
Homomorphic public-key systems based on
subgroup membership problems

Kristian Gjøsteen

July 7 2003

Abstract

We describe the group structure underlying several popular homo-
morphic public-key systems and the problems they are based on. We
prove several well-known security results using only the group struc-
ture and assumptions about the related problems.

Then we provide examples of two new instances of this group struc-
ture and analyse their security.

1 Introduction

A cryptosystem is homomorphic with respect to some operation ∗ on the
message space if there is a corresponding operation ∗′ on the ciphertext space
such that for encryptions c, c′ of messages m,m′, c ∗′ c′ is an encryption of
m ∗m′.

Goldwasser and Micali [6] introduced the concept of semantic security and
described a semantically secure cryptosystem based on the quadratic residue
assumption. It was later remarked that this cryptosystem really was homo-
morphic with respect to addition in Z2. Naccache and Stern [7] introduced
an homomorphic cryptosystem based on “higher residues” in Z∗

n, where n
was a product of two primes of a special form. Okamoto and Uchiyama
[8] described an homomorphic cryptosystem over Z∗

n using a modulus of the
form n = p2q.

Paillier [9] introduced an homomorphic cryptosystem based on the ring
Zn2 , where n was simply an RSA modulus. This was generalized by Damg̊ard
and Jurik [3], who also adapted Shoup’s RSA threshold trick and applied it
to electronic voting.

From a group perspective, all of these systems are essentially the same.
In Section 2, we shall give a generic description and make precise exactly

1

what the conditions on the group are. In Section 3 we show what extra
conditions are required for threshold decryption as in [3]. In Section 4, we
describe several cryptosystems of this form.

We discuss security in Section 5. The main result is that the system is
semantically secure against chosen plaintext attacks under a certain assump-
tion on the group. We discuss the digit security of the system and comment
briefly on security against chosen ciphertext attack models.

In Section 6 we present a modification of the Naccache-Stern system to
satisfy the requirement of threshold decryption. In Section 7 we describe how
some of the variants can be combined to gain a small increase in bandwidth.

Sections 2–5 is mostly well-known, but adapted to the more general group-
theoretic setting. We believe the material in Section 6 and 7 is new.

2 The group structure

The group G should be abelian and have two subgroups H and K such that
H∩K = {1} and HK = G. We require H to be cyclic and gcd(|H|, |K|) = 1.

The basic idea is that H should hold the message, and K should act as a
cloak, hiding the message. We embed a message m ∈ {0, . . . , |H|−1} simply
by raising to the power m a public generator of H. To randomize, we choose
a random element of K and multiply the two elements.

So it must be easy to compute discrete logarithms in the subgroup H,
that is, we need an easily computable isomorphism logH : H → Z|H|. We will
sometimes consider logH as just a map from H into the set {0, . . . , |H| − 1}.

We also need a probabilistic polynomial-time algorithm σ that takes as
input a bit string of length k and outputs an element of K with negligible
probability of failure. We require that the distribution of the output should
be computationally indistinguishable from the uniform distribution, so that
we can choose group elements almost uniformly at random by choosing bit
strings uniformly at random.

Remark. A general solution is to make public an element gK ∈ K, and let
σ(r) = gr

K . In this case, we may as well assume that gK generates K.
If there is an algorithm σ′, taking bit strings of length k as input and

outputting elements of G almost uniformly distributed, one can let σ(r) =
(σ′(r))|H|, which will be a random element of K. Here, we allow σ′ to output
something which is not in G with negligible probability.

Key generation The input is a security parameter τ . A group G is chosen
satisfying the above requirements and matching τ , along with an element
g ∈ G such that H ⊆ 〈g〉.

2

Second, using the Chinese Remainder Theorem, a number d is computed
such that

d ≡

{
0 (mod |K|)
1 (mod |H|)

The public information is (G, g, σ). As discussed above, the description
of σ can consist for example of a group element gK , or of the group order |H|
and a description of σ′. The private information is simply d. The number
|K| should be kept secret (it can be discarded since it is no longer required).

Remark. Note that H×K is isomorphic to G and the isomorphism is (h, k) 7→
hk. For any element x ∈ G, there exists h ∈ H, k ∈ K such that x = hk and
xd = hdkd = h. So the map x 7→ xd is simply the projection on H.

Encryption The input is m ∈ {0, . . . , |H| − 1}. Choose a random k-bit
string r. The encryption function E : {0, . . . , |H| − 1} × {0, 1}k → G is
E(m, r) := gmσ(r).

Decryption The input is a cipher text c ∈ G. The message recovery
function D : G → {0, . . . , |H| − 1} is D(c) := logH(cd).

We now see that logH(gd) must be 1, which fixes the isomorphism. Cor-
rectness is then obvious when we note that for any g ∈ G,

logH(cd) = logH(σ(r)d(gm)d) = logH((gd)m) = m.

If we consider the set {0, . . . , |H| − 1} as representatives for the elements of
Z|H|, the system is homomorphic with respect to addition in Z|H|.

The security of the cryptosystem based on this group structure depends
on the following problems.

Definition. Let G be an abelian group with subgroups K, H such that G =
KH and K ∩H = {1}. Let π : G → H denote the projection onto H.

The subgroup projection problem (SPP) is the following: For an abelian
group G = KH, K ∩H = {1}, find the projection of an element g ∈ G onto
H.

The subgroup discrete logarithm problem (SDLP) is the following: For
two elements of G, g and c, find the discrete logarithm of π(c) to the base
π(g).

The decisional subgroup membership problem (DSMP) is the following:
For an abelian group G with a subgroup K, the problem is to decide whether
a given g ∈ G is in K or not. We denote this DSMP as (G, K).

3

Remark. Yamamura and Saito [12] defines the DSMP problem and notes that
the semantic security of the cryptosystems described in Section 4 is based on
the DSMP.

Remark. The Decision Diffie-Hellman problem (DDHP) is often characterized
as a decision subgroup membership problem. If g is a generator of G, then
given gx, gy and gz the DDHP is to say if gz = gxy. This is equivalent to
asking if (gx, gz) is in the subgroup of G×G generated by (g, gy).

Note that this is a very different DSMP from our DSMP. We ask a ques-
tion about a subgroup of a cyclic group, while the DDHP asks a question
about a subgroup of a non-cyclic group.

Remark. These problems can also be phrased in terms of residue classes: The
SPP is to find a “canonical” representative for the residue class of c in G/K.
The SDLP is to find the discrete logarithm of cK to the base gK. The DSMP
is to decide if the residue class cK is the same as the residue class 1K, that
is, if c is an |H|th residue.

For the group G, it is clear that DSMP is easier than the SDLP, which
in turn is easier than the SPP.

If |K| and |H| are known, the SPP is trivial, so obviously |K| must be
kept secret. Strictly speaking, |H| need not be made public. Only an upper
bound on the length of messages is needed to encrypt messages correctly.
However, care must be taken to prevent the group order leaking. If |H| is
made public, it must still be difficult to compute |K|.

For some of the concrete instances describe in Section 4, the SPP and
the SDLP are equivalent. This is true when a generator of H can be made
public.

It is clear that the scheme is one-way if and only if the SDLP is hard. In
Section 5 we shall show that the scheme is semantically secure if and only if
the DSMP is hard.

Remark. We have for some d′ that d ≡ d′|K| (mod |K||H|). Notice that

logH(cd) = logH((c|K|)d′) = d′logH(c|K|);

This will certainly be more efficient for decryption (since |K| is typically
smaller than d), but it is inappropriate for some applications.

Remark. ElGamal is homomorphic with respect to multiplication, that is, the
product of two ciphertexts contains the product of the messages. In general,
one wants the system to be homomorphic with respect to addition.

Damg̊ard, Groth and Salomonsen [4] note that if messages are restricted
to some subgroup where discrete logarithms are easy to compute, but the
corresponding subgroup discrete logarithm problem is difficult, the system

4

becomes homomorphic with respect to addition. And the group G with
messages in H is an obvious candidate.

3 A threshold variant

We briefly outline how the decryption work can be shared. Recall that the
main part of the decryption procedure is computing a dth power.

Shamir’s secret sharing scheme [10] works roughly as follows: We con-
struct a polynomial f(x) = d +

∑t−1
i=1 fixi, where d is the exponent we want

to compute, and f1, . . . , ft−1 are random integers from the set {0, . . . , |G|−1}.
We construct l shares x1, . . . , xl as xi := f(i).

To compute the dth power of the cipher text c, each share owner computes
ci = cxi . Shares are combined using Lagrange interpolation to recover the
value f(0) = d in the exponent. If S is a subset of {1, . . . , l}, |S| = t, then
with

λi =
∏
i′∈S
i′ 6=i

−i

i− i′

we get ∏
i∈S

cλi
i = c

P
i∈S f(i)

Q
i′∈S
i′ 6=i

−i
i−i′

= cd.

The obvious problem in our case is that we cannot compute (i− i′)th roots
in the group G.

Shoup [11] gave a small trick that we can use to avoid this problem. With
∆ = l!, we note that ∆λi ∈ Z and that∏

i∈S

c∆λi
i = c∆d.

To simplify the security proof, each share is computed as c∆xi , so the actual
computational result is c∆2d. If gcd(∆, |H|) = 1, we can of course still recover
the message simply by multiplying with ∆−2 modulo |H|.

The extra requirements on G are then that gcd(|H|, ∆) = 1, and that
public knowledge of elements of H does not compromise the security.

One application for such threshold systems is for electronic voting sys-
tems, as described in [3].

4 Known instances

The systems described in this section are essentially the same as the original
systems, but some small changes may have been introduced to simplify the

5

exposition. We also note that this list is not intended to be complete, but to
describe the basic approches.

Goldwasser-Micali [6] Let v1, v2 be odd numbers each containing a large
prime, and such that p1 = 2v1 +1, p2 = 2v2 +1 both are prime. Let n = p1p2,
K be the set of quadratic residues in Z∗

n, and let H be the subgroup {1,−1}.
The group KH is then simply the subgroup of elements in Z∗

n having Jacobi
symbol 1.

We have |H| = 2, |K| = v1v2 and σ′(r) = r2. The public key is simply n.
Recovering the message can be done by reducing modulo one of the primes
and computing the Jacobi symbol, but of course, computing the v1v2th power
also works.

In this case, the DSMP is the Quadratic Residue problem, determine if a
number is a quadratic residue modulo composite numbers.

Naccache-Stern [7] Let u1, u2 be relatively prime B-smooth integers (with
B small). Choose distinct primes v1, v2 such that p1 = 2v1u1 + 1, p2 =
2v2u2 + 1 are primes and gcd(v1v2, u1u2) = 1, and let n = p1p2. (Taking
v1, v2 to be primes simplifies the exposition. We could weaken this to say
that each of them must contain a big prime factor.)

The group G is then the set of quadratic residues in Z∗
n, K is the cyclic

subgroup of order v1v2 and H is the cyclic subgroup of order u1u2. Now
g ∈ G must be a generator (if it does not generate K, it reveals a factor of
n).

If one wants to keep |H| secret, then gK should be an element of order
v1v2. Otherwise, with k = dlog2 ne, σ′ : {0, 1}k → G should be the function
σ′(r) = r2, where the bit string r as usual is interpreted as an integer.

Finding discrete logarithms in H to the base gd is easy, since |H| is a B-
smooth number. B is then simply a bound on how much work one is willing
to do to recover the message from the cipher.

In this setting, the DSMP is simply deciding if an element c ∈ Z∗
n is an

|H|th power.
The knowledge of any element of H along with the order of H will allow

anyone to factor the modulus. This means that the system is not usable as
a threshold system. We present a small modification to improve on this in
Section 6.

Okamoto-Uchiyama [8] Let p and q be primes such that p 6 |(q − 1), and
let n = p2q. Then the order of Z∗

n is p(p− 1)(q − 1) and Z∗
n ' Z∗

pq × Zp. K
is the subgroup of order (p− 1)(q − 1), H is the subgroup of order p.

6

Obviously, one cannot publish |H| = p, so the system will be impossible
to use as a threshold system. Any element g with order divisible by p can be
used as generator (that is, g(p−1)(q−1) 6= 1). We can use σ′(r) = rn ∈ K, or
publish such an element.

We briefly describe how to solve discrete logarithms in H: Considering
the element 1 + p ∈ Zp2 , we see that

(1 + p)m ≡ 1 + mp +
m∑

i=2

(
m

i

)
pi ≡ 1 + mp (mod p2).

This means that the discrete logarithm problem is easy in the subgroup of
Z∗

p2 generated by 1 + p.
The security of this cryptosystem is equivalent to factoring numbers on

the form n = p2q. We note that the public key is easy to simulate when
you know that n has the required form, as almost all elements in Zn are
in Z∗

n and have order divisible by p. Given access to an oracle that can
decrypt messages for the public key (n, g), we can compute the ciphertext gz

for some random number z = O(n). The answer is a message m such that
z ≡ m (mod p). Most likely we will have gcd(z −m,n) = p.

Paillier [9] Let n = pq be an ordinary RSA modulus such that gcd(n, (p−
1)(q − 1)) = 1. Then Z∗

n2 has order (p − 1)(q − 1)n and Z∗
n2 ' Z∗

n × Zn. K
is then the part isomorphic to Z∗

n and H is the part isomorphic to Zn.
As above, we note that

(1 + n)m = 1 + mn +
m∑

i=2

(
m

i

)
ni ≡ 1 + mn (mod n2),

so the discrete logarithm problem is easy in the subgroup generated by 1+n.
The DSMP in this case is what Paillier terms the Decisional Composite

Residue problem.
Damg̊ard and Jurik [3] noticed that this system extends to Z∗

ns+1 . They
proved that the DSMP in Z∗

ns+1 is hard if and only if the DSMP is hard in
Z∗

n2 .

Elliptic curve generalizations Naccache-Stern has an obvious general-
ization to elliptic curves. Choose v1, v2 prime and u1, u2 B-smooth satisfying
gcd(u1, u2) = 1 and gcd(u1u2, v1v2) = 1. Use complex multiplication tech-
niques to find primes p1 and p2 along with elliptic curves E1 and E2 such
that

#E1(Fp1) = v1u1 and #E2(Fp2) = v2u2.

7

The Chinese remainder theorem is then used to find a curve E defined over
Zn such that E(Zn) ' E1(Fp1) × E2(Fp2). Note that one could probably
make sure that the endomorphism rings of E1 and E2 do not belong to the
same quadratic imaginary field, so there is no complex multiplication curve
defined over a number field that reduces to the curve E modulo n.

Hasses’ theorem says that #Ei(Fpi
) = pi + 1 − ti, where ti, the trace of

the Frobenius endomorphism, satisfies −2
√

pi ≤ ti ≤ 2
√

pi. The trace is
distributed roughly uniformly in this range. We get

#E(Zn) = #E1(Fp1)#E2(Fp2) = v1v2u1u2

= (p1 + 1− t1)(p2 + 1− t2)

= n− (p1t1 + p2t2) + (p1 + p2)− (t1 + t2) + 1

= n + O(n3/4).

To break the cryptosystem we need to recover v1v2. Using a Baby-step
Giant-step method and the knowledge of u1u2, it can be recovered using
O(n3/8/

√
u1u2) operations. For optimal security, one would balance this

against the difficulty of factoring n.
The advantage of an elliptic curve variant is that the public modulus n no

longer has a special form. Presumably, it would therefore be more resistant
to factoring. If only the x-coordinate is transmitted, the bandwidth is also
slightly higher than for Naccache-Stern. The main disadvantage is that each
elliptic curve operation requires several computations in Zn, so the system
would be less efficient. Also, the public key would have to include the elliptic
curve parameters, and so be larger.

Galbraith [5] gave an elliptic curve variant of Paillier’s system (as well as
Damg̊ard and Jurik’s generalization). We note that Okamoto-Uchiyama can
also be generalized to elliptic curves using the same methods. Considering
E/Zp2 , then

E(Zp2) ' E(Fp)× Zp,

where the Zp-part is the formal group. The group operation can be com-
puted using the standard formulae, since points will almost never have non-
invertible x-coordinates.

5 Security

5.1 Semantic security

Semantic security essentially says that no information about the message can
be recovered from the ciphertext, except possibly the length of the message.

8

Broadly speaking, there are three types of attacks: chosen plaintext attacks
and adaptive/non-adaptive chosen ciphertext attacks. All of the systems
described in Section 4 have been proven semantically secure against chosen
plaintext attacks under various assumptions on the groups involved [6, 7, 8,
9].

We will show that the generic system described in Section 2 is semanti-
cally secure under the assumption that the DSMP is hard. We say that the
DSMP is hard for a given G and subgroup K if there does not exists a proba-
bilistic polynomial-time algorithm that decides this problem with probability
significantly better than an algorithm that tosses a coin to decide its answer.

Definition. A public-key cryptosystem has encryptions indistinguishable
from random noise if for any message m and an encryption c of either m
or of a message chosen uniformly at random, no probabilistic polynomial
time algorithm can decide if c is an encryption of m or not with a significant
advantage.

Remark. This is equivalent to semantic security [1].

Theorem 1. The cryptosystem described in Section 2 has encryptions in-
distinguishable from random noise if and only if the DSMP is hard for the
group G and the subgroup K.

Proof. First of all, we note that all encryptions of 0 are elements of K.
Second, if c is an encryption of m, then c′ = cE(−m, r) is an encryption of
0. So the homomorphic property allows any question about a message m to
be turned into a question about the message 0, and vice versa.

It is then clear that any algorithm that can decide membership of K
can be used to distinguish encryptions of 0, and any algorithm that can
distinguish encryptions of m can decide membership of K.

5.2 Digit security

The basic ideas and techniques in this section are from [2], but our results
and proofs are somewhat different so we include them.

We shall prove that the least significant digit of a message constitutes a
hard core predicate for the encryption system. That is, if one can compute the
least significant digit of the message efficiently given only the ciphertext, then
one can recover the entire message efficiently and hence invert the encryption
function.

We denote the least significant k-digit of a ciphertext c by lsd(c), that is
lsd(c) = D(c) mod k. (Recall that we defined the decryption function result

9

D(c) to be an integer.) Obviously, when k = 2 this reduces to questions
about bit security.

First we show that any oracle for lsd can be used to recover the message.

Lemma 2. Suppose |H| is odd, and that s is a publicly known integer such
that ks ≡ 1 (mod |H|). Given an oracle A′′ that computes lsd, the message
encoded in a ciphertext can be recovered using dlog2 |H|e calls to A′′.

Proof. Suppose the message encoded in c is m =
∑l−1

i=0 mik
i, so that lsd(c) =

A′′(c) = m0. Let m′ = (m−m0)/k. Then for some integer r we have

c = gr
Kgm = gr

Kgkm′
gm0 .

We get
(cg−m0)s = grs

K (gks)m′
= gr′

Kgm′
.

This is a new ciphertext encoding m′, and by induction we can recover the
entire message in l steps.

Now we need to show that any oracle with a significant advantage can
be turned into a reliable oracle in probabilistic polynomial time. Let pi =
Prob[A′(c) ≡ lsd(c) + i (mod k)] for i = 0, . . . , k − 1. We say that an
algorithm A′ computes lsd with advantage ε if for any message m and any
ciphertext c encoding m,

p0 ≥ ε + max{p1, p2, . . . , pk−1}. (1)

Remark. What does “reliable” mean? The algorithm in Lemma 2 requires
logk |H| invocations of the algorithm A′′. If one requires that the algorithm
fail with probability at most α, the algorithm A′′ can fail with probability
roughly α/ logk |H|.

Lemma 3. Let (X0, X1, . . . , Xk−1) be a multinomial random variable with
parameters (p0, p1, . . . , pk−1) such that for some ε > 0, p0 ≥ pi + ε for 1 ≤
i < k. After l experiments

Prob[X0 = max{X0, . . . , Xk−1}] ≥ 1− k3

p2
0ε

3

1

l
+ O((1/l)2).

We have been unable to find a reference for this result, so we include a
proof in the appendix.

Lemma 4. Let A′ be an oracle that computes lsd with advantage ε. Sup-
pose two independent invocations of A′ will return statistically independent
answers. Then there is a algorithm A′′ that computes lsd with probability
1− α/l + O((1/l)2) using l invocations of A′, where α < O(1/ε8).

10

Proof. The algorithm A′′ will just invoke A′ l times, and return the most
frequent answer. We may as well suppose that 0 is the correct answer.

Let Xi count the number of times A′ returns the value i, 0 ≤ i < k. It is
clear that since each invocation of A′ is independent, (X0, X1, . . . , Xk−1) will
be a multinomially distributed random variable with parameters (p0, p1, . . . ,
pk−1).

Since A′ has advantage ε, p0 ≥ pi + ε, i = 1, . . . , k − 1. If k is smaller
than O(1/ε), the result follows from Lemma 3.

So suppose k > 4/ε. For a partition {S1, S2, . . . , Sk′−1} of {1, 2, . . . , k−1},
let Zj =

∑
i∈Sj

Xi and p′j =
∑

i∈Sj
pi. Let Z0 = X0 and p′0 = p0. It is possible

to find a partition such that there is at most one p′i < ε/4 and

p′0 ≥ p′i +
ε

2
, i = 1, . . . , k′ − 1.

Now (Z0, Z1, . . . , Zk′−1) is a multinomially distributed random variable
with parameters (p′0, p

′
1, . . . , p

′
k′−1), and k′ will be at most 4/ε.

It is clear that

Prob[X0 = max{X0, . . . , Xk−1}] ≥ Prob[Z0 = max{Z0, . . . , Zk′−1}].

So the result again follows from Lemma 3.

Remark. The bounds in Lemma 3 and Lemma 4 are not very good. With
more knowledge about the exact distribution, much better bounds could
probably be found.

Suppose we have an oracle A that returns lsd with an advantage ε.
We cannot assume that repeated invocations of the oracle will be indepen-
dent, even if we modify the cloak of the message. That is, the probability
Prob[A(c) 6= A(cgr

K)] can be negligible.

Lemma 5. Let A be an oracle that on input c returns lsd(c) with advantage
ε. If c is an encryption of m0 ≤ m < m0 + b|H|ε/3c, there is a proba-
bilistic polynomial-time algorithm A′ that on input c computes lsd(c) with
advantage ε/3 using a single invocation of A. Repeated invocations of A′ are
independent.

Proof. The homomorphic property allows us to modify the ciphertext such
that the message changes predictably. If c encodes a general message m, then
cgr′

Kgm′
encodes the message m + m′ mod |H|, that is

D(cgr′

Kgm′
) =

{
m + m′ m + m′ < |H|,
m + m′ − |H| m + m′ ≥ |H|.

11

The problem is that since we do not know m, we do not know when we get
lsd(c) or lsd(c)− |H| mod k.

So assume that m0 ≤ m < m0 + b|H|ε/3c. We compute a ciphertext
c′ = cgr′

Kgm′−m0 , which is an encryption of m + m′ − m0 with probability
at least 1 − ε/3, and an encryption of m + m′ − m0 − |H| with probability
at most ε/3. Applying the oracle A to the modified ciphertext, we get an
approximation of lsd(c)− |H| mod k at most ε/3 times, so the advantage is
reduced to ε/3 in the worst case.

Repeated invocations of this algorithm are independent if the toin cosses
that produce r′ and m′ are independent.

Theorem 6. Suppose gcd(|H|, k) = 1, and that s is a publicly known inte-
ger such that ks ≡ 1 (mod |H|). Then lsd is a hard core predicate for the
subgroup discrete logarithm problem.

Proof. Suppose A is an oracle that returns lsd with a significant advantage
ε, as defined in (1).

First we note that A can be used to decide if a ciphertext encodes zero.
This is obvious, since A clearly contradicts semantic security, which was
equivalent to deciding if a ciphertext is an encryption of 0 or of a random
message.

The strategy is then to divide the total set of messages into a small
number of subsets. For each subset, we produce a candidate message that
will be correct if the real message is in the subset. Then we simply check
which of the candidate messages is the correct one.

Let ∆ = b|H|ε/3e and for i = 0, . . . , b3/εc, set

Si = {i∆, (i + 1)∆− 1}.

Under the assumption that c encodes a message m ∈ Si, Lemma 5 says that
the algorithm A can be turned into a repeatable algorithm A′ that computes
lsd with advantage ε/3. By Lemma 4 this becomes a reliable algorithm A′′

(given a proper choice of l), and by Lemma 2 we can recover m. Note that
if m ∈ Si, then bm/kc ∈ Sbi/kc.

Of course, if m 6∈ Si, the answer will with high probability be incorrect.
But since ε is significant, 1/ε is polynomially bounded, so the number of
candidate messages we need to check is polynomially bounded.

Remark. This theorem also applies to Okamoto-Uchiyama, even though the
exact group order is unknown. Any number that is an inverse of k modulo
n = p2q is also an inverse of k modulo p, and any inverse of k will do in the
theorem.

12

Remark. Let l = blogk |H|c. As in [2], we can show that if there is an
algorithm for computing the l−jth k-digit of a message with some significant
advantage, given only the ciphertext, then any message with less than j digits
can be computed.

The basic idea is that any message with only j digits (that is, D(c) < kj)
can safely be multiplied with kl−j, to put the least significant digit into the
l − jth position. This allows us to compute the least significant digit with
a significant advantage. The above theorem then tells us how to recover all
the j digits of the message.

5.3 Chosen ciphertext attacks

The homomorphic property ensures that the cryptosystems cannot be secure
against adaptive chosen ciphertext attacks, since given the encryption of c,
the attacker can modify the ciphertext either in a way that does not modify
the message, or modifies the message in a predictable way.

We shall describe a simple non-adaptive chosen ciphertext attack against
all of the systems in Section 4 based on Z∗

n. Note that it is not a polynomial-
time attack, but it can be significantly more efficient than trying to factor the
modulus. (Of course, the Okamoto-Uchiyama system falls trivially against
a chosen ciphertext attack, because having an oracle that decrypts chosen
ciphertexts allows one to factor the modulus.)

The game played in a non-adaptive chosen ciphertext attack is as follows:
First, the attacker is given the decryption of a number of ciphertexts chosen
by him. He then produces a message m and is given an encryption c either
of the message m or of a message chosen uniformly at random.

Consider the systems using subgroups of Z∗
n. Let B = {p1, . . . , pk} be a

set of small primes (possibly including −1). The attacker first obtains the
decryptions of each pi, say li. Note that these suspiciously small ciphertexts
can easily be camouflaged, using the homomorphic property. (This is essen-
tially the first step of an index-calculus type attack. The chosen ciphertext
part gives us the logarithms of the primes for free.)

Now the attacker produces a message m and gets a ciphertext c. He
produces random encryptions of known messages cj = E(mj, rj) and tries to
factor ccj as

ccj =
k∏

i=1

pαi
i .

13

Once he finds such a factorization, he knows that

m′ + mj ≡ D(ccj) ≡ D(
k∏

i=1

pαi
i) ≡

k∑
i=1

αiD(pi) ≡
k∑

i=1

αili (mod |H|),

where m′ is the message that was encrypted. Now it is easy to see if m = m′.
The attack can also be directed against the Paillier scheme, but we need

to be slightly more clever. Again, we suppose that we know the decryptions
of a set of primes B, and that we modify the ciphertext by some random
encryption c′ = E(r′, m′). Now, since cc′ ∈ Zn2 , we can find a representative
on the form cc′ = x0+x1n with x0, x1 ∈ {−(n−1)/2, . . . , (n−3)/2}. Suppose
we can find a factorization

x0 =
∏

i

pαi
i .

Set c′′ =
∏

i p
−αi
i . Then

cc′c′′ ≡ x0

∏
i

p−αi
i ≡ 1 (mod n).

So we have a ciphertext which is in H. It is trivial to decrypt. Since we know
the messages encoded by c′ and c′′, we can recover the message encoded by
c. This attack also applies to the case of Z∗

ns .
It is worth noting that this attack does not work against the elliptic curve

variants.

6 A modification

The Naccache-Stern system is not usable in a threshold decryption system,
since knowledge of any element in H allows anyone to factor the modulus.
We describe a small modification to the system that will allow elements of
H to be public.

Let B be a small integer and let u be a B-smooth integer. Let v1 and v2

be prime integers such that p1 = 2v1u + 1 and p2 = 2v2u + 1 are primes and
gcd(v1v2, u) = 1. Let n = p1p2.

Now K is the subgroup of Z∗
n of order v1v2. Let g be an element of order

u such that the images of g in Z∗
p1

and Z∗
p2

both have order u. Then H is a
subgroup of order u generated by g and G = HK. The public key is (n, g).
We let σ′(r) = r2.

It is clear that knowledge of the element g will not reveal anything about
the factorization of n through simple group operations.

14

In order to solve the DSMP using the knowledge that u2 divides φ(n), we
need to be able to determine the order of an element in Z∗

n. This reduces to
recovering v1v2.

Note that since

n = (2v1u + 1)(2v2u + 1) = 4v1v2u
2 + 2(v1 + v2)u + 1

we get that
n− 1

4u2
= v1v2 +

v1 + v2

2u
.

This means that the order v1v2 is close to (n − 1)/4u2. Using a Baby-step
Giant-step type algorithm will require

O(
√

(v1 + v2)/u) = O(

√√
n/u2) = O(n1/4/u)

operations.
Naccache and Stern [7], under the assumption that u1 and u2 are known,

describe an attack on their cryptosystem of complexity O(
√

n/(u1u2)
2). For

a given security parameter τ , we get for our modification that

1

4
log2 n− log2 u = τ ⇔ log2 u =

1

4
log2 n− τ ,

while for the Naccache-Stern cryptosystem we get

1

2
log2 n− 2 log2 u1u2 = τ ⇔ log2 u1u2 =

1

4
log2 n− 1

2
τ .

This means, somewhat surprisingly, that bandwidth is not halved in this vari-
ant, as log2 n increases much faster than log2 τ . The reason is that knowledge
of u1 and u2 leaks some knowledge of v1 and v2, while no knowledge leaks
when u1 = u2.

As the original Naccache-Stern system, this variant extends trivially to
elliptic curves. Compared to the elliptic curve variant of Naccache-Stern,
bandwidth is really halved.

Remark. The same trick can be used to speed up the Paillier scheme, when
G is a subgroup of Z∗

n2 . Of course, u vould be unknown in this case, and
would not be smooth.

7 A combination

It is easy to see that we can combine certain of the cryptosystems we have
described. The idea is that if the cloak K is very large, some of it could

15

be used to carry information. As an example, we can easily combine the
Naccache-Stern and Paillier systems, to achieve a slightly higher bandwidth,
at the expense of a larger public key and more decryption work. With n =
(2v1u1 + 1)(2v2u2 + 1), we would have H be the subgroup of Z∗

n2 of order
u1u2n, and K would be the subgroup of order v1v2.

To optimize encryption, one would publish a generator g only for the
subgroup of order u1u2. Note that H ' Zu1u2 × Zn, so we divide a message
m into m1 and m2 such that m ≡ m1 (mod u1u2) and m ≡ m2 (mod n).
Then we encrypt a message m as gr

Cgm1(1 + m2n).
To decrypt, one can recover m2 as in Paillier’s scheme, then reduce the

ciphertext modulo n and recover m1 as in the Naccache-Stern scheme.
As usual, these concepts have natural generalizations to elliptic curves.

Theorem 7. Let v1, v2, u1, u2, n be as above. Let K, H1 and H2 be the
subgroups of Z∗

n2 of order v1v2, u1u2 and n, respectively. Let G = KH1H2.
Likewise, let K ′ and H ′

1 be the subgroups of Z∗
n of order v1v2 and u1u2,

respectively, and let G′ = K ′H ′
1.

The DSMP (G, K) is hard if and only if both the DSMP (G′, K ′) and the
DSMP (G, KH1) are hard.

Proof. Reduction modulo n gives a map from G to G′. The kernel is obviously
H2, and elements in G of order v1v2 go to elements in G′ of order v1v2. If
c′ ∈ G′ is the image of c ∈ G, then c′ ∈ K ′ if and only if c ∈ KH2.

An element of H1H2 chosen at random will be in H1 or H2 with negligible
probability. So any algorithm that answers either the DSMP (G′, K ′) or the
DSMP (G, KH1) with a significant advantage can solve the DSMP (G, K)
with only negligible worse advantage.

We now prove the converse. First we note that we can turn an instance
c′ of the DSMP (G′, K ′) into an instance of the DSMP (G, KH2), simply by
choosing a representative x and then choose c to be the residue class of x
modulo n2. It is clear that c ∈ KH2 if and only if c′ ∈ K.

An instance c of (G, KH2) can of course be turned into an instance of
the DSMP (G, K), by computing cn. Likewise, an instance c of the DSMP
(G, KH1) can be turned into an instance of the DSMP (G, K) by computing
cu1u2 . But the distribution of these instances will be significantly different
from instances of the DSMP (G, K) drawn uniformly at random.

Now suppose A is an algorithm that can solve the DSMP (G, K), that
is, it can distinguish elements of K from elements of G \K with significant
probability. Suppose it also has negligible advantage when trying to distin-
guish elements of K from elements of KH1. Then the algorithm must have
a significant advantage when distinguishing elements of KH1 from elements
of KH1H2, so it can solve the DSMP (G, KH1).

16

Likewise, if A has negligible advantage when trying to distinguish ele-
ments of K from elements of KH2, it can solve the DSMP (G, KH2).

And finally, if A has non-negligible probability of solving either (KH1, K)
or (KH2, K), then obviously we can solve either (G′, K ′) or (G, KH1).

Remark. Since the modulus for the Naccache-Stern system is somewhat spe-
cial, it is clear that the DSMP for the combined system could be easy, even
though the DSMP for the Paillier system with a more general modulus is
hard.

8 Concluding remarks

We have described a general framework for a certain type of homomorphic
cryptosystems, generalizing most of the proofs to this setting. The advantage
is to simplify descriptions and security proofs. Of course, the security still
depends on the concrete DSMP. We have also described two new cryptosys-
tems, with either new properties or better bandwidth.

All of the cryptosystems described are essentially based on the factoring
problem. If factoring is not hard, then the above systems can all be broken.
It would be very interesting to find a group satisfying the requirements of
Section 2, but where the difficulty of the SDLP and DSMP did not depend
on the difficulty of factoring.

A Proof of Lemma 3

Let Yi represent the event |Xi/l − pi| ≤ ε/k, 1 ≤ i < k. Then

Prob[Yi] = 1− pi(1− pi)

lε2/k2
.

Let Y0 represent the event |X0/l − p0| ≤ (k − 1)ε/k. We have

Prob[X0 = max{Xi}] ≥ Prob[Y0 ∧ Y1 ∧ · · · ∧ Yk−1]

= Prob[Y0|Y1 ∧ · · · ∧ Yk−1] · · ·Prob[Yk−2|Yk−1] Prob[Yk−1].

If we assume Y1 ∧ · · · ∧ Yk−1 and l experiments, then

|X0 − lp0| = |l −X1 − · · · −Xk−1 − l(1− p1 − · · · − pk−1)|
= |X1 − lp1 + X2 − lp2 + · · ·+ Xk−1 − lpk−1|
≤ |X1 − lp1|+ · · ·+ |Xk−1 − lpk−1|

≤ ε

k
+ . . .

ε

k
=

k − 1

k
ε.

17

It follows that Prob[Y0|Y1 ∧ · · · ∧ Yk−1] = 1.
Now we consider Prob[Yi|Yi+1∧· · ·∧Yk−1]. The marginal distribution of Xi

has parameter pi/(1−
∑k−1

j=i+1 pj), and there are a total of l′ = l−
∑k−1

j=i+1 Xj

experiments.
Under the condition Yi+1 ∧ · · · ∧ Yk−1, we get that

l −
k−1∑

j=i+1

(lpj + lε/k) ≤ l′ ≤ l −
k−1∑

j=i+1

(lpj − lε/k).

Then

Prob[Yi|Yi+1 ∧ · · · ∧ Yk−1] = 1−

pi

1−
Pk−1

j=i+1 pj

(
1− pi

1−
Pk−1

j=i+1 pj

)
l′ε2/k2

= 1−
k2pi(1−

∑k−1
j=i pj)

l′(1−
∑k−1

j=i+1 pj)ε2

≥ 1−
k2pi(1−

∑k−1
j=i pj)

l(1−
∑k−1

j=i+1(pj + ε/k))(1−
∑k

j=i+1 pj)ε2

≥ 1− k2pi

l(p0 − (k − 1)ε/k)p2
0ε

2

≥ 1− k3pi

lp2
0ε

3
.

We get

Prob[Y0 ∧ · · · ∧ Yk−1] =
k−1∏
i=1

Prob[Y1|Yi+1 ∧ · · · ∧ Yk−1]

≥πk−1
i=1 (1− k3pi

p2
0ε

3

1

l
)

= 1− kr(1− p0)

p2
0ε

3
+ O((1/l)2).

The result follows.

References

[1] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In FOCS 1997, pages 394–
403, 1997.

18

[2] Dario Catalano, Rosario Gennaro, and Nich Howgrave-Graham. The bit
security of Paillier’s encryption scheme and its applications. In B. Pfitz-
mann, editor, Proceedings of Eurocrypt 2001, volume 2045 of LNCS,
pages 229–243. Springer-Verlag, 2001.

[3] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In Proceedings
of Public Key Cryptography 2001, volume 1992 of LNCS, pages 119–136.
Springer Verlag, 2001.

[4] Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The theory and
implementation of an electronic voting system. In D. Gritzalis, editor,
Secure Electronic Voting. Kluwer Academic Publishers, 2002.

[5] Steven D. Galbraith. Elliptic curve paillier schemes. Journal of Cryp-
tology, 15(2):129–138, 2002.

[6] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28:270–299, April 1984.

[7] D. Naccache and J. Stern. A new public key cryptosystem based on
higher residues. In Proceedings of Eurocrypt ’98, volume 1403 of LNCS,
pages 308–318. Springer Verlag, 1998.

[8] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure
as factoring. In Proceedings of Eurocrypt ’98, volume 1403 of LNCS,
pages 308–318. Springer Verlag, 1998.

[9] P. Paillier. Public-key cryptosystems based on composite degree residue
classes. In Proceedings of Eurocrypt ’99, volume 1592 of LNCS, pages
223–238. Springer-Verlag, 1999.

[10] A. Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

[11] Victor Shoup. Practical threshold signatures. Lecture Notes in Computer
Science, 1807:207–220, 2000.

[12] Akihiro Yamamura and Taiichi Saito. Private information retrieval
based on the subgroup membership problem. In V. Varadharajan and
Y. Mu, editors, Proceedings of ACISP 2001, volume 2119 of LNCS, pages
206–220. Springer-Verlag, 2001.

19

