
General Composition and Universal Composability in

Secure Multiparty Computation

Yehuda Lindell∗

Department of Computer Science
Bar-Ilan University

Ramat Gan 52900, Israel
lindell@cs.biu.ac.il

April 22, 2007

Abstract

Concurrent general composition relates to a setting where a secure protocol is run in a
network concurrently with other, arbitrary protocols. Clearly, security in such a setting is what
is desired, or even needed, in modern computer networks where many different protocols are
executed concurrently. Canetti (FOCS 2001) introduced the notion of universal composability,
and showed that security under this definition is sufficient for achieving concurrent general
composition. However, it is not known whether or not the opposite direction also holds.

Our main result is a proof that security under concurrent general composition, when inter-
preted in the natural way under the simulation paradigm, is equivalent to a variant of universal
composability, where the only difference relates to the order of quantifiers in the definition. (In
newer versions of universal composability, these variants are equivalent.) An important corol-
lary of this theorem is that existing impossibility results for universal composability (for all its
variants) are inherent for definitions that imply security under concurrent general composition,
as formulated here. In particular, there are large classes of two-party functionalities for which
it is impossible to obtain protocols (in the plain model) that remain secure under concurrent
general composition. We stress that the impossibility results obtained are not “black-box”, and
apply even to non-black-box simulation.

Our main result also demonstrates that the definition of universal composability is somewhat
“minimal”, in that the composition guarantee provided by universal composability implies the
definition itself. This indicates that the security definition of universal composability is not
overly restrictive.

∗Most of this work was carried out while the author was at the IBM T.J.Watson Research Center.

1 Introduction

This paper considers the security of protocols for multiparty computation under composition.

1.1 Background – Secure Computation and Protocol Composition

Secure computation. In the setting of multiparty computation, a set of parties P1, . . . , Pm with
private inputs x = (x1, . . . , xm), wish to jointly compute a functionality f(x) = (f1(x), . . . , fm(x)),
such that each party Pi receives fi(x) for output. This functionality may be probabilistic, in which
case f(x) is a random variable, and it may be reactive, in which case the inputs and outputs are
provided over a number of stages. Loosely speaking, the basic requirements on a secure multiparty
protocol are that parties learn nothing from the protocol execution other than their output (pri-
vacy), and that the output is distributed according to the prescribed functionality (correctness).
These security requirements must hold in the face of a malicious adversary who can corrupt a subset
of the parties and have them arbitrarily deviate from the protocol specification. Powerful feasi-
bility results have been shown for this problem, demonstrating that any multiparty probabilistic
polynomial-time functionality can be securely computed [37, 19, 6, 15]. However, these feasibility
results relate only to the stand-alone setting, where a single set of parties run a single execution.

Protocol composition. In general, the notion of “protocol composition” refers to a setting where
the participating parties are involved in many protocol executions. Furthermore, the honest parties
participate in each execution as if it is running in isolation (and therefore obliviously of the other
executions taking place). In particular, this means that honest parties are not required to coordinate
between different executions or keep track of the history of past executions. Requiring parties to
coordinate between executions is highly undesirable and sometimes may even be impossible (e.g.,
it is hard to imagine successful coordination between protocols that are designed independently
of each other). We note that in contrast to the honest parties, the adversary may coordinate its
actions between the protocol executions. This asymmetry is due to the fact that some level of
coordination is clearly possible. Thus, although it is undesirable to rely on it in the construction
of protocols, it would be careless to assume that the adversary cannot utilize it to some extent.
This is especially true since the adversary’s strategy may be designed, given full knowledge of the
protocols that will be run in the network.

Types of protocol composition. As we have described, the notion of protocol composition
relates to settings in which many protocol executions take place. However, there are actually many
ways to interpret this notion. We single out three different important parameters: the context in
which the protocol runs, the participating parties and the scheduling.

1. The context. This refers to the question of which protocols are being run together in the
network, or in other words, with which protocols should the protocol in question compose.
There are two contexts that have been considered, defining two classes of composition:

(a) Self composition: A protocol is said to be secure under self composition if it remains
secure when it alone is executed many times in a network. We stress that in this setting,
there is only one protocol that is being run. As we have mentioned, the honest parties
run each protocol execution obliviously of the other executions (even though the same
protocol is run each time). This is the type of composition considered, for example, in
the entire body of work on concurrent zero-knowledge (cf., [16, 36]).

1

(b) General composition: In this type of composition, many different protocols are run to-
gether in a network. Furthermore, these protocols may have been designed indepen-
dently of one another, and some may be secure while others are not. A protocol is said
to maintain security under general composition if its security is maintained even when it
is run along with other arbitrary protocols. This type of composition has been explicitly
considered in [29, 7, 33, 8].

We stress a crucial difference between self and general composition. In self composition, the
protocol designer has control over everything that is being run in the network. However, in
general composition, the other protocols being run may even have been designed maliciously
after the secure protocol is fixed.

2. The participating parties. Another parameter which must be considered is whether or
not the same set of parties is involved in all executions:

(a) A single set of parties: In this setting, the same set of parties participates in all executions.
A further distinction when considering a single set of parties relates to the roles the
parties play within each execution. (For example, in zero-knowledge there are two roles:
the prover and the verifier.) We have the following two settings:

i. Fixed roles: Here, the parties play the same roles in all executions (if a party plays
the prover in one zero-knowledge execution then it always plays the prover).

ii. Arbitrary roles: Here, the parties’ roles are not fixed and may vary from execution
to execution.

(b) Arbitrary sets of parties: In this setting, arbitrary (and possibly intersecting) sets of
parties run each protocol execution. In this setting, arbitrary roles is always considered.

3. The scheduling. There are three main types of scheduling that appear in the literature:

(a) Sequential: each new execution begins strictly after the previous one terminates.

(b) Parallel: all executions begin at the same time and proceed at the same rate (i.e., in a
synchronous fashion).

(c) Concurrent: the scheduling of the protocol executions, including when they start and the
rate at which they proceed, is maliciously determined by the adversary. That is, the
adversary has full control over when messages sent by the parties are delivered (as is the
case in an asynchronous network).

Another variant of scheduling is the timing model where, loosely speaking, the adversary is
somewhat limited in how long it can delay the delivery of messages.

4. The number of executions. This parameter refers to the question of how many times a
secure protocol should run. There are two main variants:

(a) Unbounded: the number of executions of the secure protocol may be any polynomial in
the security parameter. This is the default notion.

(b) Bounded: in this model, an explicit a priori bound on the number of concurrent exe-
cutions is known. Furthermore, a protocol only needs to remain secure if the number
of concurrent executions does not exceed this bound (and so, the protocol design may
depend on the specific bound). When this bound is m, we say that a protocol is secure
under m-bounded composition.

2

We stress that this bound refers to the number of times the secure protocol is run. Thus,
in the case of general composition, there is no bound on the arbitrary protocol running
alongside the secure protocol.

Universal Composability (UC). Recently, a robust notion of security, called universal com-
posability, was put forward [8]. This definition follows the standard paradigm of comparing a real
protocol execution to an ideal execution where a trusted third party helps the participating parties
carry out the computation.1 However, it also differs in a very important way. The traditional model
considered for secure computation includes the parties running the protocol, plus an adversary A
that controls a set of corrupted parties. However, in the framework of universal composability, an
additional adversarial entity called the environment Z is introduced. This environment generates
the inputs to all parties, reads all outputs, and in addition interacts with the adversary in an ar-
bitrary way throughout the computation. A protocol is said to UC compute a given functionality
f if for every real-model adversary A, there exists an ideal-model adversary S, such that no en-
vironment Z can tell whether it is interacting with A and parties running the protocol, or with
S and parties that are running in the ideal model for f . (In a sense, Z serves as an “interactive
distinguisher” between a run of the protocol and an ideal execution involving a trusted party.)
The importance of this new definition is due to a “composition theorem” that states that any
universally composable protocol remains secure under unbounded concurrent general composition
with arbitrary sets of parties [8]. Note that throughout this paper, when we refer to “universal
composability” we mean the above security definition, and not the composition operation (which
we call general composition). In order to emphasize this, from here on we refer to the definition of
universal composability as “UC security” (or, alternatively, as the “UC definition”).

It has been shown that in the case of an honest majority, UC secure protocols exist for any
multiparty functionality [8] (building on [6, 35]). Furthermore, in the common reference string
model,2 any functionality can be UC computed, for any number of corrupted parties [13]. On the
negative side, it has also been shown that in the plain model (i.e., without a common reference
string or any other trusted setup phase), it is impossible to obtain UC-secure protocols for a large
class of two-party functionalities [10, 8, 12]. (Loosely speaking, this class includes, for example,
functionalities that do not completely reveal the parties’ inputs. A specific example of a two-party
functionality that cannot be UC computed is Yao’s classic millionaires problem [37].)

General composition and UC security. In this paper, we study the relationship between
general composition and UC security. As shown in [8], UC security implies security under concurrent
general composition. However, it is not known whether or not the reverse also holds. Of course,
the answer to this question depends on the specific formulation of concurrent general composition
that is considered. Nevertheless, our definition here is aimed to be as minimalistic (i.e., weak) as
possible, while still remaining within the standard ideal/real simulation paradigm. Resolving this
question is of importance for the following two reasons:

1This well-established paradigm of defining security can be described as follows. An ideal execution is first
defined. In such an execution, the parties hand their inputs to a trusted third party, who simply computes the
desired functionality, and hands each party its designated output. Clearly, in this ideal model, the adversary’s ability
to carry out an attack is severely limited. Security is then formulated by requiring that the adversary should not be
able to do any more harm in a real execution of the protocol than in the above ideal execution. More formally, an
ideal-model adversary (or simulator) should be able to emulate a real execution of the protocol for a real adversary.

2In the common reference string model, all parties are given access to a common string that is ideally chosen from
some efficiently samplable distribution. Essentially, this means that a trusted setup phase is assumed.

3

1. Feasibility for concurrent general composition: As we have mentioned, it has been shown that
a large class of two-party functionalities cannot be UC computed in the plain model. Now, on
the one hand, if security under concurrent general composition implies UC security, then we
would immediately derive broad impossibility results for any definition that implies security
under concurrent general composition. On the other hand, if security under concurrent general
composition does not imply UC security, then this would mean that the question of feasibility
for concurrent general composition is still wide open.

2. Optimality of the UC definition: In general, security definitions must be strong enough to
guarantee the desired security properties, but without being so restrictive that protocols that
are actually secure are ruled out. (On one extreme, one can define all protocols to be not
secure, and then all adversarial attacks on “secure protocols” are vacuously thwarted.) Thus,
a natural question to ask is whether or not the UC definition is overly restrictive. If security
under concurrent general composition implies UC security, then this would prove that the
UC definition is optimal (in the sense that any definition achieving security under concurrent
general composition implies UC security). We note that overly restrictive definitions place
an unnecessary burden on protocol design, and may have ramifications, for example, on the
efficiency that can be achieved. Thus, this question is of interest independently of the question
of feasibility (discussed above). That is, even when working in a model where the feasibility
of UC security has been demonstrated (like the common reference string model), it is still
important to know that the UC definition is “optimal”.

We note that the question of whether or not concurrent general composition implies UC security
was first posed in [18].

Before proceeding, it is worthwhile to consider why one would think that the UC definition
is possibly too strict. Two important features of the UC definition are that the ideal-model sim-
ulator has only black-box access to the environment, and furthermore, the environment cannot
be “rewound”. Since the real-model adversary and environment can maliciously work together in
attacking a protocol, this means that the simulator has to be able to work while being given only
black-box access and no rewinding capability. However, for black-box simulation, rewinding is es-
sential. This observation was used by [12] to demonstrate broad impossibility results for obtaining
UC security in the two-party case. Thus, the UC definition is significantly more restrictive than
previous definitions. Furthermore, the known impossibility results for UC security are due to these
restrictions. It is therefore natural to wonder whether or not the two stringencies of black-box access
and no rewinding in the UC definition are really essential for obtaining security under concurrent
general composition.

1.2 Our Results

In order to describe our results, we first informally define two notions:
• Specialized-simulator UC: This is a relaxed variant of UC security that is exactly the same as

the original definition of UC, except that the order of quantifiers between the environment
and ideal-model simulator is reversed. That is, the UC definition requires the existence of a
universal simulator that can simulate for all environments. In contrast, in specialized-simulator
UC, a different simulator is allowed for every environment. We stress that apart from the
reversal of quantifiers, all other aspects of the definition remain unchanged. In particular,
under the specialized-simulator definition, the simulator is still given only “on-line” access to

4

the environment (i.e., black-box access without rewinding), and must work for every auxiliary
input that the environment may receive.

• `-bounded general composition: We define a restricted version of general composition, where the
number of secure protocols that are executed is bounded. That is, denote by `-bounded general
composition the setting where at most ` secure protocols are run concurrently with arbitrary
other protocols. (As we have mentioned above, standard general composition considers the case
that ` can be any polynomial.) We stress that ` bounds only the number of executions of secure
protocols; the number of arbitrary protocols running in the network is unbounded (thus, the
bound refers to how many times the secure protocol can be composed).

Before proceeding, we remark that the difference between specialized-simulator UC and regular
UC depends on some subtle details regarding how polynomial-time is defined. Indeed, the latest
version of the UC paper [9] proposes a different notion of polynomial-time and proves the following:

Claim 1.1 (proven in [9]): According to the notion of polynomial-time in [9], a protocol is secure
under specialized-simulator UC if and only if it is UC secure.

As we will see, our results are not sensitive to the complexity class of the parties, as long as all
parties including the adversary and environment belong to the same class (as is the case in all UC
versions). We have therefore chosen to present our results with respect to specialized-simulator UC.
This gives the most generality because our results then hold whether or not specialized-simulator
UC is equivalent to UC. In our results below we will refer to non-exact complexity classes C. This just
means that if a machine M is in the class C and runs in time t(|x|) on input x, then a machine M ′

that runs in time O(t(|x|)) is also in C. This clearly holds for any reasonable notion of polynomial-
time. In particular, it holds for the notion of polynomial-time in the length of the input, the notion
of polynomial-time in the security parameter (as defined here in Section 2), and the new notion of
polynomial-time defined in [9].

The main contribution of this paper is a proof that security under 1-bounded concurrent general
composition (where only a constant number of secure protocols are run in the network) implies
security under specialized-simulator UC security. That is:

Theorem 1.2 (main theorem – informally stated): Let C be any non-exact complexity class and
consider definitions in which all parties (honest and adversarial) are in C. Then, any protocol that
is secure under 1-bounded concurrent general composition is also secure under specialized-simulator
UC.

Observe that Theorem 1.2 refers to a relaxed variant of UC security (specifically, specialized-
simulator UC) and a relaxed variant of general composition (specifically, 1-bounded general com-
position). Nevertheless, as will be discussed below, it provides substantial progress in answering
both of the above questions regarding “feasibility for general composition” and “optimality of the
UC definition”.

Corollary 1 – impossibility for concurrent general composition. In order to use Theo-
rem 1.2 to derive impossibility results for concurrent general composition, we first note that many
of the impossibility results of [12] for UC security hold with respect to specialized-simulator UC.
This is explicitly stated in [12]. Thus, combining Theorem 1.2 and [12], we obtain the following
corollary:

5

Corollary 1.3 (impossibility of general composition – informal): There exist large classes of two-
party functionalities for which it is impossible to obtain protocols (in the plain model) that remain
secure under 1-bounded concurrent general composition.

Observe that this corollary relates to a very restricted type of concurrent general composition. This
significantly strengthens our impossibility results. We stress that Corollary 1.3 holds uncondition-
ally and for any type of simulation (i.e., it is not restricted to “black-box” simulation). However,
we do mention the following caveat. The impossibility result holds for a specific security defini-
tion of concurrent general composition (that, as we show, implies specialized-simulator UC). This
definition is a natural one, and seems to be as weak as possible while still capturing the notion of
security under composition with arbitrary protocols (see Definition 1). Nevertheless, it is always
possible that a different definition can be formulated for which the impossibility result will not hold.
In particular, we do not consider definitions that are not formulated via the simulation paradigm.3

In addition to the impossibility result stated above, we also prove impossibility for 1-bounded
parallel general composition. This may seem somewhat surprising since parallel composition is
usually considered easier to achieve than concurrent composition (and this is definitely true for
the case of self composition, as pointed out in [21, Section 6]). Nevertheless, we show that in the
context of general composition, even parallel composition is impossible to achieve.

Corollary 2 – optimality of the UC definition. Theorem 1.2 explicitly states that any defi-
nition that guarantees security under concurrent general composition implies specialized-simulator
UC security. Thus, specialized-simulator UC is a minimal definition, if security under concurrent
general composition is to be achieved. When considering polynomial-time parties as defined in [9],
we can combine Theorem 1.2 with Claim 1.1 in order to obtain the following corollary:

Corollary 1.4 When all parties run in polynomial-time as in [9], it holds that any protocol that
is secure under 1-bounded concurrent general composition is UC secure.

Thus, it follows that UC security is minimal, at least when working with polynomial-time as in [9].

Specialized-simulator UC implies bounded general composition. Theorem 1.2 states that
1-bounded concurrent general composition implies specialized-simulator UC security. But what
about the opposite direction? It can be shown that any protocol that is secure under specialized-
simulator UC is secure under O(1)-bounded concurrent general composition (this was proven in
previous versions of this work). Given the new results of Canetti in [9] (proving equivalence of
specialized-simulator UC and regular UC for the new notion of polynomial-time), we have omitted
the proof of this implication here.

Setup assumptions and alternative models for UC. Our results here show that in order
to achieve UC security, the basic model must somehow be modified or augmented. This justi-
fies the search for trusted setup assumptions (like the common reference string mentioned above)

3We note that it is easy to come up with a security definition for which security is preserved under concurrent
general composition; simply take the definition that all protocols are secure. However, such a definition provides no
security guarantees whatsoever. Therefore, the question is whether or not it is possible to provide a “meaningful”
definition for which the impossibility results do not hold. We rule out this possibility for definitions which provide
the security guarantees of the ideal/real model simulation paradigm, as defined in Definition 1. Whether or not it is
possible to provide a meaningful, weaker definition is still open, with some progress made by [34, 4, 28].

6

or alternative definitions in order to achieve security under concurrent general composition. In-
deed, subsequently to the initial publication of this work [24], additional setup assumptions and
modifications to the model were considered. These are discussed below.

1.3 Related and Subsequent Work

Until 2001, most of the research on the topic of concurrent composition of protocols considered
the self composition of specific problems. A considerable bulk of this work studied concurrent
zero-knowledge; e.g., see [16, 36, 11]. The question of concurrent self composition of general secure
computation was studied in [23, 32, 26, 31, 28] but is not our subject here. In this paper, we focus on
the general composition of general secure multiparty protocols. The first work to consider security
under concurrent general composition was [33], who considered the case that a secure protocol
is executed once concurrently with another arbitrary protocol. ([33] provided a definition and a
composition theorem, but no proof of feasibility.) The unbounded case, where a secure protocol
can be run any polynomial number of times in an arbitrary network, was then considered by the
framework of universal composability [8]. Broad impossibility results for UC security in the plain
model were demonstrated in [10, 12], thus opening the question as to whether the UC definition
can be weakened.

Subsequent to this work, alternatives to UC security were considered with the aim of bypassing
the impossibility results of concurrent general composition. Following [30] – who showed that
problems of concurrency can be solved by providing the simulator with more time than the adversary
– it was shown in [34] that by providing the simulator with “additional powers” it is possible to
bypass the impossibility results for UC in the plain model. This work was later extended in [4]
and [27]. We remark that such solutions provide weaker (and rather unclear) security guarantees.
Other alternatives have been to look for different setup assumptions as in [3] who presented a
PKI-type infrastructure, and to augment the model with time as in [22].

2 Definitions

In this section, we present a definition of security for concurrent general composition and provide
an overview of the definition of universal composability. Both definitions follow the standard
simulation-based paradigm for security by comparing a real execution to an ideal process [20,
29, 5, 7]. Our presentation assumes basic familiarity with these definitions of secure multiparty
computation.

For the sake of clarity, and in order to be concrete, we will present a definition of security in
which all parties (honest and adversarial) run in time that is polynomial in the security parameter.
Nevertheless, the entire definition can trivially be repeated for any notion of polynomial-time, or
any other complexity class desired. The only difference is the bounds on the running-time of the
parties.

Notation and conventions. The security parameter is denoted by n, and all parties and ad-
versaries run in time that is polynomial in n. (Formally, all parties have an additional “security
parameter tape” upon which n is written in unary. Furthermore, all parties run in time that is
polynomial in the length of the input on the security parameter tape and not on their ordinary
input tape.) Computational indistinguishability is denoted by

c≡, and when we say that two en-
sembles {X(n, a)}n∈N,a∈{0,1}∗ and {Y (n, a)}n∈N,a∈{0,1}∗ are computationally indistinguishable, we

7

mean that this holds for all a and for all sufficiently large n’s (this is in contrast to where quan-
tification is only over all sufficiently large a). Note that the length of a is not bounded; however,
by our above convention all parties are polynomial in n (even if they receive a as input and a is of
super-polynomial length).

2.1 Security Under General Composition

We now present a definition of security for multiparty computation that is based directly on the
general composition operation. That is, we define a protocol to be secure if it remains secure under
concurrent general composition. This is in contrast to the methodology whereby some stand-alone
definition of security is presented, and then a general composition theorem is shown to hold for this
definition. This latter approach is advantageous to protocol designers who need to prove security
in a stand-alone setting only, and can then derive security under composition by just applying the
given composition theorem. However, such an approach has the danger of possibly overshooting
the security requirements. Specifically, there may exist protocols that are secure under the desired
composition operation, and yet are not secure for the stand-alone definition.4 By defining a protocol
to be secure if it is secure under concurrent general composition, we avoid this potential pitfall.
The formalization of general composition used in our definition is based on [7, 8].

Motivating discussion. In the setting of concurrent general composition, a secure protocol ρ
is run concurrently (possibly many times) with an arbitrary other protocol π. This protocol π
represents all the activity in the network in which ρ is being run. In addition, π may determine the
inputs to ρ and use its outputs. This is consistent with the fact that the outcome of some protocols
is likely to influence the inputs of other protocols. (For example, if a party wins in an auction
protocol, but payed far more than it originally thought necessary, then this party may agree to bid
less in a subsequent auction. Likewise, the outcome of one election can have a significant influence
on our choice of candidate in another election.) This “transfer” of inputs and outputs between
protocols is very strong, and is a crucial ingredient in proving the equivalence of concurrent general
composition and UC security. However, we believe that it accurately models the behavior of real
networks (or, at least, it would be highly undesirable to guarantee security only in the case that
parties decide future inputs independently of past outputs).

One way to model this setting is to directly consider the concurrent composition of the two
protocols π and ρ. An alternative way to model this is to consider π to be a “calling” or “con-
trolling” protocol which, among other things, contains “subroutine calls” to the protocol ρ (or to
the functionality that ρ computes). The calling protocol π determines the inputs to ρ and uses the
resulting outputs. We denote such a composition of π with ρ by πρ. Note that messages of π may
be sent concurrently to the execution of ρ (even though π “calls” ρ). This specific formalization
has the appearance of π being a protocol that has been designed to perform a given task, and
that uses subroutine calls to ρ in order to complete this task. We stress that although this is one

4An example of where such an “overshoot” occurred was regarding the sequential general composition of secure
multiparty protocols. Specifically, [29] presented a definition for stand-alone security and showed that sequential
general composition holds for any protocol meeting this definition. However, the definition of [29] is very restrictive;
among other things, it requires “one-pass black-box simulation” (i.e., black-box simulation without rewinding). Later,
it was shown in [7] that sequential composition holds for a less restrictive definition (where simulation need not be
black-box). Furthermore, there exist protocols that are secure by the definition of [7] (and thus compose sequentially),
and yet are not secure by the definition of [29]. Thus, at least as far as sequential composition is concerned, the
definition of [29] is “overly restrictive”.

8

interpretation, it also models the case that π is merely anarchic activity in a network in which ρ is
being executed.

We reiterate the fact that inputs and outputs are transferred between the protocols π and ρ and
that this is stronger than a case where π and ρ have predetermined inputs and the honest parties
do not transfer any information between the executions.5 Furthermore, our equivalence between
concurrent general composition and UC security depends heavily on this stringency. Nevertheless,
as argued above, this stringency is important for modelling the security needs of modern networks.

Multiparty computation. A multiparty protocol problem for a set of parties P1, . . . , Pm is
cast by specifying a (probabilistic polynomial-time) multiparty ideal functionality machine F that
receives inputs from parties and provides outputs. Note that F can also be reactive, in which case,
inputs and outputs are provided in a number of stages. The aim of the computation is for the
parties to jointly compute the functionality F .

Adversarial behavior. In this work we consider malicious adversaries. That is, the adversary
controls a subset of the parties who are said to be corrupted. The corrupted parties follow the
instructions of the adversary in their interaction with the honest parties, and may arbitrarily
deviate from the protocol specification. The adversary also receives the view of the corrupted
parties at every stage of the computation. We consider both static and adaptive corruptions. In
the static (or non-adaptive) adversarial model, the set of corrupted parties is fixed for any given
adversary.6 In contrast, an adaptive adversary may corrupt parties during the computation and as
a function of what it sees. Finally, we consider a model where the adversary has full control over
the scheduling of the delivery of all messages. Thus, the network is asynchronous. This adversarial
control over the message scheduling also implies that we consider concurrent composition.

The hybrid model. Let π be an arbitrary protocol that utilizes ideal interaction with a trusted
party computing a multiparty functionality F (recall that π actually models arbitrary network
activity). This means that π contains two types of messages: standard messages and ideal messages.
A standard message is one that is sent between two parties that are participating in the execution
of π, using the point-to-point network (or broadcast channel, if assumed). An ideal message is one
that is sent by a participating party to the trusted third party, or from the trusted third party to a
participating party. This trusted party runs the code for F and associates all ideal messages with
F . Notice that the computation of π is a “hybrid” between the ideal model (where a trusted party
carries out the entire computation) and the real model (where the parties interact with each other
only). Specifically, the messages of π are sent directly between the parties, and the trusted party
is only used in the ideal calls to F .

As we have mentioned, the adversary controls the scheduling of all messages, including both
standard and ideal messages. As usual, we assume that the parties are connected via authenticated
channels. Therefore, the adversary can read all standard messages, and may use this knowledge to

5This issue should not be confused with the issue of “stateless” versus “stateful” composition. We consider
stateless composition here, and honest parties run each execution of ρ independently of other executions of ρ and
independently of messages obtained in π. However, the input to ρ (and only the input) may be influenced by prior
network activity. Likewise, the output of an execution of ρ (and only the output) may influence later activity. Of
course, all of this holds only for the honest parties; adversarial parties may act as they wish.

6This is a rather non-standard way of defining static adversaries. Specifically, the adversary cannot choose who
to corrupt at the onset of the computation as a function of its auxiliary input. We rely on this more stringent notion
of static adversaries in one of our results. We remark that this stringent definition has been used in the context of
two-party computation; see [17].

9

decide when, if ever, to deliver a message. (We remark that the adversary cannot, however, modify
messages or insert messages of its own.) In contrast, the channels connecting the participating
parties and the trusted third party are both authenticated and private. Thus, the adversary cannot
read the ideal messages, even though it delivers them. Actually, sometime it is useful to define
each ideal message as having a public header and a private body (see [13, 25]), but this is of no
consequence to our results here.

Computation in the hybrid model proceeds as follows. In the static corruption model, the com-
putation begins with the adversary receiving the inputs and random tapes of the corrupted parties.
Throughout the execution, the adversary controls these parties and can instruct them to send any
standard and ideal messages that it wishes. In the adaptive corruption model, the adversary can
choose to corrupt parties throughout the computation. Upon corruption, the adversary receives the
party’s internal state and then controls the party for the remainder of the computation. In addition
to controlling the corrupted parties, the adversary delivers all the standard and ideal messages by
copying them from outgoing communication tapes to incoming communication tapes. Formally, we
assume that each pair parties (including the trusted party) has a matching pair of outgoing and
ingoing communication types. Then, when a party Pi writes a message on the outgoing commu-
nication tape that is dedicated to Pj , the adversary delivers this message to Pj by copying it to
the ingoing communication tape of Pj that is dedicated to Pi. Another technicality (and one that
can be ignored later) is that we assume that the number and length of messages from all parties is
known, and that honest parties only read the expected number of messages of the expected length.
This is necessary to prevent the adversary from bombarding a party with so many messages that it
expends all of its (a priori fixed polynomial) running time processing these garbage messages. As
we have mentioned, this can be ignored from here on.

The honest parties always follow the specification of protocol π. Specifically, upon receiving a
message (delivered by the adversary), the party reads the message, carries out a local computation
as instructed by π, and writes standard and/or ideal messages to its outgoing communication
tapes, as instructed by π. At the end of the computation, the honest parties write the output value
prescribed by π on their output tapes, the corrupted parties output a special “corrupted” symbol
and the adversary outputs an arbitrary function of its view. Let n be the security parameter, let S
be an adversary for the hybrid model with auxiliary input z, and let x be the vector of the parties’
inputs to π (note that x = (x1, . . . , xm) and each xi ∈ {0, 1}∗). Then, the hybrid execution of π with
ideal functionality F , denoted hybridFπ,S(n, x, z), is defined as the output vector of all parties and
S from the above hybrid execution.

The real model – general composition. Let ρ be a multiparty protocol for computing the
functionality F . Intuitively, the composition of protocol π with ρ is such that ρ takes the place of
the ideal call to F . Formally, each party holds a separate probabilistic interactive Turing machine
(ITM) that works according to the specification of the protocol ρ for that party. When π instructs
a party to send an ideal message α to the ideal functionality F , the party writes α on the input
tape of its ITM for ρ and invokes the machine. Any message that it receives that is marked for
ρ, it forwards to this ITM, and all other messages are answered according to π. Finally, when the
execution of ρ concludes and a value β is written on the output tape of the ITM, the party copies
β to the incoming communication tape for π, as if β is an ideal message (i.e., output) received from
F . This composition of π with ρ is denoted πρ and takes place without any trusted help. Thus,
the computation proceeds in the same way as in the hybrid model, except that all messages are
standard. (Note that like in the hybrid model, the adversary controls message delivery and can
also read messages sent, but cannot modify or insert messages.) Let n be the security parameter,

10

let A be an adversary for the real model with auxiliary input z, and let x be the vector of the
parties’ inputs to π. Then, the real execution of π with ρ, denoted realπρ,A(n, x, z), is defined as
the output vector of all the parties and A from the above real execution.

Security as emulation of a real execution in the hybrid model. Having defined the hybrid
and real models, we can now define security of protocols. Loosely speaking, the definition asserts
that for any context, or calling protocol π, the real execution of πρ emulates the hybrid execution of
π which utilizes ideal calls to F . This is formulated by saying that for every real-model adversary
there exists a hybrid-model adversary for which the output distributions are computationally indis-
tinguishable. The fact that the above emulation must hold for every protocol π that utilizes ideal
calls to F , means that general composition is being considered (recall that π represents arbitrary
network activity). In the definition, we distinguish between the case that π is not restricted and
may thus utilize any polynomial number of calls to F , and the case that π utilizes only a bounded
number of calls to F . We also distinguish between the case that all parties running π also run ρ,
and the case that only a subset of the parties run ρ. The case that only a subset of the parties
run ρ accurately models the setting of modern networks. In such a setting, π represents all of the
network activity outside of the secure protocol, and ρ is the execution of the secure protocol by
some subset of the parties within the network.

Definition 1 (security under concurrent general composition): Let ρ be a protocol and F a func-
tionality. Then, ρ securely computes F under concurrent general composition if for every protocol
π in the F-hybrid model that utilizes ideal calls to F and every probabilistic polynomial-time real-
model adversary A for πρ, there exists a probabilistic polynomial-time hybrid-model adversary S
such that: {

hybridFπ,S(n, x, z)
}

n∈N;x,z∈{0,1}∗
c≡

{
realπρ,A(n, x, z)

}
n∈N;x,z∈{0,1}∗

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is said to securely
compute F under `-bounded concurrent general composition.

If both π and ρ are defined for m parties P1, . . . , Pm, then security is said to hold for a single set
of parties. If π is defined for m parties and ρ may be defined for less than m parties, then security
is said to hold for arbitrary sets of parties.

Note that non-uniformity of the adversary follows from the fact that the quantification is over all
inputs, including the auxiliary input z received by the adversary.

Remark. Arguably, the notion of concurrent general composition is best captured when π can
utilize any number of ideal calls to F . Indeed, this provides a more reasonable security guarantee.
However, we introduce the restricted notion of bounded concurrent composition because in order
to strengthen our impossibility results, we wish to capture the notion of general composition in the
weakest way possible (while still being meaningful). Thus, we will consider the case that the calling
protocol π utilizes only a single call to F (i.e., 1-bounded concurrent general composition).

2.2 Universal Composability (UC) and Specialized-Simulator UC

In this paper we show that security under concurrent general composition implies a relaxed variant
of the definition of universal composability. The only difference between the original and relaxed
definitions is with respect to the order of quantifiers between the ideal-model adversary and the

11

environment. Specifically, in the relaxed variant a different simulator is allowed for each environ-
ment. We therefore call this definition specialized-simulator UC. In this section, we present a brief
outline of the UC definition; for a full definition, see [8]. We remark that there are many possible
variants of this definition that depend on the specific order of activations and the types of channels
that connect the parties. Nevertheless, our results and the impossibility results of [12] that we use
later are robust and hold for all known variants. Thus, we focus on a specific one here with the
understanding that our concrete choices are of no importance.

The definition of universal composability follows the standard simulation paradigm based on
comparing a real execution with an ideal execution involving a trusted third party. As above,
the algorithm run by the trusted party is called the ideal functionality. Then, a protocol ρ for
computing a functionality F is secure if the result of a real execution can be emulated in an ideal
execution where parties interact with the ideal functionality only. Notice that only a single stand-
alone execution of ρ is considered in this definition (security under composition is derived via a
composition theorem).

As described in the introduction, the notion of ideal-model emulation in the UC framework
includes the real-model adversary A, an ideal-model adversary or simulator S and an environment
Z. The environment generates the inputs to all parties, reads all outputs, and interacts with the
adversary throughout the computation. It is required that for every real-model adversary A attack-
ing a real protocol execution, there exists an ideal-model adversary S, such that no environment
Z can tell whether it is interacting with A and parties running the protocol, or with S and the
ideal functionality for F . An important point to notice with respect to the UC definition is that
the ideal-model adversary S interacts with Z throughout the computation in the same way that
A does. That is, S has no control over Z, who is actually an external, real party. In particular,
this means that S cannot “rewind” Z. We consider the case where all communication is sent via
the adversary (as with our definition of general composition above) with the exception of inputs
that Z writes to the parties’ input tapes and outputs that Z reads from the parties’ output tapes.
(This is not communication in the sense of communication tapes and so is not carried out via the
adversary.) In addition, the order of activations of parties is such that the environment Z begins
the computation. Then, the next party to be activated is the party to receive an input or an
incoming message. This works by transferring control as soon as the environment writes an input
or the adversary delivers a message (or likewise, as soon as the environment or adversary send a
message to each other).

Formal definitions of the real and ideal model executions can be found in [8]. Let n be the
security parameter, let Z be an environment with input z, and let A be a real-model adversary (a
vector x of inputs for the parties is not defined here because Z interactively provides the parties
with their inputs). Then, a real-model execution of a protocol ρ with Z, z and A is denoted
uc-realρ,A,Z(n, z). Likewise, let S be an ideal-model adversary. Then, an ideal-model execution
of F with Z, z and S is denoted uc-idealF ,S,Z(n, z). The UC definition requires that for every A,
there exists a simulator S such that no environment Z can distinguish the real and ideal executions.
Thus, S is a universal simulator, where the universality is with respect to all environments. In
contrast, we consider a variant of UC where a different S is allowed for every Z. Thus, we reverse
the quantifiers between the ideal-model simulator and environment. This reversal of quantifiers also
requires a change in the convention regarding the output of the environment. In the UC definition,
the environment outputs a single bit only (and this is the only output from the entire experiment).
When a universal simulator is considered, this is equivalent to the case that the environment can
output an arbitrary string. However, when the order of quantifiers is reversed, equivalence may no
longer hold. We therefore allow the environment to output a string of arbitrary length.

12

In order to stress the difference between UC security and specialized-simulator UC, we present
both definitions (while relying on the formal definitions of the real and ideal models that are not
presented here):

Definition 2 Let F be an ideal functionality and let ρ be a multiparty protocol. Then:
• (UC security [8]): We say that ρ UC computes F if for every probabilistic polynomial-time

adversary A there exists a probabilistic polynomial-time ideal-process adversary S such that for
any probabilistic polynomial-time environment Z,

{
uc-idealF ,S,Z(n, z)

}
n∈N;z∈{0,1}∗

c≡
{
uc-realρ,A,Z(n, z)

}
n∈N;z∈{0,1}∗

• (specialized-simulator UC): We say that ρ securely computes F under specialized-simulator UC
if for every probabilistic polynomial-time adversary A and every probabilistic polynomial-time
environment Z, there exists a probabilistic polynomial-time ideal-process adversary S such that,

{
uc-idealF ,S,Z(n, z)

}
n∈N;z∈{0,1}∗

c≡
{
uc-realρ,A,Z(n, z)

}
n∈N;z∈{0,1}∗

We use the same convention of polynomial-time here as for general composition. That is, each
party (including the environment and adversary) runs in time that is polynomial in the security
parameter n. As we have discussed, the latest version of the UC framework [9] considers a notion
of polynomial-time that is suited for dynamic networks and is based on parties being polynomial
in the length of their input. According to this definition, it follows that UC security is equivalent
to specialized-simulator UC.

“Universal” composition. As we have mentioned, a protocol that is universally composable
is secure under concurrent general composition with arbitrary sets of parties [8]. Thus, the UC
definition provides security under the “strongest” type of composition.

3 General Composition versus Universal Composability

3.1 The Main Theorem

In this section, we prove our main theorem, stating that security under 1-bounded concurrent
general composition implies specialized-simulator UC security. Our proof here is for adaptive
adversaries; the static adversarial case and other variants are considered below. We also prove the
theorem for the case that all parties run in polynomial-time in the security parameter; the general
case of arbitrary non-exact complexity classes is demonstrated below.

Theorem 3 Let ρ be a protocol and F a functionality. If ρ securely computes F under 1-bounded
concurrent general composition with arbitrary sets of parties and adaptive adversaries, then ρ se-
curely computes F under specialized-simulator UC with adaptive adversaries.

Proof: The intuition behind the proof of this lemma is as follows. If a protocol is secure under 1-
bounded concurrent general composition, then it can be composed with any protocol. In particular,
it can be composed with a protocol in which one of the parties plays the role of the UC environment
Z. The ability to simulate this protocol will then imply the existence of a UC simulator for the
environment Z. We now proceed with the proof.

13

Let ρ be a protocol for parties P1, . . . , Pm and F a functionality such that ρ securely computes
F under 1-bounded concurrent general composition with arbitrary sets of parties. We wish to show
that ρ securely computes F under specialized-simulator UC. This involves constructing a UC-type
simulator S for every adaptive adversary A and environment Z. Thus, fix an adaptive adversary A
and an environment Z. In order to construct S, we use the fact that ρ is secure under 1-bounded
concurrent general composition, and is thus secure when composed with any protocol. In particular,
it is secure when composed with a protocol π that includes emulation of the environment Z. We
now define such a protocol π, involving parties PZ , Padv and P1, . . . , Pm. Loosely speaking, PZ
will play the role of the UC environment Z, and Padv – when corrupted – will play the role of the
UC (real-model or ideal-model) adversary. We note that in the definition of protocol π, one-time
pads are used for communicating between PZ and P1, . . . , Pm. This is because in the UC model,
Z and the parties communicate values that are kept secret from the adversary (specifically, this
communication consists of Z writing on the parties’ input tapes and reading their output tapes).
For the sake of simplicity, in the description below we assume that Z writes at most n bits of
input on each party’s input tape and that each party generates at most n bits of output. This
assumption is of course incorrect for reactive functionalities. However, it is easy to extend the
proof below by simply using long enough random pads. (Recall that Z is polynomial-time and
fixed before π is constructed. Therefore, there exists an a priori polynomial bound on the length
of all communication between Z and the parties.) Protocol π for the F-hybrid model is defined as
follows:

1. Inputs: Party PZ receives a value z for input and 2m strings ra
1 , rb

1, . . . , r
a
m, rb

m, each uniformly
distributed in {0, 1}n. For every i, party Pi receives the pair of strings ra

i and rb
i . (Thus, PZ

shares 2 one-time pads with each Pi.7)

2. Instructions for PZ : Party PZ , upon input z, internally invokes the environment Z with
input z. When Z wishes to send a message to the adversary that it interacts with, party PZ
sends the message to Padv; likewise, when PZ receives a message from Padv then PZ internally
hands this to Z as if it is from the adversary that Z interacts with. When Z writes a value
xi intended for the input tape of a party Pi, then party PZ computes αi = xi ⊕ ra

i and sends
the pair (input, αi) to Pi. During the execution, PZ receives tuples (output, Pi, βi) from the
parties P1, . . . , Pm (see step (3) below). When Z wishes to read the output tape of a party
Pi, then if PZ has received such an output message from Pi, it internally hands Z the value
yi = βi ⊕ rb

i . Otherwise, it internally hands Z a blank message λ (to be interpreted as if Pi

has not yet written to its output tape).

3. Instructions for Padv: Party Padv has no instructions (this may seem strange, but we will always
consider a scenario that Padv is corrupt and so anyway follows the adversary’s instructions).

4. Instructions for Pi (for every 1 ≤ i ≤ m): When party Pi receives a message (input, αi) from
PZ , it computes xi = αi ⊕ ra

i and sends xi to the ideal functionality F . When Pi receives its
output yi from F , it computes βi = yi⊕ rb

i and sends the tuple (output, Pi, βi) to PZ . (Recall
that these messages go through the adversary who controls delivery.)

5. Output: Party PZ outputs whatever Z outputs. All other parties output the empty string λ.
7Since indistinguishability of the real and hybrid executions is required for all inputs, it implies indistinguisha-

bility also when some of the inputs are uniformly distributed. Thus, we can assume that the one-time pads are indeed
random.

14

Recall that in the composed protocol πρ, the parties P1, . . . , Pm run an execution of ρ instead of
sending their inputs to the functionality F .

Given the protocol π, we define a probabilistic polynomial-time adversary Aπ who attacks the
composed, real-model protocol πρ. The idea of Aπ is to set up a scenario which perfectly emulates
the UC real-model setting. Aπ corrupts party Padv and internally runs the code of the UC adversary
A (as fixed above), using Padv to communicate with PZ . That is, when the internal A wishes to
send a message to Z, adversary Aπ instructs Padv to send that message to PZ . Likewise, when Padv

receives a message from PZ , adversary Aπ passes the message to A as if A received it from Z.8

Whenever A wishes to corrupt a party Pi, adversary Aπ corrupts the party Pi and provides A with
the internal state that it expects to receive (i.e., Aπ provides A with the internal state of Pi’s ITM
for running ρ only). Aπ also instructs Padv to send PZ the information that Z would receive upon
such a corruption. Regarding the execution of ρ, whenever A instructs a corrupted party Pi to send
a message to some party Pj , adversary Aπ instructs Pi to send the same message. In addition, Aπ

delivers messages between the parties whenever A would deliver them. Finally, messages between
PZ and the parties P1, . . . , Pm are all delivered by Aπ immediately. This completes the definition
of Aπ.

We now claim that for every UC adversary A and UC environment Z, the output of PZ from
an execution of πρ with Aπ is distributed exactly like the output of Z after an execution of ρ with
A. That is, for a given value z, define the following distribution over parties’ inputs:

Xn(z) = ((z, ra
1 , rb

1, . . . , r
a
m, rb

m), λ, (ra
1 , rb

1), . . . , (r
a
m, rb

m))

where all ra
i and rb

i ’s are uniformly distributed in {0, 1}n. In other words, consider the input case
that PZ receives (z, ra

1 , rb
1, . . . , r

a
m, rb

m) for input, Padv receives the empty input λ, and every party
Pi receives (ra

i , rb
i), where all ra

i and rb
i ’s are random. Then, we claim that

{
realπρ,Aπ(n,Xn(z), λ) |PZ

}
n∈N;z∈{0,1}∗ ≡

{
uc-realρ,A,Z(n, z)

}
n∈N;z∈{0,1}∗ (1)

where realπρ,Aπ(n, x, z) |P denotes the output of the party P from the real execution of πρ.
Eq. (1) follows from the following observations. First, PZ perfectly emulates the environment Z.
Therefore, the inputs of the parties P1, . . . , Pm to ρ in the real execution of πρ are identical to the
inputs of the parties to ρ in the UC setting (recall that PZ provides these inputs in πρ whereas Z
provides these inputs in the UC setting). Second, the view of A in the emulation by Aπ is identical
to its view in the UC setting. Therefore, the behavior of the corrupted parties is identical in both
settings. Finally, the honest parties in πρ behave exactly the same as in an execution of ρ. Putting
this together, we have that the view of Z in the emulation by PZ in πρ is identical to its view in
the UC setting. We conclude that the distribution over PZ ’s output is identical to the distribution
over Z’s output.

Having established the connection between a uc-real execution of ρ and a real execution of
πρ, we proceed to show how a UC-type simulator is obtained for ρ. First, by the security of ρ under
1-bounded concurrent general composition and arbitrary sets of parties, we have that there exists
a hybrid-model simulator Sπ such that

{
hybridFπ,Sπ

(n, x, z)
}

n,x,z

c≡
{
realπρ,Aπ(n, x, z)

}
n,x,z

8Padv is used in π because in the setting of general composition, the adversary can only communicate with honest
parties, like PZ , by instructing a corrupted party to send some message. In contrast, in the UC framework, the
adversary can communicate with Z even if no parties are corrupted. Thus, in the general composition setting, Padv

is always corrupted, allowing the adversary to send messages to PZ even if none of P1, . . . , Pm are corrupted.

15

In particular, it follows that the output of PZ in the hybrid setting is computationally indistin-
guishable to its output in the real setting. That is, for every input vector x, every auxiliary input
z for Aπ and all sufficiently large n’s

{
hybridFπ,Sπ

(n, x, z) |PZ
}

c≡
{
realπρ,Aπ(n, x, z) |PZ

}
(2)

Of course, a special case of Eq. (2) is for the case that x is chosen according to Xn(z) as defined
for Eq. (1).

We are now ready to show how to construct an ideal-model adversary/simulator S for the UC
setting with Z and A, from the hybrid-model adversary Sπ for π and Aπ. S internally invokes
Sπ and emulates a hybrid execution of π for Sπ. Notice that S interacts with P1, . . . , Pm and an
external environment Z; whereas Sπ interacts with parties PZ , Padv, P1, . . . , Pm. Furthermore, S
interacts in an ideal execution with F , whereas Sπ interacts in a hybrid execution of πF . Therefore,
S must emulate for Sπ the additional parties PZ and Padv and the additional messages belonging
to π.
• Emulation of PZ : The emulation of PZ works by redirecting messages intended for PZ to the

external environment Z and vice versa. That is, whenever Sπ instructs Padv to send a message
to PZ , simulator S externally sends this message to Z; likewise, all messages that S receives
from Z are internally handed to Padv as if sent from PZ . Note that since Aπ does not corrupt
PZ , simulator Sπ can also not corrupt PZ .9 (This holds because the set of corrupted parties can
be discerned from the global output. Therefore, if Sπ were to corrupt a different set of parties to
Aπ, it would immediately be possible to distinguish the real and hybrid executions.) Thus,
S does not need to deal with the case that PZ is corrupted by Sπ.

• Emulation of Padv: First, note that until the point that Padv is corrupted, it does nothing. Thus,
the only emulation required is when Sπ corrupts Padv. In this case, all S needs to do is to hand
Sπ the series of messages that Padv would have received so far. However, by the construction of
π, party Padv receives messages from PZ only and these messages are exactly the messages that
S receives from Z. Therefore, S just hands Sπ the messages that S received from Z so far. The
emulation of Padv following its corruption relates only to its communication with PZ ; this has
already been described above under the emulation of PZ .

• Emulation of π-messages and parties P1, . . . , Pm: S internally forwards all messages between
Sπ and the simulated parties PZ and Padv. Next, when Z writes a value on the input tape of
an uncorrupted party Pi, simulator S emulates PZ sending (input, αi) to Pi, for αi ∈R {0, 1}n.
Likewise, when Z reads the output tape of an uncorrupted party Pi, simulator S emulates Pi

sending (output, Pi, βi) to PZ , for βi ∈R {0, 1}n.10

9It is crucial that Sπ not corrupt PZ because were it to do this, S would be unable to carry out the simulation.
This is because S cannot corrupt its environment Z and so cannot provide Sπ with the appropriate internal state
of PZ .

10The above description assumes that S knows when Z writes to a party’s input tape and reads from its output
tape. The fact that S knows when Z writes to a party’s input tape is due to the following. In the UC model, when
Z writes to a party’s input tape, that party is activated next. Then, in a UC ideal execution, that party immediately
writes a message on its outgoing communication tape for F . Since S is responsible for the delivery of messages,
it knows whenever a party writes to its outgoing communication tape. Regarding the time that Z reads a party’s
output tape, without loss of generality, we can assume that Z reads the tape as soon as it is written to. Now, in the
UC ideal model, when a party receives its output from the ideal functionality, it is activated and immediately copies
this output to its output tape. Since S delivers all outputs from the ideal functionality to the parties, it thus knows
when outputs are written.

16

If Sπ corrupts party Pi before Z writes a value on its input tape, then S chooses a random
pair (ra

i , rb
i) and hands this to Sπ as Pi’s input. Then, when Z writes a value xi on Pi’s input

tape, S emulates PZ sending (input, xi⊕ ra
i) to Pi. Likewise, when Pi receives its output yi from

F , simulator S emulates Pi sending (output, Pi, yi ⊕ rb
i) to PZ . Note that since Pi is corrupted,

S obtains all of its values. Therefore, S knows xi and yi, as required for carrying out the above
emulation.

If Sπ corrupts a party Pi after Z writes a value on its input tape (and before it receives its
output), then S has already simulated PZ sending (input, αi) to Pi. Therefore, S corrupts Pi

and obtains the input value xi that Z wrote on Pi’s input tape. Then, S sets ra
i = αi ⊕ xi,

chooses a random rb
i ∈R {0, 1}n, and hands Sπ the pair (ra

i , rb
i) as Pi’s input. The emulation

from this point on is the same as above.
Finally, if Sπ corrupts Pi after its input and output values have been sent, then both αi

and βi have already been fixed. Thus, S corrupts Pi and obtains xi and yi. Next, S defines
ra
i = αi ⊕ xi and rb

i = βi ⊕ yi. The rest of the emulation is as above.

• Delivery of messages: S deliver a message between F and a party Pi whenever Sπ would deliver
the corresponding message between F and Pi in the hybrid execution of π. When Sπ wishes to
deliver a message from a corrupted party Pi to F , simulator S sends F the value written on the
outgoing communication tape of the emulated Pi, as intended for F .

This completes the description of S.
The proof is concluded by showing that S’s emulation for Sπ is perfect. First, recall that in an

execution of π, party PZ runs the code of Z. Therefore, the messages sent from PZ to Padv and
P1, . . . , Pm are the same in the emulation by S and in a hybrid-model execution of π. Furthermore,
the inputs that all parties send to F are also identical in both scenarios. This is because the
honest parties receive their inputs from PZ in π and from Z in the ideal execution with S; they
are therefore the same. Likewise, the corrupted parties in π are instructed by Sπ regarding their
inputs to F , and S forwards these same instructions. This all implies that Z’s view in the ideal
execution of F with S is identical to PZ ’s view in the F-hybrid execution of π with Sπ. Thus,

{
uc-idealF ,S,Z(n, z)

}
n∈N;z∈{0,1}∗ ≡

{
hybridFπ,Sπ

(n, Xn(z), λ) |PZ
}

n∈N;z∈{0,1}∗ (3)

where Xn(z) is as defined in Eq. (1). The lemma is obtained by combining Equations (1) to (3).

Remark – specialized simulation. According to Definition 1 (security under concurrent gen-
eral composition), a different simulator Sπ may be provided for every protocol π. Therefore, in the
proof of Theorem 3, it is crucial that π is fixed before Sπ and thus S are obtained. Since π emulates
the environment Z, this means that Z must be fixed before the UC simulator S is obtained. This
explains why we can only prove that specialized-simulator UC is implied, and not the original UC
definition itself.

Discussion – UC stringencies. The proof of Theorem 3 shows why the two stringencies of the
UC definition, as discussed in the Introduction, are essential. These two stringencies are (1) that
S has only black-box access to Z, and (2) that S cannot rewind Z. Now, in the protocol π that
calls ρ, an honest party PZ runs the code of Z. Intuitively, this means that the environment Z in
the UC definition models the code that is run by honest parties outside of the secure protocol ρ.
The key point is that the ideal-model adversary/simulator clearly cannot be given control over the

17

honest parties in the network, or all meaning of security is lost. In other words, in order for security
to be obtained, the ideal-model adversary can only have (1) black-box access to honest parties, and
(2) cannot rewind these parties. Since the environment Z models these parties, the UC simulator
S must also be given only black-box access to Z, without the possibility of rewinding.

3.2 Theorem 3 for Non-Exact Complexity Classes

Notice that in the proof of Theorem 3, all that is needed is for the parties PZ and Padv to internally
emulate Z and A, and to encrypt the messages sent between PZ and the parties Pi using a one-time
pad. Thus, the complexity of these parties in the setting of concurrent general composition is of
the same order of the analogous parties in the setting of universal composability. Thus, if the
original parties are in some non-exact complexity class C, the same holds for the derived parties
that emulate others. We therefore obtain the following theorem:

Theorem 4 Consider variants of Definitions 1 and 2 where all parties belong to a non-exact com-
plexity class C. Let ρ be a protocol and F a functionality. If ρ securely computes F under 1-bounded
concurrent general composition with arbitrary sets of parties and adaptive adversaries, then ρ se-
curely computes F under specialized-simulator UC with adaptive adversaries.

Noting that the notion of polynomial-time in [9] is trivially a non-exact complexity class, we have
the following corollary:

Corollary 5 Consider variants of Definitions 1 and 2 where all parties run in polynomial time as
defined in [9]. Then, a protocol ρ securely computes a functionality F under 1-bounded concurrent
general composition with arbitrary sets of parties and adaptive adversaries if and only if ρ securely
computes F under specialized-simulator UC with adaptive adversaries.

This corollary follows from the fact that under polynomial time in [9], specialized-simulator UC is
equivalent to UC security. Therefore, our proof actually demonstrates that 1-bounded concurrent
general composition implies UC security. (The other direction follows from the UC composition
theorem.)

3.3 Theorem 3 for Static Adversaries

Theorem 3 refers to adaptive adversaries. However, we can actually prove a stronger result when
considering static (or non-adaptive) adversaries. Specifically, we can show that 1-bounded concur-
rent general composition for a single set of parties implies specialized-simulator UC. Note that in
the proof of Theorem 3, we use the fact that there are arbitrary sets of parties in an essential way.
Specifically, we define additional parties PZ and Padv, and it is crucial that PZ is not corrupted
and that Padv is corrupted. (PZ cannot be corrupted because then the simulator S would have
to provide Sπ with the appropriate internal state of Z, which it cannot do. Likewise, Padv must
be corrupted in order to simulate communication between A and Z, even when no parties are
corrupted.) Now, if PZ was played by a party Pi then the simulation would fail in the case that
the adaptive adversary corrupts party Pi; likewise for Padv.

Proposition 6 Let ρ be a protocol and F a functionality. If ρ securely computes F under 1-
bounded concurrent general composition with a single set of parties and static adversaries, then ρ
securely computes F under specialized-simulator UC with static adversaries.

18

Proof Sketch: The proof of this proposition is very similar to the proof of Theorem 3; the
only differences are as follows. As above, we start with a protocol ρ for parties P1, . . . , Pm, an
adversary A and an environment Z, and we define a protocol π. However, in contrast to the proof
of Theorem 3, we do not introduce additional parties PZ and Padv. Rather, protocol π is defined
for the same set of parties P1, . . . , Pm, and we have two of the parties Pi and Pj play the roles of
Padv and PZ . Recall that in the proof of Theorem 3, protocol π is defined after both Z and A are
fixed. Now, since A is a static adversary, the set of corrupted parties is fixed. Therefore, we can
single out one corrupted party Pi and one honest party Pj .11 In the definition of protocol π, party
Pi will play the role of Padv (as well as Pi) and party Pj will play the role of PZ (as well as Pj).
Since we are guaranteed that Pi is corrupted and Pj is not, everything else in the proof remains
the same.

Caveat. The proof of Proposition 6 is very sensitive to the specific formulation of static adver-
saries used. That is, we rely heavily on the fact that the set of corrupted parties is fixed for a
given adversary and that the set cannot depend on the input or random coin tosses. For example,
consider the definition of the static adversarial model where all the corruptions take place before
any parties are activated (as defined in [8]). In this case, the set of corrupted parties can depend
on Z’s input z and the proof does not work.

Arbitrary and single sets of parties with static adversaries. The above proposition can
also be translated into a full equivalence by using the notion of polynomial time in [9]. In such a
case, we obtain an interesting result that states that when static adversaries are considered, security
for arbitrary sets of parties is equivalent to security for a single set of parties. This can be seen
as follows. The analog of Proposition 6 to the case that polynomial-time of [9] is used states that
security under concurrent general composition with static adversaries and a single set of parties
implies full-blown UC-security with static adversaries. Then, the UC composition theorem states
that UC-security implies security under concurrent general composition with static adversaries and
arbitrary sets of parties. Equivalence between a single set and arbitrary sets of parties therefore
follows. We do not know if the same is true for adaptive adversaries.

3.3.1 Theorem 3 for the Parallel Setting

In this section, we consider the case of parallel general composition. In this case, protocols π and ρ
begin at the same time and proceed in a synchronized fashion. That is, the π and ρ messages are
delivered together, and in order.

We do not know how to show that parallel general composition implies specialized-simulator
universal composition, as defined. Rather, we show the implication for a slightly modified definition,
where the modification relates to the process of activations in the UC real and ideal models.
Specifically, we limit the interaction between the environment and adversary in the real model to
be one message per round of the protocol (no limitation is placed on the ideal model). That is, in
each round, the environment sends one message to the adversary and this message must contain

11This holds only if A corrupts a proper, non-empty subset of the parties. That is, if A corrupts all parties, then
no party can play PZ , and if A corrupts no parties, then no party can play Padv. This is solved as follows. If A
corrupts all parties, then simulation is straightforward. Specifically, all S needs to do is forward messages between A
and Z. In the other case where A corrupts no parties, this is solved by having Padv (or in this setting some Pi) run
A’s code, in the same way that PZ is defined so that it runs Z’s code. In this way, A can still communicate with Z
without corrupting any parties.

19

all corrupt and message-delivery instructions.12 Likewise, the adversary replies to the environment
with a single message. This is in contrast to the UC definition which allows unlimited interaction
between the environment and adversary. We call this definition synchronized UC as the adversary
and environment are somewhat synchronized.

We remark that the universal composition theorem of [8] (for concurrent composition) and the
impossibility results of [12] also hold in this case. We now show that 1-bounded parallel general
composition implies specialized-simulator synchronized UC. We state the proposition for the case
of static adversaries and a single set of parties. However, it also holds for adaptive adversaries and
arbitrary sets of parties.

Proposition 7 Let ρ be a protocol and F a functionality. If ρ securely computes F under 1-
bounded parallel general composition for a single set of parties and static adversaries, then ρ securely
computes F under specialized-simulator synchronized UC with static adversaries.

Proof Sketch: This proposition follows from the fact that in synchronized UC, the environment
Z and the adversary A exchange a single pair of messages each round. Therefore, a single round
of π can emulate the communication between Z and A. Notice that this would not hold were Z
and A to exchange multiple messages for each round of π.

We note that the impossibility results of [12] hold also for synchronized specialized-simulator UC.13

Thus, as we will show in Section 4, Proposition 7 implies impossibility for parallel general compo-
sition.

4 Impossibility Results for General Composition

An important ramification of Theorem 3, and Propositions 6 and 7, is that known impossibility
results for specialized-simulator UC apply to 1-bounded concurrent (and even parallel) general
composition. As we will see, this rules out the possibility of obtaining security under this type of
composition for large classes of two-party functionalities. We stress that the impossibility results
are unconditional. That is, they hold without any complexity assumptions. Furthermore, they
apply for any type of simulation (and not just “black-box” simulation).

Impossibility for specialized-simulator UC. The following impossibility results for specialized-
simulator UC and static adversaries were shown in [12]:14

1. Let X ⊆ {0, 1}∗ be a domain, let f : X → {0, 1}∗ be a (deterministic) function and let Ff be a
two-party ideal functionality that receives x ∈ X from P1 and sends f(x) to P2. If f is weakly
one-way,15 then Ff cannot be securely computed under specialized-simulator UC. We note

12The order of activations must be redefined in this case. However, this can be done in a straightforward way.
13This was not explicitly stated in [12], but is not difficult to see. Specifically, the environment and real-model

adversary constructed by [12] in order to prove their results communicate only once each round.
14The focus of [12] was to prove impossibility results for the UC definition. However, they do explicitly state

which of their results also apply to the relaxed variant of UC in which the quantifiers are reversed (i.e., what we call
“specialized-simulator UC”).

15A function is weakly one-way if there exists a polynomial p(·) such that for every efficient inverting machine M
and all sufficiently large n’s, Pr[M(f(Un)) ∈ f−1(f(Un))] < 1 − 1/p(n). Actually, for this impossibility result, it
suffices that for every efficient machine M there exists a polynomial pm(·) such that M succeeds with probability
at most 1 − 1/pm(n). Furthermore, any efficient distribution over the domain of f can be allowed, and not just the
uniform distribution.

20

that the zero-knowledge functionality [8] over (moderately) hard-on-the-average languages is
weakly one-way.

2. Let f : X × X → {0, 1}∗ be a (deterministic) function and let Ff be a two-party ideal
functionality that receives x1 and x2 from P1 and P2 respectively, and hands both parties
f(x1, x2). If f depends on both parties’ inputs,16 then Ff cannot be securely computed under
specialized-simulator UC.

3. Let f : X×X → {0, 1}∗×{0, 1}∗ be a (deterministic) function and denote f = (f1, f2) (where
fi : X×X → {0, 1}∗ for each fi). Furthermore, let Ff be a two-party ideal functionality that
receives x1 and x2 from P1 and P2 respectively, and hands f1(x1, x2) to P1 and f2(x1, x2) to
P2. If f is not completely revealing, then Ff cannot be securely computed under specialized-
simulator UC.17 See Appendix A for the definition of completely revealing functionalities.

4. Let f : X ×X → {0, 1}∗ be a probabilistic function and let Ff be a two-party ideal function-
ality that receives x1 and x2 from P1 and P2 respectively, samples a value v from f(x1, x2)
and hands both parties v. Loosely speaking, we say that such a probabilistic function f is
unpredictable for P2 if there exists an input x1 for P1 such that for every input x2 and ev-
ery possible output value v, there is at least a non-negligible probability that f(x1, x2) does
not equal v. (That is, f(x1, x2) is a random variable that does not almost always accept
a single value v. In such a case, f(x1, x2) defines a non-trivial distribution, irrespective of
the value x2 that is input by P2.) Likewise, f is unpredictable for P1 if there exists an x2

such that for every x1 and every v, with at least non-negligible probability f(x1, x2) does not
equal v. If is unpredictable for both P1 and P2, then Ff cannot be securely computed under
specialized-simulator UC.

We stress that the above impossibility results are not due to fairness issues. In fact, output
delivery is not guaranteed at all in the basic framework for UC security, and so fairness is anyway
not required. A result of this is that a protocol that generates no output is actually universally
composable by definition. Therefore, these impossibility results hold only for non-trivial protocols
that generate output. Specifically, it is required that if no parties are corrupted and all messages
are delivered by the adversary, then all parties receive their designated output.

Impossibility results for 1-bounded general composition. Let Φ be the set of ideal func-
tionalities described above, that cannot be securely computed under specialized-simulator UC.
Applying Theorem 3 and Propositions 6 and 7 to the results of [12], we obtain the following corol-
laries:

Corollary 8 Consider an adversarial model with adaptive or static corruptions. Then, the set
of two-party functionalities Φ cannot be securely computed under 1-bounded concurrent general
composition for arbitrary sets or a single set of parties.

Corollary 8 follows directly from Proposition 6. We note that although Proposition 6 refers to static
adversaries and a single set of parties, we obtain all four combinations (of adaptive/static adversaries

16Formally, a function f depends on both inputs if there does not exist a function g : X → {0, 1}∗ such that
g(x) = f(x, x′) for every x′, or g(x) = f(x′, x) for every x′. If such a g exists, then the output is determined solely
on the basis of one of the parties’ inputs.

17We note that in the FOCS 2003 proceedings version of this paper, it was stated that if f1 or f2 has an insecure
minor, then Ff cannot be securely computed under specialized-simulator UC. This statement is incorrect (and was
also not proven in [12]).

21

and arbitrary/single sets of parties) due to the fact that security against adaptive adversaries implies
security against static adversaries and security for arbitrary sets of parties implies security for a
single set of parties. The next corollary relates to parallel general composition:

Corollary 9 Consider an adversarial model with adaptive or static corruptions. Then, the set of
two-party functionalities Φ cannot be securely computed under 1-bounded parallel general composi-
tion for arbitrary sets or a single set of parties.

Corollary 9 follows from Proposition 7 and from the fact that the results of [12] also apply to
specialized-simulator synchronized UC. Note that parallel self composition is easier to achieve than
concurrent composition (see [21, Section 6]). Nevertheless, Corollary 9 demonstrates that in the
context of general composition, parallel composition is also “hard” to achieve.

Acknowledgements

We would like to thank Ran Canetti, Oded Goldreich and Hugo Krawczyk for many helpful dis-
cussions and comments.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages
106–115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the
Shared Random String Model. In 43rd FOCS, pages 345–355, 2002.

[3] B. Barak, R. Canetti, J. Nielsen and R. Pass. Universally Composable Protocols with
Relaxed Set-up Assumptions. In 45th FOCS, pages 186–195, 2004.

[4] B. Barak and A. Sahai. How To Play Almost Any Mental Game Over The Net – Con-
current Composition via Super-Polynomial Simulation. In 46th FOCS, pages 543–552,
2005.

[5] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[6] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[7] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. In 42nd FOCS, pages 136–145, 2001.

[9] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. In Cryptology ePrint Archive, Report 2000/067. Version updated 2005.

[10] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO’01,
Springer-Verlag (LNCS 2139), pages 19–40, 2001.

22

[11] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge
Requires Ω̃(log n) Rounds. SIAM Journal on Computing, 32(1):1–47, 2003.

[12] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Composable
Two-Party Computation Without Set-Up Assumptions. Journal of Cryptology, 19(2):135-
167, 2006.

[13] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party
and Multi-Party Computation. In 34th STOC, pages 494–503, 2002.

[14] R. Canetti and T. Rabin. Universal Composition with Joint State. In CRYPTO 2003,
Springer-Verlag (LNCS 2729), pages 265–281, 2003.

[15] D. Chaum, C. Crepeau and I. Damgard. Multi-party Unconditionally Secure Protocols.
In 20th STOC, pages 11–19, 1988.

[16] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. Journal of the ACM,
51(6):851–898, 2004.

[17] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[18] O. Goldreich. Cryptography and Cryptographic Protocols. In Distributed Computing,
16(2):177–199, 2003.

[19] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Com-
pleteness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229,
1987.

[20] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Im-
moral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[21] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. Journal of
Cryptology, 18(3):247–287, 2005.

[22] Y. Kalai, Y. Lindell and M. Prabhakaran. Concurrent General Composition of Secure
Protocols in the Timing Model. In the 37th STOC, pages 644–653, 2005. To appear in
the Journal of Cryptology.

[23] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assump-
tions. In 35th STOC, pages 683–692, 2003.

[24] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party
Computation. (Extended abstract of this paper.) In 44th FOCS, pages 394–403, 2003.

[25] Y. Lindell. Composition of Secure Multi-Party Protocols – A Comprehensive Study. Lec-
ture Notes in Computer Science Vol. 2815, Springer-Verlag, 2003.

[26] Y. Lindell. Lower Bounds for Concurrent Self Composition. In the 1st Theory of Cryptog-
raphy Conference (TCC), Springer-Verlag (LNCS 2951), pages 203–222, 2004. To appear
in the Journal of Cryptology.

23

[27] T. Malkin, R. Moriarty and N. Yakovenko. Generalized Environmental Security from
Number Theoretic Assumptions. In the 3rd TCC, Springer-Verlag (LNCS 3876), pages
343–359, 2006.

[28] S. Micali, R. Pass and A, Rosen. Input-Indistinguishable Computation. In 47th FOCS,
pages 367–378, 2006.

[29] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Prelimi-
nary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[30] R. Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Compo-
sition. In Eurocrypt 2003, Springer-Verlag (LNCS 2656), pages 160–176, 2003.

[31] R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Major-
ity. In 36th STOC, pages 232–241, 2004.

[32] R. Pass and A. Rosen Bounded-Concurrent Secure Two-Party Computation in a Constant
Number of Rounds. In 44th FOCS, 2003.

[33] B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure Reactive
Systems. In 7th ACM Conference on Computer and Communication Security, pages 245–
254, 2000.

[34] M. Prabhakaran and A. Sahai. New Notions of Security: Universal Composability Without
Trusted Setup. In 36th STOC, pages 242–251, 2004.

[35] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest
Majority. In 21st STOC, pages 73–85, 1989.

[36] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In EUROCRYPT’99, Springer-Verlag (LNCS 1592), pages 415–431, 1999.

[37] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

A Completely Revealing Functionalities

As we have stated in Section 4, functionalities that are not completely revealing cannot be securely
computed under concurrent general composition, by any protocol. We now define the notion of
completely revealing functionalities, as found in [12]. Loosely speaking, a functionality is completely
revealing for party P1, if party P2 can choose an input so that the output of the functionality fully
reveals P1’s input (for all possible choices of that input). That is, a functionality f is completely
revealing for P1 if there exists an input y for P2 so that for every x, it is possible to derive x from
f(x, y). For example, let us take the maximum function for a given range, say {0, . . . , n}. Then,
party P2 can input y = 0 and the result is that it will always learn P1’s exact input. In contrast, the
less-than function is not completely revealing because for any input used by P2, there will always
be uncertainty about P1’s input (unless P1’s input is the smallest or largest in the range).

In this appendix, we will only present the definition of “completely revealing” for functionalities
that have finite domains. This significantly simplifies the definition of “completely revealing”; the
general definition can be found in [12].

We begin by defining what it means for two inputs to be “equivalent”: Let f : X × Y →
{0, 1}∗×{0, 1}∗ be a two-party functionality and denote f = (f1, f2). Let x1, x2 ∈ X. We say that

24

x1 and x2 are equivalent with respect to f2 if for every y ∈ Y it holds that f2(x1, y) = f2(x2, y).
Notice that if x1 and x2 are equivalent with respect to f2, then x1 can always be used instead of
x2 (at least without affecting P2’s output). We now define completely revealing functionalities:

Definition 10 (completely revealing functionalities over finite domains): Let f : X×Y → {0, 1}∗×
{0, 1}∗ be a deterministic two-party functionality such that the domain X × Y is finite, and denote
f = (f1, f2). We say that the function f2 completely reveals P1’s input if there exists a single input
y ∈ Y for P2, such that for every two distinct inputs x1 and x2 for P1 that are not equivalent
with respect to f2, it holds that f2(x1, y) 6= f2(x2, y). Complete revealing for P2’s input is defined
analogously. We say that a functionality f is completely revealing if f1 completely reveals P2’s input
and f2 completely reveals P1’s input.

If a functionality is completely revealing for P1, then party P2 can set its own input to be the
“special value” y from the definition, and then P2 will always obtain the exact input used by P1.
Specifically, given v = f2(x, y), party P2 can traverse over all X and find the unique x for which it
holds that f2(x, y) = v (where uniqueness here is modulo equivalent inputs x and x′). It then follows
that x must be P1’s input (or at least is equivalent to it). Thus we see that P1’s input is completely
revealed by f2. In contrast, if f2 is not completely revealing for P1, then there does not exist such
an input for P2 that enables it to completely determine P1’s input. This is because for every y
that is input by P2, there exist two non-equivalent inputs x1 and x2 such that f2(x1, y) = f2(x2, y).
Therefore, if P1’s input happens to be x1 or x2, it follows that P2 is unable to determine which of
these inputs were used by P1. Notice that if a functionality is not completely revealing, P2 may
still learn much of P1’s input (or even the exact input “most of the time”). However, there is a
possibility that P2 will not fully obtain P1’s input. As it turns out, the existence of this “possibility”
suffices for proving impossibility results.

Note that we require that x1 and x2 be non-equivalent because otherwise, x1 and x2 are really
the same input and so, essentially, both x1 and x2 are P1’s input. Technically, if we do not require
this, then a functionality may not be completely revealing simply due to the fact that no y can
have the property that f2(x1, y) 6= f2(x2, y) when x1 and x2 are equivalent. This would therefore
not capture the desired intuition.

As we have mentioned above, the “less than” function (otherwise known as Yao’s millionaires’
problem) is not completely revealing, as long as the range of inputs is larger than 2. This can easily
be demonstrated.

25

