
Breaking and Repairing Optimistic Fair Exchange from PODC 2003

Yevgeniy Dodis∗ Leonid Reyzin†

July 25, 2003

Abstract

In PODC 2003, Park, Chong, Siegel and Ray [19] proposed an optimistic protocol for fair
exchange, based on RSA signatures. We show that their protocol is totally breakable already in the
registration phase: the honest-but-curious arbitrator can easily determine the signer’s secret key.

On a positive note, the authors of [19] informally introduced a connection between fair exchange
and “sequential two-party multi-signature schemes” (which we call two-signatures), but used an in-
secure two-signature scheme in their actual construction. Nonetheless, we show that this connection
can be properly formalized to imply provably secure fair exchange protocols. By utilizing the state-
of-the-art non-interactive two-signature of Boldyreva [6], we obtain an efficient and provably secure
fair exchange protocol, which is based on GDH signatures [9].

Of independent interest, we introduce a unified model for non-interactive fair exchange protocols,
which results in a new primitive we call committed signatures. Committed signatures generalize
(non-interactive) verifiably encrypted signatures [8] and two-signatures, both of which are sufficient
for fair exchange.

1 Optimistic Fair Exchange

The problem of fair exchange is one of the fundamental problems in secure electronic transactions
and digital rights management. Intuitively, it allows two parties to exchange items in a fair way, so
that either each party gets the other’s item, or neither party does. In the digital world, a natural
instance of this problem is roughly the following. Alice is willing to sign some statement (e.g.,
e-cash payment, certified mail receipt, etc.), but only if Bob fulfills some obligation (delivers some
good, discloses some information, etc.). On the other hand, Bob is not willing to fulfill this obligation
unless he is sure that he gets the signature from Alice. A modern way to overcome this circularity is to
introduces a semi-trusted arbitrator Charlie to the model. Alice will first register her key with Charlie.
This registration is performed only once, and, as a result, Charlie may possibly learn some part of
Alice’s secret. Upon the completion of the one-time registration process, Alice can perform many fair
exchanges with different merchants. In any such exchange, Alice first issues some verifiable “partial
signature” σ′ to Bob. Bob verifies the validity of this partial signature and fulfills his obligation by
sending Alice the required information I, after which Alice sends her “full signature” σ to complete the
transaction. Thus, if no problem occurs, Charlie does not participate in the protocol (such protocols

∗Department of Computer Science, New York University, 251 Mercer Street, New York, NY 10012, USA. Email:
dodis@cs.nyu.edu.

†Department of Computer Science, Boston University, 111 Cummington St, Boston, MA 02215, USA. Email:
reyzin@cs.bu.edu.

1



are called optimistic). However, if Alice refuses to send her full signature σ at the end, Bob will send
σ′ to Charlie (and a proof of fulfilling his obligation, including the information I that should be sent
to Alice), and Charlie will convert σ′ into σ, sending σ to Bob and I to Alice. Informally, we wish to
achieve the following security guarantees:

• Alice should not be able to produce a valid partial signature σ′ which Charlie cannot convert
into a full signature σ.

• Bob should not be able to produce a valid partial (full) signature σ′ (σ) which he did not get
from Alice (Alice/Charlie provided Bob possesses σ′).

• Charlie should not be able to produce a valid full signature σ without getting a valid partial
signature σ′ from Bob.

While the first two properties are clearly important to prevent parties from cheating, the last property
is equally crucial: we do not want the arbitrator Charlie to make signatures without Alice’s consent.
Indeed, otherwise Charlie would have to be completely trusted. Moreover, if one is willing to have a
completely trusted arbitrator, then the problem becomes technically trivial, and no elaborate protocols
(such as the protocol in [19] that we break) are needed at all: Alice may use any signature scheme
and simply give Charlie her entire secret key during registration.

1.1 Previous Work

The problem of fair exchange has a rich history due to its fundamental importance. In the following,
we only briefly mention the body of research most relevant to our results, and refer the reader to
[2, 19] for further references.

Asokan et al. [1, 2] were the first to formally study the problem of optimistic fair exchange. They
present several provably secure, but highly interactive solutions, based on the concept of verifiably
encrypted signatures (VE-signatures). In such schemes, Alice encrypts her signature under Charlie’s
encryption key, and proves to Bob that she indeed encrypted her valid signature. After receiving her
item from Bob, she proceeds to open the encryption. This approach of [1, 2] was later generalized
by [10], but all these scheme involve expensive and highly interactive zero-knowledge proofs in the
exchange phase. Other less formal works on interactive VE-signatures include [4, 3] (e.g., the paper of
[4] was broken by [3]). The first and only non-interactive VE-signature scheme was recently constructed
by Boneh et al. [8]. While very elegant and provably secure, the scheme is based on a new and rather
non-standard security assumption, and requires special elliptic groups with a bilinear map.

A different paradigm for building non-interactive fair exchange protocols was very recently proposed
by Park et al. [19]. This approach avoids the design of verifiable encryption schemes, at the expense
of having Charlie store a piece of Alice’s secret key (unlike the VE-signature approach, where Charlie
has one encryption key which does not depend on Alice’s secret information). While only slightly less
convenient than the VE-signature approach, the authors of [19] suggest that one may design simpler
fair exchange protocols, and under more established security assumptions. Essentially, Alice commits
by sending her “partial signature” σ′ to Bob, and Bob is guaranteed that Charlie can convert it into
Alice’s full signature using the piece of Alice’s secret that Charlie learned after Alice’s registration.
To justify this point, they introduce a very efficient fair exchange protocol based on regular RSA
signatures, and also informally sketch a deeper connection between their framework and “sequential
two-party multi-signature schemes” (which we call two-signatures). However, [19] provided no formal

2



definitions for their framework, nor any proof or even security arguments that their proposed protocol
is secure.

1.2 Our Results

Unfortunately, we show that the fair exchange protocol presented by [19] at PODC 2003 (based on
RSA signatures) is completely insecure. Specifically, we show that an honest-but-curious arbitrator
Charlie can easily determine Alice’s entire secret key after the end of Alice’s registration. In other
words, even though it might not seem at first that Alice leaks her entire key during registration, she
effectively does so, thus trivializing the proposed scheme.

On a positive note, we show that the informal connection between non-interactive fair exchange and
secure two-signature schemes can be formalized and result in provably secure fair exchange protocols,
as long as one uses secure two-signature schemes (unlike the RSA-based scheme used by [19], which
we show is completely insecure). In particular, by utilizing the state-of-the-art non-interactive two-
signature of Boldyreva [6], we obtain a very efficient and provably secure non-interactive fair exchange
protocol, which is based on GDH signatures [9]. As compared to the non-interactive VE-signature of
[8], the resulting fair exchange is equally efficient, but is based on a weaker and much more standard
“Gap Diffie-Hellman” assumption (at the expense of Charlie storing a separate secret key per each
user Alice).

We also stress that we provide formal definitions and security proofs for all our constructs. In
particular, and of independent interest, we introduce a unified model for non-interactive fair exchange
protocols, which results in a new primitive we call committed signatures. Committed signatures gen-
eralize (non-interactive) verifiably encrypted signatures [8] and two-signatures, both of which are
sufficient for fair exchange.

2 Formal Model For Non-Interactive Fair Exchange

We introduce the concept of committed signatures,1 which directly model non-interactive fair exchange.

Definition 1 A committed signature involves the signer Alice, the verifier Bob and the arbitrator
Charlie, and is given by the following efficient procedures:

• Setup. This is an interactive protocol between Alice and Charlie, by the end of which either one of
the parties aborts, or Alice learns her secret signing key SK, Charlie learns his secret arbitration
key ASK, and both parties agree on Alice’s public verification key PK, and partial verification
key APK.

• Sig and Ver. These are conventional signing and verification algorithms of an ordinary signature
scheme. Sig(m,SK) — run by Alice — outputs a signature σ on m, while Ver(m,σ, PK) — run
by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

• PSig and PVer. These are partial signing and verification algorithms, which are just like ordinary
signing and verification algorithms, except they can depend on the public arbitration key APK.

1Our notion is very different from “signatures on committed values” (see [11]). There, one tries to hide the message
signed, but interactively prove that the message satisfies some property.

3



PSig(m,SK,APK) — run by Alice — outputs a partial signature σ′, while PVer(m,σ′,PK,APK)
— run by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

• Res. This a resolution algorithm run by Charlie in case Alice refuses to open her signature σ
to Bob, who in turn possesses a valid partial signature σ′ on m (and a proof that he fulfilled his
obligation to Alice). In this case, Res(m,σ′,ASK,PK) should output a legal signature σ of m.

Correctness states that Ver(m,Sig(m,SK),PK) = 1, PVer(m,PSig(m,SK,APK),PK,APK) = 1 and
Ver(m,Res(PSig(m,SK,APK),ASK,PK),PK) = 1.

A few remarks are in order. The key VK will be certified by some certificate authority and will serve
as Alice’s long term key. On the other hand, APK will carry no legal meaning outside of the arbitration
process, even though it should be certified by Charlie (or some other authority) to ensure Bob that
disputes will be correctly resolved. In particular, σ′ should not be viewed as Alice’s signature, even
though it can be publicly verified using PK and APK.

Also, in our primitive we abstract out the details of when the arbitration procedure Res should be
run. In particular, we assume that Bob can convince Charlie that he fulfilled his obligation to Alice,
and deserves to see her signature. For example, such proof could be Bob’s digital signature on some
contract, in which case Charlie will also forward this signature to Alice before giving Alice’s signature
to Bob. We also observe that our framework does not address a subtle issue of timely termination
addressed by [1, 2]. We remark, however, that the technique of [1, 2] can be easily added to our
solution to resolve this problem.

Finally, we comment on the possible implementations of the Setup procedure.

2.1 Verifiably Encrypted Signatures

In the most preferable solution, Charlie generates (ASK,APK) by himself, while Alice should generate
(SK,PK) by herself (possibly depending on APK). This way Charlie can support many users with a
single arbitration key ASK, and Alice does not need to contact Charlie at all when she produces her
keys. We will refer to such special case of committed signature as (non-interactive) verifiably encrypted
signature (or VE-signature). Indeed, in a natural implementation of VE-signatures, (APK,ASK) will be
Charlie’s encryption/decryption key, and Alice will generate the partial signature σ′ by encrypting her
actual signature σ using APK. If needed, Charlie will resolve this by simply decrypting the “verifiably
encrypted signature” σ′. The challenge of this approach is to make σ′ non-interactively verifiable.
Indeed, until very recently [8], all VE-signatures were highly interactive (between Alice and Bob). And
the only non-interactive VE-signature of [8] is based on a pretty non-standard “aggregate extraction”
assumption and explicitly requires a special group with a bilinear map. Thus, it makes sense to talk
about somewhat less convenient, but easier to construct paradigms for building committed signatures.

2.2 Two-Signatures

One such paradigm was explicitly suggested by Park et al. [19]. In this case, all four keys SK,PK,ASK,APK
are generated by Alice. Then, Alice sends PK,ASK,APK to Charlie, who checks if the keys were
“properly generated”. Ideally, this check should be non-interactive (which will be the case in our later
solution), but Park et al. also allow Alice to interactively prove the correctness of PK,ASK,APK (e.g.,
prove her knowledge of SK). As compared to VE-signatures, the obvious disadvantage of this approach

4



is the need for Charlie to store different keys ASK for every user Alice, since it is Alice who generates
such a key. As we pointed out, however, the hope is to get simpler and/or more general constructions.

As for building the actual committed signature scheme using this approach, Park et al. suggest to use
“sequential two-party multi-signatures” (form now on, referred as two-signatures). In such signatures,
two parties P1 and P2 have two pairs of keys (pk1, sk1) and (pk2, sk2). They can then jointly sign a
message m by first having P1 sign m using sk1 (producing σ1), and then P2 transform σ1 into a “joint”
signature σ which the verifier can check was signed by both P1 and P2. For that, the verifier uses the
“combined” public key pk = pk1 ? pk2, where ? is some public operation (concatenation always works,
but one usually wants to have pk of the same length as pk1 and pk2). Moreover, it is often the case
that the secret keys sk1 and sk2 can also be “combined” into a joint secret key sk = sk1 ⊗ sk2 which
can be used to generate σ “directly”. In this case, one can use such a two-signature as a committed
signature by setting SK = (sk, sk1), PK = pk, ASK = sk2 and APK = pk1 (notice, nobody needs to
know pk2), Sig to be the direct signing using sk, PSig to be the partial signing by P1 using sk1 (so
that σ′ = σ1), and Res to be the signature completion performed by P2 using sk2.

For instance, a trivial (but secure!) example of this paradigm will be to have two arbitrary signature
schemes with keys (pk1, sk1), (pk2, sk2), and let PK = (pk1, pk2), SK = (sk1, sk2) and σ = (σ1, σ2). In
other words, Alice regular signature consists of two independent signatures σ1 and σ2, while Charlie
knows how to produce σ2 only. Then Alice commits to her signature by sending σ1 to Bob, who
will then ask Charlie to produce σ2 if Alice refuses to do so later. Of course, such two-signatures /
fair exchange protocols are uninteresting and inefficient. First, all the computation and key/signature
lengths have to be doubled, and, more importantly, the final signature σ is not consistent with some
existing “natural” signature scheme. In particular, for the uses outside of the fair exchange framework,
Alice has to suffer with an inefficient and non-standard signature scheme. Thus, for the purposes of
efficiency and usability (but not security!), the goal is to design two-signature schemes which are
consistent with some natural, “atomic” signature schemes. Still, the trivial solution above should
satisfy the security properties of committed signatures, which we formally define next.

2.3 Security of Committed Signatures

The security of committed signatures consists of ensuring three aspects: security against signer Alice,
security against verifier Bob, and security against arbitrator Charlie. In the following, we denote by
P an oracle simulating the partial signing procedure PSig, and by R — the oracle simulating the
resolution procedure Res. Also, k denotes the security parameter, and PPT stands for “probabilistic
polynomial time” (in the security parameter).

Security against Alice. We require that any PPT adversary A succeeds with at most negligible
probability in the following experiment.

Setup∗(1k) → (SK∗,PK,ASK,APK)
(m,σ′) ← AR(SK∗,PK,APK)

σ ← Res(m,σ′,ASK,PK)

success of A = [PVer(m,σ′,PK,APK) ?= 1 ∧ Ver(m,σ, PK) ?= 0]

where Setup∗ denotes the run of Setup with dishonest Alice (run by A) and SK∗ is A’s state after this
run. In other words, Alice should not be able to produce partial signature σ′ which looks good to Bob,
but which will not be opened into Alice’s full signature by honest Charlie.

5



Security against Bob. We require that any PPT adversary B succeeds with at most negligible
probability in the following experiment.

Setup(1k) → (SK,PK,ASK,APK)
(m,σ) ← BP,R(PK,APK)

success of B = [PVer(m,σ, PK) ?= 1 ∧ (m, . . .) 6∈ Query(B,R)]

where Query(B,R) is the set of valid queries B asked to the resolution oracle R (i.e., (m,σ′) such that
PVer(m,σ′) = 1). In other words, Bob should not be able to complete any of the partial signatures
σ′ that he got from Alice into a complete signature σ, without explicitly asking Charlie to do that
(in which case he must have been completed his obligation, since otherwise we assumed that Charlie
would not cooperate).

Notice also that there is no need to provide B with an oracle access to the signing oracle Sig, since
it could be simulated by P and R. Finally, we remark that we also want Bob to be unable to generate
a valid σ′ which was not produced by Alice (via a query to P = PSig). However, this guarantee will
always follow from an even stronger security against Charlie, which we define below. Indeed, we will
ensure that even Charlie — who knows more than Bob (i.e., ASK) — cannot succeed in this attack.

Security against Charlie. We require that any PPT adversary C succeeds with at most negli-
gible probability in the following experiment.

Setup∗(1k) → (SK,PK,ASK∗,APK)
(m,σ) ← CP (ASK∗,PK,APK)

success of C = [PVer(m, σ, PK) ?= 1 ∧ m 6∈ Query(C,P )]

where Setup∗ denotes the run of Setup with dishonest Charlie (run by C), ASK∗ is C’s state after this
run, and where Query(C,P ) is the set of queries C asked to the partial signing oracle P . In other
words, Charlie should not be able to produce a valid signature on m of Alice without explicitly asking
Alice to produce a partial signature on m (which he can complete into a full signature by himself using
ASK).

We remark that this property is crucial. Even though Charlie is semi-trusted, Alice does not want
Charlie to produce valid signatures which she did not intend on producing. As we will see in Section 3,
the committed signature of Park et al. [19] completely fails to achieve this property: in fact, an honest-
but-curious Charlie can completely determine Alice’s entire secret key SK, without any queries to the
partial signing oracle!

Finally, we remark that since Bob’s information is subsumed by either Alice’s or Charlie’s informa-
tion, there is no need to consider a coalition of Alice (Charlie) and Bob attacking Charlie (Alice). On
the other hand, Bob is certainly not protected if Alice and Charlie collude, as Charlie can refuse to
resolve the signature. Thus, our definition is the most general one can hope to achieve.

Novelty of Our Security Model. We believe that our precise and formal definition of commit-
ted signatures is of independent interest. While previous work (such as [1, 2]) gave elaborate formal
definitions of interactive fair exchange, ours is the first clean and simple definition of non-interactive
fair exchange. In particular, our definition is not just a “trivial extension” (to a more general Setup
procedure) of the definition of non-interactive VE-signatures from Boneh et al. [8]. Indeed, the for-
mer paper gave a nice and formal definition of VE-signatures, but did not explicitly consider security

6



against Alice and Charlie (instead, it only considered two forms of security against Bob). Even though
we believe that the scheme in [8] satisfies our more general definition — and the proofs should easily
follow from the ones given in [8] for their weaker definition — our definition is a noticeable strength-
ening over the one given in [8]. Additionally, our definition unifies the framework of VE-signatures and
that of two-signatures informally presented by [19] (the latter work had no formal definitions at all).

3 Breaking the Fair Exchange Scheme from PODC 2003

As we mentioned, Park et al. [19] suggested a fair exchange scheme based on the two-signature
paradigm described in Section 2. Specifically, they attempted to build a two-signature scheme based
on regular RSA full domain hash signature scheme [5]. Recall, in this scheme one chooses the modulus
n = pq to be a product of two (safe) k-bit primes, chooses a random public key e ∈ Z∗

phi(n) (where
ϕ(n) = (p− 1)(q− 1)), and sets the secret key d ≡ e−1 mod ϕ(n). To sign a message m, one computes
σ ≡ H(m)d mod n, where H is a secure hash function (modeled as a random oracle). To verify, one
checks that σe ≡ H(m) mod n.

Based on this RSA signature, Park et al. attempted to build the following two-signature scheme.
Randomly split d ≡ d1 + d2 mod ϕ(n) (where d1 ∈ Z∗

ϕ(n)), let e1 ≡ d−1
1 mod ϕ(n) and, following the

notation of Section 2, set pk = e (we omit n, which is implicitly given), pk1 = e1, sk1 = d1, sk2 = d2.
Notice, we indeed have

σ ≡ H(m)d ≡ H(m)d1 ·H(m)d2 ≡ σ1 · σ2 mod n

so that Alice can commit to σ by sending σ1, and Charlie can complete it into the full signature σ —
if necessary — by knowing d2 and computing σ2 ≡ H(m)d2 mod n.

Notice, however, that in this scheme Charlie knows n, e, e1 and d2. Had Charlie also known pk2 =
e2 ≡ d−1

2 mod ϕ(n), then the scheme would be obviously insecure since the integer (e2d2−1) would be
a non-zero multiple of ϕ(n), and it is well known that knowing such multiple of ϕ(n) is equivalent to
factoring n (e.g., page 94 of [17]). “Luckily”, the authors of [19] observed that there is no need to give
d2 to Charlie, so the system “is still secure”. Unfortunately, we show that this claim is false. Even
without knowing d2, an honest-but-curious Charlie can still determine a non-zero multiple of ϕ(n),
and thus factor n. We now summarize our break into the following abstract problem.

Problem: Pick two random k-bit primes p, q and set n = pq. Pick two random RSA key pairs (d, e)
and (d1, e1): namely, choose random e, e1 ∈ Z∗

ϕ(n), and set d ≡ e−1 mod ϕ(n), d1 ≡ e−1
1 mod ϕ(n).

Let d2 ≡ d− d1 mod ϕ(n). The problem is to factor n given n, e, e1, d2.

Theorem 1 The problem above can be solved in probabilistic polynomial time. Thus, an honest-but-
curious arbitrator Charlie can easily determine Alice’s secret key at the end of the setup procedure.

Proof: Since ed ≡ 1 mod ϕ(n) and d ≡ d1 + d2 mod ϕ(n), we have ed1 ≡ (1 − ed2) mod ϕ(n).
Multiplying by e1 and using e1d1 ≡ 1 mod ϕ(n), we have

e ≡ (1− ed2)e1 mod ϕ(n) (1)

Notice, all the quantities e, e1 and d2 are given to us in the problem statement. Moreover, they are
given to us as positive integers. Thus, e > 0 and (1− ed2)e1 ≤ 0. This means that Equation (1) above

7



cannot hold over the integers, which in turns means that the integer

I
def= e− (1− ed2)e1

is a non-zero multiple of ϕ(n). However, we already mentioned that a knowledge of a non-zero multiple
of ϕ(n) is sufficient to factor n, which completes the proof.

Multiplicative sharing. Interestingly, the authors of [19] noticed that their scheme would be
insecure if d is split multiplicatively, even though their argument was somewhat incomplete. For
thoroughness, we give the full argument, since it is very short anyway. Notice, in this case d2 ≡
dd−1

1 mod ϕ(n), which is equivalent to d2e ≡ e1 mod ϕ(n). Thus, the integer J
def= (d2e − e1) is a

multiple of ϕ(n). However, to factor n we still have to show that J 6= 0, which the authors of [19] did
not do. But this argument is simple as well. Indeed, since e and e1 were chosen randomly, with all
but negligible probability we have d2 > 2k, e > 2k, while clearly e1 < n < 22k. But this means that
with all but negligible probability J > 0, so J is a non-zero multiple of ϕ(n) indeed.

4 Secure Fair Exchange based on GDH Signatures

The break on the scheme from PODC 2003 was due the fact that the authors utilized an insecure
two-signature scheme in their construction. In this section we show that that one can build secure
committed signatures provided one uses secure two-signatures. One way to approach this claim is to
give a formal definition of secure two-signatures (i.e., “sequential two-party multi-signatures”). How-
ever, the resulting definition would be essentially the same as the definition of committed signatures
we are trying to satisfy (except it will use a particular form of the Setup procedure), and the whole
implication will anyway essentially be a tautology. Moreover, there currently anyway exists only one
fully non-interactive multi-signature scheme of [6], where the underlying signature is consistent with
an existing “atomic” signature scheme of [9]. Thus, there does not seem to be a justifiable reason to
give a complicated ad-hoc definition of a new primitive, which is not much easier to satisfy than that
of committed signatures, and of which we anyway currently have only one example.

Therefore, we choose to give a more meaningful direct adaptation of the multi-signature scheme of
Boldyreva [6] into a committed signature scheme, and then prove that the resulting scheme satisfies our
formal definitions from Section 2.3. We remark that our proof is quite simple, but does not immediately
follow from the one given by [6], since our model and security notion are new and different.2 But first we
need to introduce “gap Diffie-Hellman (GDH) Groups” [16, 15] and the corresponding GDH signature
scheme [9].

GDH Groups. Assume G is a multiplicative group of prime order p. Consider the following two
problems in G.

Computational Diffie-Hellman (CDH) Problem: given three elements g, h, u ∈ G, compute
v = ulogg h.

Decisional Diffie-Hellman (DDH) Problem: given four elements g, h, u, v ∈ G, determine
whether or not they satisfy the relation logg h = logu v (in case they do, the tuple (g, h, u, v) is called
the DDH-tuple).

2As we stated earlier, one probably could make our result “generically follow” from the multi-signature security of
[6], but it is much easier to prove it directly.

8



We can now define the GDH groups. Basically, in these group the DDH problems is easy, but the
CDH problems is assumed to be hard. Below, we assume that there exists a family of the corresponding
groups G parameterized by some security parameter k, and efficiency is measured in terms of the binary
length of the group order p (which is polynomial in k).

Definition 2 A prime order group G (with efficient group operation and its inverse) is called a GDH
group if there exists an efficient polynomial time algorithm VDDH which solves the DDH problem, but
no PPT algorithm can solve the CDH problem with non-negligible probability, when the inputs g, h, u
are chosen at random.

We remark that GDH groups have found many applications recently (e.g., [7, 9, 14, 18, 8, 6, 13]).

GDH Signatures. The GDH signature scheme in a GDH group G is defined as follows. The key
generation algorithm picks a GDH group G of order p, and random g ∈ G, x ∈ Zp. It computes
h = gx, and sets the public key to be (g, h) (G and p are assumed to be public parameters too), and
the secret key to be x. To sign a message m, one computes σ = H(m)x, where H is a random oracle.
To verify σ, one outputs VDDH(g, h, H(m), σ), i.e., tests if (g, h, H(m), σ) form a DDH-tuple. This
scheme can also be viewed as a slight generalization of the full domain hash paradigm [5].

Theorem 2 ([9]) If G is a GDH group, then the GDH signature above is existentially unforgeable
under adaptive chosen message attack.

As observed by [9], the GDH signatures not only give yet another simple and efficient signature
scheme under a new assumption, but also have the advantage of being very short in the currently
proposed GDH groups.

4.1 Committed Signature Based on GDH Signatures

We now extend the above signature into a committed signature.

• Setup. Alice chooses random g ∈ G, x, x1 ∈ Zp, computes x2 = x− x1 mod p, h = gx, h1 = gx1 ,
and sets PK = (g, h), SK = (x, x1), APK = h1, ASK = x2. It then sends PK,APK,ASK to
Charlie, who checks that h = h1g

x2 (and rejects if this is not the case).

• Sig and Ver are identical to the GDH signature: Sig(m) = H(m)x, Ver(m,σ) = VDDH(g, h, H(m), σ).

• PSig and PVer are also identical to the GDH signature, but with public key h1: PSig(m) =
H(m)x1 , PVer(m,σ′) = VDDH(g, h1,H(m), σ′).

• Res(m,σ′) first checks that PVer(m,σ′) = 1, and then outputs σ = σ′H(m)x2 .

The correctness property of the above committed signature is obvious. We now analyze its security.

Theorem 3 The GDH committed signature above is as secure as the regular GDH signature. In
particular, it is secure in GDH groups.

Proof: We prove the security against Alice, Bob and Charlie.
Security against Alice follows unconditionally. Indeed, if Charlie accepted the values (g, h, h1, x2)

in the registration, it means that x
def= logg h and x1

def= logg h1 satisfy x1 + x2 = x mod p. Also, any

9



valid partial signature σ′ satisfies x1 = logg h1 = logH(m) σ′, and therefore the resolved full signature
σ = σ′H(m)x2 satisfies logH(m) σ = x1 + x2 = x = logg h, and thus must pass the usual verification
algorithm.

To show security against Bob, we convert any committed signature attacker B into a forger F for
the regular GDH signature. Recall, F gets (g, h) as an input, and has oracle access to the signing
oracle Sig. On the other hand, B expects (g, h, h1) and oracle access to both PSig and Res, and wins
if it forges a signature σ of some message m without asking Res a valid query (m, σ′). Since there is
only one valid σ′ for a given m and B can test it the validity himself, we can assume that B simply
did not ask Res any queries involving the forged message m.

So here is how F simulates the run of B. It picks a random x1 ∈ Zp, sets h1 = gx1 and gives
(g, h, h1) to B. F can respond to PSig queries of B by himself, since he knows x1. To simulate a valid
resolution query (mi, σ

′
i) to Res, F simply asks its own signing oracle on message m, and returns the

answer to B. When B outputs the forgery (m,σ), F also outputs the same forgery. We see that the
simulation is perfect, and F succeeds in producing a new forgery if and only if B succeeds.

Finally, we show security against Charlie. Again, we convert any committed signature attacker C
into a forger F for the regular GDH signature. As before, F gets (g, h) as an input, and has oracle
access to the signing oracle Sig. On the other hand, C expects (g, h, h1, x2) and oracle access to PSig,
and wins if it forges a signature σ of some message m without asking PSig(m).

So here is how F simulates the run of C. It picks a random x2 ∈ Zp, sets h1 = hg−x2 and gives
(g, h, h1, x2) to C. F can respond to PSig queries mi of B by first getting a signature σi = H(mi)x

from its own signing oracle, and then returning σ′
i = σiH(mi)−x2 . When C outputs the forgery (m,σ),

F also outputs the same forgery. We see that the simulation is perfect, and F succeeds in producing
a new forgery if and only if C succeeds.

Remark 1 It is instructive to see where the above proof of security against Charlie fails for seemingly
very similar RSA signatures. The step that fails involves computing the public arbitration key e1 ≡
e(d2)−1 mod ϕ(n) from the global public key e and a random d2 which the simulator F chooses. Indeed,
a natural way for doing so involves computing the inverse of d2 modulo ϕ(n), which is as hard as
factoring n. In fact, our break shows that there is no way to complete the reduction, unless the
standard RSA assumption is false.

Acknowledgments

We thank Alexandra Boldyreva and Victor Shoup for useful discussions concerning fair exchange.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. In K. Ny-
berg, editor, Advances in Cryptology—EUROCRYPT 98, volume 1403 of Lecture Notes in Com-
puter Science, pages 591–606. Springer-Verlag, May 31–June 4 1998.

[2] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communication, 18(4):593–610, 2000.

10



[3] G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures. In G. Tsudik,
editor, Sixth ACM Conference on Computer and Communication Security, pages 138–146. ACM,
Nov. 1999.

[4] F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with off-line TTP.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 77–85, 1998.

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communication Security, pages 62–73, November 1993. Revised version appears in
http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.

[6] A. Boldyreva. Efficient threshold signatures, multisignatures and blind signatures based on the
Gap-Diffie-Hellman-group signature scheme. In Desmedt [12].

[7] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In J. Kilian, editor,
Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer-Verlag, 19–23 Aug. 2001.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In E. Biham, editor, Advances in Cryptology—EUROCRYPT 2003, Lecture
Notes in Computer Science, pages 416–432. Springer-Verlag, 4 May–8 May 2003.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C. Boyd, editor,
Advances in Cryptology—ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 514–532, Gold Coast, Australia, 9–13 Dec. 2001. Springer-Verlag.

[10] J. Camenisch and I. B. Damg̊ard. Verifiable encryption, group encryption, and their applica-
tions to group signatures and signature sharing schemes. In T. Okamoto, editor, Advances in
Cryptology—ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 331–
345, Kyoto, Japan, 3–7 Dec. 2000. Springer-Verlag.

[11] J. Camenisch and A. Lysyanskaya. Signature schemes with efficient protocols. In Conference on
Security in Communication Networks (SCN), 2002.

[12] Y. Desmedt, editor. 6th International Workshop on Practice and Theory in Public Key Cryp-
tosystems — PKC 2003, volume 2567 of Lecture Notes in Computer Science. Springer-Verlag,
Jan. 2003.

[13] Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Desmedt [12].

[14] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Y. Zheng, editor, Advances
in Cryptology—ASIACRYPT-2002, volume 2501 of Lecture Notes in Computer Science, Queen-
stown, New Zealand, 1–5 Dec. 2002. Springer-Verlag.

[15] A. Joux. A one-round protocol for tripartite Diffie-Hellman. In ANTS-IV Conference, volume
1838 of Lecture Notes in Computer Science, pages 385–394. Spring-Verlag, 2000.

[16] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from Diffie-Hellman in cryptographic
groups. IACR E-print Archive. Available from http://eprint.iacr.org/2001/003/, 2001.

11



[17] N. Koblitz. A Course in Number Theory and Cryptography (second edition). Springer Verlag,
New York, NY, 1994.

[18] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation.
In M. Yung, editor, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science.
Springer-Verlag, 18–22 Aug. 2002.

[19] J. M. Park, E. Chong, H. Siegel, and I. Ray. Constructing fair exchange protocols for E-commerce
via distributed computation of RSA signatures. In 22-th Annual ACM Symp. on Principles of
Distributed Computing, pages 172–181, 13–16 July 2003.

12


