
Physically Observable Cryptography

Silvio Micali Leonid Reyzin

Abstract

After a quarter century of impetuous development, complexity-theoretic cryptography has succeeded in find-
ing rigorous definitions of security and provably secure schemes. In complexity-theoretic cryptography, however,
computation has been “abstracted away”: an adversary may attack a cryptographic algorithm essentially only by
exchanging messages with it. Consequently, this theory fails to take into account the physical nature of actual
computation, and cannot protect against physical attacks cleverly exploiting the information leakage inherent to
the physical execution of any cryptographic algorithm. Such “physical observation attacks” bypass the impressive
barrier of mathematical security erected so far, and successfully break mathematically impregnable systems. The
great practicality and the inherent availability of physical attacks threaten the very relevance of complexity-theoretic
security. Why erect majestic walls if comfortable underpasses will always remain wide open?

Responding to the present crisis requires extending the current mathematical models of cryptography to the
physical setting. We do so by eliminating the mathematically convenient but physically unrealistic separation
between the adversary and cryptographic computations. Specifically,

• We put forward physically observable cryptography: a powerful, comprehensive, and precise model for defin-
ing and delivering cryptographic security when an adversary has full (and indeed adaptive) access to any
information leaked from the physical execution of cryptographic algorithms;

• We show that some of the basic theorems and intuitions of traditional cryptography no longer hold in a
physically observable setting; and

• We construct schemes (such as pseudorandom generators and digital signatures) that are provably secure
against all physical-observation attacks.

1 Introduction

“NON-PHYSICAL” ATTACKS. A non-physical attack against a cryptographic algorithm A is one in which the adver-
sary is given some access to (at times even full control over) A’s explicit inputs (e.g., messages and plaintexts) and
some access to A’S outputs (e.g., ciphertexts and digital signatures). The adversary is also given full knowledge of
A —except, of course, for the secret key— but absolutely no “window” into A’s internal state during a computation:
he may know every single line of A’s code, but whether A’s execution on a given input results in making more mul-
tiplications than additions, in using lots of RAM, or in accessing a given subroutine, remains totally unknown to him.
In a non-physical attack, A’s execution is essentially a black box. Inputs and outputs may be visible, but what occurs
within the box cannot be observed at all.

For a long time, due to the lack of cryptographic theory and the consequent naive design of cryptographic al-
gorithms, adversaries had to search no further than non-physical attacks for their devious deeds. (For instance, an
adversary could often ask for and obtain the digital signature of a properly chosen message and then forge digital sig-
natures at will.) More recently, however, the sophisticated reduction techniques of complexity-theoretic cryptography
have shut the door to such attacks. For instance, if one-way functions exist, fundamental tools such as pseudorandom
generation [15] and digital signatures [24, 21] can be implemented so as to be provably secure against all non-physical
attacks.

Unfortunately, other realistic and more powerful attacks exist.

1

“PHYSICAL-OBSERVATION” ATTACKS. In reality, a cryptographic algorithm A must be run in a physical device P ,
and, quite outside of our control, the laws of Nature have something to say on whether P is reducible to a black box
during an execution of A. Indeed, like for other physical processes, a real algorithmic execution generates all kinds of
physical observables, which may thus fall into the adversary’s hands, and be quite informative at that. For instance,
Kocher et al. [17] show that monitoring the electrical power consumed by a smart card running the DES algorithm
[22] is enough to retrieve the very secret key! In another example, a series of works [23, 2] show that sometimes the
electromagnetic radiation emitted by a computation, even measured from a few yards away with a homemade antenna,
could suffice to retrieve a secret key.

PHYSICALLY OBSERVABLE CRYPTOGRAPHY. Typically, physical-observation attacks are soon followed by defen-
sive measures (e.g., [9, 16]), giving us hope that at least some functions could be securely computed in our physical
world. However, no rigorous theory currently exists that identifies which elementary functions need to be secure, and to
what extent, so that we can construct complex cryptographic systems provably robust against all physical-observation
attacks. This paper puts forward such a theory.

Our theory is not about “shielding” hardware (neither perfectly1 nor partially2) but rather about how to use par-
tially shielded hardware in a provably secure manner. That is, we aim at providing rigorous answers to questions of
the following relative type:

(1) Given a piece of physical hardware P that is guaranteed to compute a specific, elementary function f(x) so
that only some information LP,f (x) leaks to the outside,

is it possible to construct

(2) a physical pseudorandom generator, digital signature scheme, etc., provably secure against all physically-
observing adversaries?

Notice that the possibility of such constructions is far from guaranteed: hardware P is assumed “good” only for
computing f , while any computation outside P (i.e., beyond f) is assumed to be fully observable by the adversary.

Answering such questions is important even with the current, incomplete knowledge about shielding hardware.3

In fact, physically observable cryptography may properly focus the research in hardware protection by identifying
which specific and elementary functions need to be protected and how much.

UNDERSTANDING A NEW WORLD. Physically observable cryptography is a new and fascinating world defying our
traditional intuition. For example, such fundamental results as the equivalence of unpredictability and indistinguisha-
bility for pseudorandom generators [27] fail to hold. To explore this new world and achieve our goals, we

1. put forward a powerful and precise model for physically observable cryptography;

2. identify fundamental primitives;

3. define what secure reductions should mean; and

4. exhibit the first such reductions to build some desirable tools.

The model and the notions are center stage. The reductions, at least in this paper, are merely the best way to understand
our new world by working in it.

BEYOND PHYSICALLY OBSERVABLE CRYPTOGRAPHY. Physically observable cryptography captures “the passive
half” of a physical adversary. The “active half” consists of an adversary that can tamper with the content of a crypto-
graphic device (e.g., flip a few bits in memory, or alter —somehow– the code of the algorithm itself). Attacks (e.g.,
[4, 8, 6, 5, 25]), defenses (e.g., [23, 20]), and models (e.g., [12]) in the active case are already under investigation, but
their full understanding will ultimately depend on a full understanding of the passive case.

1Perfectly shielded hardware, so that all computation performed in it leaks nothing to the outside, might be impossible to achieve and is
much more than needed.

2We are after a computational theory here, and constructing totally or partially shielded hardware is not a task for a computational theorist.
3Had complexity-theoretic cryptography waited for a proof of existence of one-way functions, we would be waiting still!

2

2 Intuition for Physically Observable Computation

Our model for physically observable (PO for short) computation is based on the following (overlapping)

Informal Axioms

1. Computation, and only computation, leaks information

Information may leak whenever bits of data are accessed and computed upon. The leaking information actually
depends on the particular operation performed, and, more generally, on the configuration of the currently active
part of the computer. However, there is no information leakage in the absence of computation: unaccessed
memory content is totally secure.

2. Same computation leaks different information on different computers

Traditionally, we think of algorithms as carrying out computation. However, an algorithm is an abstraction: a set
of general instructions, whose physical implementation may vary. In one case, an algorithm may be executed in a
physical computer with lead shielding hiding the electromagnetic radiation correlated to the machine’s internal
state. In another case, the same algorithm may be executed in a computer with a sufficiently powerful inner
battery hiding the power utilized at each step of the computation. As a result, the same elementary operation on
2 bits of data may leak different information: e.g., (for all we know) their XOR in one case and their AND in
the other.

3. Information leakage depends on the chosen measurement

While much may be observable at any given time, not all of it can be observed simultaneously (either for
theoretical or practical reasons), and some may be only observed in a probabilistic sense (due to quantum effects,
noise, etc.). The specific information leaked depends on the actual measurement made. Different measurements
can be chosen (adaptively and adversarially) at each step of the computation.

4. Information leakage is local

The information that may be leaked by a physically obervable device is the same in any execution with the
same input, independent of the computation that takes place before the device is invoked or after it halts. In
particular, therefore, measurable information dissipates: though an adversary can choose what information to
measure at each step of a computation, information not measured is lost. Information leakage depends on the
past computational history only to the extent that the current computational configuration depends on such
history.

5. All leaked information is efficiently computable from the computer’s internal configuration.

Given an algorithm and its physical implementation, the information leakage is a polynomial-time computable
function of (1) the algorithm’s internal configuration, (2) the chosen measurement, and possibly (3) some ran-
domness (outside anybody’s control).

Remarks

As exepected, the real meaning of our axioms lies in the precise way we use them in our proofs. However, it may be
worth to clarify here a few points about the meaningfulness of secure computation.

• Some form of security for unaccessed memory is mandatory.

For instance, if a small amount of information leakage from a stored secret occurs at every unit of time (e.g., if
a given bit becomes 51% predictable within a day) then a patient enough adversary will eventually reconstruct
the entire secret.

3

• Some form of locality for information leakage is mandatory.

The hallmark of modern cryptography has been constructing complex systems out of basic components. If the
behavior of these components changed depending on the context, then no general principles for modular design
can arise.

• The restriction of a single adversarial measurement per step should not misinterpreted.

If two measurements M1 and M2 can be “fruitfully” performed one after the other, our model allows the
adversary to perform the single measurement M = (M1, M2).

• The polynomial-time computability of leaked information should not be misinterpreted.

This efficient computability is quite orthogonal to the debate on whether physical (e.g., quantum) computation
could break the polynomial-time barrier. Essentially, our model says that the most an adversary may obtain
from a measurement is the entire current configuration of the cryptographic machine. And such configuration is
computable in time linear in the number of steps executed by the crypto algorithm. For instance, if a computer
stores a Hamiltonian graph but not its Hamiltonian tour, then performing a breadth-first search on the graph
should not leak its Hamiltonian tour.

(In any case, polynomial-time computable leakage is reasonable for a polynomial-time adversary. Should an
adversary more powerful than polynomial-time be considered, then the power of the leakage function might
also be increased “accordingly.”)

Of course, we do not know that these axioms are “exactly true”, but definitely hope to live in a world that “approxi-
mates” them to a sufficient degree: life without cryptography would be rather dull indeed!

3 Models and Goals of Physically Observable Cryptography

3.1 Computational Model

MOTIVATION. Axiom 1 guarantees that unaccessed memory leaks no information. Thus we need a computing device
that clearly separates memory that is actively being used from memory that is not. The traditional Turing machine,
which accesses its tape sequentially, is not a suitable computational device for the goal at hand: if the reading head
is on one end of the tape, and the machine needs to read a value on the other end, it must scan the entire tape, thus
accessing every single memory value. We thus must augment the usual Turing machine with random access memory,
where each bit can be addressed individually and independently of other bits, and enable the resulting machine to
copy bits between this random-access memory and the usual tape where it can work on them. (Such individual
random access can be realistic implemented.)

Axiom 4 guarantees that the leakage of a given device is the same, independent of the computation that follows or
preceeds it. Thus we need a model that can properly segregate one portion of a computation from another. The tradi-
tional notion of computation as carried out by a single Turing machine is inadequate for separating computation into
multiple independent components, because the configuration of a Turing machine must incorporate (at a minimum) all
future computation. To enable the modularity of physically observable cryptography, our model of computation will
actually consist of multiple machines, each with its own physical protection, that may call each other as subroutines.
In order to provide true independence, each machine must “see” its own memory space, independent of other ma-
chines (this is commonly known as virtual memory). Thus our multiple machines must be accompanied by a virtual
memory manager that would provide for parameter passing while ensuring memory independence that is necessary
for modularity. (Such virtual memory management too can be realistically implemented.)

FORMALIZATION WITHOUT LOSS OF GENERALITY. Let us now formalize this model computation (without yet
specifying how information may leak). A detailed formalization is of course necessary for proofs to be meaningful.

4

This is particularly true in the case of a new theory, where no strong intuition has yet been developed. However, the
particular choice of these details is not crucial. Our theorems are robust enough to hold also for different reasonable
instantiations of this model.

ABSTRACT VIRTUAL-MEMORY COMPUTERS. An abstract virtual-memory computer, or abstract computer for
short, consists of a collection of special Turing machines, which invoke each other as subroutines and share a special
common memory. We call each member of our collection an abstract virtual-memory Turing machine (abstract VTM
or simply VTM for short). We write A = (A1, . . . , An) to mean that an abstract computer A consists of abstract
VTMs A1, . . . , An, where A1 is a distinguished VTM: the one invoked first and whose inputs and outputs coincide
with those of A.

In addition to the traditional input, output, work and random tapes of a probabilistic Turing machine, a VTM has
random access to its own virtual address space (VAS): an unbounded array of bits that starts at address 1 and goes on
indefinitely.

The salient feature of an abstract virtual memory computer is that, while each VTM “thinks” it has its own
individual VAS, in reality all of them, via a proper memory manager, share a single physical adress space (PAS).

VIRTUAL-MEMORY MANAGEMENT. As it is common in modern operating systems, a single virtual-memory man-
ager (working in polynomial time) supervises the mapping between individual VASes and the unique PAS. The virtual-
memory manager also allows for parameter passing among the different VTMs.

When a VTM is invoked, from its point of view every bit in its VAS is initalized to 0, except for those locations
where the caller placed the input. The virtual-memory manager ensures that the VAS of the caller is not modified by
the callee, except for the callee’s output values (that are mapped back into the caller’s VAS).

Virtual-memory management is a well studied subject (outside the scope of cryptography), and we shall refrain
from discussing it in detail. The only explicit requirement that we impose onto our virtual-memory manager is that
it should only remap memory addresses, but never access their content. (As we shall discuss in later sections, this
requirement is crucial to achieving cryptographic security in the physical world, where each memory access may
result in a leakage of sensitive information to the adversary.)

ACCESSING VIRTUAL MEMORY. If A is a VTM, then we denote by mA the content of A’s VAS, and, for a positive
integer j, we denote by mA[j] the bit value stored at location j. Every VTM has an additional, special VAS-access
tape. To read the bit mA[j], A writes down j on the VAS-access tape, and enters a special state. Once A is in that
state, the value mA[j] appears on the VAS-access tape at the current head position (the mechanics of this are the same
as for an oracle query). To write a bit b in location j in its VAS, A writes down (j, b) on the VAS-access tape, and
enters another special state, at which point mA[j] gets set to b.

Note that this setup allows each machine to work almost entirely in VAS, and use its work tape for merely com-
puting addresses and evaluating simple gates.

INPUTS AND OUTPUTS OF A VTM. All VTM inputs and outputs are binary strings always residing in virtual memory.
Consider a computation of a VTM A with an input i of length � and an output o of length L. Then, at the start of
the computation, the input tape of A contains 1�, the unary representations of the input length. The input i itself is
located in the first � bit positions of A’s VAS, which will be read-only to A. At the end of the computation, A’s output
tape will contain a sequence of L addresses, b1, . . . , bL, and o itself will be in A’s VAS: o = mA[b1] . . .mA[bL]. (The
reason for input length to be expressed in unary is the preservation of the notion of polynomial running time with
respect to the length of the input tape.)

CALLING VTMS AS SUBROUTINES. Each abstract VTM in the abstract virtual-memory computer has a unique
name and a special subroutine-call tape. When a VTM A′ makes a subroutine call to a VTM A, A′ specifies where
A′ placed the input bits to A and where A′ wants the output bits of A, by writing the corresponding addresses on this
tape. The memory manager remaps locations in the VAS of A′ to the VAS of A and vice versa. Straightforward details
are provided in Appendix B.

5

3.2 Physical Security Model

PHYSICAL VIRTUAL-MEMORY COMPUTERS. We now formally define what information about the operation of a
machine can be learned by the adversary. Note, however, that an abstract virtual-memory computer is an abstract object
that may have different physical implementations. To model information leakage of any particular implementation,
we introduce a physical virtual-memory computer (physical computer for short) and a physical virtual-memory Turing
machine (physical VTM for short). A physical VTM P is a pair (L, A), where A is an abstract VTM and L is the
leakage function described below. If A = (A1, A2, . . . , An) is an abstract computer and Pi = (Li, Ai), then we call
Pi a physical implementation of Ai and P = (P1, P2, . . . Pn) a physical implementation of A.

If a physical computer P is deterministic (or probabilistic, but Las Vegas), then we denote by fP(x) the function
computed by P on input x.

THE LEAKAGE FUNCTION. The leakage function L of a physical VTM P = (L, A) is a function of three inputs,
L = L(·, ·, ·).

• The first input is the current internal configuration C of A, which incorporates everything that is in principle
measurable. More precisely, C is a binary string encoding (in some canonical fashion) the information of all the
tapes of A, the locations of all the heads, and the current state (but not the contents of its VAS mA). We require
that only the “touched” portions of the tapes be encoded in C, so that the space taken up by C is polynomially
related to the space used by T (not counting the VAS space).

• The second input M is the setting of the measuring apparatus, also encoded as a binary string (in essence, a
specification of what the adversary chooses to measure).

• The third input R is a sufficiently long random string to model the randmoness of the measurement.

By specifying the setting M of its measuring apparatus, while A is in configuration C, the adversary will receive
information L(C, M, R), for a fresh random R (unknown to the adversary).

Because the adversary’s computational abilities are restricted to polynomial time, we require L(C, M, R) to be
computable in time that is polynomial in the lengths of C and M .

THE ADVERSARY. Adversaries for different cryptographic tasks can be quite different (e.g., compare a signature
scheme adversary to a pseudorandom generator distinguisher). However, we will augment all of the them in the same
way with the ability to observe computation. We formalize this notion below.

Definition 1. The adversary F observes the computation of a physical computer P = (P1, P2, . . . , Pn), where Pi =
(Li, Ai) if:

1. F is invoked before each step of a physical VTM of P , with configuration of F preserved between invocations.

2. F has a special read-only name tape that contains the name of the physical VTM Pi of P that is currently active.

3. At each invocation, upon peforming some computation, F writes down a string M on a special observation
tape, and then enters a special state. Then the value Li(C, M, R), where Pi is the currently active physical
VTM and R is a sufficiently long fresh random string unknown to F , appears on the observation tape, and P
takes its next step.

4. This process repeats until P halts. At this point F is invoked again, with its name tape containing the index 0
indicating that P halted.

6

Notice that the above adversary is adaptive: while it cannot go back in time, its choice of what to measure in each
step can depend on the results of measurements chosen in the past. Moreover, while at each step the adversary can
measure only one quantity, to have a strong security model, we give the adversary all the time it needs to obtain the
result of the previous measurement, decide what to measure next, and adjust its measuring apparatus appropriately.

Suppose the adversary F running on input xF observes a physical computer P running on input xP , then P halts
and produces output yF , and then F halts and produces output yP . We denote this by

yP ← P(xP) � F (xF) → yF .

Note that F sees neither xP nor yP (unless it can deduce these values indirectly by observing the computation).

3.3 Assumptions, Reductions, and Goals

In addition to traditional, complexity-theoretic assumptions (e.g., the existence of one-way permutations), physically
observable cryptography also has physical assumptions. Indeed, the very existence of a machine that “leaks less than
complete information” is an assumption about the physical world. Let us be more precise.

Definition 2. A physical VTMs is trivial if its leakage function reveals its entire internal configuration4 and non-trivial
otherwise.

Fundamental Premise. The very existence of a non-trivial physical VTM is a physical assumption.

Just like in traditional cryptography, the goal of physically observable cryptography is to rigorously derive desir-
able objects from simple (physical and computational) assumptions. As usual, we refer to such rigorous derivations
as reductions. Reductions are expected to use stated assumptions, but should not themselves consist of assumptions!

Definition 3. Let P ′ and P be physical computers. We say that P ′ reduces to P (alternatively, P implies P ′) if every
non-trivial physical VTM of P ′ is also a physical VTM of P .

4 Examples of Physically Observable Assumptions and Reductions

Having put forward the rules of physically observable cryptography, we now need to gain some experience in distilling
its first assumptions and constructing its first reductions.

We start by quickly recalling basic the notions and facts from traditional cryptography that we use in this paper.

4.1 Traditional Building Blocks

We will assume familiarity with the traditional GMR notation (recalled in our Appendix A).
We also assume familiarity with the notions of one-way function [10] and permutation; of hardcore bits [7], with

the fact that all one-way functions have a Goldreich-Levin hardcore bit [13], and with the notion of a natural hardcore
bit (one that is simply a bit of the input, such as the last bit of the RSA input [3]). (All this traditional material is more
thoroughly summarized in Appendix C.)

4It suffices, in fact, to reveal only the current state and the characters observed by the reading heads—the adversary can infer the rest by
observing the leakage at every step.

7

4.2 Physically Observable One-Way Functions and Permutations

AVOIDING A LOGICAL TRAP. In traditional cryptography, the existence of a one-way function is currently an
assumption, while the definition of a one-way function does not depend on any assumption. We wish that the same
be true for physically observable one-way functions. Unfortunately, the most obvious attempt to defining physically
observable one-way functions does not satisfy this requirement. The attempt consists of replacing the Turing machine
T in the one-way function definition of Appendix C with a physical computer P observed by F . Precisely,

Definition Attempt: A physically observable (PO) one-way functions is a function f : {0, 1}∗ → {0, 1}∗ such that
there exists a polynomial-time physical computer P that computes f and, for any polynomial-time adversary F , the
following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← P(x) � F (1k) → state ; z ← F (state, y) : f(z) = y].

Intuitively, physically observable one-way functions should be “harder to come by” than traditional ones: unless
no traditional one-way functions exist, we expect that only some of them may also be PO one-way. Recall, however,
that mathematically a physical computer P consists

of pairs (L, A), where L is a leakage function and A an abstract VTM, in particular a single Turing machine. Thus,
by setting L be the constant function 0, and A = {T}, where T is the Turing machine computing f , we obtain a non-
trivial computer P = {(L, A)} that ensures that f is PO one-way as soon as it is traditionally one-way. The relevant
question, however, is not whether such a computer can be mathematically defined, but whether it can be physically
built. As we have said already, the mere existence of a non-trivial physical computer is in itself an assumption, and
we do not want the definition of a physically observable one-way function to rely on an assumption. Therefore, we do
not define what it means for a function f to be physically observable one-way. Rather, we define what it means for a
particular physical computer computing f to be one-way.

We shall actually introduce, in order of strength, three physically observable counterparts of traditional one-way
functions and one-way permutations.

MINIMAL ONE-WAY FUNCTIONS AND PERMUTATIONS. Avoiding the logical trap discussed above, the first way
of defining one-way functions/permutations in the physically observable world is to say that P is a one-way func-
tion/permutation if it computes a permutation fP that is hard to invert despite the leakage from P’s computation. We
call such physically observable one-way functions/permutations “minimal” in order to distinguish them from the other
two counterparts we are going to discuss later on.

Definition 4. A polynomial-time deterministic physical computer P is minimal one-way function if for any
polynomial-time adversary F , the following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← P(x) � F (1k) → state ; z ← F (state, y) : fP(z) = y].

Furthermore, if fP is length-preserving and bijective, we call P a minimal one-way permutation.

DURABLE FUNCTIONS AND PERMUTATIONS. A salient feature of an abstract permutation is that the output is
random for a random input. The following definition captures this feature, even in the presence of computational
leakage.

Definition 5. A durable function (permutation) is a minimal one-way function (permutation) P such that, for any
polynomial-time adversary F , the value |pP

k − pR
k | is negligible in k, where

pP
k = Pr[x R← {0, 1}k ; y ← P(x) � F (1k) → state : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← P(x) � F (1k) → state ; z

R← {0, 1}k : F (state, z) = 1]

8

MAXIMAL ONE-WAY FUNCTIONS AND PERMUTATIONS. We now define physically observable one-way functions
that leak nothing at all.

Definition 6. A maximal one-way function (permutation) is a minimal one-way function (permutation) P such that
the leakage functions of its component physical VTMs are independent of the input x.

One can also define statistically maximal functions and permutations, where for any two inputs x1 and x2, the
observed leakage from P(x1) and P(x2) is statistically close; and computationally maximal functions and permuta-
tions, where for any two inputs x1 and x2, what P(x1) leaks is indistinguishable from what P(x2) leaks. We postpone
defining these formally.

4.3 Physically Observable Hardcore Bits

The essence of a traditional hardcore bit B is increasing the available “computational randomness.” For instance, if f
is a one-way permutation and x a k-bit random value, then f(x) ◦B(x) produces k + 1 computationally random bits.
If we were not careful in defining physically observable hardcore bits, this crucial property would be lost: because the
computation of the hardcore bit itself may also leak information. Consider the following

Definition Attempt: Let P and B be deterministic physical computers. We say that B is PO hardcore for P if B has
a one-bit output and, for any polynomial-time adversary F , the value pk − 1/2 is negligible in k, where

pk = Pr[x R← {0, 1}k ; y ← P(x) � F (1k) → state ; b ← B(x) � F (state, y) → g : b = g]

At first glance this may seem like the right definition: it captures the difficulty of predicting B(x) from y, even
after observing how y and B(x) are computed. However, this definition fails to address the problem that leakage of
B(x) may reveal other information about x, thus possibly nullifying the protection that P provides. For example, this
definition could be satisfied even if B(x) leaks y (since the adversary gets y anyway). Therefore, the net result of
running P and then B on a truly random, k-bit, secret input x is that we have lost all the true unpredictability of the k
bits of x, and gained just one computationally random bit: B(x)!

Notice that modifying the above definitional attempt by calling for the existence of a physical computer PB that
“jointly computes P and B” would just be a second bad definitional attempt, since it leads to the already discussed
logical trap of section 4.3.

The correct route is to use the second definitional attempt while avoiding its logical trap. However, this leads to a
separate definition of a hardcore bit for each counterpart.

Definition 7. A deterministic physical computer PB is a minimal one-way function with a hardcore bit if there
exist an (abstract) function f : {0, 1}∗ → {0, 1}∗ and an (abstract) predicate B : {0, 1}∗ → {0, 1} such that
fPB(x) = (f(x), B(x)); without the last bit of output, PB is minimal one-way; and the last bit of output B(x) is
unpredictable, i.e., for any polynomial-time adversary F , the value pk − 1/2 is negligible in k, where

pk = Pr[x R← {0, 1}k ; (y, b) ← PB(x) � F (1k) → state : b = F (state, y)] .

Definition 8. A minimal one-way function (permutation) with a hardcore bit PB is a durable function (permutation)
with a hardcore bit if, when considered without the last output bit B, it is durable.

Definition 9. A minimal one-way function (permutation) with a hardcore bit PB is a maximal one-way function
(permutation) with a hardcore bit if the leakage functions of its component physical VTMs are independent of the
input x.

9

4.4 The First Physically Observable Reduction

Reductions in our new environment are substantially more complex than in the traditional setting, and we have chosen
a very simple one as our first example. Namely, we prove that minimal one-way permutations compose just like
traditional one-way permutations.

Theorem 1. A minimal one-way permutatation P implies a minimal one-way permutation P ′ such that fP ′(·) =
fP(fP(·)).
Proof. See Appendix E.

We wish to emphasize that, though simple, the proof of Theorem 1 illustrates exactly how our axioms for physi-
cally observable computation (formalized in our model) play out in our proofs.

5 Physically Observable Pseudorandomness

THE GOAL OF THE SECTION. In this last section, we point out (without proof) that fundamental constructions are
indeed achievable in physically observable cryptography. Namely, we point out that physically observable pseudoran-
dom generators are constructable. The choice of pseudorandom generation is quite natural for our first construction,
because (1) it is conceptually simple (involving a single machine rather than multiple interrelated machines), and (2)
it is easily implementable in traditional cryptography (as long as we are willing to rely on one-way permutations5).

More specifically, in this section we achieve two goals:

• We construct physically observable pseudorandom generators; and

• We identify which physically secure assumptions suffice for extending the well-known iterative generator of
[7]:

iterate a one-way permutation on a random seed, outputting the hardcore bit at each iteration.

(Identifying the minimal physically observable assumption for pseudorandom generation is a much harder problem,
best addressed after gaining a firmer grasp of the new field.)

DEFINITIONS. The definitions of PO indistinguishable and PO unpredictable generators are provided for complete-
ness in Appendix D, but do not present particular technical challenges. They are derived from the corresponding
traditional notions [7, 27] by allowing the adversary to observe the appropriate computation.

5.1 Statement of Our Results

A DIFFERENT WORLD. Physically observable pseudorandomness is drastically different from traditional one, and
requires new intuition. The crucial property of traditional pseudorandomness is the equivalence of unpredictability
and indistinguishability [27]. Surprisingly, this equivalence no longer holds in our new world.

Theorem 2. A PO unpredictable generator is not necessarily PO indistinguishable.

However, of course, PO indistinguishability still implies PO unpredictability.

A MORE DIFFICULT WORLD. In the physically observable world, pseudorandom generators are actually harder to
build: just PO one-way permutations are no longer enough.

Theorem 3. Using minimal one-way permutations in the iterative PRG construction does not imply a physically
observable unpredictable generator.

5It is known that one-way functions suffice for the existence of pseudorandom generators [15]; however, a much simpler construction —the
one we wish to emulate first— relies on one-way permutations.

10

A WORKABLE WORLD. Nevertheless, it is possible to construct both unpredictable and indistinguishable generators
from reasonable assumptions. Namely,

Theorem 4. A durable function implies a PO unpredictable generator (with any polynomial expansion).

Theorem 5. A durable function with a hardcore bit implies a PO indistinguishable generator (with any polynomial
expansion).

A NEW ROLE FOR OLDER NOTIONS. Recall that a (traditional) hardcore bit of x is natural if it is a bit in some fixed
location of x. Even though, in complexity-theoretic cryptography, the difference between a natural hardcore bit and
any other hardcore bit seems insignificant, it turns out to be very important in physically observable cryptography.

Theorem 6. Using a maximal one-way permutation P in the iterative PRG construction implies only a PO unpredictable
generator. But using a maximal one-way permutation P for which fP has a (traditional) natural hardcore bit implies
a PO indistinguishable generator.

In traditional cryptography, in light of the Goldreich-Levin construction [13], it seemed that finding natural hard-
core bits of one-way functions became a nearly pointless endeavor (from which only minimal efficiency could be
realized). However, Theorem 6 changes the state of affairs dramatically: it provides new impetus for research on
natural hardcore bits. This shows how physically observable cryptography may actually have influence back on its
predecessor.

PROOFS. In this extended abstract, only the proof sketches of our “enabling” Theorems 4 and 5 are provided (in Ap-
pendices F and G, respectively). The latter proof consists of a hybrid argument, but such arguments are more complex
in our physically observable setting (in particular, rather than a traditional single “pass” through n intermediate steps
—where the first is pseudorandom and the last is truly random— they now require two passes: from 1 to n and back).

The proofs of the “negative” results are not difficult once the right vein of counterexamples is identified, and will
be provided in the full version of the paper.

6 Further Directions

ASSUMED RANDOMNESS VS. GENERATED RANDOMNESS. Our definitions in the physically observable model do
not address the origin of the secret input x for a one-way function P: according to the

definitions, nothing about x is observable by F before P starts running. One may take another view of a one-
way function, however: one that includes the generation of a random input x as the first step. While in traditional
cryptography this distinction seems unimportant, it is quite crucial in physically observable cryptography: the very
generation of a random x may leak information about x. It is conceivable that some applications require a definition
that includes the generation of a random x as part of the functionality of P . However, we expect that in many instances
it is possible to “hardwire” the secret randomness before the adversary has a chance to observe the machine, and then
rely on pseudorandom generation.

SINGLE EVALUATION VS. MULTIPLE EVALUATIONS. Our definitions do not address the issue of computing the
same (or similar) function on the same input multiple times. Of course, many traditional encryption and signature
schemes do exactly that: the same secret key is input to every decryption and signing operation. What assumptions
are needed for such schemes to work in the physically observable model is a question for future research.

SIGNATURE SCHEMES. This work provides a sufficient understanding of physically observable cryptography to see
that signatures are possible in the new setting! Indeed, it is not too hard to see that minimal one-way functions imply
one-time signature schemes (e.g., using construction of [18]), and durable functions imply even more efficient one-
time signature schemes (e.g., using construction of [11]). Merkle trees [19] provide for a way to make multi-time
(stateful) signatures out of one-time signatures. Note that, even though the Merkle tree construction requires hashing,
no new notion of physically observable hashing is required, because the values being hashed are public, anyway. To

11

avoid large secret storage, at key generation (which can be done away from the prying eyes of the adversary) the
secret keys are all generated using a PO indistiguishable generator from a single secret seed x; the public keys are
then computed and hashed to arrive at the Merkle tree. The Merkle tree can be stored publicly; the only secret that
needs to be stored is the seed, which is updated after each new signature is issued. Further details will be provided in
a future paper.

References

[1] Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle, Washington, 15–17
May 1989.

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM side-channel(s). In Cryp-
tographic Hardware and Embedded Systems Conference (CHES ’02), 2002.

[3] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and Rabin functions: Certain parts are as hard as the
whole. SIAM Journal on Computing, 17(2):194–209, April 1988.

[4] Ross Anderson and Markus Kuhn. Tamper resistance — a cautionary note. In The Second USENIX Workshop
on Electronic Commerce, pages 1–11, November 1996.

[5] Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices. In Fifth International Security
Protocol Workshop, April 1997.

[6] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S. Kaliski, Jr.,
editor, Advances in Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 513–
525. Springer-Verlag, 17–21 August 1997.

[7] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM
Journal on Computing, 13(4):850–863, November 1984.

[8] D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic protocols for faults. In
Walter Fumy, editor, Advances in Cryptology—EUROCRYPT 97, volume 1233 of Lecture Notes in Computer
Science, pages 37–51. Springer-Verlag, 11–15 May 1997.

[9] Suresh Chari, Charanjit Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power analysis attacks. In Wiener [26], pages 398–412.

[10] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[11] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal of Cryptology,
9(1):35–67, Winter 1996.

[12] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Tamper-proof security. Unpub-
lished manuscript, 2003.

[13] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In ACM [1], pages 25–32.

[14] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[15] J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

12

[16] Joshua Jaffe, Paul Kocher, and Benjamin Jun. United states patent 6,510,518: Balanced cryptographic com-
putational method and apparatus for leak minimizational in smartcards and other cryptosystems, 21 January
2003.

[17] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Wiener [26], pages 388–397.

[18] Leslie Lamport. Constructing digital signatures from a one way function. Technical Report CSL-98, SRI Inter-
national, October 1979.

[19] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in Cryptology—CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer-Verlag, 1990, 20–24 August 1989.

[20] S. W Moore, R. J. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving smartcard security using
self-timed circuits. In Asynch 2002. IEEE Computer Society Press, 2002.

[21] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In ACM [1],
pages 33–43.

[22] FIPS publication 46: Data encryption standard, 1977. Available from
http://www.itl.nist.gov/fipspubs/.

[23] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Measures and counter-measures
for smart cards. In Smart Card Programming and Security (E-smart 2001) Cannes, France, volume 2140 of
Lecture Notes in Computer Science, pages 200–210, September 2001.

[24] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing, pages 387–394, Baltimore, Maryland, 14–16
May 1990.

[25] Sergei Skorobogatov and Ross Anderson. Optical fault induction attacks. In Cryptographic Hardware and
Embedded Systems Conference (CHES ’02), 2002.

[26] Michael Wiener, editor. Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science. Springer-Verlag, 15–19 August 1999.

[27] A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on Foundations of Computer
Science, pages 80–91, Chicago, Illinois, 3–5 November 1982. IEEE.

A Minimal GMR Notation

• Random assignments.

If S is a probability space, then “x ← S” denotes the algorithm which assigns to x an element randomly
selected according to S. If F is a finite set, then the notation “x ← F ” denotes the algorithm which assigns
to x an element selected according to the probability space whose sample space is F and uniform probability
distribution on the sample points.

• Probabilistic experiments.

If p(·, ·, · · ·) is a predicate, the notation Pr[x ← S; y ← T ; ... : p(x, y, · · ·)] denotes the probability that
p(x, y, · · ·) will be true after the ordered execution of the algorithms x ← S, y ← T,

13

B Calling VTMs as Subroutines

If A′ wants to call A on the �-bit input i = mA′ [a′1] . . .mA′ [a′�], and if A returns an L-bit output on an �-bit input, then
the VTM A′ has to write down on its subroutine-call tape

1. name of A;

2. a sequence of � addresses in its own VAS, a′1, . . . , a′�;

3. a sequence of L distinct addresses in its own VAS, b′1, . . . , b′L.

Then A′ enters a special “call” state and suspends its computation. At this point, the memory manager creates a new
VAS for A, ensuring that

• location i in the VAS of A, for 1 ≤ i ≤ �, is mapped to the same PAS location as a′i in the VAS of A′, and

• all the other locations in the VAS of A map to blank and unassigned PAS locations. (Namely, in case of nested
calls, any VAS location of any machine in the call stack —i.e., A′, the caller of A′, etc.— must not map to these
PAS locations.)

Then the computation of A begins in the “start” state, with a blank work tape and the input tape containing 1�. When
A halts, the memory manager remaps location b′i, for 1 ≤ i ≤ L, in the VAS of A′ to the same PAS location as bi

in the VAS of A. (Recall that bi appears on the output tape of A, and that all the b′i are distinct, so the remapping is
possible.) The output value of A is taken to be the value o = mA′ [b′1] . . .mA′ [b′�], and A′ resumes operation.

Note that the input locations a′i in the caller’s VAS do not need to be distinct; nor do the output locations bi in
the callee’s VAS. Therefore, it is possible that the memory manager will need to map two or more locations in a
VTM’s VAS to the same PAS location (indeed, because accessing memory may cause leakage, remapping memory
is preferable to copying it). When a VAS location is written to, however, the memory manager ensures that only one
PAS location is affected: if the VAS location is mapped to the same physicall address as another VAS location, it gets
remapped to a fresh physical address.

C Traditional Building Blocks

• One-way functions [10]. A one-way function is a function f : {0, 1}∗ → {0, 1}∗ such that there exists a
polynomial-time Turing machine T that computes f and, for any polynomial-time adversary F , the following
probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← T (x) ; z ← F (1k, y) : f(z) = y].

• One-way permutations. A one-way permutation is a one-way function that is length-preserving and bijective.

• One-way permutations are composable. For all n, if f is a one-way permutation, so is fn.

• One-way permutations are chainable. For all 0 ≤ i < n and for all polynomial-time adversary F , the following
probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← fn(x) ; (i, state) ← F (y) ; z ← F (state, fn−i(x)) : f i+1(z) = y].

• Hardcore Bits [7]. Let f be a one-way permutation, and B a polynomial-time computable predicate. We say
that B is a hardcore bit (for f) if, for any polynomial-time adversary F , the value |pk − 1/2| is negligible in k,
where

pk = Pr[x R← {0, 1}k ; y ← f(x) ; g ← F (1k, y) : g = B(x)].

The first hardcore bit was exhibited for the discrete-log function [7].

14

• All one-way permutations have a hardcore bit [13]. Let f be a one-way permutation, and let r1, . . . , rk be
a sequence of random bits. Then, informally, the randomly chosen predicate Br is overwhelmingly likely a
hardcore bit for f , where Br is the predicate so defined: for a k-bit string x = x1 · · ·xk, Br(x) = x1 × r1 +
. . . xk × rk mod 2.

• Natural hardcore bits. We call a hardcore bit B natural if B(x) returns the bit in a fixed location of the bit string
x. Some specific one-way permutations possess natural hardcore bits —for instance, the last bit is hardcore for
the RSA function [3].

• Unpredictable pseudorandom generators [7]. Let p be a polynomially bounded function such that p(k) > k
for all positive integers k. Let G be a polynomial-time deterministic algorithm that, on a k-bit input, produces
a p(k)-bit output. We say that G is an unpredictable pseudorandom generator with expansion p if for any
polynomial-time adversary F , the value |pk − 1/2| is negligible in k, where

pk = Pr[(i, state) ← F (1k) ; x
R← {0, 1}k ; y ← G(x) : F (state, y1 . . . yi) = yi+1] ,

(where yj denotes the j-th bit of y).

• Indistinguishable pseudorandom generators [27]. Unpredictable pseudorandom generators are provably the
same as indistinguishable generators, defined as follows. Let G, again, be a polynomial-time deterministic
algorithm that, on a k-bit input, produces a p(k)-bit output. We say that G is an indistinguishable pseudorandom
generator with expansion p if for any polynomial-time adversary F , the value |pG

k −pR
k | is negligible in k, where

pG
k = Pr[x R← {0, 1}k ; y ← G(x) : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← G(x) ; z

R← {0, 1}p(k) : F (state, z) = 1]

Because every unpredictable pseudorandom generator is indistinguishable and vice versa, we refer to them as
simply “pseudorandom generators” or “PRGs.”

• The iterative PRG construction [7].

For any one-way permutation f , the following is a pseudorandom generator:

choose a random secret seed, and iterate f on it, outputting the hardcore bit at each iteration.

D Definitions of Physically Observable Pseudorandom Generators

Let us map both unpredictable and undistinguishable generators to our new setting.

UNPREDICTABILITY. The corresponding physically observable notion replaces “unpredictability of bit i + 1 from
the first i bits” with “unpredictability of bit i + 1 from the first i bits and the leakage from their computation.”

Definition 10. Let p be a polynomially bounded function such that p(k) > k for all positive integers k. Let G be
a polynomial-time deterministic physical computer that, on a k-bit input, produces p(k)-bit output, one bit at a time
(i.e., it writes down on the output tape the VAS locations of the output bits in left to right, one a time). Let Gi denote
running G and aborting it after it outputs the i-th bit. We say that G is a PO unpredictable generator with expansion p
if for any polynomial-time adversary F , the value |pk − 1/2| is negligible in k, where

pk = Pr[(i, state1) ← F (1k) ; x
R← {0, 1}k ; y1y2 . . . yi ← Gi(x) � F (state1) → state2 :

F (state2, y1 . . . yi) = yi+1] ,

(where yj denotes the j-th bit of y = G(x)).

15

INDISTINGUISHABILITY. The corresponding physically observable notion replaces “indistinguishability” by “indis-
tinguishability in the presence of leakage.” That is, a polynomial-time adversary F first observes the computation of a
pseudorandom string, and then receives either that same pseudorandom string or a totally independent random string,
and has to distinguish between the two cases.

Definition 11. Let p be a polynomially bounded function such that p(k) > k for all positive integers k. We say that
a polynomial-time deterministic physical computer G is a PO indistinguishable generator with expansion p if for any
polynomial-time adversary F , the value |pG

k − pR
k | is negligible in k, where

pG
k = Pr[x R← {0, 1}k ; y ← G(x) � F (1k) → state : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← G(x) � F (1k) → state ; z

R← {0, 1}p(k) : F (state, z) = 1]

E Proof of Theorem 1

Proof of Theorem 1. Let P = (P1, . . . , Pn) be a minimal one-way permutation, where each physical VTM Pi is a
pair consisting of a leakage function Li and an abstract VTM Ai. Intuitively, P ′ simply runs P twice (i.e., it calls
twice P1 which is the entry point to all other Pi of P). Formally this is accomplished by creating a new trivial physical
VTM P0 that twice calls P1. Define P0 to be the (new) trivial physical VTM (L0, A0), where L0 is the trivial leakage
function (i.e., the one leaking everything) and A0 is the following abstract VTM:

On input a k-bit value x in VAS locations 1, 2, . . . , k, call A1(x) as a subroutine specifying that the returned
value y1 be placed in VAS locations k + 1, k + 2, . . . , 2k.

Then, run A1 again on input y1, specifying that the returned value y2 be placed in VAS locations 2k + 1, 2k +
2, . . . , 3k.

Output y2 (i.e., place the addresses 2k + 1, 2k + 2, . . . , 3k on the output tape) and halt.

Consider now the physical computer P ′ that has the above specified P0 as the first machine, together with all the
machines of P , that is, P ′ = (P0, P1, . . . , Pn). It is clear that P ′ is implied by P and that P ′ computes fP(fP(x))
in polynomial time. Therefore, all that is left to prove is the “one-wayness” of P ′: that is, that the adversary will not
succeed in finding z such that fP(fP(z)) = y2 as described in the experiment of Definition 4. This is done by the
following elementary reduction.

Because f ′
P = f2

P is a permutation, finding any inverse z of y2 means finding the original input x. Suppose there
exists an adversary F ′ that succeeds in finding x after observing the computation of P ′ and receiving y2 = fP(fP(x)).
Then, in the usual style of cryptographic reductions, we derive a contradiction by showing that there exists another
adversary F that (using F ′) succeeds in finding x after observing the computation of P and receiving y1 = fP(x).

F (1k) “virtually” executes P ′(x) � F ′(1k): at at each (virtual) step of P ′, F receives the measurement that F ′

wishes to make, and responds with the appropriately distributed leakage. In so doing, however, F is only entitled to
observe P(x) once.

Recall that F ′ expects to observe a five-stage computation:

1. P0 prepares the tapes for the subroutine call to P1(x)

2. P1 and its subroutines compute y1 = fP(x)

3. P0 prepares the tapes for the subroutine call to P1(y1)

4. P1 and its subroutines compute y2 = fP(y1)

5. P0 places the address of y2 on the output tape

16

During Stage 1, F can very easily answer any measurement made by F ′. In fact, (1) because P0 trivial, any
measurement of F ′ should be answered with the entire configuration of P0 and, (2) because P0 just reassigns VAS
pointers without reading or handling any secret VAS bits, each of P0’s configurations can be computed by F from 1k

(which is given to F as an input).
After so simulating Stage 1, F starts observing the computation of P(x). At each step, F is allowed a measurement

M , and the measurement it chooses coincides with the one F ′ wants, thus F can easily forward to F ′ the obtained
result. At the end of Stage 2 F receives y1 = fP(x) (which it stores but does not forward to F ′).

Stage 3 is as easily simulated as Stage 1.
During Stage 4, F “virtually runs” physical computer P(y1), that is, it runs the corresponding abstract computer

A(y1). At each step, if Ai is the active machine in configuration C, and F ′ specifies a measurement M , then F returns
the leakage Li(C, M, R) for a random R.

Upon simulating stage 5 (as easily as Stage 1), F computes y2 = fP(y1), and gives it to F ′ to receive x.

The Axioms in Action

Let us show that all our axioms for physically observable computation are already reflected in the very simple proof
of Theorem 1.

• The simulation of Stages 1, 3, and 5 relies on Axiom 1. In fact, F can simulate P0 only because P0 does not
access the VAS, and unaccessed VAS leaks no information.

• The simulation of Stage 2 relies on Axiom 4. Specifically, we relied on the fact that P(x) run in “isolation” has
the same leakage distribution as P(x) “introduced” by P0, and more generally in the “context” of P ′.

Similarly, also the simulation of Stage 4 relies on Axiom 4: the leakage of running P from scratch on a string
y1 is guaranteed to be the same as the leakage of running P after y1 is computed as P(x).

• The simulation of Stage 4 relies on Axiom 5. In fact F was not observing the real P , but rather was running P
on its own and simulating P’s leakage which therefore had to be polynomial-time computable.

• Axiom 2 is implicitly relied upon. In a sense, Axiom 2 says that the same algorithm can have different leakage
distributions, depending on the different physical machines which run it. In particular, therefore, it makes the
very existence of a physically observable one-way permutation plausible. Trivial machines that leak everything
certainly exist, and using them to compute f(x) from x would make it easy to find an inverse of f(x). Thus, if
the f ’s leakage were the same for every machine, PO one-way permutations would not exist, making the entire
theory moot.

• Axiom 3 has been incorporated into the model, by giving adversary F ′ the power of choosing its own measure-
ments at every step of the computation.

F Proof Sketch of Theorem 4

Proof sketch of Theorem 4. Let P be a durable function. To construct out of P a PO unpredictable generator G with
expansion p, we will mimic the iterative construction of Blum and Micali [7], combining it with the Goldreich-
Levin [13] hardcore bit. For this construction, it is crucial that the bits are output in reverse order, as in [7]: namely,
that all computations of P take place before any Goldreich-Levin bits are computed (because we are not assuming
a secure machine for computing Goldreich-Levin bits, and hence the hardcore bit computation will leak everything
about its inputs).

17

Specifically, given a random seed (x0, r), to output � = p(|x| + |r|) bits, G computes x1 = P(x0), x2 = P(x1),
. . . , x� = P(x�−1), and outputs b1 = x�−1 · r, b2 = x�−2 · r, . . . , b� = x0 · r, where “·” denotes the dot product
modulo 2 (i.e., the Goldreich-Levin bit). Formally, this is done by constructing a trivial physical VTM to “drive” this
process and compute the hardcore bits; we omit the details here, as they are straightforward and similar to the proof
of Theorem 1.

To prove that this is indeed unpredictable, consider first a simpler situation. Starting from a random x, compute
P(x), letting the adversary observe the computation. Now provide the adversary with P(x) and a random r, and have
it predict r · x. If the adversary is successful with probability significantly better than 1/2, then it is successful for
significantly more than 50% of all possible values for r. Thus, we can run it for multiple different values of r, and
reconstruct x using the same techniques as in [13], which would contradict the minimal one-wayness of P . Note that
even though we use the adversary to predict x ·r for multiple values r, the adversary needs to observe P(x) only once.
This is because the observation takes place before r is provided to the adversary, and therefore the choices made by
the adversary during the observation are independent of r.

The actual generator, of course, is more complex than the above scenario. To prove that bit bi is unpredictable, first
note that x�−i is not computable by the adversary even if the adversary observes the computation until bi−1 is output
(this can be shown by a properly constructed hybrid argument based on the definition of durable). Also observe that
the previous bits, b1, . . . , bi−1 are all efficiently computable from x�−i+1 = P(x�−i), which the adversary receives
anyway when it observes the computation of bi−1. Thus, proving that bi is unpredictable reduces to the simpler case
already proven above.

G Proof Sketch of Theorem 5

Proof sketch of Theorem 5. Let PB be a durable function with a hardcore bit. To consturct out of PB a PO in-
distinguishable generator G with expansion p, we will simply mimic the iterative construction of [7]: to generate
� = p(k) pseudorandom bits on a k-bit input seed s0, compute (s1, b1) = PB(s0) and output b1; then compute
(s2, b2) = PB(s1) and output b3, and so on for � times (note that there is no need here to output bits in reverse order).
Formally, this is done by constructing a trivial physical VTM to “drive” this process; we omit the details here, as they
are straightforward and similar to the proof of Theorem 1.

The proof that the resulting G is PO indistinguishable is by a hybrid argument, somewhat similar to (but more
complex than) the hybrid argument that shows that unpredictability implies indistinguishability for traditional pseudo-
random generators ([27]; see [14] for an excellent exposition). We recall the essence of that hybrid argument here to
prepare for the more complex hybrid argument in our case. Suppose that the pseudorandom string b1b2 . . . b� is unpre-
dictable (i.e., bi cannot be predicted given b1 . . . bi−1), but can be distinguished from a truly random string r1r2 . . . r�.
Then consider the � − 1 “hybrid” strings, the i-th string hi being b1b2 . . . b�−ir�−i+1ri+2 . . . r� (then h0 = b1b2 . . . b�

and h� = r1r2 . . . r�). If the i-th string can be distinguished from the (i+1)-th, then the bit b�−i+1 can be distinguished
from r�−i+1 in the presence of b1b2 . . . b�−i, i.e., the bit b�−i+1 can be predicted (which is a contradiction).

In our proof, our hybrids are not just strings. Rather, because we have to also deal with the leakage, our hybrids are
processes. The pseudorandom process consists of running PB(s0) and then giving the adversary b1 . . . b� (actually, we
can give s� as well, it will not change the proof, just like in the hybrid argument above). The random process consists
of running PB(s0) and then giving the adversary random bits r1 . . . r� (and a random R� in place of s�). There are
2(n − 1) hybrid processes, depcited in the figure on page 19 and defined as follows.

The i-th hybrid process Hi for i ≤ n is the process that runs PB(s0) to obtain (s1, b1); then replaces (s1, b1) with
new random (R1, r1), outputs r1 and runs PB(R1) to obtain (s2, b2); then replaces (s2, b2) with new random (R2, r2),
outputs r2 and runs PB(R2) to obtain (s3, b3); it continues in this manner until it replaces (si, bi) with (Ri, ri), at
which point it proceeds properly as G would. Thus, H0 is the pseudorandom process. The i-th hybrid process Hi for
i > n is the same as the (2n − 1 − i)-th hybrid process, except that it always outputs truly random bits and a random

18

Pseudo-

random:

Random:

PB

s
1

b
1

PB

s
2

b
2

PB

s
3

b
3

F

s
0

R
1

r
1

R
3

r
3

0/1

PB

s
1

b
1

PB

s
2

b
2

PB

s
3

b
3

F

s
0

R
1

r
1

R
2

r
2

R
3

r
3

0/1

PB

s
1

b
1

PB

s
2

b
2

PB

s
3

b
3

F

s
0

s
2

R
3

r
3

0/1

H
y
b
ri
d
s

PB

s
1

b
1

s
1

PB

s
2

b
2

s
2

PB

s
3

b
3

s
3

F

s
0

0/1

PB

s
1

b
1

PB

s
2

b
2

PB

s
3

b
3

s
3

F

s
0

R
1

r
1

R
2

r
2

0/1

PBPB

s
1

b
1

s
2

b
2

s
2

PB

s
3

b
3

s
3

F

s
0

R
1

r
1

0/1

r
2

 s
1

r
1

s
2

r
2

19

Rl (even where (2n− 1− i)-th hybrid process would have output a pseudorandom bit bj and the actual sl) (see figure
on page 19). Thus, H2n−1 is the random process from the definition of PO indistinguishability.

If any two consecutive hybrids were distinguishable, then the output of PB on a random input would be distin-
guishable from random, by a simple reduction, which we omit here (but depict via large rectangles in the figure on
page 19). This implies (by the same argument as in abstract cryptography) that either the s output of PB is distin-
guishable from random, or the b output is predictable in the presence of s. This is a contradiction, however, because
PB is a durable function with a hardcore bit.

20

