
Algebraic Attacks on Combiners
with Memory and Several Outputs

Nicolas T. Courtois
Axalto Cryptographic Research & Advanced Security, 36-38 rue de la Princesse

BP 45, F-78430 Louveciennes Cedex, France
courtois@minrank.org

Abstract. Algebraic attacks on stream ciphers [11] recover the key by solving an overde-
fined system of multivariate equations. Such attacks can break several interesting cases
of LFSR-based stream ciphers, when the output is obtained by a Boolean function, see
[11–13]. Recently this approach has been successfully extended also to combiners with
memory, provided the number of memory bits is small, see [1, 13, 2]. In [2] it is shown that,
for ciphers built with LFSRs and an arbitrary combiner using a subset of k LFSR state
bits, and with l inner state/memory bits, a polynomial attack always do exist when k and
l are fixed. Yet this attack becomes very quickly impractical: already when k and l exceed
about 4.
In this paper we give a much simpler proof of this result from [2], and prove a more general
theorem. We show that much faster algebraic attacks exist for any cipher that (in order to
be fast) outputs several bits at a time.
In practice our result substantially reduces the complexity of the best attack known on
three well known constructions of stream ciphers when the number of outputs is increased.
We present attacks on modified versions of Snow, E0 and LILI-128 that are apparently the
fastest known.

Key Words: LFSR-based stream ciphers, algebraic attacks on stream ciphers, pseudo-
random generators, multivariate equations, linearization, XL algorithm, nonlinear filter-
ing, Boolean functions, combiners with memory, LILI-128, Snow, Nessie, E0, Bluetooth.

1 Introduction

In this paper we study LFSR-based stream ciphers. In such ciphers there is an inner state
updated by an iterated linear function, and a stateful or stateless nonlinear combiner
that produces the output, given the inner state. Our goal is to extend the recent very
powerful and very general algebraic attacks on stream ciphers to the case of combiners
with several outputs. Such constructions appear naturally if want ciphers being fast in
practice.
Up till recently, for stateless combiners - using a Boolean function - most general attacks
known were so called correlation attacks, see for example [24, 18, 9, 7]. In order to resist
such attacks, many authors focused on proposing Boolean functions that will have no
good linear approximation and that will be correlation immune with regard to a subset
of several input bits, see for example [9]. Unfortunately there is a tradeoff between these
two properties. One of the proposed remedies is to use a stateful combiner. This idea is
used in the Bluetooth wireless protocol cipher E0 [5]. Yet the simplicity of E0 made it
vulnerable to advanced correlation attacks [20] and other attacks [2, 1, 13].

2 Nicolas Courtois, preprint, June 21, 2004

Recently the scope of application of the correlation attacks have been extended to con-
sider higher degree correlation attacks with respect to non-linear low degree multivariate
functions, or in other words, allowing to exploit low degree approximations [11]. The
paper [11], proposes an algebraic approach to the cryptanalysis of stream ciphers. It will
reduce the problem of key recovery, to solving an overdefined system of algebraic equa-
tions. Following [11] and [12], all LFSR-based stream ciphers are (potentially) vulnerable
to algebraic attacks. The argument says that, if by some method, we are able to deduce
from the output bit(s), only one multivariate equation of low degree in the LFSR state
bits, then the same can (probably) be done for many other states. Each equation remains
also linear with respect to any other LFSR state, and given many keystream bits, we
inevitably obtain a very overdefined system of equations (i.e. many equations). Then we
may apply the XL algorithm from Eurocrypt 2000 [30], adapted for this purpose in [11],
or the simple linearization as in [12], to efficiently solve the system.
In the paper [12], the scope of algebraic attacks is substantially extended, by showing
new non-trivial methods to obtain low degree equations, that are not low degree approx-
imations. This gives attacks that are not correlation attacks anymore, and are purely
algebraic attacks on stream ciphers. The key ingredient is a simple but very powerful
method to reduce the degree of the equations: instead of considering outputs as functions
of inputs, one should rather study multivariate relations between the input and output
bits. They turn out to have a substantially lower degree. This idea is very powerful and
appears already in many papers: Patarin’95 [28], Jakobsen’98 [21], Courtois’02 [14], and
recently the Courtois-Pieprzyk attempt to break AES [15].
In most cases, as already explained, due to the recursive structure of the cipher, finding
just one such multivariate relation will give a polynomial attack on a stream cipher. Very
surprisingly, this ”multivariate relation” approach to stream ciphers [12], extends also
to combiners with memory, in particular when the number of possible inner states is
small. This can be seen as continuation of previous results by Meier and Staffelbach on
correlation attacks on combiners with one memory bit [25], extended to several memory
bits by Golic in [19]. For algebraic attacks, the possibility of eliminating memory bits has
been first suggested by Courtois and Meier [12], but the heuristics only says that such
attacks may exist, and exhibits also a counter-example for which the current method
will fail to find a useful multivariate relation that would lead to an attack (cf. Section 7
of [12]). Yet, considering relations that imply potentially many output bits, seems very
promising, except that finding useful relations becomes a hard problem (how to know
which outputs will be used in the relation ?). The first attack of this type for a realistic
stream cipher E0, has been found by careful elimination by hand, done by Armknecht
[1]. A substantial speed-up for this attack is called “Fast Algebraic Attack”: [13, 3, 23].
Even more surprisingly, Krause and Armknecht have recently proven a Theorem, to the
effect that for any combiner with k inputs and l bits of memory, an algebraic attack
of this type will always exist [2]. More precisely, they show that required multivariate

Algebraic Attacks on Combiners with Memory and Several Outputs 3

relations do always exist with degree at most dk(l + 1)/2e. This generalises an earlier
theorem due to Courtois and Meier, giving degree dk/2e for l = 0, published in [12].
This result means that starting from about l = 4 memory bits, algebraic attacks will
quickly become impractical. In this paper we give a new, much simpler proof of this
theorem. Then we present a much more general theorem, for combiners that use
several outputs instead of one. For correlation attacks, this issue has been studied in [33,
7]. For algebraic attacks, we will show that having several outputs allows to substantially
lower the degree of the relations, which in turn will dramatically decrease the complexity
of an algebraic attack on most LFSR-based stream ciphers. Our new theorem will also
give new and valuable results for combiners without memory (i.e. using just Boolean
functions).

2 Notation

We consider stream ciphers in which there is a state with a linear feedback function (for
example composed of one or several LFSRs). Let K = (K0, . . . ,Kn−1) be an n-bit secret
key. Let s = K be the initial state of the LFSR or the linear part of the cipher. At each
clock, the new state is computed as s ← L(s) with L being some multivariate linear
transformation, for example corresponding to the connection polynomial of an LFSR, or
a combination of several parallel LFSRs. We assume that L is public.
We assume that k out of n bits of the linear part of the cipher are used in the next part
of the cipher called the combiner. The combiner is a pair of functions F = (F1, F2) :
GF (2)k+l → GF (2)m+l, that given the current state and the input, computes the next
state and the output:

F :

{
(y(t+1)

0 , . . . , y
(t+1)
m−1) = F1(x

(t)
0 , . . . , x

(t)
k−1, a

(t)
0 , . . . , a

(t)
l−1)

(a(t+1)
0 , . . . , a

(t+1)
l−1) = F2(x

(t)
0 , . . . , x

(t)
k−1, a

(t)
0 , . . . , a

(t)
l−1)

Each combiner has therefore k input bits x
(t)
0 , . . . , x

(t)
k−1, which denote a fixed subset of

the s
(t)
0 , . . . , s

(t)
n−1. It also has l memory/inner state bits (for stateless combiners l = 0)

a
(t)
0 , . . . , a

(t)
l−1. The initial inner state a(−1) for t = 0 can be anything (it is unknown in

the attacks). The combiner outputs m bits y
(t)
0 , . . . , y

(t)
m−1.

3 Algebraic Attacks on Stream Ciphers

We recall that the linear part of our cipher (a combination of one or several binary
LFSRs) is composed of n bits s0, . . . , sn−1. At the beginning s = k (the initial LFSR
state) and at each clock of the cipher, it is updated as s ← L(s), with L being some
known multivariate linear transformation. The general algebraic attack on such stream
ciphers, following closely [12] or [13], works as follows:

4 Nicolas Courtois, preprint, June 21, 2004

• Find (by some method that is very different for each cipher) one (at least, but one
is enough) multivariate relation Q of low degree d between the LFSR state bits and
some M following outputs, for example:

Q(s0, s1, . . . , sn−1, y(0), . . . , y(M−1)) = 0

• The same equation will apply to all consecutive windows of M states

Q([Lt(k)]0, [Lt(k)]1, . . . , [Lt(k)]n−1, y(t), . . . , y(t+M−1)) = 0

• The y(t), . . . , y(t+M−1) are replaced by their values known from the observed output
of the cipher.

• Due to the linearity of L, the degree of these equations is still d.

• Given many keystream bits, we inevitably obtain a very overdefined system of equa-
tions (i.e. great many multivariate equations of degree d in the Ki).

• Then we may apply the XL algorithm from Eurocrypt 2000 [30], adapted for this
purpose in [11].

• If we dispose of a sufficient amount of keystream, (which is frequently not very big,
see [12]), the XL algorithm may be replaced by the so called linearization method
that is particularly simple. There are about T ≈

(
n
d

)
monomials of degree ≤ d in the

n variables Ki (assuming d ≤ n/2). We consider each of these monomials as a new
variable Vj . Given about

(
n
d

)
+ M keystream bits, and therefore R =

(
n
d

)
equations

on successive windows of M bits, we get a system of R ≥ T linear equations with
T =

(
n
d

)
variables Vi that can be easily solved by Gaussian elimination on a linear

system of size T .

• In theory, the relinearization step takes time Tω with ω ≤ 2.376 [10]. However the
fastest practical algorithm we are aware of, is Strassen’s algorithm [32] that requires
about 7 ·T log27 operations. Since our basic operations are over GF (2), we expect that
a careful bitslice implementation of this algorithm on a modern CPU can handle 64
such operations in one single CPU clock. To summarize, in this paper we assume that
the Gaussian reduction takes 7 · T log27/64 CPU clocks.

Algebraic Attacks on Combiners with Memory and Several Outputs 5

4 The Proof Method

Our general Theorem 5.1, given later, considers arbitrary combiners with k input bits, l
memory bits, and m output bits and shows the existence of equations of some degree that
lead to an algebraic attack. It generalises the main result of [2] for arbitrary combiners
with one output, i.e. with m = 1, which in turn generalises a result obtained in [12] for
memoryless combiners with single output, i.e. for m = 1 and l = 0. Our proof technique
is very different than in [2] and is very similar to one used in [12].
In this section, in order to illustrate the simplicity of our proof technique, we will first
prove the following theorem for combiners with m = 1 and l = 1, that is in fact a special
case of both our general Theorem 5.1 given later, and of the main theorem of [2].
Theorem 4.1 (Special Case of Krause-Armknecht Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs xi, one bit of memory
a, and one output y. (The output and the next state of the memory bit a, depend in an
arbitrary way (but deterministically) on the k inputs and the previous memory bit.)
Then, given M = 2 consecutive states (t, t + 1), there is a multivariate equation R of
degree k in the x

(i)
j , that relates only the input and the output bits, without any of the

inner state/memory bits a(t), a(t+1), as follows:
R

(
x

(t)
0 , . . . , x

(t)
k−1; x

(t+1)
0 , . . . , x

(t+1)
k−1 ; y(t), y(t+1)

)
= 0.

Remark: In this and later theorems, we will only limit the degree of the equations in
the x

(i)
j . The degree in the y

(i)
j is not important, as in an attack these values will be fixed.

Proof: We consider 2k variables as follows: x
(t)
0 , . . . , x

(t)
k−1, x

(t+1)
0 , . . . , x

(t+1)
k−1 . We know

that the following two memory bits a(t) and a(t+1) and the two outputs y(t), y(t+1), do
depend only on these 2k variables, plus additionally on the bit a(t−1) present in memory
at the beginning. Thus, the four values a(t), a(t+1), y(t) and y(t+1), do depend determin-
istically only on the 2k + 1 variables x

(t)
0 , . . . , x

(t+1)
k−1 and a(t−1). This is summarised on

the following picture:

1-a(t−1)

? ?

x
(t)
0 · · ·x(t)

k−1

?
y(t)

2-a(t)

? ?

x
(t+1)
0 · · ·x(t+1)

k−1

?
y(t+1)

-a(t+1)

Fig. 1. Two successive applications of a combiner with k inputs, 1 output and 1 memory bit

We define the following set of monomials A: we consider all the monomials of degree
up to k in the following 2k variables: the x

(t)
i together with the x

(t+1)
j . The size of A is

exactly
∑k

i=0

(
2k
i

)
= 22k−1 + 1

2

(
2k
k

)
, which is strictly greater than 22k−1.

6 Nicolas Courtois, preprint, June 21, 2004

Now we will create the following matrix:

– Lines are all the possible values for x
(t)
0 , . . . , x

(t)
k−1, x

(t+1)
0 , . . . , x

(t+1)
k−1 and for the mem-

ory bit a(t−1). There are 22k+1 lines.
– The columns correspond products of successive monomials of A, multiplied by any

out of the 4 possible monomials in the two variables y(t), y(t+1). There are 4 · |A| =
22k+1 + 2

(
2k
k

)
> 22k+1 columns.

– Each entry in the matrix is the value ∈ {0, 1} of the column monomial in the case
corresponding to the current line.

The number of columns is strictly greater than the number of lines. Therefore one column
must be a linear combination of other columns. Since columns are products of monomials,
and all the cases are treated, this gives a multivariate equation, true with probability 1,
for all possible entries and whatever is the initial value of a(t−1). By construction, it does
not involve memory bits a(i). This ends the proof of Theorem 4.1. ut
Remark: In Appendix B, we give another proof of this Theorem, in which the result
will be a bit stronger: in the above theorem, there are arbitrary products of degree
k of the x

(t)
i and the x

(t+1)
j , that are multiplied by one of the 4 possible monomials

1, y(t), y(t+1), y(t)y(t+1). Surprisingly, it is sufficient to consider products that do not mix
the input/output variables for the first step t, with any of the variables for the second
step t + 1. This results in much less monomials being present.

5 New General Result on Combiners with Memory

We use the same method to prove our main result generalising the main theorem of [2].

Theorem 5.1 (Our Key Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs xi, l bits of memory
ai, and m outputs yi. Let d and M be two integers such that:

2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l (K)

Then, considering M consecutive steps/states (t, . . . t + M − 1), there is a multivariate
equation (and relation) R of degree d in the x

(i)
j , relating 1 the input and the output bits

for these states

R
(
x

(t)
0 , . . . , x

(t)
k−1, . . . , x

(t+M−1)
0 , . . . , x

(t+M−1)
k−1 ;

y
(t)
0 , . . . , y

(t)
m−1, . . . y

(t+M−1)
0 , . . . , y

(t+M−1)
m−1

)
= 0.

Proof: See Appendix A. ut
1 Again, without any of the inner state/memory bits a

(i)
j .

Algebraic Attacks on Combiners with Memory and Several Outputs 7

6 Theorem 5.1 vs. Algebraic Attacks on Stream Ciphers

Theorem 5.1 and other results of this paper, allow to find equations and execute the
algebraic attack described in Section 3. In some cases this Theorem would work even
when d = 0, when other variables are such that (KE) holds, but the equations of degree
0 in the x

(i)
j will only contain the y

(i)
j , and cannot be used to recover the secret key

of a cipher (though can probably be exploited to predict the future keystream). For
simplicity, in this paper we will always apply Theorem 5.1 for d ≥ 1.

6.1 The Complexity of the Attacks based on Theorem 5.1
Our algebraic attack on stream ciphers has two main steps:

Step 1. Find the equations by Gaussian reduction on the matrix given in the proof
of the Theorem. This step requires about 2ω(Mk+l) computations.
Step 2. From the Step 1. for each keystream bit, we get one equation of degree d in
the x

(i)
j (with d ≥ 1). The x

(i)
j are known linear combinations of the key bits Ki and

these equations are also of degree d in the key bits. When the x
(i)
j are replaced by

their actual values obtained from the keystream, we get multivariate equations that
only contain monomials of degree d in the key bits Ki. Then, given about T =

(
n
d

)
keystream bits, we solve these equations by linearization in about Tω ≈ 2ωd log n

computations.
In some cases (when M is small), the complexity of the first step may be negligible
compared to the second step (cf. Section 7.5 and examples in Table 2). In some cases
the complexity of the first step may always be very large (examples in Table 3). In other
cases there will be a tradeoff between the complexity of the two steps, see Section 7.6.
Remark: The complexity of replacing in the equations of Step 1., of the x

(i)
j by the

relevant linear combinations of the key bits Ki (cf. Section 3) is be neglected for simplicity
(it can be seen to be smaller than the maximum of complexities given above).

6.2 Important Remark
It is important to understand that, in general, this Theorem 5.1 does not show that the
algebraic attack will always work. There are some (very special) cases in which it will
not work as well as expected from our Theorem 5.1. We will see this on an example.
Assume that we have a component that has l = 10 outputs, and we artificially add 10
more outputs computed as some 10 Boolean functions of the ”real” outputs:

(y10, . . . , y19) = (F10(y0, . . . , y9), . . . , F19(y0, . . . , y9)) .

Now we have (in theory) l = 20, and from the formula (KE) we see easily that in most
cases our Theorem 5.1 will give for m = 20 equations of substantially lower degree than
for m = 10. These equations are real (their existence is proven). Yet these equations
will not be useful in an attack. For example there will be equations such as y10 =
F10(y0, . . . , y9), and a great many of derived equations: different linear combinations of

8 Nicolas Courtois, preprint, June 21, 2004

these equations multiplied by many different monomials. All these equations are in a
sense ”artificial” and unfortunately they will all reduce to 0 later in the attack, after
when the y0, . . . , y19 are replaced by their values obtained from the output of the cipher.
This example shows that in some very special cases, the algebraic attack will probably
not work for the degree given by our Theorem 5.1. Yet, it will probably work perfectly
well for the degree corresponding to the ”real” value of l = 10. It is conjectured that when
the output bits are fully independent and not related by some algebraic relation, and if
the output takes all the possible 2m values, the attack should always work, for every
equation obtained from the above Theorem 5.1. Moreover, in practice, the difference
between the number of lines and the number of columns, in the matrix (the one we
generated to prove the theorem) will be big, and there will be not only one but, (for
example) thousands of equations obtained. The chances that the attack would not work
for all of them, are negligible.

7 How to Use Theorem 5.1 - Looking For Optimal Algebraic Attacks

In the previous Section 6 we showed that it is straightforward to use Theorem 5.1 to
design an algebraic attack on stream ciphers following Section 3. Another question is to
choose parameters in such a way that the complexity of the attack will be optimal. For
this we need to study the behaviour of the key inequality (KE): 2Mm ·

∑d
i=0

(
Mk

i

)
>

2Mk+l.

In order to minimise the complexity of Step 2. of the attack (cf. Section 6.1) we simply
need to choose M that gives the smallest possible d. Yet, as we will see later (in particular
when m ≥ k, cf. Section 7.6) things are not always as simple to optimise the Step 1.

7.1 Asymptotic Behaviour of (KE) and Theorem 5.1

In order choose (M,d) that satisfy (KE): 2Mm ·
∑d

i=0

(
Mk

i

)
> 2Mk+l we have two cases:

A. If m < k, when M →∞ we have no hope to satisfy the key inequality (KE). In this
case we conjecture that the best attack (and the smallest degree d) will be achieved
taking M as small as possible (or close to it). This case is studied in Section 7.5.

B. If m ≥ k then when M →∞ we can always satisfy the key inequality (KE). In this
case we should take M as big as possible, but not too big because the complexity to
find the equations required by the attack (Step 1. cf. Section 6.1) could become bigger
than the complexity of the attack itself (Step 2.). This case is studied in Section 7.6.

Remark: For the (less general) theorem from [2], there is only the case A., because m = 1.

7.2 Necessary Condition for (KE) and Theorem 5.1

We want to solve (KE) given the values m and l. Since one always has
∑d

i=0

(
Mk

i

)
≤ 2Mk,

we cannot have Mm ≤ l, and this gives a necessary condition Mm > l, hence
Mm ≥ l + 1 which gives

M ≥ d(l + 1)/me. (C)

Algebraic Attacks on Combiners with Memory and Several Outputs 9

7.3 Sufficient Conditions for (KE) and Theorem 5.1
Conversely, it is easy to see that, each time M ≥ d(l + 1)/me, we have Mm ≥ l + 1, and
the formula (KE) will be satisfied for some d ≤Mk.
Sufficient Condition 1: For any given values m and l, and for any M ≥ d(l + 1)/me,
the formula (KE) will be satisfied by some d being at most d ≤Mk.
When the minimum M = d(l + 1)/me is chosen, we can use d = k · d(l + 1)/me, but in
fact one can do better. A smaller d can be achieved for this same (minimal) M . Indeed,
since M is an integer, the minimal value of M does not imply that we need to take a
maximal value for d. From (KE) we get the following condition:

d∑
i=0

(
Mk

i

)
> 2Mk · 2l−m·d(l+1)/me

It can be seen that d = dkM/2e = dkd(l + 1)/me/2e is always sufficient. Indeed we
always have d∑

i=0

(
Mk

i

)
> 2Mk/2.

And we also always have 1
2
≥ 2l−m·d(l+1)/me.

Sufficient Condition 2: From the above, we get immediately the following Theorem:
Theorem 7.4 (Generalised Krause-Armknecht Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs, l bits of memory, and
m outputs. Then, considering M = d(l+1)/me consecutive steps/states (t, . . . t+M−1),
there is a multivariate relation, involving only the input bits (the x

(i)
j) and the output

bits (the y
(i)
j) for these states, and with degree dkM/2e = dkd(l + 1)/me/2e in the x

(i)
j .

Remark: If we put m = 1 in this Theorem 7.4 (1 output bit), we obtain exactly the
main result of [2]. This in turn generalises the theorem given in [12], which is exactly the
above result with m = 1 and l = 0, i.e. the case of Boolean functions that are memoryless
combiners with 1 output bit.

7.5 How to Use Theorem 5.1 when m < k

All the remarks above are true both for m < k and for m ≥ k, however we expect that
(cf. Section 7.1) choosing the smallest possible M should be optimal (or close to optimal)
only when m < k.
In some cases, the choice of Theorem 7.4 above: M = d(l + 1)/me and d = dkM/2e will
be optimal for Theorem 5.1. However in most cases, there will be a non-zero difference
between M = d(l + 1)/me = 1 and (l + 1)/m that will imply that 1

2 � 2l−m·d(l+1)/me in
the derivation of Theorem 7.4 above. In such cases, it seems that the best method 2 is
take still M = d(l + 1)/me (or very close to this) and try to the lowest d that satisfies
the key requirement of Theorem 5.1 which is 2Mm

∑d
i=0

(
Mk

i

)
> 2Mk+l.

2 Again when m < k, if in similar case m ≥ k, it could be even better to increase M , cf. Section 7.6.

10 Nicolas Courtois, preprint, June 21, 2004

The Complexity of the Attacks based on Theorem 7.4

Let d = dkd(l + 1)/me/2e be the degree obtained in Theorem 7.4. Following Section
6.1, the complexity of the first step of the attack (to find the equations) will be about
2ω(Mk+l) = 2ω(kd(l+1)/me+l) and this is roughly

(
2ω(d/2+l)

)
. For the second step the com-

plexity will be about
(
n
d

)ω ≈ ndω (see Section 3). Though this d is not always the best
degree we will get and use in an attack, we expect that when m < k the complexity of
the first step of the attack will frequently be substantially smaller than for the second
step (cf. examples in Table 2).

7.6 How to Use Theorem 5.1 when m ≥ k

If m ≥ k, then when M →∞ we can always satisfy the key inequality (KE).

2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l (KE)

This fact is obvious when m > k and still true when m = k, because then it is sufficient to
take M = d(l +1)/ke and d = Mk. (Remark: here M cannot be smaller than d(l +1)/ke
because following Section 7.2, M ≥ d(l + 1)/me and here it is equal to d(l + 1)/ke.)
It can be seen that in all cases when m ≥ k, when M →∞, then d may be an arbitrarily
small integer > 0 (i.e. we will even get d = 1 when M is large enough).
In practice, we should take M as big as possible, but not too big because the complexity
to find the equations (Step 1 of the attack) will become too big: it is following Section
6.1 about 2ω(Mk+l) computations. (While Step 2. requires about

(
n
d

)ω ≈ 2ω log2 nd/d!)
In order to get the best attack, we need to minimise 2ω(Mk+l) + 2ω log2 nd/d! under the
condition

(
Mk
d

)
> 2M(k−m)+l. The behaviour of these complexities is not simple, because

M ≥ d(l + 1)/me and must be an integer. Our experience shows that sometimes M =
d(l + 1)/me is optimal, sometimes it isn’t. Sometimes the best attack will be when both
complexities are about equal, sometimes the first step will always take much more time
than the second step (even for the minimal M = d(l + 1)/me). Some relevant examples
are given in Table 3 and Table 2.

7.7 Summary or How To Design the Best Algebraic Attack

In order to find the fastest attack with Theorem 5.1, we recommend to proceed as follows:

– First we try to apply Theorem 7.4, and get a (working) solution (M,d).
– Then with same M , take the lowest d such that the key condition (KE) still holds.
– In addition, when m ≥ k, as long as the complexity of the first step of the attack is

less than the complexity of the second step, we may try to increase M , compute the
lower possible d, and see if we get a better result (Cf. Section 7.6).

Algebraic Attacks on Combiners with Memory and Several Outputs 11

8 Application to Some Known Stream Cipher Constructions

8.1 Application to modified LILI-128

Our attack can be applied to the second component of LILI-128 cipher [31]: we have
an LFSR with n = 89 bits, and a Boolean function with k = 10 inputs. There is no
memory bits (m = 0). In [12], a generic attack on LILI-128 is given, that requires n5ω

computations, (whatever is the Boolean function used). From our Theorem 5.1 we see
that if in LILI we use simultaneously several Boolean functions, the complexity of the
generic attack will substantially decrease. It will be

(
n
d

)ω with d given by Theorem 5.1.
The resulting degree d quickly decreases with m:

m 1 2 3 5 7
d 5 4 3 2 1

Following closely [12], each of these attacks on the second component of LILI-128 can
be transformed into an attack on the whole LILI-128 cipher in two possible ways. Either
(A:) the complexity is multiplied by 239 (one needs to guess the 39-bit state of LFSR
in the clocking component), or (B:) the keystream requirements are multiplied by about
239 (at each step the first component is clocked 239 − 1 times). See [12] for more details.
This gives the following generic attack on modified LILI-128 with several outputs:

Table 1. Generic attacks on modified LILI-128 with m outputs

m 1 2 3 5 7

M 1 1 1 1 1

d 5 4 3 2 1

keystream 225 264 221 260 217 256 212 251 26 245

time(Step 1.) 225 225 225 225 225 225 225 225 225 225

time(Step 2.) 2107 268 295 256 283 244 269 230 254 215

We see that for ciphers that combine LFSR and Boolean functions, such as LILI-128, if
we replace a Boolean function by a component that outputs a few bits at a time, the
security will be dramatically reduced, and this for any component (worst case).
Note: There are attacks on LILI-128 itself, that are faster than the generic attack given
here for m = 1, see [12, 13]. However for some of the modified versions of LILI-128 with
many outputs, our attack will probably be the fastest general attack known on such
ciphers.

8.2 Application to modified E0

For the basic component of the stream cipher E0, we have n = 128, k = 4, l = 4, m = 1.
The Krause-Armknecht theorem gives d = 10, see [2]. With our Theorem 5.1 we get the
following results:

12 Nicolas Courtois, preprint, June 21, 2004

Table 2. Generic attacks on modified E0 with m outputs

m

M

d

keystream

time(Step 1.)

time(Step 2.)

1 2 3 4 5 6

5 3 2 3 1 1

10 5 3 2 2 1

248 228 218 213 213 27

264 242 230 230 219 219

2131 276 249 233 233 216

We see that for ciphers that combine LFSRs and a combiner with 4 inputs, and 4 memory
bits, such as E0, if one outputs several bits at a time (computed in an arbitrary way),
the complexity of the attack and the keystream amount required dramatically decreases.

Note: Here we treat the worst case by a generic method, for E0 itself there are attacks
faster than what we get for m = 1, see [2, 1, 13]. However most of modified versions of
E0 with many outputs, our attack is probably the fastest attack known.

8.3 Application to Snow and Modified Versions of Snow

We consider both Snow and Snow 2.0. that have an LFSR with n = 512 bits that is
connected to a stateful combiner that outputs m = 32 bits at a time. We obtain:

1. In Snow 1.0. we have k = 64, l = 64 and m = 32. With Theorem 7.4 we get
M = d(l + 1)/me = 3 and d = dkM/2e = 96 that can be lowered to d = 54 and still
satisfies the requirements of the Theorem 5.1 (for reasons explained in Section 7.5).

2. Similarly, in Snow 2.0. we have k = 96, l = 64 and m = 32. With Theorem 7.4 we
get M = d(l + 1)/me = 3 and d = dkM/2e = 144 that can be lowered to d = 92.

These degrees are by far too large to give any hope for practical attacks on Snow.

Algebraic Attacks on Modified Snow

We will look how the complexity of the attack on Snow 1.0. and 2.0. when the number
of output bits increases. This could arise if, in order to build a faster cipher, we add to
Snow some arbitrary S-boxes or Boolean functions that derive some additional output
bits, from the k inputs and the l memory bits of Snow combiner.

Since the size of LFSR is 512 bits, an attack will be considered significant if it takes less
than 2512. (We study academic attacks on modified Snow, and do not claim to break the
actual Snow in which the key is expanded from a shorter key of 128 or 256 bits.)

Algebraic Attacks on Combiners with Memory and Several Outputs 13

Table 3. Generic attacks on modified Snow ciphers with m outputs

Snow 1.0.
n = 512, l = 64, k = 64

m 32 64 65 80 100 120

M 3 2 1 1 1 1

d 54 16 32 16 7 2

keystream 2245 299 2169 299 251 217

time(Step 1.) 2715 2536 2356 2356 2356 2356

time(Step 2.) 2684 2276 2471 2276 2139 245

Snow 2.0.
n = 512, l = 64, k = 96

m 32 64 65 120 150

M 3 2 1 1 1

d 92 35 48 9 2

keystream 2344 2352 2226 262 217

time(Step 1.) 2985 2715 2446 2446 2446

time(Step 2.) 2962 2503 2631 2172 245

We see that when the number of outputs increases, the security of the cipher collapses.
The complexity of the first step of the attack may be < 2512 but remains very high.
However, one should not think that Snow with added outputs will be very secure: we
only gave here the complexity of the generic method to find a useful equation. For a
specific cipher, in many cases, there could be a much faster method that exploits the
description of the cipher, and will give one multivariate equation, exploited by the main
attack (Step 2.). The second step is already very fast.
Note: Our attacks are very general. For the original cipher Snow 1.0. itself, much faster
attacks are known, see [8, 6, 22].

9 Conclusion

In this paper we studied generic algebraic attacks on stream ciphers built with an LFSR
and a combiner having a small number of memory bits. Our main result is that the
complexity of algebraic attacks on stream ciphers will substantially decrease if the cipher
outputs more bits at a time. We substantially extended and gave a much simpler proof of
the important Theorem of [2]. Our new Theorem can be applied to substantially decrease
the complexity of the best worse-case (generic) algebraic attack (whatever is the internal
structure of the combiner component) for modified versions of three well known stream
ciphers E0, LILI-128 and Snow.
We demonstrated the existence of (yet another) very general tradeoff between speed and
security of stream ciphers with (and without) memory.

Acknowledgements

The authors thank Crypto 2004 reviewers for very valuable comments.

References

1. Frederik Armknecht: A Linearization Attack on the Bluetooth Key Stream Generator, Available on
http://eprint.iacr.org/2002/191/. 13 December 2002

2. Frederik Armknecht, Matthias Krause: Algebraic Atacks on Combiners with Memory, Crypto 2003,
LNCS 2729, pp. 162-176, Springer.

14 Nicolas Courtois, preprint, June 21, 2004

3. Frederik Armknecht: Improving Fast Algebraic Attacks, to appear in FSE 2004, LNCS, Springer.

4. Ross Anderson: Searching for the Optimum Correlation Attack, FSE’94, LNCS 1008, Springer, pp
137-143.

5. Bluetooth CIG, Specification of the Bluetooth system, Version 1.1, February 22 2001, available from
www.bluetooth.com.

6. Christophe De Canniere, Guess and Determine Attack on SNOW, Nessie public report, 12/11/2001,
NES/DOC/KUL/WP5/011/a, available from www.cryptonessie.org.

7. Claude Carlet, Emmanuel Prouff: On a new notion of Nonlinearity relevant to multi-output pseudo-
random generators, SAC 2003, LNCS 3006, pp. 291-305, Springer 2004.

8. Don Coppersmith, Shai Halevi and Charanjit Jutla, Cryptanalysis of stream ciphers with linear masking,
Crypto 2002, LNCS 2442, Springer, 2002. Available at http://eprint.iacr.org/2002/020/

9. Paul Camion, Claude Carlet, Pascale Charpin and Nicolas Sendrier, On Correlation-immune Func-
tions, Crypto’91, LNCS 576, Springer, pp. 86-100.

10. Don Coppersmith, Shmuel Winograd: Matrix multiplication via arithmetic progressions, J. Symbolic
Computation (1990), 9, pp. 251-280.

11. Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanalysis of Toyocrypt,
ICISC 2002, LNCS 2587, pp. 182-199, Springer.

12. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear Feedback, Eu-
rocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer.

13. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Crypto 2003,
LNCS 2729, pp: 177-194, Springer.

14. Nicolas Courtois: The security of Hidden Field Equations (HFE), Cryptographers’ Track Rsa Con-
ference 2001, LNCS 2020, Springer, pp. 266-281.

15. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations, Asiacrypt 2002, LNCS 2501, pp.267-287, Springer, a preprint with a different version of
the attack is available at http://eprint.iacr.org/2002/044/.

16. Patrik Ekdahl, Thomas Johansson, SNOW - a new stream cipher, Proceedings of First NESSIE
Workshop, Heverlee, Belgium, 2000.

17. Patrik Ekdahl, Thomas Johansson, A new version of the stream cipher SNOW, in SAC 2002, LNCS
2595, Springer, pp. 47-61. Available from http://www.it.lth.se/cryptology/snow/

18. Jovan Dj. Golic: On the Security of Nonlinear Filter Generators, FSE’96, LNCS 1039, Springer, pp.
173-188.

19. Jovan Dj. Golic: Correlation Properties of a General Binary Combiner with Memory. Journal of
Cryptology vol. 9(2), pp. 111-126 (1996).

20. Jovan Dj. Golic, Vittorio Bagini, Guglielmo Morgari: Linear Cryptanalysis of Bluetooth Stream
Cipher, Eurocrypt 2002, LNCS 2332, Springer, pp. 238-255.

21. Thomas Jakobsen: Cryptanalysis of Block Ciphers with Probabilistic Non-Linear Relations of Low
Degree, Crypto 98, LNCS 1462, Springer, pp. 212-222, 1998.

22. Philip Hawkes, Gregory Rose: Guess-and-determine attacks on SNOW, in SAC 2002, LNCS 2595,
Springer, pp. 37-46.

23. Philip Hawkes, Gregory Rose: Rewriting Variables: the Complexity of Fast Algebraic Attacks on
Stream Ciphers, by Philip Hawkes and Gregory G. Rose. On eprint.iacr.org/2004/081/.

24. Willi Meier and Othmar Staffelbach: Fast correlation attacks on certain stream ciphers, Journal of
Cryptology, 1(3):159-176, 1989.

25. Willi Meier and Othmar Staffelbach: Correlation Properties of Combiners with Memory in Stream
Ciphers, Journal of Cryptology 5(1): pp. 67-86 (1992).

26. Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied Cryptography,
Chapter 6, CRC Press.

27. Nessie Security Report v2.0. or Nessie deliverable D20, available from www.cryptonessie.org.

Algebraic Attacks on Combiners with Memory and Several Outputs 15

28. Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88,
Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

29. Gregory G. Rose and Philip Hawkes: Turing: a Fast Stream Cipher, FSE 2003, LNCS, Springer.
30. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Algorithms for solving

Overdefined Systems of Multivariate Polynomial Equations, Eurocrypt’2000, LNCS 1807, Springer,
pp. 392-407.

31. L. Simpson, E. Dawson, J. Golic and W. Millan: LILI Keystream Generator, SAC’2000, LNCS 2012,
Springer, pp. 248-261,

32. Volker Strassen: Gaussian Elimination is Not Optimal, Numerische Mathematik, vol 13, pp 354-356,
1969.

33. Muxiang Zhang, Agnes Chan: Maximum Correlation Analysis of Nonlinear S-boxes in Stream Ci-
phers. In Crypto 2000, LNCS 1880, pp. 501-514, Springer 2000.

A Proof of Our Main Theorem 5.1

.Our proof is very similar as in the special case above (Theorem 4.1), and also gives a
new, much simpler proof of the original (less general) result from [2].
We start with the following (cf. Fig. 2):
– We have M ·m output bits: y

(t)
0 , . . . , y

(t)
m−1; . . . ; y

(t+M−1)
0 , . . . , y

(t+M−1)
m−1

– The total of M · k input bits, x
(t)
0 , . . . , x

(t)
k−1; . . . ;x

(t+M−1)
0 , . . . , x

(t+M−1)
k−1 .

– We have l initial memory bits, a
(t−1)
0 , . . . , a

(t−1)
l−1 .

– In all we have l + Mk input variables. The memory bits for second and following
inner states, a

(t+i)
j , 0 < i < M do depend only on these l + Mk variables.

– Thus, for our M consecutive steps/states t, . . . , t+M−1, all the outputs y
(t+i)
j , i < M

do depend deterministically only on the l + Mk variables listed above.

1
-

-

a
(t−1)
0

...

a
(t−1)
l−1

? ?

x
(t)
0 · · ·x(t)

k−1

? ?
y
(t)
0 · · · y(t)

m−1

2
-

-

a
(t)
0

...

a
(t)
l−1

? ?

x
(t+1)
0 · · ·x(t+1)

k−1

? ?
y
(t+1)
0 · · · y(t+1)

m−1

-

-

a
(t+1)
0

...

a
(t+1)
l−1

· · · · · ·

· · · · · ·

M
-

-

a
(t+M−2)
0

...

a
(t+M−2)
l−1

? ?

x
(t+M−1)
0 · · ·x(t+M−1)

k−1

? ?
y
(t+M−1)
0 · · · y(t+M−1)

m−1

Fig. 2. M successive applications of a combiner with k inputs, m outputs and l bits of memory

16 Nicolas Courtois, preprint, June 21, 2004

We define the following set of monomials A: we consider all the monomials of degree
up to d in all the Mk variables x

(t+i)
i . The size of A is exactly

∑d
i=0

(
Mk

i

)
. Now we will

create the following matrix:
– Lines are all the possibilities for the l + Mk input variables. There are 2Mk+l lines.
– The columns are all products of monomials of A, multiplied by any of the possible

monomials in the y
(t+i)
j . There are 2Mm · |A| = 2Mm ·

∑d
i=0

(
Mk

i

)
columns.

– Each entry in the matrix is the value ∈ {0, 1} of the column monomial in the case
corresponding to the current line.

The key argument is the same as before. The number of columns in our matrix should be
strictly greater than the number of lines, and the requirement to achieve this, is precisely
our previous assumption:

2Mm · |A| = 2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l

Therefore we get at least one non-trivial linear combination of columns (i.e. monomials)
that is zero, for all possible entries and all possible initial (memory) states. This multi-
variate equation is (with the monomials we have chosen) exactly of the form required by
our Theorem 5.1, and this ends the proof. ut

B Another Proof of Theorem 4.1 in a Stronger Version

In this appendix we give another proof of Theorem 4.1 and show that, for the same
degree, much less monomials need to be included in the equations. This is not obvious,
neither from our previous proof of Theorem 4.1, nor from its proof resulting from [2].
Theorem B.1 (Strong Version of the Special Case of Krause-Armknecht Thm.).
Let F be an arbitrary fixed circuit with k binary inputs xi, one bit of memory a, and
one output y. Then, given M = 2 consecutive states (t, t + 1), there is a multivariate
relation of degree k in the x

(i)
j , that relates only the input and the output bits, without

any of the inner state/memory bits a(t), a(t+1):
R

(
x

(t)
0 , . . . , x

(t)
k−1

)
+ y(t) · S

(
x

(t)
0 , . . . , x

(t)
k−1

)
+

+T
(
x

(t+1)
0 , . . . , x

(t+1)
k−1

)
+ y(t+1) · U

(
x

(t+1)
0 , . . . , x

(t+1)
k−1

)
= 0.

Proof: We have m = l = 1. To prove this result, we will prove that basically the same
type of result is true also for any m, provided that we have m = l (or more).
This new theorem, will give the same M and the same d than our most general Theorem
7.4. Yet it exhibits equations that use much less monomials (and thus easier to find).
Theorem B.2 (Strong Version of Theorem 5.1 when m = l).
Let F be an arbitrary component with k binary inputs xi, l bits of memory a, and m
outputs yi with m = l. Then, given M = 2 consecutive applications of the component
(t, t + 1), there is a multivariate relation (being of degree k in x

(i)
j) of the form:

R
(
x

(t)
0 , . . . , x

(t)
k−1, y

(t)
0 , . . . , y

(t)
k−1

)
= S

(
x

(t+1)
0 , . . . , x

(t+1)
k−1 , y

(t+1)
0 , . . . , y

(t+1)
k−1

)
.

Due to space limitations this proof is omitted.

