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Abstract

In this paper we analyse a subclass of normal Boolean functions which when
composed to a non normal function by direct sum produces non normal functions.
Take f(x) to be a non normal function on n-variables and g(y) to be a normal function
on m-variables. It is then important to find out what are the conditions such that
f(x) + g(y) is non normal too. We identify a subclass (call this subclass Sm) of
m-variable normal function such that when n > m, both even, then f(x) + g(y), the
direct sum, is non normal when g(y) ∈ Sm. In a recent paper by Canteaut, Daum,
Dobbertin and Leander (WCC 2003) non normal bent functions are identified for the
first time. The bent functions, which are inside Sm, when composed with non normal
bent functions, produce a wide range of non normal bent functions on higher number
of variables. We prove that all the normal bent functions on m-variables belong to
Sm and hence direct sum of non normal and normal bent functions always produces
non normal bent functions.

Keyword : Boolean Function, Nonlinearity, Normality, Non normality, Bent Func-
tions.

1 Introduction

Given a Boolean function on n-variables (n even), one important question is if there exists
a flat of dimension n

2
such that the function is constant on this space. If such a space exists,

we call the function normal. Prior to 2003, the existence of non normal bent function was
not known, though the question has been posed by Dobbertin as early as in 1994 [8]. Very
recently such functions could be constructed [1] for n ≥ 10. The case for n = 10 has been
demonstrated by the following example [1]. Let α ∈ F4 \ F2 ⊂ F210 . Then there exists
β ∈ F210 such that the function f : F210 → F2 with f(x) = Tr(αx57 + βx) is non normal.
That this function is non normal was proved by running the algorithm presented in [5].
For the cases n ≥ 12, existence of non normal bent function has been shown [1] by the

1



simple recursive construction h(x, y) = f(x) + g(y), where g(y) is basically a two variable
function g(y1, y2) = y1y2.

In this paper we try to achieve further generalization. We could identify a subclass
of normal functions which when composed to non normal functions by direct sum always
produce non normal functions.

Let x ∈ Fn
2 , y ∈ Fm

2 , f : Fn
2 → F2, g : Fm

2 → F2 and h(x, y) = f(x) + g(y). If f(x), g(y)
are normal, then it is clear that h(x, y) is also normal. However, the other direction is not
completely answered yet. It is not clear that when g(y), h(x, y) are normal then what is
the status of f(x). Therefore one would be interested to identify a subclass of m-variable
normal functions such that for any g(y) is in that class, f(x) is normal. In this paper,
we present an important sufficient condition on g(y)’s and identify a subclass of normal
functions (call it Sm) satisfying this.

Thus if f(x) is non normal and g(y) ∈ Sm, then h(x, y) is also non normal (see Theo-
rem 2 for more details). Further if f(x), g(y) are both bent, then h(x, y) is a non normal
bent function. As a major contribution we show that all the normal bent functions belong
to Sm. Hence the direct sum of non normal and normal bent functions always produces
non normal bent functions.

1.1 Preliminaries

In this section we present some definitions and notations following [1]. In this paper we
always consider m, n as two positive integers. By an n-variable Boolean function we mean
f : Fn

2 → F2. Given a function f : Fn
2 → F2, the function

a ∈ Fn
2 7→ fw(a) =

∑
x∈Fn

2

(−1)f(x)+<a,x>

is called the Walsh transform of f . Moreover, the fw(a), a ∈ Fn
2 are called the Walsh

coefficients of f . A function f : Fn
2 → F2 is called bent [9] if for all a ∈ Fn

2 , fw(a) = ±2
n
2 .

These functions possess maximum possible nonlinearity on even number of variables. It is
also known that ∑

x∈Fn
2

(−1)f(x)+f(x+α) = 0

for any nonzero α ∈ Fn
2 iff f is bent [9].

A flat of dimension d of Fn
2 is a coset of one of its d dimensional subspaces. A function

f : Fn
2 → F2 is called normal (respectively weakly normal) if there exists a flat of dimension

n
2

such that f is constant (respectively affine) on this flat. It is clear that a function f is
weakly normal if and only if there exists an element a ∈ Fn

2 such that f(x)+ < a, x > is
normal.

Important characterizations of bent functions were provided by Rothaus in [9]. Different
subclasses of normal bent functions have been identified by Dillon in [6, 7]. Carlet has also
presented normal bent functions [3] which were not covered by Dillon. See [4, 2] for more
recent references on bent functions.
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2 The Subclass Sm of Normal Functions

We first start with a well known simple result for clarity.

Proposition 1 Let x ∈ Fn
2 , y ∈ Fm

2 , f : Fn
2 → F2, g : Fm

2 → F2 and h(x, y) = f(x) + g(y).
If f(x), g(y) are normal, then h(x, y) is also normal.

Proof : If f is normal, then there exists an n
2

dimensional flat E1 over which f is constant.
Similarly if g is normal, then there exists an m

2
dimensional flat E2 over which g is constant.

Then E1 × E2 is an n+m
2

dimensional flat in Fn
2 × Fm

2 over which h(x, y) is constant.
However, it is not clear that when g(y), h(x, y) are both normal, then what is the status

of f(x). In [1, Lemma 10, Page 94], it has been shown that if g(y) = g(y1, y2) = y1y2, in
that case f(x) is normal. We generalize this result further. For this we need to describe a
subset Sm of the set of normal functions.

Definition 1 Let y ∈ Fm
2 , m even. Let g(y) be an m-variable normal Boolean function.

The function g(y) ∈ Sm if there exists an m
2

dimensional flat, say E(g), on which g(y) is
constant and the following propertry holds:

given any nonzero α ∈ V (g), there exists at least one β ∈ Fm
2 such that g(β) 6= g(α + β)

where E(g) = y(g) + V (g), V (g) is an m
2

dimensional vector subspace of Fm
2 and y(g) ∈ Fm

2 .

Proposition 2 Let A be a nonsingular m ×m binary matrix and b ∈ Fm
2 . The function

g(y) ∈ Sm if and only if g(Ay + b) ∈ Sm.

Proof : Suppose g ∈ Sm. Then g is constant on an m
2

dimensional flat E(g) for which the
property in Definition 1 holds. It is possible to write E(g) = y(g) + V (g) for some y(g) ∈ Fm

2

and m
2

dimensional subspace V (g). Let y 7→ Ay + b be any affine transformation on Fm
2 .

The inverse of this affine transformation can be written as y 7→ By + d where B = A−1

and d = −A−1b (basically d = A−1b since we work on fields of characteristic 2).
Let g̃(y) = g(Ay + b). Thus in the other direction g̃(By + d) = g(y). Note that

E(g̃) = (By(g) + d) + BV (g) is an m
2

dimensional flat over which the function g̃(y) is
constant. Thus g̃(y) is normal. Note that V (g̃) = BV (g) is also an m

2
dimensional subspace

of Fm
2 .
Since g(y) ∈ Sm, for any α ∈ V (g) there exists β ∈ Fm

2 such that g(β) 6= g(α+β). From
this we obtain g̃(Bβ + d) 6= g̃((Bβ + d) + Bα). When α varies over whole of V (g) then Bα
varies over whole of V (g̃). Thus, if g(y) ∈ Sm then g̃(y) ∈ Sm too. The other direction can
be proved similarly.

Now we present the following important result which is a generalization of [1, Lemma
10, Page 94].

Theorem 1 Let n > m, both even. Let x ∈ Fn
2 , y ∈ Fm

2 , f : Fn
2 → F2, g : Fm

2 → F2 and
h(x, y) = f(x) + g(y). Let h(x, y) be normal. Further if g(y) ∈ Sm then f(x) is normal.
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Proof : Since h(x, y) is normal, it has a binary constant value (say c) on an n+m
2

dimen-
sional flat E. Define

Ey = {x ∈ Fn
2 |(x, y) ∈ E} and E(f) =

⋃
y∈E(g)

Ey.

Take any x, x′ ∈ E(f). Then there exists y, y′ ∈ E(g) such that (x, y), (x′, y′) ∈ E.
Therefore h(x, y) = h(x′, y′) = c. Since y, y′ ∈ E(g), g(y) = g(y′) and hence f(x) = f(x′).
Thus the function f(x) is constant over E(f).

Let x, x′, x′′ ∈ Ey. Then (x, y), (x′, y), (x′′, y) ∈ E and hence (x, y)+(x′, y)+(x′′, y) ∈ E,
since E is a flat. Thus, (x+x′ +x′′, y) ∈ E. Therefore, x+x′ +x′′ ∈ Ey. Thus Ey is a flat.
Since Ey is a flat and f is constant on Ey, if the dimension of Ey is ≥ n

2
, then we are done.

Otherwise, the dimension of each Ey is equal and the value is n
2
− i where 1 ≤ i ≤ m

2
.

Let x, x′, x′′ ∈ E(f). Hence there exists y, y′, y′′ ∈ E(g) such that (x, y), (x′, y′), (x′′, y′′) ∈
E. Hence (x, y) + (x′, y′) + (x′′, y′′) ∈ E, since E is a flat. (x + x′ + x′′, y + y′ + y′′) ∈ E.
Hence x + x′ + x′′ ∈ Ey+y′+y′′ . But y + y′ + y′′ ∈ E(g). Thus x + x′ + x′′ ∈ E(f). Hence E(f)

is a flat.
Now we will show that if g(y) ∈ Sm (see Definition 1), then the dimension of E(f) is

≥ n
2
.
For this first we show that for distinct y, y′ ∈ E(g), Ey ∩ Ey′ = ∅. If possible, let

x ∈ Ey ∩ Ey′ . Then both (x, y), (x, y′) ∈ E. Put α = y + y′. Hence α ∈ V (g). Since
g(y) ∈ Sm, there exists β ∈ Fm

2 such that g(β) 6= g(α + β).
Since n > m, for any β ∈ Fm

2 , there exists x′ ∈ F n
2 such that (x′, β) ∈ E. Hence

(x, y) + (x, y′) + (x′, β) = (x′, α + β) ∈ E. Also (x′, β) ∈ E. Hence, h(x′, β) = h(x′, α + β).
This implies g(β) = g(α + β), which is a contradiction.

Thus |E(f)| =
∑

y∈E(g) |Ey| =
∑

y∈E(g) 2
n
2
−i = 2

m
2 2

n
2
−i = 2

n+m
2

−i ≥ 2
n
2 , since 1 ≤ i ≤ m

2
.

Therefore E(f) is an (at least) n
2

dimensional flat.
Theorem 1 immediately provides the following result.

Theorem 2 Let n > m, both even. Let x ∈ Fn
2 , y ∈ Fm

2 , f : Fn
2 → F2, g : Fm

2 → F2. Let
f(x) be non normal and g(y) ∈ Sm. Then h(x, y) = f(x) + g(y) is non normal.

Proof : Let us consider the following : P : h(x, y) is normal, Q : g(y) ∈ Sm, and R : f(x)
is normal.

We have shown in Theorem 1 that P ∧ Q ⇒ R. Now P ∧ Q ⇒ R ≡ ¬(P ∧ Q) ∨ R ≡
(¬P ∨ ¬Q) ∨ R ≡ (R ∨ ¬Q) ∨ ¬P ≡ ¬(¬R ∧ Q) ∨ ¬P ≡ ¬R ∧ Q ⇒ ¬P . Thus we have
proved that if f(x) is non normal and g(y) ∈ Sm then h(x, y) is non normal.

In fact the 2-variable function g(y) = g(y1, y2) = y1y2 described in [1, Lemma 10, Page
94] belongs to S2. It is clear that the recursive application of the two variable function
g(y) = g(y1, y2) = y1y2 described in [1, Lemma 10, Page 94] provides a general form
g(y) = g(y1, . . . , ym) = y1y2+. . .+ym−1ym when applied m

2
times. Thus using the arguement

of [1, Lemma 10, Page 94] it is clear that if f(x) is non normal bent, then f(x)+g(y) is also
non normal bent. It is clear that the function g(y) = g(y1, . . . , ym) = y1y2 + . . . + ym−1ym

is normal. We will now present a much generalized result that any normal bent function
belongs to Sm.
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Lemma 1 Let g(y) be an m-variable normal bent function. Then g(y) ∈ Sm.

Proof : Suppose if possible g(y) /∈ Sm. Since g(y) is normal, there exists an m
2

dimensional
flat, say E(g), on which g(y) is constant. Let E(g) = y(g) + V (g), where V (g) is an m

2

dimensional vector subspace of Fm
2 and y(g) ∈ Fm

2 .
As we have taken g(y) /∈ Sm, there exists a nonzero α ∈ V (g), such that g(β) =

g(α + β) for all β ∈ Fm
2 . Thus

∑
y∈Fm

2
(−1)g(y)+g(y+α) = 2m. However, it is known that∑

y∈Fm
2
(−1)g(y)+g(y+α) = 0 for any nonzero α ∈ Fm

2 iff g is bent [9]. Hence we land into a
contradiction. Thus the proof.

Thus we get the following important result.

Theorem 3 Let n > m, both even. Let x ∈ Fn
2 , y ∈ Fm

2 , f : Fn
2 → F2, g : Fm

2 → F2. Let
f(x) be non normal bent and g(y) be a normal bent function. Then h(x, y) = f(x) + g(y)
is a non normal bent function.

Proof : The proof follows from Lemma 1 and Theorem 2.
It should be noted that the requirement n > m in Theorem 3 does not pose a serious

constraint for construction of non normal bent functions. Suppose we have an n-variable
non normal bent function and our requirement is to construct an (n + m)-variable non
normal bent function, where m > n. Then we can write m as a sum m = m1 + . . . + mk

with the property m1 < n,m2 < n + m1, . . . ,mk < n + m1 + . . . + mk−1, where all mi’s are
even. To the initial non normal bent function we add successively mi-variable normal bent
functions for i = 1, . . . , k. Final result is a non normal bent function on (n + m)-variables.
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