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Abstract. We argue that traditional ID-based systems from pairings
seem unsuitable for designing group signature schemes due to the prob-
lem of key escrow. In this paper we propose new ID-based public key
systems without trusted KGC (Key Generation Center) from bilinear
pairings. In our new ID-based systems, if the dishonest KGC imperson-
ates an honest user to communicate with others, the user can provide a
proof of treachery of the KGC afterwards, which is similar to CA-based
systems. Therefore, our systems reach the Girault’s trusted level 3. Fur-
thermore, we propose a group signature scheme under the new systems,
the security and performance of which rely on the new systems. The size
of the group public key and the length of the signature are independent
on the numbers of the group.
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1 Introduction

Group signature, introduced by Chaum and van Heijst [12], allows any member
of a group to sign on behalf of the group. Anyone can verify the signature with
a group public key while no one can know the identity of the signer except
the Group Manager. Further, it is computational hard to decide whether two
different signatures were issued by the same member. Plenty of group signature
schemes [2, 8, 13, 14, 23] have been presented after the Chaum and van Heijst’s
initial works. However, most of them are much inefficient for large groups because
the group public key and the length of the signature depend on the size of the
group. Also, new member addition and revocation require re-issuing all members’
keys and changing the group public key. Camenisch [9] presented the first efficient
group signature schemes for large groups in which the group public key and the
length of signature are both of constant size. The state of the art is the provably
coalition-resistant secure scheme proposed by Ateniese et al [1].
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ID-based group signature scheme is firstly proposed by Park, Kim and Won
[22]. The scheme is much inefficient: the length of the group public key and
signature are proportional to the size of the group; more precisely, the identity
of each member must be included in the group public key. Furthermore, Mao and
Lim [21] showed that the anonymity of the scheme was not guaranteed. Tseng
and Jan [28] presented a novel ID-based group scheme. However, it is universally
forgeable [18] and not coalition-resistant [17].

Recently, the bilinear pairings, namely the Weil pairing and the Tate pairing
of algebraic curves, have initiated some completely new fields in cryptography,
making it possible to realize cryptographic primitives that were previously un-
known or impractical [6, 7]. More precisely, they are important tools for con-
struction of ID-based cryptographic schemes. Plenty of ID-based cryptographic
schemes from bilinear pairings have been proposed in last two years [4, 6, 16, 25,
29].

However, It is still an open problem to design an ID-based group signature
scheme from bilinear pairings. The reasons are as follows: Firstly, the problem
of key escrow is a fatal disadvantage for ID-based systems, i.e., the trusted third
party, called KGC, knows the private key of each member. Therefore dishonest
KGC can forge the signature of any member. Secondly, the public key ID of a
user should not reveal his/her real identity information otherwise anonymity of
the group signature scheme is not guaranteed. However, if we use an arbitrary
string as the public key [10],1 an inherent problem is that KGC can misattribute
a valid group signature to frame an honest member. Similarly, a member can
deny his signature because KGC can also generate a public key and computes
the corresponding private key. No one knows who indeed generates the certain
public key since it does not reveal any information of the identity. For example,
given a public key “h80fef6je59”, who can provide a proof that the public key
is generated by KGC or the members? So, It seems that the traditional ID-
based systems from bilinear pairings are unsuitable for designing ID-based group
signature.

In this paper we firstly propose new ID-based systems from pairings to solve
the key-escrow problem. Contrasting with previous schemes, we assume that
there is only one KGC in our systems and the KGC is not a trusted party
anymore. In our systems, if the dishonest KGC impersonation an honest user to
sign a document, the user can provide a proof that the KGC is dishonest, which
is similar to CA-based systems. We then propose a group signature scheme from
bilinear pairings under the new ID-based systems.

1 Recently, Castelluccia [10] described how to convert any ID-based signature scheme
into a group signature scheme. In his scheme, ID of the user is the public key of a
RSA key pair generated by the user himself. The group signature can not forge the
user’s signature because because he does not know the secret key of the key pair.
However, the group manager can misattibute a valid group signature to frame any
user because for no one can judge who, the group manager or the user, generated
the certain key pair.
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The rest of the paper is organized as follows: The formal model of a secure
group signature scheme is presented in Section 2. Some preliminary works are
given in Section 3. Our new ID-based systems from bilinear pairings are given
in Section 4. In Section 5, we propose a new ID-based group signature scheme
under the new systems. The security and efficiency analysis of our scheme are
given in section 6. Finally, concluding remarks will be made in Section 7.

2 Group Signature

In this section we introduce the definition and security properties of group sig-
natures.

Definition 1. A group signature scheme is a digital signature scheme consisted
of the following four procedures:

– Setup: On input a security k, the probabilistic algorithm outputs the initial
group public key Y and the secret key S of the group manager.

– Join: A protocol between the group manager and a user that results in the
user becoming a new group member. The user’s output is a membership
certificate and a membership secret.

– Sign: A probabilistic algorithm that on input a group public key, a mem-
bership certificate, a membership secret and a message m. Outputs is the
group signature Sig of m.

– Verify: An algorithm takes as input the group public key mathcalY , the
signature Sig, the message m to output 1 or 0.

– Open: The deterministic algorithm takes as input the message m, the signa-
ture Sig, the group manager’s secret key S to return “Identity” or “failure”.

A secure group signature must satisfy the following properties:

– Correctness: Signatures produced by a group member using Sign must be
accepted by Verify.

– Unfrogeability : Only the group members can sign messages on behalf of the
group.

– Anonymity : Given a valid signature, it is computationally hard to identify
the signer for anyone except the group manager.

– Unlinkability : Deciding whether two different valid signatures were computed
by the same group member is computationally hard for anyone except the
group manager.

– Traceability : The group manager is always able to open a valid signature and
identify the signer.

– Exculpability : Neither the group manager nor a group member can sign mes-
sages on behalf of other group members. Also, the group manager or colludes
with some group members can not misattribute a valid group signature to
frame a certain member, i.e., the member should responsible for a valid
signature that he did not produce.



4

– Coalition-resistance: A colluding subset of group members (even if comprised
of the whole group) cannot produce a valid signature that the group manager
cannot open.

– Efficiency : The efficiency of group signature is based on the parameters:
the size of the group public key, the length of the group signatures and the
efficiency of the algorithms and protocols of the group signatures.

3 Preliminary Works

In this Section, we will briefly describe the basic definition and properties of
bilinear pairings and Gap Diffie-Hellman Group. We also present ID-based public
key setting from pairings.

3.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. Let a, b be elements
of Z∗q . We assume that the discrete logarithm problems (DLP) in both G1 and
G2 are hard. A bilinear pairings is a map e : G1 ×G1 → G2 with the following
properties:

1. Bilinear: e(aP, bQ) = e(P, Q)ab;
2. Non-degenerate: There exists P and Q ∈ G1 such that e(P,Q) 6= 1;
3. Computable: There is an efficient algorithm to compute e(P, Q) for all P, Q ∈

G1.

3.2 Gap Diffie-Hellman Group

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
assume that the inversion and multiplication in G1 can be computed efficiently.
We first introduce the following problems in G1.

1. Discrete Logarithm Problem (DLP): Given two elements P and Q, to find
an integer n ∈ Z∗q , such that Q = nP whenever such an integer exists.

2. Computation Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈
Z∗q , to compute abP.

3. Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈
Z∗q , to decide whether c ≡ ab mod q.

We call G1 a Gap Diffie-Hellman Group if DDHP can be solved in polynomial
time but there is no polynomial time algorithm to solve CDHP or DLP with non-
negligible probability. Such group can be found in supersingular elliptic curve
or hyperelliptic curve over finite field, and the bilinear pairings can be derived
from the Weil or Tate pairings. For more details, see [6, 11, 16].
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3.3 ID-based Public Key Setting from Bilinear Pairings

The ID-based public key systems, introduced by Shamir [24], allow some public
information of the user such as name, address and email etc., rather than an
arbitrary string to be used his public key. The private key of the user is calculated
by KGC and sent to the user via a secure channel.

ID-based public key setting from bilinear pairings can be implemented as
follows:

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is a map e : G1 × G1 → G2. Define two cryptographic hash functions H1 :
{0, 1}∗ → Zq and H2 : {0, 1}∗ → G1.

– Setup: KGC chooses a random number s ∈ Z∗q and set Ppub = sP. The cen-
ter publishes systems parameters params = {G1, G2, e, q, P, Ppub, H1,H2},
and keep s as the master-key, which is known only himself.

– Extract: A user submits his/her identity information ID to KGC. KGC
computes the user’s public key as QID = H2(ID), and returns SID = sQID

to the user as his/her private key.

4 New ID-based Systems without Trusted KGC

Key escrow is a fatal drawback for traditional ID-based systems. So it is assumed
that KGC must be trusted unconditionally. Otherwise, the systems will be soon
collapsed. However, it will be difficult to find a trusted party in the adhoc net-
work. If KGC acts as the group manager of a group, he can forge the signature
of any users. Therefore, the most important thing to design an ID-based group
signature is to solve the problem of key escrow.

In this section, we present new ID-based systems to solve key escrow problem
from bilinear pairings.2 In our systems, KGC is assumed no longer to be a trusted
party and trust cannot be built by multiple KGCs.

Let G1 be a Gap Diffie-Hellman group of prime order q, G2 be a cyclic
multiplicative group of the same order q. A bilinear pairings is a map e : G1 ×
G1 → G2. Define two cryptographic hash functions H1 : {0, 1}∗ ×G1 → Zq and
H2 : {0, 1}∗ ×G1 → G1.

4.1 New ID-based Public Key Setting from Bilinear Pairings

[Setup]

KGC chooses a random s ∈ Z∗q and sets Ppub = sP . The public parameters of
the systems are params = {G1, G2, e, q, P, Ppub,H1,H2}. KGC keeps s secretly

2 In this paper, we will not present the key agreement protocol and encryption scheme
for our aim is to design an ID-based group signature scheme.
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as the master-key.

[Extract]

A user submits his (or her) identity information ID and authenticates himself
(or herself) to KGC. The user then randomly chooses an integer r ∈ Z∗q as his
long-term private key and sends rP to KGC. KGC computes SID = sQID =
sH2(ID||T, rP ) and sends it to the user via a secure channel, here T is the life
span of r. The user’s private key pair are SID and r and the public key is ID.

The user should update his key pair after period of T . For simplicity, we do
not discuss this problem here.

4.2 New ID-based Signature Scheme from Bilinear Pairings

Recently, Cha and Cheon [11] proposed an ID-based signature scheme from pair-
ings under the trusted PKG. The scheme is not only efficient but also provable
secure relative to CDHP. In this paper, we propose a new ID-based signature
scheme from pairings without trusted PKG. Our scheme can be regarded as the
extended version of Cha and Cheon’s signature scheme.

The public key setting is the same as before. Suppose that the message to be
signed is m.

[Signing Protocol]

– Suppose the signer’s public key is ID. He randomly chooses an integer a ∈ Z∗q
and computes U = aQID.

– The signer computes V = rH2(m, U).
– The signer computes h = H1(m,U + V ).
– The signer computes W = (a + h)sQID.

Then (U, V, W, T, rP ) is the signature of the message of m.

[Verification]

The verifier firstly computes Q = H2(ID||T, rP ), H2(m,U) and h = H1(m,U+
V ). He then accepts the signature if the following equations hold:

e(W,P ) = e(U + hQ,Ppub)

e(V, P ) = e(H2(m, U), rP )

We argue that an identity ID corresponds a unique rP for a period T .
Therefore, the signer firstly proved that identity ID indeed corresponds to rP ,
which is ensured by the PKG’s master-key s. Then the signer proved that he
knows r without revealing any information of r.

[Tracing protocol]
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Consider the following impersonation attack by the dishonest PKG:
Suppose PKG (or colludes with a dishonest user) wants to impersonate an

honest user whose identity information is ID. He (or they) can do as follows:

– PKG randomly chooses an integer r′ ∈ Z∗q and let QID′ = H2(ID||T, r′P ).
– He then performs the above signing protocol for the message m.
– Output (U ′, V ′,W ′, r′P ).

Because e(W ′, P ) = e(U ′ + hQ′
ID, Ppub), e(V ′, P ) = e(H2(m, U ′), r′P ) and

QID′ = H2(ID||T, r′P ), PKG forged a “valid” signature of the honest user.
However, the user can provide a proof to convince that the signature is

forged by PKG, which is similar to CA-based systems.3 He firstly sends rP
to the arbiter, and then provides a “knowledge proof” that he knows SID =
sH2(ID||T, rP ) : the arbiter randomly chooses a secret integer a ∈ Zq and sends
aP to the user; the user then computes e(SID, aP ). If the equation e(SID, aP ) =
e(H2(ID||T, rP ), Ppub)a holds, i.e., identity ID corresponds to rP and r′P for
a same period T , the arbiter deduces PKG dishonest because the master-key s
is only known to PKG.

Theorem 1. Our signature scheme is secure against on existential adaptively
chosen message and ID attacks under the assumption of CDHP is hard in G1

and random oracle model..

Proof. In our systems, the partial signature V is the “real” signature of the user
for the message. W can be regarded as a certificate issued by PKG which proves
that rP correspondences to ID for a certain period T . We consider the following
two cases:

Case 1: Forgery of the Partial Signature

Since PKG is not a trusted party, we consider that an adversary can collude
with PKG. For a randomly chosen target user whose identity is ID, the adversary
can know the target user’s long-term public key rP and secret key SID from
PKG. So, if he can compute V for a message m, he can successfully forge a
signature of the user’s for the message m. We consider the following game:

Suppose the adversary can query to H2 adaptively at most k times. Suppose
the i-th input of query is (mi, U) and he gets the corresponding signature Vi,
here 1 ≤ i ≤ k. Finally, he outputs a new pair (m,V ). We say that the adversary
wins the game if rP is not queried and e(V, P ) = e(H2(m,U), rP ).

If there exists an algorithm A0 for an adaptively chosen message attack to
our scheme with a non-negligible probability, we can construct an algorithm A1

as follows:
3 In the CA-based systems, CA also can forge a user’s certificate and impersonate

the user to communicate with others. However, the user can accuse the dishonest
CA because there exist his two different “valid” certificates issued by the same CA.
Therefore, CA-based systems reach Girault’s trusted level 3.
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– choose an integer u ∈ {1, 2, · · · , k}. Define Sign(H2(mi, U)) = Vi.
– For i = 1, 2, · · · , k, A1 responds to A0’s queries to H2 and Sign, while for

i = u, A1 replaces mu with m.
– A0 outputs (mout, Vout).
– If mout = m and the signature V is valid, A1 outputs (m,U, V ). Otherwise,

out Fail.

Note that u is randomly chosen, A0 knows nothing from the queries result.
Also, since H2 is a random oracle, the probability that the output of A0 is valid
without query of H2(m,U) is negligible. Let H2(m,U) = bP , we obtain V = rbP
from P , rP and bP , i.e., we solved CDHP in G1.

Actually, V can be regarded as the short signature of the message m and
(P, rP,H2(mi, U), V ) is a valid Diffie-Hellman tuple. From the result of [7], we
also can deduece that the probability of the adversary can successfully forge a
valid partial signature is negligible.

Case 2: Forgery of the “Certificate”

Suppose the adversary chooses a different r′P . If he can forge a valid “cer-
tificate” which ID correspondence to r′P , he can also forge a valid signature
of the target user.4 However, if the adversary can forge a valid “certificate” of
PKG, i.e., he can forge a valid signature of Cha-Cheon’s ID-based signature
scheme on message m. Since Cha-Cheon’s ID-based signature scheme is proved
to be secure against on existential adaptively chosen message and ID attacks,
the success probability of forgery in this case is negligible.

Note that the target user is randomly chosen, we can deduce that our signa-
ture scheme is secure against on existential adaptively chosen message and ID
attacks under the assumption of CDHP is hard in G1 and random oracle model.

ut

5 Proposed ID-based Group Signature Scheme

In this Section, we propose the ID-based group signature scheme. Suppose there
exists a hierarchical ID-based system [15]. If the group manager is not a PKG,
he then joins the system and becomes a PKG. Therefore we just consider the
case that the group manager is a PKG .

[Setup]

The system parameters are the same as before. Every user with identity ID
who gets his partial private key SID from the PKG is a “potential” group mem-
ber.5 The group public key Y = {G1, G2, e, q, P, Ppub,H1,H2}. PKG computes a
4 In this case, PKG will not collude with the adversary, otherwise, the target user can

prove the treachery of PKG afterwards.
5 The users can choose to be the group members immediately or later. Also, there are

some users who gets the private key from the PKG just for ordinary signature and
they will never to be the “real” group members.
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user’ private key SID and sends it to the user via a secure channel. SID is only
used for ordinary signature.

[Join]

When a user later wants to be a “real” member of the group, he and PKG
perform the Join Protocol as follows:

– The user randomly chooses xi ∈ Zq for i = 1, 2, · · · , k. He then sends rxiP ,
xiP , rP , ID and SID to PKG.

– If SID = sH2(ID||T, rP ) and e(rxiP, P ) = e(xiP, rP ), PKG sends the user
Si = sH2(T, rxiP ) for i = 1, 2, · · · , k. Otherwise the protocol is terminated.6

– The user’s member certificates are (Si, rxiP ) and his private signing keys
are rxi, here i = 1, 2, · · · , k.

– PKG adds rxiP , xiP , rP , ID to the member list.

[Sign]

To sign a message m, the user randomly chooses a certain signing key and
corresponding member certificate and then computes the following values:

– U = aH2(T, rxiP ) for randomly chosen integer a ∈ Z∗q and certain i.
– V = rxiH2(m,U).
– h = H1(m,U + V ).
– W = (a + h)Si.

Then (U, V, W, T, rxiP ) is the signature of the message of m.

[Verify]

If T is a valid period, the verifier computes Q = H2(T, rxiP ), H2(m,U),
h = H1(m,U + V ). He accepts the signature if the following equations hold:

e(W,P ) = e(U + hQ,Ppub)

e(V, P ) = e(H2(m,U), rxiP )

[Open]

Given a valid group signature, PKG can easily identify the user from rxiP .
The user cannot deny his signature because PKG can provide a proof that it is
indeed the user’s signature:

e(rxiP, P ) = e(xiP, rP )

6 PKG needs not to verify SID = sH2(ID||T, rP ) for the users who become the group
members immediately.
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e(SID, P ) = e(H2(ID||T, rP ), Ppub)

Also, PKG cannot misattribute a signature to frame the user unless he can
compute bP given p, aP and rP which satisfies:

a ≡ rb mod q

We define this problem the Reversion of Computation Diffie-Hellman Prob-
lem (RCDHP), which is equivalent to CDHP in G1.

Theorem 2. RCDHP is equivalent to CDHP in G1.

Proof. Given P, aP, bP , suppose we can solve RCDHP in G1, then we can obtain
b−1P from P and bP . Note a ≡ (ab)b−1 mod q, we can compute abP from P ,
aP and b−1P , i.e., we solve CDHP in G1.

Given P, aP, bP , let Q = bP , so P = b−1Q. Suppose we can solve CDHP in
G1, so with Q and b−1Q we can get b−2Q, i.e., b−1P . Then we can obtain ab−1P
from P , aP and b−1P , i.e., we solve RCDHP in G1.

ut

6 Analysis of Our Systems

6.1 Security

Theorem 3. If there is an adversary A0 (without colluding with PKG) can forge
a member certificate with time t and a non-negligible probability ε, then we can
solve CDHP in G1 at most with time t and a non-negligible probability ε.

Proof. Consider the following game: the adversary A0 may query H2 adaptively
at most k times. Suppose the i-th input of query is (T, riP ) and he gets the
corresponding certificate Si, here 1 ≤ i ≤ k. Finally, he outputs a new pair
(rP, S). A0 wins the game if rP is not queried and e(S, P ) = e(H2(T, rP ), Ppub).

If A0 outputs a valid pair (rP, S). Let H2(T, rP ) = aP , Ppub = bP . We
solved CDHP in G1 for S = abP .

ut
Theorem 4. The non-interactive protocol underlying the signature schemes is
an honest-verifier zero-knowledge proof of knowledge of a member certificate and
corresponding identity.

Proof. The proof that zero-knowledge is trivial. We restrict our attention the
proof of knowledge part and we use the technique of [1]. We show that the
knowledge extractor can recover the member certificate once it has found two
accepting tuples.

Let (U, V, W, T, rxiP ) and (U, V ′,W ′, T, rxiP ) be two accepting tuples. De-
fine h = H1(m,U + V ). Because e(W,P ) = e(U + hH2(T, rxiP ), Ppub), we have

W = s(U + hH2(T, rxiP ))
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Similarly, we have W ′ = s(U + h′H2(T, rxiP )). So, we obtain

sH2(T, rxiP )) = (h− h′)−1(W −W ′)

Note that e(rxiP, P ) = e(xiP, rP ), i.e., rxiP corresponds to rP and the identity
ID. The signer can not deny his signature because his SID satisfies

e(SID, P ) = e(H2(ID||T, rP ), Ppub)
ut

Theorem 5. Our ID-based group signature scheme from bilinear pairings is se-
cure under the assumption of CDHP is hard in the random oracle.

Proof. We show that our scheme satisfies all the security properties listed in
Definition 1.

– Correctness: It is trivial.
– Unfrogeability : Even the “potential” member of the group cannot sign on

behalf of the group. Based on the assumption that H1 and H2 are random
oracles, it can be easily deduced by the theorem 4.

– Anonymity : Since xi is randomly chosen, rxiP reveals no identity informa-
tion of the user to anyone except PKG.

– Unlinkability : Given rxiP and rxjP , it is computationally hard to decide
they correspondence the same rP without knowing xiP and xjP .

– Traceability : PKG can open any valid group signature because he can provide
a zero-knowledge proof that the signer indeed produces the signature.

– Exculpability : From the theorem 1 we can easily deduce neither the group
manager nor a group member can sign messages on behalf of other group
members. Also, the group manager or colludes with some group members
can not misattribute a valid group signature to frame a certain member since
one period T correspondences only one unique rP .

– Coalition-resistance: From the theorem 3 and 4 we can deduce that a collud-
ing subset of group members (even if comprised of the whole group) cannot
produce a valid signature that the group manager cannot open.

ut

6.2 Efficiency

The size of the group public key and the group signatures is independent on the
numbers of group members. The algorithms and protocols of the group signatures
are efficient. A serious drawback of our scheme is that each signing key can just
sign one message, which is same to [10]. However, the user can once apply many
membership certificates corresponding to different signing keys, which is similar
to the idea of “trustee tokens” [19]. Therefore, the user can use them for further
signing without contacting with PKG each time. This idea is also used for secret
handshakes agreement protocol [3].
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6.3 Comparison with Two Previous Group Signature Schemes

We compare the proposed group signature scheme with previous two schemes.
In the table 1, “independent, linear” denotes that the number is is independent
or linear in the number of group members.

Properties Scheme [8] Scheme [1] Proposed Scheme

Assumption Double DLP Strong RSA CDHP
Root DLP DDHP

Anonymity Computationally Computationally Computationally

Identification by GM by GM by GM(PKG)

Inclusion of new members Y es Y es Y es

System CA− based CA− based ID − based

Number of certificate One One Many

Length of group public key F ixed F ixed F ixed

Length of signature F ixed F ixed F ixed

Computation Linear Linear Linear

Communication Linear Linear Linear

Table 1. Comparison with two previous group signature schemes

7 Concluding Remarks

The salient properties of group signature make it attractive for plenty of applica-
tions in electronic commerce [20, 26, 27]. In this paper we propose new ID-based
systems without distributed PKGs to solve the problem of key escrow. We also
propose an ID-based group signature scheme under the new systems from bilin-
ear pairings. The size of the group public key and the length of the signature
are independent on the numbers of the group. The security and performance of
our scheme depend on our new ID-based system.

It is a drawback that a user should have a new key pair for each message if
he wants to sign many message. It is an open problem to design an ID-based
group signature scheme from bilinear pairings with one key pair. Recently, Bel-
lare, Micciancio and Warinschi [5] provides theoretical foundations for the group
signature primitive. How to design an ID-based signature scheme under such
foundation is another open problem.
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