bit. Then

Advpriv
SE (B) = Pr

[
K

$← Ke : BEK(·,·,·) = 1
]
− Pr

[
B$(·,·,·) = 1

]

is the ind$-cpa-advantage of B in breaking the privacy of SE under chosen-plaintext attacks; i.e.,
Advpriv

SE (B) is the advantage of B in distinguishing between ciphertexts from EK(·, ·, ·) and random
strings. An adversary B is nonce-respecting if it never queries its oracle with the same nonce twice.
Intuitively, a mode SE preserves privacy under chosen plaintext attacks if the ind$-cpa-advantage
of all nonce-respecting adversaries using reasonable resources is small.

Integrity/authenticity of AEAD modes. Let SE = (Ke, E ,D) be an AEAD mode. Let F

be a forging adversary and consider an experiment in which we first pick a random key K
$← Ke

and then run F with oracle access to EK(·, ·, ·). We say that F forges if F returns a pair (N,A, C)
such that DN,A

K (C) 6= INVALID but F did not make a query (N,A, M) to EK(·, ·, ·) that resulted in
a response C. Then

Advauth
SE (F ) = Pr

[
K

$← Ke : F EK(·,·,·) forges
]

is the auth-advantage of F in breaking the integrity/authenticity of SE . Intuitively, the mode
SE preserves integrity/authenticity if the auth-advantage of all nonce-respecting adversaries using
reasonable resources is small.

Pseudorandom permutations. If X is a set, then Perm(X) denotes the set of all permutations
on X. If L is a positive integer, then and Perm(L) denotes the set of all permutations on {0, 1}L.
Let F be a a family of functions from set D to D. Let A be an adversary with access to an oracle
and that returns a bit. Then

Advprp
F (A) = Pr

[
f

$← F : Af(·) = 1
]
− Pr

[
g

$← Perm(D) : Ag(·) = 1
]

denotes the prp-advantage of A in distinguishing a random instance of F from a random permu-
tation. Intuitively, we say that F is a secure prp if the prp-advantages of all adversaries using
reasonable resources is small. Modern block ciphers, such as AES, are believed to be secure prps.

5.2 Integrity/authenticity

Theorem 5.1 [Integrity/authenticity of CWC.] Let CWC-BC-tl be as in Section 3. (Recall
that BC is a 128-bit block cipher and that the tag length tl is ≤ 128.) Consider a nonce-respecting
auth adversary A against CWC-BC-tl. Assume the execution environment allows A to query its
oracle with associated data that are at most n ≤ MaxAdLen bits long and with messages that are
at most m ≤ MaxMsgLen bits long. Assume A makes at most q − 1 oracle queries and the total
length of all the payload data (both in these q − 1 oracle queries and the forgery attempt) is at
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most µ. Then given A we can construct a prp adversary CA against BC such that

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
+

n + m

2133
+

1
2125

+
1
2tl

. (1)

Furthermore, the experiment for CA takes the same time as the experiment for A and CA makes
at most µ/128 + 3q + 1 oracle queries.

The above theorem means that if the underlying block cipher is a secure pseudorandom permu-
tation, then CWC-BC will preserve authenticity. If the underlying block cipher is something like
AES, then this initial assumption seems quite reasonable and, therefore, CWC-AES will preserve
authenticity.

Let us elaborate on why Theorem 5.1 implies that CWC-BC will preserve authenticity. Assume
BC is a secure block cipher. This means that Advprp

BC (C) must be small for all adversaries C
using reasonable reasonable resources and, in particular, this means that, for CA as described in
the theorem statement, Advprp

BC (CA) must be small assuming that A uses reasonable resources.
And if Advprp

BC (CA) is small and µ, q, m and n are small, then, because of the above equations,
Advauth

CWC-BC-tl(A) must also be small as well. I.e., any adversary A using reasonable resources will
only be able to break the authenticity of CWC-BC-tl with some small probability.

Let us consider some concrete examples. Let n = MaxAdLen and m = MaxMsgLen, which is the
maximum possible allowed by the CWC-BC construction. Then Equation 1 becomes

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
+

1
293

+
1
2tl

.

If we limit the number of applications of CWC-BC between rekeyings to some reasonable value such
as q = 232, if we limit the total number of payload bits between rekeyings to µ = 250, and if we
take tl ≥ 43, then the above equation becomes

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
1

241

which means that, assuming that the underlying block cipher is a secure prp, an attacker will not
be able to break the unforgeability of CWC-BC-tl with probability much greater than 2−41.

5.3 Privacy

Theorem 5.2 [Privacy of CWC.] Let CWC-BC-tl be as in Section 3. Then given a nonce-
respecting ind$-cpa adversary A against CWC-BC-tl one can construct a prp adversary CA against
BC such that if A makes at most q oracle queries totaling at most µ bits of payload message data,
then

Advpriv
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
. (2)

Furthermore, the experiment for CA takes the same time as the experiment for A and CA makes
at most µ/128 + 3q + 1 oracle queries.

We interpret Theorem 5.2 in the same way we interpreted Theorem 5.1. In particular, this theorem
shows that if BC is a secure pseudorandom permutation, then CWC-BC-tl preserves privacy under
chosen-plaintext attacks.

As a concrete example of why Theorem 5.2 implies that CWC-BC preserves privacy under
chosen-plaintext attacks, let us again consider the case where q = 232 and µ = 250. Then Equation 2
becomes

Advpriv
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
1

242
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which means that, assuming that the underlying block cipher is a secure prp, an attacker will not
be able to break the privacy of CWC-BC-tl with advantage much greater than 2−42.

Remark 5.3 [Chosen-ciphertext privacy.] Since CWC-BC-tl preserves privacy under chosen-
plaintext attacks (Theorem 5.2) and provides integrity (Theorem 5.1) assuming that BC is a secure
pseudorandom permutation, it also provides privacy under chosen-ciphertext attacks under the
same assumption about BC. See [1, 16] for a discussion of the relationship between chosen-plaintext
privacy, integrity, and chosen-ciphertext privacy; this relationship was also used, for example, by
the designers of OCB [17].

5.4 Remarks

We close this section with some additional remarks on the design of CWC and several additional
variants that we considered.

Remark 5.4 [On the length of the hash subkey.] It is possible to use smaller subkeys Kh

in CWC-HASH (simply truncate BCK(110126) appropriately). Recall that we have fixed the block
length of BC to 128 bits. Let hkl denote the length of the hash subkey in an altered construction.
If hkl < 127, then the upper-bound in Equation 1 becomes

Advprp
BC (CA) +

(µ/128 + 3q + 1)2

2129
+

(n + m)/96 + 2
2hkl

+
1
2tl

.

Consider an application that sets hkl to 96. If we replace m and n by their maximum possible
values, the upper-bound becomes

Advprp
BC (CA) +

(µ/128 + 3q + 1)2

2129
+

1
262

+
1
2tl

.

Since 2−62 is already very small (and, in fact, dominated by the (µ/128 + 3q + 1)2 · 2−129 term
for some reasonable values of q and µ), from a provable-security perspective, developers would be
justified in using 96-bit hash subkeys.

Rather than use shorter hash subkeys, however, our current CWC instantiation in Section 3
uses 127-bit hash subkeys. We do so for several reasons. First, in hardware, to obtain maximum
speed, one would parallelize the CWC hash function by evaluating, for example, two polynomials
in K2

h in parallel. Since K2
h would generally not be 96-bits long, there is no performance advantage

with using 96-bit subkeys Kh in this situation. In software, the use of 96-bit hash subkeys could
lead to improved performance when evaluating the polynomial using Horner’s rule. However, the
performance of such a construction is essentially equivalent to the performance of the current
construct when not using Horner’s rule but using pre-computed powers of Kh. Since we believe
that high-performance implementations will not benefit from the use of 96-bit hash subkeys (i.e.,
the additional 31 key bits come with no or negligible additional cost), we have chosen to fix the
length of our hash subkeys to 127 bits.

Developers of CWC derivatives may, however, wish to use shorter hash subkeys, and we do
not prevent that (although we do suggest referring to such modes in such a way as to avoid
confusion with CWC-BC). We also suggest that developer’s understand the impact of using shorter
hash subkeys. For example, using a 64-bit hash subkey would increase the upper-bound on the
probability of an adversary forging to around 2−30, which may be too large for some applications.

Remark 5.5 [On computing the tag.] In CWC the MAC consisted of hashing (A, σ), encipher-
ing the hash with the block cipher, and then xoring the result with some keystream (i.e., in the
current proposal the tag is BCK(107‖N‖032)⊕BCK(CWC-HASHK(A, σ))). One question the reader
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might have is whether two block cipher invocations are necessary. We first comment that the cost
of two block cipher operations per MAC is not particularly significant compared to the total cost
of CWC. CWC-AES as currently specified already achieves its design goal of encrypting 10 Gbps in
hardware. And, in software, the extra cost of one block cipher operation is quite minor for average
packets, and less than approximately 15% for 64-byte packets. Nevertheless, the use of two block
cipher applications for the tag might seem aesthetically unappealing to some.

Instead of the two block cipher applications, one could use BCK(h′K(N, A, σ)) as the tag, where
h′ is a modified version of CWC-HASH designed to hash 3-tuples instead of pairs of strings (this is
important because the nonce must also be authenticated). The main disadvantage of this approach
is that it would change the upper-bound in Equation 1 to

Advprp
BC (CA) +

(µ/128 + 3q + 1)2

2129
+ q2 ·

(
n + m

2133
+

1
2125

)
+

1
2tl

(note the new q2 term). If we set n = MaxAdLen, m = MaxMsgLen, q = 232, and µ = 250, then
for any tl ≥ 29, we get that the advantage of an adversary in breaking the unforgeability of this
modified CWC variant is upper-bounded by 2−27, which, although not extremely large, is worse
than the upper-bound of 2−41 we get using Equation 1. Even if n and m are at most one million
blocks long, we see that the integrity upper-bound for the altered CWC construction is worse
than the upper-bound for the CWC construction we present in Section 3. More generally, this
means that for reasonable values of n,m, q, µ, the insecurity upper-bounds of this alternative will
be worse than the insecurity upper-bounds of the CWC mode described in Section 3. Furthermore,
the upper-bound would be even worse if one keys the hash function with shorter keys, which some
developers might choose to do (recall Remark 5.4).

Another possible way to reduce the number of block cipher invocations necessary to compute
the MAC would be to take the output of the current hash function and run it through another
hash function that is almost-xor-universal (see Appendix C for a description of this property).
However, this approach is not attractive because it requires additional key material. In particular,
while this approach may save one block cipher operation, in hardware the block cipher operation
is actually smaller and simpler than managing the extra key material, given that the hardware
already has a block cipher encryptor running at high speed.

Another possibility would be to use something like BCK(N) + Y1K
β+2
h + · · ·+ YβK3

h + lAK2
h +

lσKh mod 2127 − 1, encoded as a 127-bit string and truncated to tl bits, as the MAC (here BCK(N)
is interpreted as an integer). Doing so would, however, result in a new integrity upper-bound

Advprp
BC (CA) +

(µ/128 + 2q + 1)2 + 4q + 4
2129

+
(n + m)/96 + 5

2tl
.

If we take n and m to be MaxAdLen and MaxMsgLen, respectively, then the upper-bound becomes

Advprp
BC (CA) +

(µ/128 + 2q + 1)2 + 4q + 4
2129

+
234

2tl
.

Compared to Equation 1, we see the presence of a 234−tl term. This means that, in some situations,
when using the above upper-bound as a guide for parameter selection, tag lengths must be longer
than one might expect. For example, if tl = 32, then the above equation would upper-bound the
advantage of an adversary against this modified construction as 1. This means that 32-bit tags
should not be used with this modified construction when authenticating long messages. While one
might consider this more of a “certificational” problem than a real problem, we view this property
as undesirable. Hence our decision to specify CWC as in Section 3.
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6 Conclusions

In this work we present CWC, the first patent-free, parallelizable, and provably-secure dedicated
block cipher mode of operation. Because of its inherent parallelism, CWC-AES is capable of pro-
cessing data at 10 Gbps in hardware, making it ideal for use with coming 10 Gbps IPsec network
devices. CWC-AES is also efficient in software, with the current implementation comparable to
current implementations of the other patent-free (albeit not parallelizable) modes of operations
CCM-AES and EAX-AES. In software, we anticipate significant speedups after switching to as-
sembly and using the precomputation approach for CWC-HASH discussed in Section 4. Finally,
CWC-AES is provably secure assuming that AES is a secure pseudorandom permutation, which is
a reasonable assumption and, in fact, was one of the AES design criteria.
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B Summary of properties

In this appendix we summarize some of the properties of CWC. We include all of the properties
listed in the submission guidelines on the NIST Modes of Operation website. We also discuss some
additional properties that we feel are important.

Security function. CWC is a provably secure authenticated encryption with associated data
(AEAD) mode. Informally, this means that the encapsulation algorithm, on input a pair of messages
(A,M) and some nonce N , encapsulates (A,M) in a way that protects the privacy of M and the
integrity of both A and M . Our formal security statements appear in Section 5 and the proofs
appear in Appendix C.

Error propagation. Assuming that the underlying block cipher is a secure pseudorandom
function or permutation, any attempt, by an adversary using reasonable resources, to forge a new
ciphertext will, with very high probably, be detected. This follows from the fact that CWC is a
provably-secure AEAD mode.

Synchronization. Synchronization is based on the nonce. As with other nonce-based AEAD
modes, the nonce must either be sent with the ciphertext or the receiver must know how to derive
the nonce on its own.

Parallelizability. CWC is parallelizable. The amount of parallelism for the hashing portion can
be determined by the implementor without affecting interoperability.

Keying material required. CWC is defined to be a single-key AEAD mode. However, CWC
does internally use two keys (the main block cipher key and a hash key which is derived using the
block cipher key). Implementors can decide whether to store the derived hash key in memory or
whether to re-derive it as needed.

Counter/IV/nonce requirements. CWC uses a 11-octet nonce. CWC is provably secure as
long as one does not query the encryption algorithm twice with the same nonce. Although it is
possible to instantiate the generic CWC paradigm with other nonce lengths, for CWC the nonce
size is fixed at 11-octets in order to minimize interoperability issues.

Memory requirements. The software memory requirements are basically those of the underlying
block cipher. For example, fast AES in software requires 4K bytes of table, and about 200 bytes of
expanded key material. In some situations, software implementations may precompute powers of
the hash subkey.

Pre-processing capability. The underlying CTR mode keystream can be precomputed. The
only block cipher input that cannot be precomputed is the output of CWC-HASH.

CWC can preprocess its associated data, thereby reducing computation time if the associated
data remains static or changes only infrequently.

Message length requirements. The associated data and message can both be any string of
octets with length at most 128 ·(232−1) bits. Because there does not appear to be a need to handle
strings of arbitrary bit-length, CWC as currently specified cannot encapsulate arbitrary bit-length
messages. (As discussed in Section 3, it is easy to modify CWC to handle arbitrary bit-length
messages, if desired.)

Ciphertext expansion. The ciphertext expansion is the minimum possible while still providing a
tl-bit tag. That is, on input a pair (A,M), a nonce N , and a key K, CWC-ENCK(N,A, M) outputs
a ciphertext C with length |C| = |M |+ tl.

Block cipher invocations. If the hash subkey Kh is computed as part of the key generation
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process and not during each invocation of the CWC encapsulation routine, then CWC makes one
block cipher invocation during key setup and d|M |/128e+2 block cipher invocations during encap-
sulation and decapsulation. If the hash subkey Kh is not computed as part of the key generation
process, then CWC makes no block cipher invocations during key setup and d|M |/128e + 3 block
cipher invocations during encapsulation and decapsulation.

Provable security. CWC is a provably-secure AEAD mode assuming that the underlying block
cipher (e.g., AES) is a secure pseudorandom function or permutation. The proofs of security do
not require the block cipher to satisfy the strong notion of super-pseudorandomness required by
some other block cipher modes of operation.

Number of options and interoperability. CWC uses a minimal number of options. The only
options are the choice of the underlying block cipher (and key length) and the tag length. Having
fewer options makes interoperability easier.

On-line. The CWC encryption algorithm is on-line. This means that CWC can process data as it
arrives, rather than waiting for the entire message to be buffered before beginning the encryption
processes. This may be advantageous when encrypting streaming data sources. (Note, however,
that, like any other AEAD mode, the decryptor should still buffer the entire message and check
the tag τ before revealing the plaintext and associated data.)

Patent status. To the best of our knowledge CWC is not covered by any patents.

Performance. CWC is efficient in both hardware and software. In hardware, CWC can process
data at 10 Gbps.

Simplicity. Although simplicity is a matter of perspective, we believe that CWC is a very simple
construction. It combines standard CTR mode encryption with the evaluation of a polynomial
modulo 2127−1. Because of its simplicity, we believe that CWC is easy to implement and understand.

C Proofs of Theorem 5.1 and Theorem 5.2

Before proving Theorem 5.1 and Theorem 5.2, we first state results about the general CWC paradigm
(see Lemma C.5 and Lemma C.6 below). We then show how Theorems 5.1 and 5.2 follow from
Lemmas C.5 and C.6. We then prove these two lemmas.

C.1 More definitions

We begin with a few additional definitions.

Universal hash functions. A hash function HF = (Kh,H) consists of two algorithms and
is defined over some key space KeySpHF , some message space MsgSpHF , and some hash space
HashSpHF . The randomized key generation algorithm returns a random key K ∈ KeySpHF ; we
denote this as K

$← Kh. The deterministic hash algorithm takes a key K ∈ KeySpHF and a
message M ∈ MsgSpHF and returns a hash value h ∈ HashSpHF ; we denote this as h ← HK(M).
Let H

$← HF be shorthand for K
$← Kh ; H ← HK .

The hash functionHF is said to be ε-almost universal (ε-au) if for all distinct m,m′ ∈ MsgSpHF ,

Pr
[

H
$← HF : H(m) = H(m′)

]
≤ ε .

The hash function HF is said to be ε-almost xor universal (ε-axu) if HashSpHF = {0, 1}n for
some positive integer n and for all distinct m,m′ ∈ MsgSpHF and c ∈ {0, 1}n,

Pr
[

H
$← HF : H(m)⊕H(m′) = c

]
≤ ε .

20



Pseudorandom functions. If X and Y are sets, then Func(X,Y ) denotes the set of all functions
from X to Y . If l and L are positive integers, then Func(l, L) denotes the set of all functions from
{0, 1}l to {0, 1}L.

Let F be a family of functions from D to R. Let A be an adversary with access to an oracle
and that returns a bit. Then

Advprf
F (A) = Pr

[
f

$← F : Af(·) = 1
]
− Pr

[
g

$← Func(D, R) : Ag(·) = 1
]

denotes the prf-advantage of A in distinguishing a random instance of F from a random function.
Intuitively, we say that F is a secure prf if the prf-advantages of all adversaries using reasonable
resources is small.

Message authentication. A nonced message authentication scheme MA = (Km, T ,V) consists
of three algorithms and is defined over some key space KeySpMA, some nonce space NonceSpMA,
some message space MsgSpMA, and some tag space TagSpMA. The randomized key generation
algorithm returns a key K ∈ KeySpMA; we denote this as K

$← Km. The deterministic tagging
algorithm T takes a key K ∈ KeySpMA, a nonce N ∈ NonceSpMA, and a message M ∈ MsgSpMA
and returns a tag τ ∈ TagSpMA; we denote this process as τ ← T N

K (M) or τ ← TK(N,M).
The deterministic verification algorithm V takes as input a key K ∈ KeySpMA, a nonce N ∈
NonceSpMA, a message M ∈ MsgSpMA, and a candidate tag τ ∈ {0, 1}∗, computes τ ′ = T N

K (M),
and returns accept if τ ′ = τ and returns reject otherwise.

Let F be a forging adversary and consider an experiment in which we first pick a random key
K

$← Km and then run F with oracle access to TK(·, ·). We say that F forges if F returns a triple
(N, M, τ) such that VN

K (M, τ) = accept but F did not make a query (N, M) to TK(·, ·) that resulted
in a response τ . Then

Advuf
MA(F ) = Pr

[
K

$← Km : F TK(·,·) forges
]

denotes the uf-advantage of F in breaking the unforgeability of MA. An adversary is nonce-
respecting if it never queries its tagging oracle with the same nonce twice. Intuitively, MA is
unforgeable if the uf-advantage of all nonce-respecting adversaries with reasonable resources is
small.

C.2 The general CWC construction

We now describe our generalization of the CWC construction.

Construction C.1 [General CWC.] Let l, L, n, o, t, k be positive integers such that t ≤ L. (Fur-
ther restrictions will be placed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),
L is the length of the output from the prf (e.g., 128), n is the length of the nonce (e.g., 88), o is
the length of the offset (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is the length
of the hash function’s keysize (e.g., 127).

Let F be a family of functions from {0, 1}l to {0, 1}L. Let HF = (Kh,H) be a family of hash
functions with HashSpHF = {0, 1}l and KeySpHF = {0, 1}k (and Kh works by randomly selecting
and returning an element from {0, 1}k with uniform probability). Let ctr0 : Zdk/Le → {0, 1}l,
ctr1 : {0, 1}n×(Z2o−{0}) → {0, 1}l and ctr2 : {0, 1}n → {0, 1}l be efficiently-computable injective
functions. If W = { ctr0(O) : O ∈ Zdk/Le }, X = { ctr1(N,O) : N ∈ {0, 1}n, O ∈ (Z2o − {0}) },
Y = { ctr2(N) : N ∈ {0, 1}n }, and Z = { HK(M) : K ∈ KeySpHF ,M ∈ MsgSpHF }, we require
that W , X, Y , and Z be pairwise mutually exclusive.

Let extract : {0, 1}dk/Le·L → {0, 1}k be a function that takes as input a dk/Le ·L-bit string and
that outputs a k-bit string. We require that extract always pick the same k bits from the input
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string and always outputs those bits in the exact same order (e.g., extract returns the first k bits
of its input).

Let SE [F,HF ] = (Ke, E ,D) be an AEAD mode built from function family F and hash func-
tion HF and using the above functions extract, ctr0, ctr1, ctr2. We assume that AdSpSE[F,HF ] ×
MsgSpSE[F,HF ] ⊆ MsgSpHF and that all messages in MsgSpSE[F,HF ] have length at most L · (2o−1).
Note that the former means that the message space of HF actually consists of pairs of strings. Let
NonceSpSE[F,HF ] = {0, 1}n. Let SE [F,HF ]’s component algorithms be defined as follows:

Algorithm Ke

f
$← F

Kh ← extract(f(ctr0(0))‖f(ctr0(1))‖ · · · ‖f(ctr0(dk/Le − 1))) ; H ← HKh

Return 〈f,H〉
Algorithm EN,A

〈f,H〉(M)
σ ← CTR-MODEN

f (M)
τ ← first t bits of (f(ctr2(N))⊕ f(H(A, σ)))

Return σ‖τ
Algorithm DN,A

〈f,H〉(C)
If |C| < t then return INVALID
Parse C as σ‖τ // |τ | = t

If A 6∈ AdSpSE[F,HF ] or σ 6∈ MsgSpSE[F,HF ] then return INVALID

τ ′ ← first t bits of (f(ctr2(N))⊕ f(H(A, σ)))
If τ 6= τ ′ return INVALID

M ← CTR-MODEN
f (σ)

Return M

Algorithm CTR-MODEN
f (X)

α ← d|X|/Le
For i = 1 to α do

Zi ← f(ctr1(N, i))
Y ← (first |X| bits of Z1‖Z2‖ · · · ‖Zα)⊕X
Return Y

Remark C.2 Recall that one requirement on the message space for any AEAD mode is that if it
contains any string M , then it contains all strings of length |M |. This means that the membership
test σ 6∈ MsgSpSE[F,HF ] and the application of H to (A, σ) makes sense.

Remark C.3 As specified in the definition, AdSpSE[F,HF ] × MsgSpSE[F,HF ] ⊆ MsgSpHF . This
means that we HF is used to hash pairs of strings, not just string. This is not a serious restriction
since given any hash function that hashes strings, it is trivial to construct a hash function that
hashes pairs of strings (by encoding the pair of strings as a single string in some appropriate
manner).

Remark C.4 It is also worth commenting on the purpose of ctr0, ctr1, and ctr2. As shown in
Construction C.1, these functions are used to derive the inputs to the construction’s underlying
function f . By requiring that none of the outputs collide (i.e., that the sets W,X, Y, Z in the
definition are pairwise mutually exclusive), we ensure that the inputs to f for different purposes
never collide. For example, the inputs to f used for counter mode encryption will always be different
than the inputs to f when enciphering the output of H.
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C.3 The security of the general CWC construction

We now state the following results for all Construction C.1-style AEAD modes. We shall prove
Lemmas C.5 and C.6 in Appendices C.5 and C.6, respectively.

Lemma C.5 [Integrity of Construction C.1.] Let SE [F,HF ] be as in Construction C.1 and
let HF be an ε-au hash function. Then given any nonce-respecting auth adversary A against
SE [F,HF ], we can construct a prf adversary BA against F such that

Advauth
SE[F,HF ](A) ≤ Advprf

F (BA) + ε + 2−t .

Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makes
at most q−1 oracle queries and a total of at most µ bits of payload data (for both these q−1 oracle
queries and the forgery attempt), then BA makes at most µ/L + 3q + dk/Le oracle queries.

Lemma C.6 [Privacy of Construction C.1.] Let SE [F,HF ] be as in Construction C.1. Then
given a nonce-respecting ind$-cpa adversary A against SE [F,HF ] one can construct a prf adver-
sary BA against F such that

Advpriv
SE[F,HF ](A) ≤ Advprf

F (BA) .

Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makes
at most q oracle queries totaling at most µ bits of payload data, then BA makes at most µ/L +
3q + dk/Le oracle queries.

We interpret these lemmas as follows. Intuitively, the first lemma states that if F is a secure prf,
if HF is ε-au where ε is not too large, and if t is not too small, then SE [F,HF ] preserves integrity.
We comment that most modern block ciphers (e.g., AES) are considered to be secure prps (and
therefore also secure prfs up to a birthday term). We also comment that we can construct hash
functions HF with provably small ε.

Intuitively, the second lemma states that if F is a secure prf, then SE [F,HF ] will preserve
privacy. We discuss the meaning of these types of proofs in more detail in Section 5.

C.4 Proof of Theorem 5.1 and Theorem 5.2

The security of the CWC construction from Section 3 follows from Lemmas C.5 and C.6 assuming
that (1) CWC as described in Section 3 is really an instantiation of Construction C.1 and (2) that
the hash function used in Section 3 is ε-au for some small ε. We begin by justifying the second
bullet.

Lemma C.7 [CWC-HASH (Section 3) is ε-almost universal.] Consider the CWC-BC-tl con-
struction from Section 3. Let HF = (Kh,H) be the hash function function whose key generation
algorithm selects a random key K from {0, 1}127 and let HK be the CWC-HASH function except
that we replace

Z ← last 127 bits of BCK(110126)

with

Z ← K .

Note that AdSpCWC-BC-tl × MsgSpCWC-BC-tl ⊆ MsgSpHF ; that is, HK takes two strings as input.
Assume HF hashes pairs of strings where the first string is always at most n ≤ MaxAdLen bits long
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and the second string is always at most m ≤ MaxMsgLen bits long. Then HF is ε-almost universal
where

ε ≤ n + m

2133
+

1
2125

.

Proof of Lemma C.7: Let (A, σ) and (A′, σ′) be two distinct inputs to HK and let X =
(B1, . . . , Bβ+1) and Y = (C1, . . . , Cγ+1) respectively denote their encodings as vectors of 96-bit
integers (with Bβ+1 and Cγ+1 possibly longer than 96-bits long). Without loss of generality, assume
β ≤ γ and let X ′ = (B′

1, . . . , B
′
γ+1) where B′

j = 0 for j ∈ {1, . . . , γ − β} and B′
j = Bj−γ+β for

j ∈ {γ − β + 1, . . . , γ + 1} (i.e., prepend γ − β zero elements to the X vector).

If (A, σ) 6= (A′, σ′) then X ′ 6= Y . This follows from the fact that B′
γ+1 and Cγ+1 respectively

encode the lengths of A and σ and of A′ and σ′ and that if X ′ = Y , then the B′
γ+1 = Cγ+1 and

(A, σ) = (A′, σ′).

Note that HK(A, σ) = HK(A′, σ′) when(
B′

1 ·Kγ
h + · · ·+ B′

γ ·Kh + B′
γ+1

)
−

(
C1 ·Kγ

h + · · ·+ Cγ ·Kh + Cγ+1

)
= 0 mod 2127 − 1 (3)

where Kh is the hash key derived from K as specified in CWC-HASH. Since the vectors X ′ and Y

are not equal,
(
B′

1 ·Kγ
h + · · ·+ B′

γ ·Kh + B′
γ+1

)
−

(
C1 ·Kγ

h + · · ·+ Cγ ·Kh + Cγ+1

)
is a non-zero

polynomial of degree at most γ. Therefore, by the Fundamental Theorem of Algebra, Equation 3
has at most γ solution modulo 2127 − 1.

Since we are interested in the probability, over the 127-bit keys K, that Equation 3 is true, we note
that all keys Kh modulo 2127 − 1 (except 0) have exactly one ways of occurring and that the 0 key
can occur in one additional way (i.e., the all 0 string and the all 1 string). This means that of the
2127 possible keys K, at most γ + 1 can lead to keys Kh such that Equation 3 is true.

Finally, note that γ is at most 2 + (n + m)/96 (the +2 comes from the fact that we append 0 bits
to A and σ). Consequently

ε ≤
n+m
96 + 3
2127

≤ n + m

2133
+

1
2125

as desired.

We now prove Theorem 5.1 and Theorem 5.2, which are corollaries of Lemmas C.5, C.6, and C.7.

Proof of Theorem 5.1 and Theorem 5.2: To prove these theorems we must show that the
CWC-BC-tl constructions from Section 3 are instantiations of Construction C.1. We begin by noting
that the block cipher BC in CWC-BC-tl plays the role of F in Construction C.1 and that the hash
function CWC-HASH (with the simplified key generation algorithm from Lemma C.7) plays the role
of HF in Construction C.1.

Since BC plays the role of F , we have that l = L = 128. Furthermore, as described in Section 3,
n = 88, o = 32, t = tl, and k = 127. We note that the output the hash function is a 128-bit
string whose first bit is always 0. This property, as well as the encodings for the nonce/offsets when
encrypting the message and the Carter-Wegman MAC and when generating the hash key, ensure
that requisite properties for the interactions between the hash function, ctr0, ctr1, and ctr2.

A direct comparison of the Construction C.1 algorithms and the algorithms from Section 3 shows
that they are equivalent. CWC-BC-tl is therefore an instantiation of Construction C.1 and the
provable security of CWC-BC-tl follows.
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Finally, we apply the standard prf-prp switching technique in order to model the underlying block
cipher as a prp rather than a prf in Theorem 5.1 and Theorem 5.2.

C.5 Proof of Lemma C.5

We being by sketching the proof of Lemma C.5. We first show that applying a random function
to the output of an ε-au hash function yields an ε′-axu hash function (Proposition C.9). We then
recall the result of Krawczyk [9] that xoring the output of an axu hash function with a one-time
pad yields a secure MAC (Proposition C.11). Such a MAC essentially corresponds to the second
and third boxed steps in Construction C.1. (We do not need this final block cipher application if
the input to the hash includes the nonce and if we accept a birthday term of the form q2ε.)

We then observe that if we consider a construction like Construction C.1 but with the latter
two boxed steps replaced with calls to a secure MAC that tags pairs of strings (A, σ) with nonces
N , then that construction would be unforgeable (Proposition C.13). In Proposition C.16 we use
the above results to show that SE [Func(l, L),HF ] preserves integrity (where SE [Func(l, L),HF ] is
as in Construction C.1). Lemma C.5 follows.

From AU to AXU. Let us begin with the following construction.

Construction C.8 [Building AXU hash functions from AU hash functions.] Let HF =
(Kh,H) be a hash function and let HF [t] = (Kh,H), t a positive integer, be the hash function
defined as follows:

Kh

H
$← HF

e
$← Func(HashSpHF , {0, 1}t)

Return 〈H, e〉

H〈H,e〉(M)
Return e(H(M))

Note that MsgSpHF [t]
= MsgSpHF and HashSpHF [t]

= {0, 1}t.

Proposition C.9 Let HF , t, and HF [t] be as in Construction C.8. If HF is ε-au, then HF [t] is
(ε + 2−t)-axu.

This result follows from a result in [19, 15] which states that the composition of an ε′-axu hash
function, with domain B and range C, with an ε-au hash function, with domain A and range B, is
an (ε+ε′)-axu hash function with domain A and range C, and the fact that the hash function whose
key generation algorithm returns a random function from Func(HashSpHF , {0, 1}t) is 2−t-axu.

Carter-Wegman MACs. Consider now the following construction.

Construction C.10 [Building MACs from AXU hash functions.] Let HF = (Kh,H) be
a hash function with hash space {0, 1}t, t a positive integer. We can construct a nonced message
authentication scheme MA = (Km, T ,V) as follows:

Km

H
$← HF

g
$← Func(NonceSpMA, {0, 1}t)

Return 〈H, g〉

T〈H,g〉(N, M)
Return g(N)⊕H(M)

V〈H,g〉(N,M, τ)
If g(N)⊕H(M) = τ then

return accept
Else return reject

Note that MsgSpMA = MsgSpHF , TagSpMA = {0, 1}t, and that NonceSpMA is arbitrary.
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We now state the following result, due to Krawczyk [9].

Proposition C.11 Let HF and MA be as in Construction C.10. If HF is ε-axu, then for all
nonce-respecting uf adversaries F attacking MA, Advuf

MA(F ) ≤ ε.

As noted in [9], this proposition follows from the facts that xoring the output of the hash function
with g(N) prevents any loss of information (assuming that the adversary is nonce-respecting), that
a forgery attempt with a previous nonce is upper-bounded by ε, and that a forgery attempt with
a new nonce is upper-bounded by 2−t ≤ ε.

Encrypt-then-Authenticate. Consider the following Encrypt-then-Authenticate [1, 10] con-
struction.

Construction C.12 [Encrypt-then-Authenticate.] Let l, L, n, o, t be positive integers. (Fur-
ther restrictions will be placed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),
L is the length of the output from the prf (e.g., 128), n is the length of the nonce (e.g., 88), o is
the length of the offset (e.g., 32).

Let F be a family of functions from {0, 1}l to {0, 1}L. Let MA = (Km, T ,V) be a message
authentication scheme with NonceSpMA = {0, 1}n and TagSpMA = {0, 1}t. Let ctr1 : {0, 1}n ×
(Z2o − {0}) → {0, 1}l be an efficiently-computable injective function.

Let SE [F,MA] = (Ke, E ,D) be an AEAD mode built from function family F and message
authentication scheme MA and using the above function ctr1. We assume that AdSpSE[F,MA] ×
MsgSpSE[F,MA] ⊆ MsgSpMA and that all messages in MsgSpSE[F,MA] have length at most L·(2o−1).
Note that the former means that the message space of MA actually consists of pairs of strings. Let
NonceSpSE[F,MA] = NonceSpMA. Let SE [F,MA]’s component algorithms be defined as follows:

Algorithm Ke

f
$← F

K
$← Km

Return 〈f,K〉

Algorithm EN,A
〈f,K〉(M)

σ ← CTR-MODEN
f (M)

τ ← T N
K (A, σ)

Return σ‖τ

Algorithm DN,A
〈f,K〉(C)

If |C| < t then return INVALID
Parse C as σ‖τ // |τ | = t

If A 6∈ AdSpSE[F,MA] or σ 6∈ MsgSpSE[F,MA] then return INVALID

τ ′ ← T N
K (A, σ)

If τ 6= τ ′ return INVALID

M ← CTR-MODEN
f (σ)

Return M

Algorithm CTR-MODEN
f (X)

α ← d|X|/Le
For i = 1 to α do
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Zi ← f(ctr1(N, i))
Y ← (first |X| bits of Z1‖Z2‖ · · · ‖Zα)⊕X
Return Y

Proposition C.13 Let SE [F,MA] be as in Construction C.12. Then given a nonce-respecting
auth adversary B against SE [F,MA], we can construct a nonce-respecting forgery adversary DB

against MA such that
Advauth

SE[F,MA](B) ≤ Advuf
MA(DB) .

Furthermore the experiment for DB uses the same time as the experiment for B and if B makes q
encryption oracle queries, then DB makes q tagging oracle queries.

The approach used in [1] when analyzing Encrypt-then-Authenticate constructions can be used to
prove Proposition C.13. The only difference is that we consider MACs that also take nonces as
input.

Combining these constructions. Let us now combine these constructions.

Construction C.14 [Combined CWC.] Let l, L, n, o, t, k be positive integers such that t ≤ L.
(Further restrictions will be placed shortly.) Essentially, l is the length of the input to a prf (e.g.,
128), L is the length of the output from the prf (e.g., 128), n is the length of the nonce (e.g., 88),
o is the length of the offset (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is the
length of the hash function’s keysize (e.g., 128).

Let F be a family of functions from {0, 1}l to {0, 1}L. Let HF = (Kh,H) be a family of hash
functions with HashSpHF = {0, 1}l and KeySpHF = {0, 1}k (and Kh works by randomly selecting
and returning an element from {0, 1}k with uniform probability). Let ctr1 : {0, 1}n×(Z2o−{0}) →
{0, 1}l be an efficiently-computable injective function. Let extract : {0, 1}dk/Le·L → {0, 1}k be a
function that takes as input a dk/Le ·L-bit string and that outputs a k-bit string. We require that
extract always pick the same k bits from the input string and always outputs those bits in the exact
same order (e.g., extract returns the first k bits of its input).

Let SE [F,HF ] = (Ke, E ,D) be an AEAD mode built from function family F and hash function
HF and using the above functions extract and ctr1. We assume that AdSpSE[F,HF ]×MsgSpSE[F,HF ] ⊆
MsgSpHF and that all messages in MsgSpSE[F,HF ] have length at most L·(2o−1). Note that the for-
mer means that the message space ofHF actually consists of pairs of strings. Let NonceSpSE[F,HF ] =
{0, 1}n. Let SE [F,HF ]’s component algorithms be defined as follows:

Algorithm Ke

f
$← F

d
$← Func(Zdk/Le, {0, 1}L) ; e

$← Func(HashSpHF , {0, 1}t) ; g
$← Func(NonceSpSE[F,HF ], {0, 1}t)

Kh ← extract(d(0)‖d(1)‖ · · · ‖d(dk/Le − 1)) ; H ← HKh

Return 〈f,H, e, g〉

Algorithm EN,A
〈f,H,e,g〉(M)

σ ← CTR-MODEN
f (M)

τ ← g(N)⊕ e(H(A, σ))
Return σ‖τ
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Algorithm DN,A
〈f,H,e,g〉(C)

If |C| < t then return INVALID
Parse C as σ‖τ // |τ | = t

If A 6∈ AdSpSE[F,HF ] or σ 6∈ MsgSpSE[F,HF ] then return INVALID

τ ′ ← g(N)⊕ e(H(A, σ))
If τ 6= τ ′ return INVALID

M ← CTR-MODEN
f (σ)

Return M

Algorithm CTR-MODEN
f (X)

α ← d|X|/Le
For i = 1 to α do

Zi ← f(ctr1(N, i))
Y ← (first |X| bits of Z1‖Z2‖ · · · ‖Zα)⊕X
Return Y

Proposition C.15 Let SE [F,HF ] be as in Construction C.14 and let HF be an ε-au hash func-
tion. Then the advantage of any nonce-respecting auth adversary A in breaking the authenticity
of SE [F,HF ] is upper bounded by

Advauth
SE[F,HF ](A) ≤ ε + 2−t .

Proof of Proposition C.15: We first note that the steps d
$← Func(Zdk/Le, {0, 1}L) ; Kh ←

extract(d(0)‖d(1)‖ · · · ‖d(dk/Le − 1)) ; H ← HKh
is equivalent to the step H

$← HF .

Note that e(H(A, σ)) can be rewritten as H〈H,e〉(A, σ) where HF [t] = (Kh,H) is composed from
HF per Construction C.8.

Also note that g(N)⊕H〈H,e〉(A, σ) can be replaced with T N
〈H〈H,e〉,g〉(A, σ) where MA = (Km, T ,V)

is composed from HF [t] as per Construction C.10.

By Proposition C.13, given A we can construct an adversary BA against MA such that

Advauth
SE[F,HF ](A) ≤ Advuf

MA(BA) .

By Proposition C.11 we know that

Advuf
MA(BA) ≤ ε′

where ε′ is ε + 2−t (the latter by Proposition C.9).

Integrity of SE [Func(l, L),HF ]. We now consider the integrity of SE [Func(l, L),HF ].

Proposition C.16 Let SE [Func(l, L),HF ] be a AEAD mode as in Construction C.1. Then for
any nonce-respecting auth adversary A against SE [Func(l, L),HF ], we have that

Advauth
SE[Func(l,L),HF ](A) ≤ ε + 2−t .

Proof of Proposition C.16: Let SE ′[Func(l, L),HF ] be as in Construction C.14. Note that
SE [Func(l, L),HF ] and SE ′[Func(l, L),HF ] are identical except that the former uses only one ran-
dom function f and SE ′[Func(l, L),HF ] uses four random functions (one to generate the hash
key, one to CTR-mode encrypt the message, one to encipher the output of the hash function,
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and one to CTR-mode encrypt the output of the hash function). Furthermore, recall that, for
SE [Func(l, L),HF ], there is never a collision in the input to f between the four different uses
of f (this was a requirement imposed on HF , ctr0, ctr1, and ctr2). Consequently, the fact that
SE ′[Func(l, L),HF ] uses four random functions and SE [Func(l, L),HF ] uses one is immaterial.
Hence the probability that A forges against SE [Func(l, L),HF ] is the same as the probability that
it forges against SE ′[Func(l, L),HF ]. I.e.,

Advauth
SE[Func(l,L),HF ](A) = Advauth

SE ′[Func(l,L),HF ](A) .

By Proposition C.15, we know the latter probability is upper bounded by ε + 2−t.

Proof of Lemma C.5. We now prove Lemma C.5.

Proof of Lemma C.5: Adversary BA runs A and replies to A’s oracle queries using its oracle f .
If A returns a valid forgery, BA returns 1, otherwise BA returns 0. This implies that

Advauth
SE[F,HF ](A) = Pr

[
f

$← F : B
f(·)
A = 1

]

and

Advauth
SE[Func(l,L),HF ](A) = Pr

[
f

$← Func(l, L) : B
f(·)
A = 1

]
.

Since

Advauth
SE[Func(l,L),HF ](A) ≤ ε + 2−t

by Proposition C.16, we have

Advauth
SE[F,HF ](A) = Advauth

SE[F,HF ](A)−Advauth
SE[Func(l,L),HF ](A) + Advauth

SE[Func(l,L),HF ](A)

≤ Pr
[

f
$← F : B

f(·)
A = 1

]
− Pr

[
f

$← Func(l, L) : B
f(·)
A = 1

]

+ ε + 2−t

= Advprf
F (BA) + ε + 2−t

as desired.

C.6 Proof of Lemma C.6

Proof of Lemma C.6: Let BA be a prf adversary against F that uses adversary A and that has
oracle access to a function g : {0, 1}l → {0, 1}L. Adversary BA runs A and replies to A’s encryption
oracle queries using its own oracle g(·) for the function f in Construction C.1. Adversary BA returns
the same bit that A returns. Then

Pr
[
〈f, H〉 $← Ke : AE〈f,h〉(·,·,·) = 1

]
= Pr

[
g

$← F : B
g(·)
A = 1

]

since when BA is given a random instance of F it runs A exactly as if A was given the real encryption
oracle. Furthermore

Pr
[

A$(·,·,·) = 1
]

= Pr
[

g
$← Func(l, L) : B

g(·)
A = 1

]

since BA replies to all of A’s oracle queries with independently selected random strings. Conse-
quently

Advpriv
SE[F,HF ](A) ≤ Advprf

F (BA)

as desired.
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D Test vectors

Vector #1: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 2B 9E AE BE 67 3F AE 03 6B 16 EA 31 DC A7 AE 6B
AES(HVAL): FC DC 06 4C CD CA FE E3 DE 7A A3 CF 5C 5D B9 7B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 57 55 DB A5 09 9F 3F 1D

60 04 44 97 DE 89 33 A9

Vector #2: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 40 E6 24 83 4B 27 9A 7B 15 42 C7 FE 29 EB 29 A3
AES(HVAL): 69 CC 0E 3D 96 98 EB 75 1F 06 A5 90 9B C2 4F 5A
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 AF 7A FA 0E 6F 8A D2 3A

75 8A 1C 43 69 B9 43 28

Vector #3: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 18 99 E1 A6 1E 6E 37 65 C6 3A 41 99 56 8C D1 BF
AES(HVAL): 1C 56 65 0A 22 BC B5 94 AC F3 CA 24 46 03 B8 5E
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 8E 5C 5E 4C A0 99 A3 65

F6 50 D1 8A CB E8 CA FE

Vector #4: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
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PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 2E A9 2A A5 28 B1 1C 08 1C C8 2F 24 9B E4 19 8D
AES(HVAL): EA 54 F8 3D 56 7F 53 05 88 B1 EA 96 36 79 CD AC
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 41 DD 25 D4 92 2A 92 FB

36 CF 0D CE B4 AD 47 7E

Vector #5: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 60 3F FC 24 71 64 2E D9 57 E1 B1 EA F2 F8 B0 34
AES(HVAL): D8 39 86 2A 33 5A 54 68 C8 16 DA 47 69 A2 10 EB
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 1E 8F 72 19 CA 48 6D 27

A2 9A 63 94 9B D9 1C 99

Vector #6: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 0A C6 B1 39 57 7F 26 DA 94 16 42 E1 6D 73 EC B5
AES(HVAL): 4B A5 AD 1E 74 A2 C5 BE AB D0 DA 4D F4 29 83 0C
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B D9 AF 96 58 F6 87 D3 4F

F1 73 C1 E3 79 C2 F1 AC

Vector #7: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
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ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 79 00 74 72 E1 C8 36 96 ED 7A B1 F9 03 6E 94 8B
AES(HVAL): 2B 0F 24 69 B1 2B BE 39 C9 40 67 BA F1 25 E2 5B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 80

86 F9 80 75 7E 7F C7 77 3E 80 E2 73 F1 68 89

Vector #8: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 2C 5E 3A A4 37 1C 27 D6 E8 6B 76 DC 3D 93 BC 87
AES(HVAL): 48 6E 9C E5 C3 16 3E A6 9C D4 D7 E2 7C 9D 92 D2
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 8E

D8 68 D6 3A 04 07 E9 F6 58 6E 31 8E E6 9E A0

Vector #9: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 4A 70 29 CC 58 25 52 CB 75 AD C9 60 FF B3 F7 55
AES(HVAL): 2B 64 0E 02 CE 51 DE 22 B2 0F 2A 8D C4 23 CD C0
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B9

6E 35 44 4C 74 C8 D3 E8 AC 31 23 49 C8 BF 60

Vector #10: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
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HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 51 AE 9D 7E 86 BD E0 B2 AA 18 2C 91 87 0A 9C A5
AES(HVAL): DF 48 30 BD 1D DC E0 59 B1 C2 0B 29 01 4F 80 10
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 74

C1 ED 54 D9 89 21 A7 0F BC EC 71 83 9B 0A C2

Vector #11: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 51 60 E7 81 DC 64 F9 CD 54 BA 02 40 A2 E8 EE 99
AES(HVAL): A0 30 58 13 22 B6 80 53 64 B0 3E 52 41 D2 2D 0A
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 66

86 AC 20 DB A4 B9 1C 0E 3C 87 81 B3 A9 21 78

Vector #12: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 3F F5 0C 60 E6 01 7A 3C A1 BB B3 54 65 02 85 7C
AES(HVAL): 3E EF A2 E4 97 91 82 86 73 0C F6 E9 46 2C CA 15
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 AC

E5 99 A2 15 B4 94 77 29 AF ED 47 CB C7 B8 B5

Vector #13: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
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HASH VALUE: 58 D5 28 89 4F 1F 6A 52 A6 44 FA 69 65 C0 73 A6
AES(HVAL): A3 9E F3 6F 67 1F FA F8 71 0C 83 BB 49 A6 6E BC
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F

48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5A
08 17 2E 86 A3 4A 3B 06 CF 72 64 E3 CB 72 E4 6E

Vector #14: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 0D 0A D2 78 1E 8F E8 47 00 85 31 28 B1 E3 49 3A
AES(HVAL): 5A 05 AA 45 88 06 A9 C1 DC 5A F6 AF 6F 8F EC F6
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3

A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1E
9C B3 5E 76 71 14 90 8E B6 D6 4F 7C 9D F4 E0 84

Vector #15: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 02 F2 DA E9 83 72 0E BC DC 77 89 3B 67 CB 3D B7
AES(HVAL): B7 F6 AE DE A3 95 35 FE 03 93 08 DF E0 C7 F1 78
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5

D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA
25 FC 95 98 21 B0 23 0F 59 30 13 71 6D 2C 83 D8

Vector #16: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
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NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 05 EE B6 CB DF A6 E5 B8 4C 65 DD F4 8C C8 25 23
AES(HVAL): 62 E5 23 FE 48 8F BC 14 E3 77 15 6C 4D 0F D0 8B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F

48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5A
C9 6C FE 17 8C DA 7D EA 5D 09 F2 34 CF DB 5A 59

Vector #17: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 10 E1 48 E2 D0 68 39 EC C4 0A 6C A3 D6 8B 47 54
AES(HVAL): 23 0A 37 C3 48 7C 9F 76 05 B9 5D 1A 21 D5 D5 FD
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3

A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1E
E5 BC C3 F0 B1 6E A6 39 6F 35 E4 C9 D3 AE D9 8F

Vector #18: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--------------------------------------------------------------
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 09 4D C5 21 94 79 E0 58 4E E9 C1 2C 29 6A E3 A4
AES(HVAL): E9 69 49 47 09 07 62 3B A9 8D AD 51 9F D5 D1 F7
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5

D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA
7B 63 72 01 8B 22 74 CA F3 2E B6 FF 12 3E A3 57
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