
Trading-Off Type-Inference Memory Complexity
Against Communication

Konstantin Hyppönen1, David Naccache2, Elena Trichina1, and Alexei
Tchoulkine2

1 University of Kuopio
Department of Computer Science

Po.B. 1627, FIN-70211, Kuopio, Finland
{konstantin.hypponen, elena.trichina}@cs.uku.fi

2 Gemplus Card International
Applied Research & Security Centre

34 rue Guynemer, Issy-les-Moulineaux, 92447, France
{david.naccache, alexei.tchoulkine}@gemplus.com

Abstract. While bringing considerable flexibility and extending the
horizons of mobile computing, mobile code raises major security issues.
Hence, mobile code, such as Java applets, needs to be analyzed before ex-
ecution. The byte-code verifier checks low-level security properties that
ensure that the downloaded code cannot bypass the virtual machine’s se-
curity mechanisms. One of the statically ensured properties is type safety.
The type-inference phase is the overwhelming resource-consuming part
of the verification process.
This paper addresses the RAM bottleneck met while verifying mobile
code in memory-constrained environments such as smart-cards. We pro-
pose to modify classic type-inference in a way that significantly reduces
the memory consumption in the memory-constrained device at the detri-
ment of its distrusted memory-rich environment.
The outline of our idea is the following, throughout execution, the mem-
ory frames used by the verifier are MAC-ed and exported to the terminal
and then retrieved upon request. Hence a distrusted memory-rich ter-
minal can be safely used for convincing the embedded device that the
downloaded code is secure.
The proposed protocol was implemented on JCOP20 and JCOP30 Java
cards using IBM’s JCOP development tool.

1 Introduction

The Java Card architecture for smart cards [1] allows new applications, called
applets, to be downloaded into smart cards. While general security issues raised
by applet download are well known [9], transferring Java’s safety model into
resource-constrained devices such as smart cards appears to require the devising
of delicate security-performance trade-offs.

When a Java class comes from a distrusted source, there are two basic man-
ners to ensure that no harm will be done by running it.

The first is to interpret the code defensively [2]. A defensive interpreter is
a virtual machine with built-in dynamic runtime verification capabilities. De-
fensive interpreters have the advantage of being able to run standard class files
resulting from any Java compilation chain but appear to be slow: the security
tests performed during interpretation slow-down each and every execution of
the downloaded code. This renders defensive interpreters unattractive for smart
cards where resources are severely constrained and where, in general, applets are
downloaded rarely and run frequently.

Another method consists in running the newly downloaded code in a com-
pletely protected environment (sandbox), thereby ensuring that even hostile code
will remain harmless. In this model, applets are not compiled to machine lan-
guage, but rather to a virtual-machine assembly-language called byte-code.

Upon download, the applet’s byte-code is subject to a static analysis called
byte-code verification which purpose is to make sure that the applet’s code is
well-typed. This is necessary to ascertain that the code will not attempt to violate
Java’s security policy by performing ill-typed operations at runtime (e.g. forging
object references from integers or calling directly API private methods). Today’s
de facto verification standard is Sun’s algorithm [7] which has the advantage
of being able to verify any class file resulting from any standard compilation
chain. While the time and space complexities of Sun’s algorithm suit personal
computers, the memory complexity of this algorithm appears prohibitive for
smart cards, where RAM is a significant cost-factor.

This limitation gave birth to a number of innovating workarounds:
Leroy [5, 6] devised a verification scheme which memory complexity equals the

amount of RAM necessary to run the verified applet. Leroy’s solution relies on
off-card code transformations whose purpose is to facilitate on-card verification
by eliminating the memory-consuming fix-point calculations of Sun’s original
algorithm.

Proof carrying code [11] (PCC) is a technique by which a side product of
the full verification, namely, the final type information inferred at the end of
the verification process (fix-point), is sent along with the byte-code to allow a
straight-line verification of the applet. This extra information causes some trans-
mission overhead, but the memory needed to verify a code becomes essentially
equal to the RAM necessary to run it. A PCC off-card proof-generator is a rather
complex software.

Various other ad-hoc memory-optimization techniques exist as well [10, 8].

Our results: The work reported in this paper describes an alternative byte-
code verification solution. Denoting by Mmax the number of variables claimed
by the verified method and by J the number of jump targets in it, we show
how to securely distribute the verification procedure between the card and the
terminal so as to reduce the card’s memory requirements from O(MmaxJ) to
O(J log J + cMmax) where c is a small language-dependent constant or, when a
higher communication burden is tolerable, to a theoretic O(log J + cMmax).

The rest of the paper is organized as follows: the next section recalls Java’s
security model and Sun’s verification algorithm with a specific focus on its data-

flow analysis part. The subsequent sections describe the new verification proto-
col, which implementation details are given in the last section.

2 Java Security

The Java Virtual Machine (JVM) Specification [7] defines the executable file
structure, called the class file format, to which all Java programs are compiled.
In a class file, the executable code of methods (Java methods are the equivalent
of C functions) is found in code-array structures. The executable code and some
method-specific runtime information (namely, the maximal operand stack size
Smax and the number of local variables Lmax claimed by the method3) constitute
a code-attribute. We briefly overview the general stages that a Java code goes
through upon download.

To begin with, the classes of a Java program are translated into independent
class files at compile-time. Upon a load request, a class file is transferred over
the network to its recipient where, at link-time, symbolic references are resolved.
Finally, upon method invocation, the relevant method code is interpreted (run)
by the JVM.

Java’s security model is enforced by the class loader restricting what can be
loaded, the class file verifier guaranteeing the safety of the loaded code and the
security manager and access controller restricting library methods calls so as
to comply with the security policy. Class loading and security management are
essentially an association of lookup tables and digital signatures and hence do not
pose particular implementation problems. Byte-code verification, on which we
focus this paper, aims at predicting the runtime behavior of a method precisely
enough to guarantee its safety without actually having to run it.

2.1 Byte-Code Verification

Byte-code verification [4] is a link-time phase where the method’s run-time be-
havior is proved to be semantically correct.

The byte-code is the executable sequence of bytes of the code-array of a
method’s code-attribute. The byte-code verifier processes units of method-code
stored as class file attributes. An initial byte-code verification pass breaks the
byte sequence into successive instructions, recording the offset (program point)
of each instruction. Some static constraints are checked to ensure that the byte-
code sequence can be interpreted as a valid sequence of instructions taking the
right number of arguments. As this ends normally, the receiver assumes that the
analyzed file complies with the general syntactical description of the class file
format.

Then, a second verification step ascertains that the code will only manipulate
values which types are compatible with Java’s safety rules. This is achieved by a
type-based data-flow analysis which abstractly executes the method’s byte-code,

3 Mmax = Lmax + Smax.

by modelling the effect of the successive byte-codes on the types of the variables
read or written by the code.

The next section explains the semantics of type checking, i.e., the process
of verifying that a given pre-constructed type is correct with respect to a given
class file. We explain why and how such a type can always be constructed and
describe the basic idea behind data-flow analysis.

The Semantics of Type Checking A natural way to analyze the behavior
of a program is to study its effect on the machine’s memory. At runtime, each
program point can be looked upon as a memory instruction frame describing
the set of all the runtime values possibly taken by the JVM’s stack and local
variables.

Since run-time information, such as actual input data is unknown before
execution starts, the best an analysis may do is reason about sets of possible
computations. An essential notion used for doing so is the collecting semantics
defined in [3] where, instead of computing on a full semantic domain (values),
one computes on a restricted abstract domain (types).

↑
stack growth

12711

@346

127.55

1113

= values Ã
int

Ljava/lang/String;

FH

FL

int

= types

For reasoning with types, one must precisely classify the information ex-
pressed by types. A natural way to determine how (in)comparable types are is
to rank all types in a lattice L. A brief look at the toy lattice depicted below
suffices to find-out that animal is more general than fly, that int and spider
are not comparable and that cat is a specific animal. Hence, knowing that a
variable is designed to safely contain an animal, one can infer that no harm can
occur if during execution this variable would successively contain a cat, a fly
and an insect. However, should the opposite be detected (e.g. an instruction
would attempt to use a variable supposed to contain an animal as if it were a
cat) the program should be rejected as unsafe.

The most general type is called top and denoted >. > represents the potential
simultaneous presence of all types, i.e. the absence of (specific) information. By
definition, a special null-pointer type (denoted null) terminates the inheritance
chain of all object descendants.

Formally, this defines a pointed complete partial order (CPO) ¹ on the lattice
L.

>
↙ ↘

int Object
↓

animal
↙ ↘

cat insect
↓ ↙ ↓ ↘

null spider bee fly
↓ ↓ ↓

null null null

Stack elements and local variable types are hence tuples of elements of L to
which one can apply point-wise ordering.

L =

>
↙ ↓ ↘

int · · · Object
↙ ↓ ↘

τ1 · · · τk

↙ ↓ ↘ ↙ ↓ ↘
.
.
. · · ·

.

.

.
.
.
. · · ·

.

.

.
τ··· τ··· τ··· τ···
↓ ↓ ↓ ↓ ↓ ↓

null null null null null null

Abstract Interpretation The verification process described in [7] §4.9, is an
(iterative data-flow analysis) algorithm that attempts to build an abstract de-
scription of the JVM’s memory for each program point. A byte-code is safe if
the construction of such an abstract description succeeds.

Assume, for example, that an iadd is present at some program point. The i
in iadd hints that this instruction operates on integers. iadd’s effect on the JVM
is indeed very simple: the two topmost stack elements are popped, added and
the sum is pushed back into the stack. An abstract interpreter will disregard the
arithmetic meaning of iadd and reason with types: iadd pops two int elements
from the stack and pushes back an int. From an abstract perspective, iadd and
isub have identical effects on the JVM.

As an immediate corollary, a valid stack for executing an iadd must have a
value which can be abstracted as int.int.S, where S may contain any sequence
of types (which are irrelevant for the interpretation of our iadd). After executing
iadd the stack becomes int.S

Denoting by L the JVM’s local variable area (irrelevant to iadd), the total
effect of iadd’s abstract interpretation on the JVM’s memory can be described
by the transition rule Φ:

iadd : (int.int.S, L) 7→ (int.S, L)

The following table defines the transition rules of seven representative JVM
instructions4.

4 Note that the test n ∈ L is equivalent to ascertaining that 0 ≤ n ≤ Lmax.

Instruction Transition rule Φ Security test

iconst[n] (S, L) 7→ (int.S, L) | S |< Smax
iload[n] (S, L) 7→ (int.S, L) n ∈ L, L[n] == int, | S |< Smax
istore[n] (int.S, L) 7→ (S, L{n → int}) n ∈ L
aload[n] (S, L) 7→ (L[n].S, L) n ∈ L, L[n] ¹ Object, | S |< Smax
astore[n] (τ.S, L) 7→ (S, L{n → τ}) n ∈ L, τ ¹ Object

dup (τ.S, L) 7→ (τ.τ.S, L) | S |< Smax
getfield C.f.τ (ref(D).S, L) 7→ (τ.S, L) D ¹ C

For the first instruction of the method, the local variables that represent
parameters are initialized with the types τj indicated by the method’s signature;
the stack is empty (ε) and all other local variables are filled with >s. Hence, the
initial frame is set to:

(ε, (this, τ1, . . . , τn−1,>, . . . ,>))

For other instructions, no information regarding the stack or the local variables
is available.

Verifying a method whose body is a straight-line code (no branches), is easy:
we simply iterate the abstract interpreter’ transition function Φ over the succes-
sive instructions, taking the stack and register types after any given instruction
as the stack and register types before the next instruction. The types describing
the successive JVM memory-states produced by the successive instructions are
called working frames.

Denoting by in(i) the frame before instruction i and by out(i) the frame
after instruction i, we get the following data-flow equation where evaluation
starts from the right:

in(i + 1) ← out(i) ← Φi(in(i))

Branches introduce forks and joins into the method’s flowchart. Let us illus-
trate these with the following example:

program point Java code

int m (int q) {
p1 ↪→

int x;

int y;

if (q == 0)

p2 ↪→ { x = 1; ... }
p3 ↪→ else { y = 2; ... }
p4 ↪→

... }

After program point p1 one can infer that variable q has type int. This is
denoted as out(p1) = {q = int, x = >, y = >}. After the if’s then branch, we
infer the type of variable x, i.e., out(p2) = {q = int, x = int, y = >}. After the
else, we learn that out(p3) = {q = int, x = >, y = int}.

However, at p4, nothing can be said about neither x nor y. We hence pru-
dently assume that in(p4) = {q = int, x = >, y = >} by virtue of the principle

that if two execution paths yield different types for a given variable, only the
lesser-information type can serve for further calculations. In other words, we
assume the worst and check that, still, type-violations will not occur.

Thus, if an instruction i has several predecessors with different exit frames, i’s
frame is computed as the least common ancestor5 (LCA) of all the predecessors’
exit frames:

in(i) = LCA{out(i) | j ∈ Predecessor(i)}.
In our example: in(p4) = {q = int, x = > = LCA(int,>), y = > =

LCA(>, int)}.
Finding an assignment of frames to program points which is sufficiently con-

servative for all execution paths requires testing them all; this is what the ver-
ification algorithm does. Whenever some in(i) is adjusted, all frames in(j) that
depend on in(i) have to be adjusted too, causing additional iterations until a
fix-point is reached (i.e., no more adjustments are required). The final set of
frames is a proof that the verification terminated with success. In other words,
that the byte-code is well-typed.

2.2 Sun’s Type-Inference Algorithm

The algorithm below which summarizes the verification process, is taken from
[7]. The treatment of exceptions (straightforward) is purposely omitted for the
sake of clarity.

The initialization phase of the algorithm consists of the following steps:

1. Initialize in(0) ← (ε, (this, τ1, . . . , τn−1,>, . . . ,>)) where (τ1, . . . , τn−1) is
the method’s signature.

2. A ‘changed’ bit is associated to each instruction, all ‘changed’ bits are set to
zero except the first.

Execute the following loop until no more instructions are marked as ‘changed’
(i.e., a fix-point is reached).

1. Choose a marked instruction i. If there aren’t any, the method is safe (exit).
Otherwise, reset the ‘changed’ bit of the selected instruction.

2. Model the effect of the instruction on in(i) by doing the following:
– If the instruction uses values from the stack, ensure that:

• There are sufficiently many values on the stack, and that
• The topmost stack elements are of types that suit the executed in-

struction.
Otherwise, verification fails.

– If the instruction uses local variables:
• Ascertain that these local variables are of types that suit the executed

instruction.
Otherwise, verification fails.

5 The LCA operation is frequently called unification.

– If the instruction pushes values onto the stack:
• Ascertain that there is enough room on the stack for the new values.

If the new stack’s height exceeds Smax, verification fails;
• Add the types produced by the instruction to the top of the stack.

– If the instruction modifies local variables, record these new types in
out(i).

3. Determine the instructions that can potentially follow instruction i. A suc-
cessor instruction can be one of the following:
– For most instructions, the successor instruction is just the next instruc-

tion;
– For a goto, the successor instruction is the goto’s jump target;
– For an if, both the if’s remote jump target and the next instruction

are the successors;
– return has no successors.
– Verification fails if it is possible to “fall off” the last instruction of the

method.
4. Unify out(i) with the in(k)-frame of each successor instruction k.

– If this successor instruction k is visited for the first time,
• record that out(i) calculated in step 2 is now the in(k)-frame of the

successor instruction;
• mark the successor instruction by setting the ‘changed’ bit.

– If the successor instruction has been visited before,
• Unify out(i) with the successor instruction’s (already present) in(k)-

frame and update: in(k) ← LCA(in(k), out(i)).
• If the unification caused modifications in in(k), mark the successor

instruction k by setting its ‘changed’ bit.
5. Go to step 1.

If the code is safe, the algorithm must exit without reporting a failure.
As one can see, the time complexity of this algorithm is upper-bound by the

O(D × I × J × Lmax), where D is the depth of the type lattice, I is the total
number of instructions and J is the number of jumps in the method.

While from a theoretical standpoint, time complexity can be bounded by a
crude upper bound O(I4)6, practical experiments show that each instruction is
usually parsed less than twice during the verification process.
6 In the worst case, all instructions are jumps, and each instruction acts on c different

variables, i.e., Lmax = c× I, where c is a language-dependent constant representing
the maximal number of variables possibly affected by a single instruction. Addition-
ally, one may show (stemming from the observation that the definition of a new type
requires at least one new instruction) that D is the maximal amongst the depth of
the primitive data part of the type lattice L (some langauge-dependent constant)
and I. This boils down to a crude upper bound O(I4). Considering that byte-code
verification takes place only once upon applet downloading, even a relatively high
computational overload would not be a barrier to running a byte-code verifier on
board.

Space (memory) complexity is much more problematic, since a straightfor-
ward coding of Sun’s algorithm yields an implementation where memory com-
plexity is bound by O(ILmax). Although this is still polynomial in the size of
the downloaded applet, one must not forget that if Lmax RAM cells are avail-
able on board for running applets, applets are likely to use up all the available
memory so as to optimize their functional features, which in turn would make
it impossible to verify these same applets on board. Here again, a straightfor-
ward simplification allows to reduce this memory complexity from O(ILmax) to
O(JLmax).

3 Trading-Off On-Board RAM Against Communication

A smart card is nothing but one element in a distributed computing system
which, invariably, comprises terminals (also called card readers) that allow cards
to communicate with the outside world.

Given that terminals usually possess much more RAM than cards, it seems
natural to rely on the terminal’s storage capabilities for running the verification
algorithm. The sole challenge being that data stored in the terminal’s RAM can
be subject to tampering.

Note that the capacity of working with remote objects (Remote Method
Invocation) would make the implementation of such a concept rather natural in
Java7.

3.1 The Data Integrity Mechanism

Our goal being to use of the terminal’s RAM to store the frames created during
verification, the card must embark a mechanism allowing to ascertain that frame
data is not modified without the card’s consent. Luckily, a classic cryptographic
primitive called MAC (Message Authentication Code) [12] does just that.

It is important to stress that most modern cards embark ad hoc crypto-
graphic co-processors that allow the computation of MACs in a few clock cycles.
The on-board operation of such co-processors is particularly easy through the
cryptographic classes and Java Card’s standard APIs. Finally, the solution that
we are about to describe does not impose upon the terminal any cryptographic
computations; and there is no need for the card and the terminal to share secret
keys.

Before verification starts, the card generates an ephemeral MAC key k; this
key will be used only for one method verification. We denote by fk(m) the MAC
function, applied to data m. k should be long enough (typically 160 bits long) to
avoid the illicit recycling of data coming from different runs of the verification
algorithm.

The protocol below describes the solution implemented by our prototype.
In the coming paragraphs we use the term working frame, when speaking of
7 However, because of the current limitations of Java Cards, the prototype reported

in this paper does not rely on RMIs.

in(i + 1) ← out(i) ← Φi(in(i)). In other words, the working frame is the current
input frame in(i + 1) of the instruction i which is just about to be modelled.

For simplicity, we assume that instruction number i is located at offset i.
Shouldn’t this be the case, a simple lookup table A[i], which output represents
the real offset of the i-th instruction, will fix the problem.

The card does not keep the frames of the method’s instructions in its own
RAM but uses the terminal as a repository for storing them. To ascertain data
integrity, the card sends out, along with the data, MACs of the outgoing data.
These MACs will subsequently allow the card to ascertain the integrity of the
data retrieved from the terminal (in other words, the card simply sends MACs
to itself via the terminal).

The card associates with each instruction i a counter ci kept in card’s RAM.
Each time that instruction i is rechecked (modelled) during the fix-point com-
putation, its ci is incremented inside the card. The role of ci is to avoid playback
attacks, i.e. the malicious substitution of type information by an older versions
of this type information.

3.2 The New Byte-code Verification Strategy

The initialize step is replaced by repeating the following for 2 ≤ i ≤ I:

1. Form a string representing the initialized (void) type information (frame) Fi

for instruction i.
2. Append to this string a counter ci representing the current number of times

that instruction i was visited. Start with ci ← 0.
3. Compute ri = fk(unchanged, ci, i, Fi) = fk(unchanged, 0, i, Fi).
4. Send to the terminal {unchanged, Fi, i, ri}.

Complete the initialization step by:

1. Sending to the terminal {changed, F1 ← (ε, (this, τ1, . . . , τn−1,>, . . . ,>)),
1, r1 ← fk(changed, c1 ← 0, 1, F1)},

2. Initializing an on-board counter τ ← 1.

In all subsequent descriptions check ri means: re-compute ri based on the
current i, the {ci, k} kept in the card and {Fi, changed/unchanged bit} sent back
by the terminal and if the result disagrees with the ri sent back by the terminal,
reject the applet.

The main fix-point loop is the following:

1. If τ = 0 accept the applet, else query from the terminal an Fi for an instruc-
tion i which bit is set to changed.
(a) Check if the transition rules allow executing the instruction. In case of

failure reject the applet.
(b) Apply the transition rules to the type information Fi received back from

the terminal and store the result in the working frame.

2. For all potential successors j of the instruction at i:
(a) Query the terminal for {Fj , rj}; check that rj is correct.
(b) Unify the working frame with Fj . If unification fails reject the applet.
(c) If unification yields a frame F ′j different than Fj then

– increment cj , increment τ
– compute rj = fk(changed, cj , j, F

′
j), and

– send to the terminal {changed, F ′j , j, rj}.
The terminal can now erase the old values at entry j and replace them
by the new ones.

3. Decrement τ , increment ci, re-compute ri and send {unchanged, Fi, i, ri} to
the terminal. Again, the terminal can now erase the old values at entry i
and replace them by the new ones.

4. Goto 1.

The algorithm that we have just described only requires the storage of I ci-
counters. Since time complexity will never exceed O(I4), any given instruction
can never be visited more than O(I4) times. The counter size can hence be
bound by O(log I) thereby resulting in an overall on-board space complexity of
O(I log I + cLmax). where c is a small language-dependent constant (the cLmax

component of the formula simply represents the memory space necessary for the
working frame).

Note that although in our presentation we allotted for clarity a ci per in-
struction, this is not actually necessary since the same ci can be shared by every
sequence of instructions into which no jumps are possible; this O(J log J+cLmax)
memory complexity optimization is evident to Java verification practitioners.

3.3 Reducing In-card Memory to O(log I + cLmax)

By exporting also the ci values to the terminal, we can further reduce card’s
memory requirements to O(log I + cLmax). This is done by implementing the
next protocol in which all the ci values are kept in the terminal.

The card generates a second ephemeral MAC key k′ and stores a single
counter t, initialized to zero.

– Initialization: The card computes and sends mi ← fk′(i, ci ← 0, t ← 0) to
the terminal for 1 ≤ i ≤ I.

– Read ci: To read a counter ci:
• The card sends a query i to the terminal.
• The terminal returns {ci, mi}.
• The card checks that mi = fk′(i, ci, t) and if this is indeed the case then

ci can be used safely (in case of MAC disagreement the card rejects the
applet).

– Increment ci: to increment a counter ci:
1. For j = 1 to I:

• Execute Read cj

• If i = j, the card instructs the terminal to increment ci.
• The card computes mj = fk′(j, cj , t + 1) and sends this updated mj

to the terminal.
2. The card increments t.

The value of t being at most equal to the number of steps executed by the
program, t occupies an O(log I) space (in practice, a 32 bit counter). Note, how-
ever, that the amount of communication and computations is rather important:
for every ci update, the terminal has to send back to the card the values and
MACs of all counters associated with the verified method; the card checks all
the MACs, updates them correspondingly, and sends them back to the terminal.

4 Implementation Details

We implemented algorithm 3.2 as a usual Java Card applet. It is uploaded onto
the card and after initialization, waits a new applet to be received in order to
check it for type safety. Thus, our prototype does not have any access to the
Java Card Runtime Environment (JCRE) structures nor to Installer’s functions
and by no means can it access information about the current contents of the
card and packages residing on it. However, the purpose of our code is to check
the type safety of newly uploaded applets. Given that new applets can make use
of packages already existing on board, our verifier should have full information
about the following structures:

– the names of the packages already present on board and classes in these
packages;

– methods for resident classes, along with their signatures;
– fields in resident classes and their types.

Since this information cannot be obtained from the card itself, we had to assume
that the newly downloaded applet uses only common framework packages, and
pre-embed the necessary information about these packages into our verifier.

The type lattice information is “derived” by the verifier from the superclass
references and interface references stored in the byte arrays of classes.

The terminal-side applet plays an active role in the verification process; it
calls methods of the card-side applet and sends them all the necessary data.

4.1 Programming Tools and Libraries

The prototype has been implemented as a “normal” Java Card applet. It enjoys
the full functionality of Sun’s off-card verifier, that we reverse-engineered in the
course of this project using a special application called dump, from the JTrek
library [13] originally developed by Compaq8.

JTrek contains the Trek class library, which allows navigation and manipu-
lation of Java class files, as well as several applications built around this library;
8 JTrek is no longer downloadable from its web page.

dump being one such application. dump creates a text file containing requested
information for each class file of the trek (i.e., a path through a list of class files
and their objects); in particular, the generated text file may contain class file’s
attributes, instructions, constant pool, and source statements. All this makes it
possible to reconstruct source code from class files.

After decompiling the program class file (and fixing some of JTrek’s bugs in
a process) we obtained, amongst other things:

– Parsers for the Java Card CAP and export files;
– The verifier’s static checks for all JCVM byte codes;
– An abstract interpreter for the methods including the representation of the

JCVM states.

These tools were used to develop the terminal-side verifier applet; and some
ideas were recycled for developing the card-side verifier applet.

For actual applet development we used IBM Zurich Research Laboratory’s
JCOP Tools [14]. This toolbox consists of the JCOP IDE (Integrated Develop-
ment Environment) and BugZ, a source-level debugger. Furthermore, shell-like
APDU command execution environment, as well as command-driven CardMan
are included for simple card management tasks, such as listing packages and
applets installed on the card, displaying information about given CAP files, in-
stalling applets from an uploaded package, sending arbitrary APDU commands
to the card, etc.

JCOP Tools are shipped with the off-card Application Programming Inter-
face (API). Using the provided implementations of these APIs, it is possible to
develop applications that can:

– Upload the CAP file onto a card;
– Install the applet on a card;
– Communicate with the card’s applet (i.e., send APDUs to the applet and

receive APDUs from it);
– Delete the applet instance and the package from the card.

Since JCOP Tools can interact with any Java Card inserted into the reader,
the availability of cryptographic functions depends on the card. The kit is ship-
ped with three Java Cards; all of which support 3DES encryption/decryption,
and two support RSA.

Hence, the JCOP Tools provided us with all the necessary features for imple-
menting both the card-side and the terminal-side parts of our protocol, testing
them on virtual as well as real Java Cards and allowing to benchmark the whole.

4.2 Interaction Between Terminal-Side and Card-Side Applets

The implemented prototype consists of the terminal-side and card-side applets.
Both applets run in parallel.

The verification algorithm is fully deterministic (with the exception of the
selection of a single frame from the set of all frames marked as changed). Since

the order in which marked frames are selected does not affect the final result
(i.e., accept or reject the applet), the terminal-side applet can be “proactive”
because it has all necessary information for running the verification process in
parallel with the card9. Using this strategy, we can avoid all requests from the
card to the terminal given that the latter is fully aware of the current verification
state and can hence provide the card-side applet with all required data without
being prompted.

Thus, the only data sent from the card to the terminal are response status
and MAC-ed frames that have to be stored in the terminal. The terminal initi-
ates all verification steps; it sends the card the results of the modelling of each
instruction and the results of unification of different frames. The card-side applet
simply checks that the verification process advances as it should and updates
the instruction counters10.

The Terminal-Side Applet The terminal-side applet is based on Sun Mi-
crosystems’ off-card verifier. The latter was fully revised and some new func-
tionality added. The communication with the card-side applet is implemented
using IBM JCOP’s API.

The terminal-side applet is in charge of the following tasks:

– Prepare the CAP file components for sending them to the card-side applet.
Parse the CAP file (storing it in the object structure) and check its compli-
ance with Sun’s file format (structural verification being beyond the scope
of our demonstrator, we left this part off-board for the time being);

– Maintain the storage for frames and their MACs. Exchange frames with the
card-side applet;

– Resolve the problem of finding the LCA of two frames in nontrivial cases
(trivial ones can be dealt with by our card-side applet) and send the result
to the card.

The Card-Side Applet The card-side applet:

– Controls the correctness of the verifier’s method calls by the terminal-side
applet;

– Checks and applies transition rules (i.e., performs type inference) to individ-
ual instructions.

– Maintains a list of counters ci for all instructions; updates counter values as
necessary;

– Executes cryptographic functions;

9 Note that this is not along the general design philosophy of our protocol whereby the
terminal needs no other form of intelligence other than the capacity to receive data,
store it and fetch it back upon request. We nonetheless implemented some extra
intelligence in the terminal to speed-up the development of our proof of concept.

10 Again, the previous footnote applies to this simplification as well.

– Solves the problem Is type A a descendant of type B in the type lattice L?
(in other words, is A ¹ B?) in order to check the result of the unification of
two frames sent by the terminal;

– For instructions invokespecial, invokestatic and invokevirtual, checks
arguments for their type consistency and pushes the returned type onto the
operand stack. Supports calls to all framework methods as well as to methods
of the package being currently verified. The invokeinterface instruction is
not yet supported.

– The card-side applet can unify two frames for all types of stack and local
variables except when both types to be unified are references to classes or
arrays of references to classes. In this case, the card-side applet asks the
terminal to perform unification, waits for results, and checks these results
before accepting.

5 Conclusion

Our proof-of-concept (not optimized) implementation required 380 Kbytes for
the terminal-side applet source code and 70 Kbyte for the card-side applet source
code. With the maximum length of method’s byte-code set to 200 bytes and both,
Smax and Lmax limited to 20 (the restrictions of the Java Cards shipped with
JCOP Tools), one needs 440 bytes of RAM to run our two-party verification
procedure. When the verified byte-code is written into EEPROM (as is the case
in most real-life scenarios), one would need only 240 bytes of on-board RAM
and 8976+ 200 EEPROM bytes.

The natural way to turn our prototype into a full-fledged verifier, is to in-
corporate it into the Installer applet, which has already its own representation
of the CAP file components.

We do not think that communication overhead is a serious concern. With the
advent of fast card interfaces, such as USB, the transmission’s relative cost is
reduced. Typically, USB tokens can feature various performances ranging from
a 1.5 Mb/s (low-speed) to 12 Mb/s (full speed). But even with slower interfaces,
such as ISO 7816-3 our prototype still functions correctly in real-time.

References

1. Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide, The Java Series, Addison-Wesley, 2000.

2. R. Cohen, The defensive Java virtual machine specification, Technical Report,
Computational Logic Inc., 1997.

3. P. Cousot, R. Cousot, Abstract Interpretation: a Unified Lattice Model for Static
Analysis by Construction or Approximation of Fixpoints, Proceedings of POPL’77,
ACM Press, Los Angeles, California, pp. 238-252.

4. X. Leroy, Java Byte-Code Verification: an Overview, In G. Berry, H. Comon, and
A. Finkel, editors, Computer Aided Verification, CAV 2001, volume 2102 of Lecture
Notes in Computer Science, pp. 265-285, Springer-Verlag, 2001.

5. X. Leroy, On-Card Byte-code Verification for Java card, In I. Attali and T. Jensen,
editors, Smart Card Programming and Security, proceedings E-Smart 2001, volume
2140 of Lecture Notes in Computer Science, pp. 150-164, Springer-Verlag, 2001.

6. X. Leroy, Byte-code Verification for Java smart card, Software Practice & Experi-
ence, 32:319-340, 2002.

7. T. Lindholm, F. Yellin, The Java Virtual Machine Specification, The Java Series,
Addison-Wesley, 1999.

8. N. Maltesson, D. Naccache, E. Trichina, C. Tymen Applet Verification Strategies
for RAM-constrained Devices, In Pil Joong Lee and Chae Hoon Lim, editors, In-
formation Security and Cryptology – ICISC 2002, volume 2587 of Lecture Notes
in Computer Science, pp. 118-137, Springer-Verlag, 2002.

9. G. McGraw, E. Felten Java Security, John Wiley & Sons, 1999.
10. D. Naccache, A. Tchoulkine, C. Tymen, E. Trichina Reducing the Memory Com-

plexity of Type–Inference Algorithms, In R. Deng, S. Qing, F. Bao and J. Zhou,
editors, Information and Communication Security, ICICS 2002, volume 2513 of
Lecture Notes in Computer Science, pp. 109-121, Springer-Verlag, 2002.

11. G. Necula, Proof-carrying code, Proceedings of POPL’97, pp. 106-119, ACM Press,
1997.

12. B. Schneier, Applied Cryptography: Second Edition: protocols, algorithms and
source code in C, John Willey & Sons, 1996.

13. http://www.digital.com/java/download/jtrek/

14. http://www.zurich.ibm.com/jcop/news/news.html

